
Wavelet Toolbox

Computation

Visualization

Programming

User’s Guide
Version 1

Michel Misiti
Yves Misiti

Georges Oppenheim
Jean-Michel Poggi

For Use with MATLAB®

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Wavlet Toolbox User’s Guide
 COPYRIGHT 1996 - 1997 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:

(a) for units of the Department of Defense:
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause
at DFARS 252.227-7013.
(b) for any other unit or agency:
NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 1996 First printing

☎
FAX

✉

@

Contents
Preface

About the Authors . xv

Acknowledgments . xvi

What is the Wavelet Toolbox? . xvii
How to Use This Guide . xviii

For More Background . xix

Installation . xx
System Recommendations . xx
Platform-Specific Details . xx

Windows Fonts . xx
Other Platforms Fonts . xxi
Mouse Compatibility . xxi

Typographical Conventions . xxii

1
Wavelets: A New Tool for Signal Analysis

Fourier Analysis . 1-3

Short-Time Fourier Analysis . 1-4

Wavelet Analysis . 1-5
What Can Wavelet Analysis Do? . 1-5
iv

v Contents
What is Wavelet Analysis? . 1-7
Number of Dimensions . 1-7

The Continuous Wavelet Transform . 1-8
Scaling . 1-9
Shifting . 1-10
Five Easy Steps to a Continuous Wavelet Transform 1-10
Scale and Frequency . 1-13
The Scale of Nature . 1-13
What’s Continuous About the Continuous
Wavelet Transform? . 1-15

The Discrete Wavelet Transform . 1-16
One-Stage Filtering: Approximations and Details 1-16
Multiple-Level Decomposition . 1-19

Number of Levels . 1-19

Wavelet Reconstruction . 1-20
Reconstruction Filters . 1-21
Reconstructing Approximations and Details 1-21
Relationship of Filters to Wavelet Shapes 1-23

The Scaling Function . 1-25
Multistep Decomposition and Reconstruction 1-25

Wavelet Packet Analysis . 1-27

History of Wavelets . 1-29

An Introduction to the Wavelet Families 1-30
Haar . 1-31
Daubechies . 1-31
Biorthogonal . 1-32
Coiflets . 1-33
Symlets . 1-33
Morlet . 1-34
Mexican Hat . 1-34
Meyer . 1-35

2
Using Wavelets

Continuous Wavelet Analysis (One-Dimensional) 2-3
Continuous Analysis Using the Command Line 2-3
Continuous Analysis Using the Graphical Interface 2-7
Importing and Exporting Information
from the Graphical Interface . 2-11

Loading Signals into the Continuous Wavelet 1-D Tool . . . 2-11
Saving Wavelet Coefficients . 2-12

 One-Dimensional Discrete Wavelet Analysis 2-13
Analysis Decomposition Functions: 2-13
Synthesis Reconstruction Functions: 2-13
Decomposition Structure Utilities:
Analysis Decomposition Functions: 2-14

One-Dimensional Analysis Using the Command Line 2-15
One-Dimensional Analysis Using the Graphical Interface . . . 2-22
Importing and Exporting Information
from the Graphical Interface . 2-38

Saving Information to the Disk . 2-38
Loading Information into the Wavelet 1-D Tool 2-40

Two-Dimensional Discrete Wavelet Analysis 2-43
Analysis-Decomposition Functions: 2-43
Synthesis-Reconstruction Functions: 2-43
Decomposition Structure Utilities: . 2-43
De-noising and Compression: . 2-44

Two-Dimensional Analysis Using the Command Line 2-44
Two-Dimensional Analysis Using the Graphical Interface . . . 2-52
Importing and Exporting Information
from the Graphical Interface . 2-59

Saving Information to the Disk . 2-59
Loading Information into the Wavelet 2-D Tool 2-62

Working with Indexed Images . 2-66
Understanding Images in MATLAB . 2-66
Indexed Images . 2-66
Wavelet Decomposition of Indexed Images 2-68

