Menu
Rechercher
Accueil > Thèses, Stages, Formation et Enseignement > Propositions de thèses antérieures > Propositions de thèses 2023 > Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND
Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND
par Tristan Beau - 15 novembre 2022
Titre : Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND
Directrice/directeur de thèse : Olivier Martineau
Co-encadrant.e : Kumiko Kotera
Groupe d’accueil :GRAND
Webpage du projet : https://grand.cnrs.fr/
Collaboration : GRAND
Description :
GRAND (Giant Radio Array for Neutrino Detection [1]) is a proposal for a network of radio arrays deployed at various favorable locations in the world during the next decade, and covering a total area of 200’000km². This gigantic radio detector will aim at detecting cosmic particles of ultra-high energy, and more specifically neutrinos of astrophysical origin, with the ultimate goal to understand the source of the most energetic particles in the Universe.
The baseline design for the GRAND layout consists in autonomous radio antennas deployed over a hexagonal grid with a typical step size of 1km, working in so called “impulsive mode”, ie recording transient radio signals. Yet over projects, such as BEACON [2], propose a slightly different design, where antennas are clustered by groups of 10 units and their signal phased together, ie working in so-called “interferometric mode”. This in principle allows for an improved sensitivity (because the noise, mostly incoherent, is reduced when summed) at the cost of a reduced field of view and a more complex signal processing.
We propose in this PhD to perform an in-depth study of the two designs which will lead to a proposal for an optimized GRAND design, combining impulsive and interferometric operation modes. This work will include a detailed simulation study to estimate the sensitivity of the setup and optimize its design and an experimental part using prototypes for the BEACON and GRAND setups. It will be driven by a theoretical part which will allow to define a science case tailored to the performances of this setup.
This PhD will be supervised by Kumiko Kotera (IAP) and Olivier Martineau (LPNHE), the co-responsibles of the GRAND project. Members of the GRAND and BEACON projects will also be involved in that work. Extensive stays at Pennsylvania State University and the Chicago University (leading institutes of the BEACON project) are foreseen, as well as at the Barcroft Station in the White Mountains (California), where the BEACON prototype is deployed.
[1] The GRAND Collaboration, Science China Physics, Mechanics, and Astronomy 63 (1) (2020) 219501. https://arxiv.org/abs/1810.09994
[2] The BEACON Collaboration, Astroparticle Physics 2020 (11) (2020) 065–065. https://arxiv.org/abs/2004.12718
Lieu(x) de travail : LPNHE et IAP (Paris)
Déplacements éventuels : Pennsylvania State University, Chicago University, Barcroft Observatory (Californie)
Stage proposé avant la thèse : Oui
Dans la même rubrique :
- Etude de la production de di-Higgs pour la nouvelles physiques et amélioration du trajectographe de l’expérience ATLAS en vue de la phase à haute luminosité du LHC
- Mesure de l’élément Vub de la matrice CKM et recherche de nouvelle physique dans l’étude de l’universalité de la saveur leptonique avec l’expérience LHCb au CERN/Measurement of the Vub element of the CKM matrix and search for new physics in lepton flavour universality tests with the LHCb experiment at CERN
- Analyses en amplitudes des désintégrations
- Mesure de la masse du quark top avec des événements ttbar avec des mésons J/ψ et D dans l’état final. Études et réalisation du détecteur de temps hautement granulaire (HGTD) dans l’expérience ATLAS auprès du LHC. Measurement of the top quark mass using ttbar events with J/ψ and D mesons in the final state. Study and realization of a High Granularity Timing Detector (HGTD) for the ATLAS detector for the High Luminosity phase of the LHC.
- Variability from active galactic nuclei with the future Cherenkov Telescope Array and validation tests with the NectarCAM camera
- Joint supernovae and galaxy clustering analysis with ZTF and the DESI BGS
- First LSST dataset : toward the next generation of cosmological constrains.
- Development of the new silicon pixel tracker for the upgrade of the ATLAS detector at the High Luminosity LHC (HL-LHC), study of the performance of the new design, and application to the research of new physics and precision Higgs measurements at HL-LHC
- Towards precise measurement of neutrino oscillations parameters in T2K-II with new input from the upgraded Near Detector ND280
- Development of reconstruction algorithms for the Hyper-Kamiokande experiment – a unique observatory for rare events in the Universe
- Incertitudes pour les tâches de régression avec des réseaux de neurones sur graphe. Application à la détection de particules cosmiques.
- Quantifying ML uncertainties in searches for new physics at the LHC