Menu
Rechercher
Accueil > À la une > Les Unes précédentes > Début du programme de recherche au LHC
Début du programme de recherche au LHC
par Francois Legrand - 4 juin 2010
Genève, le 30 mars 2010. À 13h06, des faisceaux [1] sont entrés en collision à une énergie de 7 TeV, donnant ainsi le coup d’envoi au programme de recherche du LHC. Dans le monde entier, des physiciens des particules se préparent à une moisson potentiellement riche de données de nouvelle physique ; le LHC entame en effet sa première longue période d’exploitation à une énergie trois fois et demie supérieure aux énergies atteintes précédemment dans un accélérateur de particules.
« C’est un grand jour pour les physiciens des particules, déclare Rolf Heuer, directeur général du Cern. Nombreux sont ceux qui attendent ce moment depuis longtemps, et leur patience et leur persévérance ont fini par payer. »
« Avec ces énergies de collision record, les expériences LHC vont pouvoir aborder une vaste région à explorer ; on va commencer à traquer la matière noire, les nouvelles forces et les nouvelles dimensions, ainsi que le boson de Higgs [2] , indique Fabiola Gianotti, porte-parole de la collaboration Atlas. Le fait que les expériences aient déjà publié des articles sur la base des données enregistrées l’an passé est de très bon augure pour cette première période d’expérimentation. »
« Nous avons tous été impressionnés par les performances du LHC à ce jour, souligne Guido Tonelli, porte-parole de l’expérience CMS. Il est particulièrement gratifiant de constater à quel point nos détecteurs [3] fonctionnent bien. Nos équipes de physiciens, dans le monde entier, analysent déjà les données. Nous allons bientôt nous attaquer à certaines grandes énigmes de la physique moderne comme l’origine de la masse, la grande unification des forces et la présence abondante de matière noire dans l’Univers. Nous devons nous attendre à vivre des moments exceptionnels. »
« C’est le moment que nous attendons et auquel nous nous préparons depuis longtemps, déclare Jürgen Schukraft, porte-parole d’Alice. Nous comptons beaucoup sur les résultats des collisions de protons et, plus tard dans l’année, des collisions d’ions lourds, pour arriver à mieux comprendre la nature de l’interaction forte [4]. Elle assure la cohésion du proton et du neutron et, en dernière instance, du noyau et l’évolution de la matière dans l’Univers primordial. »
- Evénement dans LHCb
« LHCb est prête pour la physique, souligne Andreï Golutvin, porte-parole de l’expérience. Un grand programme de recherche nous attend. Il nous permettra d’étudier en profondeur la nature de l’asymétrie entre matière et antimatière. »
Le Cern exploitera le LHC sur une période allant de 18 à 24 mois, avec pour objectif de fournir aux expériences suffisamment de données pour réaliser des avancées notables via des branches très diverses de la physique. Dès qu’elles auront « redécouvert » les particules de l’actuel modèle standard [5], les expériences LHC partiront à la recherche systématique du boson de Higgs. Grâce à la quantité de données attendues (1 fb-1 ou « un inverse femtobarn » dans le jargon des physiciens), la combinaison des données obtenues par Atlas et CMS permettra d’explorer un large domaine de masses, et il y aura une chance bien réelle de découverte si la masse du Higgs avoisine les 160 GeV. Si la particule est beaucoup plus légère ou beaucoup plus lourde, il sera difficile de la découvrir pendant cette première période d’expérimentation.
S’agissant de la supersymétrie, Atlas et CMS disposeront chacune de suffisamment de données pour multiplier par deux la sensibilité actuelle aux nouvelles découvertes. Aujourd’hui, les expériences sont sensibles à certaines particules supersymétriques dont les masses vont jusqu’à 400 GeV. Le LHC, avec 1fb-1, va permettre d’aller jusqu’à 800 GeV.