How Decompositions Are Displayed 2-71
vi

vii Contents
3
Wavelet Applications

Detecting Discontinuities and Breakdown Points I 3-3
Discussion . 3-4

Guidelines for Detecting Discontinuities 3-4

Detecting Discontinuities and Breakdown Points II 3-6
Discussion . 3-7

Detecting Long-Term Evolution . 3-8
Discussion . 3-9

Detecting Self-Similarity . 3-10
Wavelet Coefficients and Self-Similarity 3-10
Discussion . 3-11

Identifying Pure Frequencies . 3-12
Discussion . 3-12

Suppressing Signals . 3-15
Discussion . 3-16

Vanishing Moments . 3-17

De-Noising Signals . 3-18
Discussion . 3-18

Compressing Signals . 3-21
Discussion . 3-22

4
Wavelets in Action: Examples and Case Studies

Illustrated Examples . 4-3
Advice to the Reader . 4-6

About Further Exploration . 4-7
Example #1: A Sum of Sines . 4-8

Example #2: A Frequency Breakdown 4-10
Example #3: Uniform White Noise . 4-12
Example #4: Colored AR(3) Noise . 4-14
Example #5: Polynomial + White Noise 4-16
Example #6: A Step Signal . 4-18
Example #7: Two Proximal Discontinuities 4-20
Example #8: A Second-Derivative Discontinuity 4-22
Example #9: A Ramp + White Noise . 4-24
Example #10: A Ramp + Colored Noise 4-26
Example #11: A Sine + White Noise . 4-28
Example #12: A Triangle + A Sine . 4-30
Example #13: A Triangle + A Sine + Noise 4-32
Example #14: A Real Electricity Consumption Signal 4-34

A Case Study: An Electrical Signal . 4-36
Data and the External Information . 4-36
Analysis of the Midday Period . 4-38
Analysis of the End of the Night Period 4-39
Suggestions for Further Analysis . 4-42

Identify the Sensor Failure . 4-42
Suppress the Noise . 4-43
Identify Patterns in the Details . 4-44
Locate and Suppress Outlying Values 4-46
Study Missing Data . 4-47

Fast Multiplication of Large Matrices . 4-48
Example 1: Effective Fast Matrix Multiplication 4-49
Example 2: Ineffective Fast Matrix Multiplication 4-51

5
Using Wavelet Packets

About Wavelet Packet Analysis . 5-3

One-Dimensional Wavelet Packet Analysis 5-6
De-Noising a Signal Using Wavelet Packet 5-14
viii

ix Contents
Two-Dimensional Wavelet Packet Analysis 5-19

Importing and Exporting from Graphical Tools 5-26
Saving Information to the Disk . 5-26

Saving Synthesized Signals . 5-26
Saving Synthesized Images . 5-27
Saving One-Dimensional Decomposition Structures 5-27
Saving Two-Dimensional Decomposition Structures 5-28

Loading Information into the Graphical Tools 5-28
Loading Signals . 5-29
Loading Images . 5-29
Loading Wavelet Packet Decomposition Structures 5-30

6
Advanced Concepts

Mathematical Conventions . 6-2

General Concepts . 6-5
Wavelets: A New Tool for Signal Analysis 6-5
Wavelet Decomposition:
A Hierarchical Organization . 6-5
Finer and Coarser Resolutions . 6-6
Wavelet Shapes . 6-6
Wavelets and Associated Families . 6-8
Wavelets on a Regular Discrete Grid . 6-13
Wavelet Transforms: Continuous and Discrete 6-14
Local and Global Analysis . 6-16
Synthesis: An Inverse Transform . 6-17
Details and Approximations . 6-18

The Fast Wavelet Transform (FWT) Algorithm 6-21
Filters Used to Calculate the DWT and IDWT 6-21
Algorithms . 6-24
Why Does Such an Algorithm Exist? . 6-29

One-Dimensional Wavelet Capabilities 6-34

Two-Dimensional Wavelet Capabilities 6-40

Dealing with Border Distortion . 6-46
Signal Extensions: Zero-Padding, Symmetrization,
and Smooth Padding . 6-46
Periodized Wavelet Transform . 6-55

