Partenaires

CNRS
IN2P3
Sorbonne Universite
Universite de Paris
Initiative Physique des Infinis
UPMC


Rechercher

Sur ce site


Accueil > Thèses, Stages, Formation et Enseignement > Propositions de thèses antérieures > Propositions de thèses 2023 > Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND

Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND

par Tristan Beau - 15 novembre 2022

Titre : Prospectives pour une détection interférométrique de particules cosmiques dans le projet GRAND

Directrice/directeur de thèse : Olivier Martineau

Co-encadrant.e : Kumiko Kotera

Groupe d’accueil :GRAND

Webpage du projet : https://grand.cnrs.fr/

Collaboration : GRAND

Description :

GRAND (Giant Radio Array for Neutrino Detection [1]) is a proposal for a network of radio arrays deployed at various favorable locations in the world during the next decade, and covering a total area of 200’000km². This gigantic radio detector will aim at detecting cosmic particles of ultra-high energy, and more specifically neutrinos of astrophysical origin, with the ultimate goal to understand the source of the most energetic particles in the Universe.
The baseline design for the GRAND layout consists in autonomous radio antennas deployed over a hexagonal grid with a typical step size of 1km, working in so called “impulsive mode”, ie recording transient radio signals. Yet over projects, such as BEACON [2], propose a slightly different design, where antennas are clustered by groups of 10 units and their signal phased together, ie working in so-called “interferometric mode”. This in principle allows for an improved sensitivity (because the noise, mostly incoherent, is reduced when summed) at the cost of a reduced field of view and a more complex signal processing.
We propose in this PhD to perform an in-depth study of the two designs which will lead to a proposal for an optimized GRAND design, combining impulsive and interferometric operation modes. This work will include a detailed simulation study to estimate the sensitivity of the setup and optimize its design and an experimental part using prototypes for the BEACON and GRAND setups. It will be driven by a theoretical part which will allow to define a science case tailored to the performances of this setup.
This PhD will be supervised by Kumiko Kotera (IAP) and Olivier Martineau (LPNHE), the co-responsibles of the GRAND project. Members of the GRAND and BEACON projects will also be involved in that work. Extensive stays at Pennsylvania State University and the Chicago University (leading institutes of the BEACON project) are foreseen, as well as at the Barcroft Station in the White Mountains (California), where the BEACON prototype is deployed.

[1] The GRAND Collaboration, Science China Physics, Mechanics, and Astronomy 63 (1) (2020) 219501. https://arxiv.org/abs/1810.09994
[2] The BEACON Collaboration, Astroparticle Physics 2020 (11) (2020) 065–065. https://arxiv.org/abs/2004.12718

Lieu(x) de travail : LPNHE et IAP (Paris)

Déplacements éventuels : Pennsylvania State University, Chicago University, Barcroft Observatory (Californie)

Stage proposé avant la thèse : Oui

Facebook

Dans la même rubrique :

Enregistrer au format PDF