« Le LHC a de bonnes chances de découvrir au cours des deux années à venir des particules supersymétriques, explique Rolf Heuer, ce qui pourrait nous permettre de mieux comprendre de quoi est constitué environ un quart de l’Univers. »
Et même à l’autre extrémité – plus exotique – du spectre des découvertes possibles, cette première période d’exploitation du LHC doublera notre potentiel de découvertes. Les expériences LHC seront sensibles à de nouvelles particules massives indiquant la présence de nouvelles dimensions et ayant des masses allant jusqu’à 2 TeV (contre 1 TeV actuellement).
« Plus de 2000 doctorants attendent avec impatience des données des expériences LHC, souligne Rolf Heuer. Ils auront le privilège de rédiger les premières thèses à la nouvelle frontière des hautes énergies. »
À l’issue de cette période d’exploitation, le LHC sera arrêté pour que l’on puisse procéder aux opérations de maintenance usuelles et terminer les réparations et les travaux de consolidation requis suite à l’incident survenu le 19 septembre 2008 pour pouvoir atteindre l’énergie nominale de 14 TeV. Jusqu’à présent, les accélérateurs du CERN fonctionnaient selon un cycle annuel : ils étaient exploités pendant sept à huit mois et arrêtés quatre à cinq mois chaque année. Étant donné que le LHC est une machine cryogénique fonctionnant à très basse température, il lui faut environ un mois pour être ramené à température ambiante et un autre mois pour être refroidi. Un arrêt de quatre mois dans le cadre d’un cycle annuel ne se justifie donc plus. C’est la raison pour laquelle le Cern a décidé de passer à un cycle plus long avec des périodes de fonctionnement plus longues et des arrêts eux aussi plus longs en cas de besoin.
« Deux années d’exploitation continue ne seront pas de tout repos pour les opérateurs du LHC et les expériences, mais le jeu en vaudra bien la chandelle, précise Rolf Heuer. En commençant par une longue période d’exploitation et en concentrant sur une seule période d’arrêt la préparation des collisions à 14 TeV, nous augmentons la durée d’exploitation totale au cours des trois années à venir. Ainsi, nous pourrons rattraper le temps perdu et donner toutes leurs chances aux expériences d’imprimer leur marque. »
Retrouvez les dernières informations sur le site Français du LHC du CNRS et du CEA et sur les pages des expérience Atlas et LHCb dans lesquelles de nombreux chercheurs du LPNHE sont impliqués. Vous pouvez également regarder une série de photos réalisées mardi 30 septembre au CERN par Frédéric Kapusta, chercheur du LPNHE.
Voir en ligne : Communiqué de presse du CERN
Post-scriptum :
Cet article est adapté du communiqué de presse du CERN et du communiqué LHC-France.
[1] Groupe de particules circulant à grande vitesse
[2] Particule élémentaire prévue par le Modèle standard, mais qui n’a encore jamais été observée
[3] Appareillage sensible au passage des particules
[4] L’interaction forte est une des quatre forces fondamentales
[5] Théorie qui décrit la structure ultime de la matière, préalable indispensable à l’étude d’une nouvelle physique
Another display of an event at 7 TeV with a muon candidate. - 1,5 Mo |
Display of an event at 7 TeV with a muon candidate. - 974,1 ko |
Dans la même rubrique :
- La chasse au boson de Higgs au Tevatron : le terrain se rétrécit
- Master Classes en physique des particules
- HESS détecte le rayonnement gamma d’une galaxie à flambée d’étoiles
- LHCb : mesures simultanées des rapports RK et RK*
- Fête de la science 2009
- LHC : Le retour du plus puissant accélérateur au monde
- Première lumière pour l’instrument StarDICE à l’observatoire de Haute Provence
- Départ de la caméra Hess II
- T2K : Premières interactions de neutrinos
- Bientôt les premières collisions au LHC
- Vers le secteur OUEST du Campus Jussieu
- Soutenances de thèses
- Première mesure d’un signal de recul nucléaire de neutrinos solaires dans l’expérience XENONnT
- Redémarrage du LHC
- Pierre Astier : Médaille d’argent CNRS 2009
- Camera HESS-II au LPNHE
- Nouvelles perspectives pour Alice, Atlas et CMS
- Recherche d’anisotropies à grande échelle angulaire dans le rayonnement cosmique avec l’Observatoire Pierre Auger
- Un détecteur de rayons cosmiques utilisant du café soluble
- SuperNova factory monte en puissance
- Des nouvelles de T2K
- Finalisation de la Structure du Téléscope HESS II
- Le Boson de Higgs montre-t-il le bout de son nez ?