Frequently Asked Questions . 6-56
Continuous or Discrete Analysis? . 6-56
Why Are Wavelets Useful for Space-Saving Coding? 6-56
Why Do All Wavelets Have Zero Average and Sometimes
Several Vanishing Moments? . 6-57
What About the Regularity of a Wavelet ψ? 6-57
Are Wavelets Useful in Fields Other Than Signal or
Image Processing? . 6-58
What Functions Are Candidates to Be a Wavelet? 6-59
Is It Easy to Build a New Wavelet? 6-59
What Is the Link Between Wavelet and Fourier Analysis? 6-60

Wavelet Families: Additional Discussion 6-62
Daubechies Wavelets: dbN . 6-63

Haar . 6-64
dbN . 6-64

Symlet Wavelets: symN . 6-65
Coiflet Wavelets: coifN . 6-66
Biorthogonal Wavelet Pairs: biorNr.Nd 6-67
Meyer Wavelet: meyr . 6-69
Battle-Lemarie Wavelets . 6-70
Mexican Hat Wavelet: mexh . 6-71
Morlet Wavelet: morl . 6-72

Summary of Wavelet Families and Associated Properties 6-73

Wavelet Applications: More Detail . 6-74
Suppressing Signals . 6-74
Splitting Signal Components . 6-77
Noise Processing . 6-77
x

xi Contents
De-Noising . 6-79
The Basic One-Dimensional Model . 6-80
De-Noising Procedure Principles . 6-80
Soft or Hard Thresholding? . 6-81
Threshold Selection Rules . 6-82
Dealing with Unscaled Noise and Non-White Noise 6-84
De-Noising in Action . 6-85
Extension to Image De-Noising . 6-88
More About De-Noising . 6-89

Data Compression . 6-90
Default Values for De-Noising and Compression 6-93

De-noising. 6-93
Compression. . 6-93
About the Birge-Massart Strategy . 6-94

Wavelet Packets . 6-95
From Wavelets to Wavelet Packets: Decomposing the Details 6-95
Wavelet Packets in Action: An Introduction 6-96

Example 1: Analyzing a Sine Function 6-96
Example 2: Analyzing a Chirp Signal 6-97

Building Wavelet Packets . 6-98
Wavelet Packet Atoms . 6-101
Organizing the Wavelet Packets . 6-104
Choosing the Optimal Decomposition 6-105
Wavelet Packets 1-D Decomposition Structure 6-111
Wavelet Packets 2-D Decomposition Structure 6-113
Wavelet Packets for Compression and De-Noising 6-113

References . 6-114

7
Adding Your Own Wavelets

Preparing to Add a New Wavelet Family 7-3
Choose the Wavelet Family Full Name 7-3
Choose the Wavelet Family Short Name 7-3
Determine the Wavelet Type . 7-4

Define the Orders of Wavelets
Within the Given Family . 7-4
Build a MAT-File or M-File . 7-5

Type 1 (Orthogonal with FIR Filter) 7-5
Type 2 (Biorthogonal with FIR Filter) 7-5
Type 3 (Orthogonal with Scale Function) 7-6
Type 4 (No FIR Filter; No Scale Function) 7-6

Define the Effective Support . 7-7

How to Add a New Wavelet Family . 7-8
Example 1 . 7-8
Example 2 . 7-12

After Adding a New Wavelet Family . 7-16

8
Reference

Commands Grouped by Function . 8-2

A
GUI Reference

General Features . A-3
Color Coding . A-3
Connectedness of Plots . A-3
Using the Mouse . A-4

Making Selections and Activating Controls A-5
Translating Plots . A-5
Displaying Position-Dependent Information A-5

Controlling the Colormap . A-6
Controlling the Number of Colors . A-7
Controlling the Coloration Mode . A-8
Customizing Graphical Objects . A-8
xii

xiii Contents
Customizing Print Settings . A-10
Using Menus . A-11

Continuous Wavelet Tool Features . A-14

Wavelet 1-D Tool Features . A-15
Tree Mode . A-15
More Display Options . A-15

Wavelet 2-D Tool Features . A-17

Wavelet Packet Tool Features (1-D and 2-D) A-18
Node Action Functionality . A-19

Wavelet Display Tool . A-22

Wavelet Packet Display Tool . A-23

Preface

 Preface

xv
About the Authors
Michel Misiti, Georges Oppenheim, and Jean-Michel Poggi are mathematics
professors at Ecole Centrale de Lyon, University of Marne-La- Vallée and Paris
10 University. Yves Misiti is a research engineer specializing in Computer
Sciences at Paris 11 University.

They are members of the “Laboratoire de Mathématique” Orsay-Paris 11
University France.

Their fields of interest are statistical signal processing, stochastic processes,
adaptive control, and wavelets.

The authors group, which was constituted more than ten years ago, has
published numerous theoretical papers and carried out applications in close
collaboration with industrial teams. For instance:

• Robustness of the piloting law for a civilian space launcher for which an
expert system was developed

• Forecasting of the electricity consumption by nonlinear methods

• Forecasting of air pollution

Acknowledgments
Acknowledgments
The authors wish to express their gratitude to all the colleagues who directly
or indirectly contributed to the making of the Wavelet Toolbox.

Specifically

• For the wavelet questions to Pierre-Gilles Lemarié-Rieusset (Evry) and
Yves Meyer (Paris 9)

• For the statistical questions to Lucien Birgé (Paris 6) and Pascal Massart
(Paris 11) whose last result is included as a starting point of the de-noising
algorithm

• To David Donoho (Stanford) and to Anestis Antoniadis (Grenoble) who are
used to giving generously so many valuable ideas

Colleagues and friends have helped us steadily: Samir Akkouche (Ecole
Centrale de Lyon), Mark Asch (Paris 11), Patrice Assouad (Paris 11), Roger
Astier (Paris 11), Jean Coursol (Paris 11), Didier Dacunha-Castelle (Paris 11),
Claude Deniau (Marseille), Patrick Flandrin (Ecole Normale de Lyon), Eric
Galin (Ecole Centrale de Lyon), Christine Graffigne (Paris 5), Anatoli Juditsky
(Rennes), Gérard Kerkyacharian (Amiens), Gérard Malgouyres (Paris 11),
Olivier Nowak (Ecole Centrale de Lyon), Dominique Picard (Paris 7), and
Franck Tarpin-Bernard (Ecole Centrale de Lyon).

Several student groups have tested preliminary versions.

One of our first opportunities to apply the ideas of wavelets connected with
signal analysis and its modeling occurred during a close and pleasant
cooperation with the team “Analysis and Forecast of the Electrical
Consumption” of Electricité de France (Clamart-Paris) directed first by
Jean-Pierre Desbrosses, then by Hervé Laffaye and which included Xavier
Brossat, Yves Deville, and Marie-Madeleine Martin.

Many thanks to those who tested and helped to refine the software and the
printed matter and at last to The MathWorks group and specially to Roy Lurie,
Jim Tung, and Bruce Sesnovich.

And finally, apologies to those we may have omitted.
xvi

 Preface

xvi
What is the Wavelet Toolbox?
The Wavelet Toolbox is a collection of functions built on the MATLAB®
Technical Computing Environment. It provides tools for the analysis and
synthesis of signals and images using wavelets and wavelet packets within the
framework of MATLAB.

The toolbox provides two categories of tools:

• Command line functions

• Graphical interactive tools

The first category of tools is made up of functions that you can call directly from
the command line or from your own applications. Most of these functions are
M-files, series of statements that implement specialized wavelet analysis or
synthesis algorithms. You can view the code for these functions using the
following statement:

type function_name

You can view the header of the function, the help part, using the statement:

help function_name

A summary list of the Wavelet Toolbox functions is available to you by typing

help wavelet

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files.

The second category of tools is a collection of graphical interface tools that
afford access to extensive functionality. Access these tools by typing

wavemenu

from the command line.
i

What is the Wavelet Toolbox?
How to Use This Guide
If you are new to wavelet analysis and synthesis and need an overview of the
concepts, read Chapter 1, “Wavelets: A New Tool for Signal Analysis.” It
presents the main ideas without mathematical complexity.

After this you can refer to Chapter 2 and Chapter 5, for instructions on using
the wavelet and wavelet packet analysis tools, respectively; Chapter 3, which
discusses practical applications of wavelet analysis; and Chapter 4, which
provides examples and a case study.

If you have experience with signal analysis and wavelets, you may want to turn
directly to:

• Chapter 2 and Chapter 5, for instructions on using the wavelet and wavelet
packet analysis tools, respectively.