- Institut Lagrange Paris
- Reprise des collisions dans ATLAS après l’arrêt hivernal
- Derniers résultats dans la recherche du boson de Higgs
- HESS II voit la Nébuleuse du Crabe.
- Derniers résultats d’ATLAS sur le boson de Higgs
- Un nouveau type d’oscillation de neutrino observé dans l’expérience T2K
- Prix Nobel de Physique 2013
- Cosmologie : Les Supernovae de type Ia contraignent la nature de l’énergie noire.
- Hess-II détecte son premier pulsar
- L’expérience LHCb observe deux nouvelles particules.
- Je suis Charlie
- H.E.S.S. détecte trois sources gamma dans une autre galaxie
- La France s’engage dans l’expérience LSST
- Les faisceaux sont de retour dans le LHC
- ATLAS enregistre ses premières collisions à 900 GeV
- La prise de données du LHC a redémarré !
- Oscillation des antineutrinos : la collaboration T2K annonce ses premiers résultats
- ATLAS présente ses résultats de l’année 2015
- Présentation de nouveaux résultats d’ATLAS à Moriond 2016
- HESS met en évidence un accélérateur d’ions de très haute énergie dans la partie centrale de la Voie Lactée
- Les résultats d’ATLAS aux conférences d’été
- Vava Gligorov obtient une bourse ERC !
- LHCb observe des indices d’une possible nouvelle physique
- Le détecteur XENON1T divulgue ses premiers résultats
- Une nouvelle particule découverte !
- L’asymétrie matière/anti-matière se précise dans le secteur des neutrinos !
- Fusion d’étoiles à neutrons : ondes gravitationnelles et campagne d’observations multi-longueurs d’onde/multi-messager
- Nouveaux résultats de la collaboration DarkSide
- Agnieszka Jacholkowska
- XENON1T sonde encore plus profondément la mystérieuse Matière Noire
- Début des travaux de génie civil pour la phase haute luminosité du LHC
- ATLAS : les désintégrations du boson de Higgs en paires de quarks b enfin observées !
- Avancées du projet CTA
- LHCb observe une nouvelle saveur de l’asymétrie matière-antimatière
- XENON1T mesure directement la plus longue demi-vie de l’univers
- Le système de calibration de DESI, conçu et fabriqué au LPNHE, est installé sur le télescope Mayall
- Où est passée l’antimatière ? L’éclairage prometteur des neutrinos
- XENON1T observe un excès d’événements imprévu
- Record mondial par DAMIC at SNOLAB de la mesure de la contamination radioactive au coeur des détecteurs en silicium.
- Les muons nous mèneront-ils vers une nouvelle physique ?
- Le LPNHE officiellement qualifié pour la production des modules d’ITk (ATLAS)
- Installation du détecteur prototype de DAMIC-M à Modane
- Pour la première fois, les chercheurs du groupe LHCb du LPNHE reconstruisent des traces à 20 MHz
- Fête de la Science 2023
- Cristal du CNRS pour Patrick Nayman
- LHCb entrevoit le faisceau du LHC
- Camera HESS II
- Les experiences de Fermilab cernent le boson de Higgs
- Obervation du processus rare de production du quark top isolé par CDF et D0