• Chapter 6, for a discussion of the technical underpinnings of wavelet
analysis.

• Chapter 7, for instructions on extending the Wavelet Toolbox by adding your
own wavelets.

All toolbox users should look to Chapter 8 for complete reference information
about the Wavelet Toolbox command line functions, and to Appendix A for
more detailed information on using the many functions provided by the
graphical tools.
xviii

 Preface

xix
For More Background
The Wavelet Toolbox provides a complete introduction to wavelets and
assumes no previous knowledge of the area. The toolbox allows you to use
wavelet techniques on your own data immediately and develop new insights. It
is our hope that, through the use of these practical tools, you may want to
explore the beautiful underlying mathematics and theory.

An excellent supplementary text that presents a complementary treatment of
wavelet theory and practice is the book, Wavelets and Filter Banks by Gilbert
Strang and Truong Nguyen. Signal processing engineers will find this book
especially useful. It offers a clear and easy-to-understand introduction to two
central ideas - filter banks for discrete signals and wavelets - and fully explains
the connection between them. Many exercises in the book are drawn from the
Wavelet Toolbox.

Wavelets and Filter Banks
Gilbert Strang and Truong Nguyen
Wellesley-Cambridge Press, 1996
ISBN 0-9614088-7-1

Available from

Wellesley-Cambridge Press
Box 812060, Wellesley
MA 02181, USA.
Phone: (617) 431-8488
Fax: (617) 253-4358
Email: gs@math.mit.edu

The homepage for the book is:

http://saigon.ece.wisc.edu/~waveweb/Tutorials/book.html

Installation
Installation
To install this toolbox on your computer, see the appropriate platform-specific
MATLAB Installation Guide. To determine if the Wavelet Toolbox is already
installed on your system, check for a subdirectory named wavelet within the
main toolbox directory or folder.

The Wavelet Toolbox can perform signal or image analysis. Since MATLAB
stores most numbers in double precision, even a single image takes up a lot of
memory. For instance, one copy of a 512-by-512 image uses 2 MB of memory.
To avoid Out of Memory errors, it is important to allocate enough memory to
process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual
memory. See your operating system documentation for how to set up virtual
memory.

System Recommendations
While not a requirement, we recommend you obtain the Signal Processing and
Image Processing Toolboxes to use in conjunction with the Wavelet Toolbox.
These toolboxes provide complementary functionality that will give you
maximum flexibility in analyzing and processing signals and images.

This manual makes no assumption that your computer is running any other
MATLAB toolboxes.

Platform-Specific Details
Some details of the use of the Wavelet Toolbox may depend on your hardware
or operating system.

Windows Fonts
We recommend you set the system to use “Small Fonts.” Some of the labels in
the GUI windows may be illegible if large fonts are used.

Set this option by clicking the Display icon in your desktop’s Control Panel
(accessible through the Settings⇒Control Panel submenu in Windows 95). Use
the Font Size menu to change to Small Fonts. You’ll have to restart Windows for
this change to take effect.
xx

 Preface

xxi
Other Platforms Fonts
We recommend you set the system to use standard default fonts. Some of the
labels in the GUI windows may be illegible if other fonts are used.

Mouse Compatibility
The Wavelet Toolbox was designed for three distinct types of mouse control:

For more information, see the section “Using the Mouse” on page A-4.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections,
activate controls

Display a cross-hair to
show position-dependent
information

Translate plots up and
down, and left and
right

Shift + Option +

Typographical Conventions
Typographical Conventions
This manual uses certain typographical conventions.

Font Use for

Monospace Commands, function names, and screen
displays; for example, conv.

Monospace Italics Names of arguments that are meant to be
replaced and not typed literally; for instance:
cd directory.

Italics Book titles, mathematical notation, and the
introduction of new terms.

Boldface Initial Cap Names of keys, such as the Return key and
menu items, such as the File menu.
xxii

 Preface

xxi
ii

1-3 Fourier Analysis

1-4 Short-Time Fourier Analysis

1-5 Wavelet Analysis

1-7 What is Wavelet Analysis?

1-8 The Continuous Wavelet Transform

1-16 The Discrete Wavelet Transform

1-20 Wavelet Reconstruction

1-27 Wavelet Packet Analysis

1-29 History of Wavelets

1-30 An Introduction to the Wavelet Families
1

Wavelets: A New Tool for
Signal Analysis

1 Wavelets: A New Tool for Signal Analysis

1-2
Everywhere around us are signals that need to be analyzed. Seismic tremors,
human speech, engine vibrations, medical images, financial data, music, and
many other types of signals have to be efficiently encoded, compressed, cleaned
up, reconstructed, described, simplified, modeled, distinguished, or located.

Wavelet analysis is a new and promising set of tools and techniques for doing
this.

Fourier Analysis
Fourier Analysis
Signal analysts already have at their disposal an impressive arsenal of tools.
Perhaps the most well-known of these is Fourier analysis, which breaks down
a signal into constituent sinusoids of different frequencies. Another way to
think of Fourier analysis is as a mathematical technique for transforming our
view of the signal from a time-based one to a frequency-based one.

For many signals, Fourier analysis is extremely useful because the signal’s
frequency content is of great importance. So why do we need other techniques,
like wavelet analysis?

Fourier analysis has a serious drawback. In transforming to the frequency
domain, time information is lost. When looking at a Fourier transform of a
signal, it is impossible to tell when a particular event took place.

If a signal doesn’t change much over time — that is, if it is what is called a
stationary signal — this drawback isn’t very important. However, most
interesting signals contain numerous non-stationary or transitory
characteristics: drift, trends, abrupt changes, and beginnings and ends of
events. These characteristics are often the most important part of the signal,
and Fourier analysis is not suited to detecting them.

F
Fourier

Transform

A
m

pl
itu

de

Time

A
m

pl
itu

de

Frequency
1-3

1 Wavelets: A New Tool for Signal Analysis

1-4
Short-Time Fourier Analysis
In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier
transform to analyze only a small section of the signal at a time — a technique
called windowing the signal. Gabor’s adaptation, called the Short-Time Fourier
Transform (STFT), maps a signal into a two-dimensional function of time and
frequency.

The STFT represents a sort of compromise between the time- and
frequency-based views of a signal. It provides some information about both
when and at what frequencies a signal event occurs. However, you can only
obtain this information with limited precision, and that precision is determined
by the size of the window.

While the STFT’s compromise between time and frequency information can be
useful, the drawback is that once you choose a particular size for the time
window, that window is the same for all frequencies. Many signals require a
more flexible approach — one where we can vary the window size to determine
more accurately either time or frequency.

Short

Transform

A
m

pl
itu

de

Time
Time

Time

Fourier

F
re

qu
en

cy

window

Wavelet Analysis
Wavelet Analysis
Wavelet analysis represents the next logical step: a windowing technique with
variable-sized regions. Wavelet analysis allows the use of long time intervals
where we want more precise low frequency information, and shorter regions
where we want high frequency information.

Here’s what this looks like in contrast with the time-based, frequency-based,
and STFT views of a signal:

You may have noticed that wavelet analysis does not use a time-frequency
region, but rather a time-scale region. We’ll have more to say about the concept
of scale later.

What Can Wavelet Analysis Do?
One major advantage afforded by wavelets is the ability to perform local
analysis — that is, to analyze a localized area of a larger signal.

Consider a sinusoidal signal with a small discontinuity — one so tiny as to be
barely visible. Such a signal easily could be generated in the real world,
perhaps by a power fluctuation or a noisy switch.

Time

F
re

qu
en

cy

Time

S
ca

le

STFT (Gabor) Wavelet Analysis

Time
Time Domain (Shannon)

F
re

qu
en

cy

Frequency Domain (Fourier)
Amplitude

A
m

pl
itu

de

Sinusoid with a small discontinuity
1-5

1 Wavelets: A New Tool for Signal Analysis

1-6
A plot of the Fourier coefficients (as provided by the fft command) of this
signal shows nothing particularly interesting: a flat spectrum with two peaks
representing a single frequency. However, a plot of wavelet coefficients clearly
shows the exact location in time of the discontinuity.

Wavelet analysis is capable of revealing aspects of data that other signal
analysis techniques miss, aspects like trends, breakdown points,
discontinuities in higher derivatives, and self-similarity. Further, because it
affords a different view of data than those presented by traditional techniques,
wavelet analysis can often compress or de-noise a signal without appreciable
degradation.

Indeed, in their brief history within the signal processing field, wavelets have
already proven themselves to be an indispensable addition to the analyst’s
collection of tools and continue to enjoy a burgeoning popularity today.

Fourier Coefficients Wavelet Coefficients

What is Wavelet Analysis?
What is Wavelet Analysis?
Now that we know some situations when wavelet analysis is useful, it is
worthwhile asking the questions “What is wavelet analysis?” and even more
fundamentally, “What is a wavelet?”

A wavelet is a waveform of effectively limited duration that has an average
value of zero.

Compare wavelets with sine waves, which are the basis of Fourier analysis.
Sinusoids do not have limited duration — they extend from minus to plus
infinity. And where sinusoids are smooth and predictable, wavelets tend to be
irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various
frequencies. Similarly, wavelet analysis is the breaking up of a signal into
shifted and scaled versions of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that
signals with sharp changes might be better analyzed with an irregular wavelet
than with a smooth sinusoid, just as some foods are better handled with a fork
than a spoon.

It also makes sense that local features can be described better with wavelets,
which have local extent.

Number of Dimensions
Thus far, we’ve discussed only one-dimensional data, which encompasses most
ordinary signals. However, wavelet analysis can be applied to two-dimensional
data — images; and, in principle, to higher-dimensional data.

This toolbox uses only one- and two-dimensional analysis techniques.

Sine Wave Wavelet (db10)

......
1-7

1 Wavelets: A New Tool for Signal Analysis

1-8
The Continuous Wavelet Transform
Mathematically, the process of Fourier analysis is represented by the Fourier
transform:

which is the sum over all time of the signal f(t) multiplied by a complex
exponential. (Recall that a complex exponential can be broken down into real
and imaginary sinusoidal components.)

The results of the transform are the Fourier coefficients , which when
multiplied by a sinusoid of appropriate frequency , yield the constituent
sinusoidal components of the original signal. Graphically, the process looks
like:

Similarly, the continuous wavelet transform (CWT) is defined as the sum over
all time of the signal multiplied by scaled, shifted versions of the wavelet
function :

The result of the CWT are many wavelet coefficients C, which are a function of
scale and position.

F ω() f t()e j ωt–

∞–

∞

∫ dt= ,

F ω()
ω

Signal

...

Constituent sinusoids of different frequencies

Fourier

Transform

ψ

C scale position,() f t()ψ scale position t,,() td
∞–

∞

∫=

The Continuous Wavelet Transform
Multiplying each coefficient by the appropriately scaled and shifted wavelet
yields the constituent wavelets of the original signal:

Scaling
We’ve already alluded to the fact that wavelet analysis produces a time-scale
view of a signal, and now we’re talking about scaling and shifting wavelets.
What exactly do we mean by scale in this context?

Scaling a wavelet simply means stretching (or compressing) it.

To go beyond colloquial descriptions such as “stretching,” we introduce the
scale factor, often denoted by the letter If we’re talking about sinusoids, for
example, the effect of the scale factor is very easy to see:

Signal Constituent wavelets of different scales and positions

...

Wavelet

Transform

a.

f t() t()sin=

f t() 2t()sin=

f t() 4t()sin=

a; 1=

 ; a 1
2
---=

 ; a
1
4
---=
1-9

1 Wavelets: A New Tool for Signal Analysis

1-1
The scale factor works exactly the same with wavelets. The smaller the scale
factor, the more “compressed” the wavelet.

It is clear from the diagrams that, for a sinusoid the scale factor is
related (inversely) to the radian frequency Similarly, with wavelet analysis,
the scale is related to the frequency of the signal. We’ll return to this topic later.

Shifting
Shifting a wavelet simply means delaying (or hastening) its onset.
Mathematically, delaying a function by k is represented by :

Five Easy Steps to a Continuous Wavelet Transform
The continuous wavelet transform is the sum over all time of the signal
multiplied by scaled, shifted versions of the wavelet. This process produces
wavelet coefficients that are a function of scale and position.

f t() ψ t()=

f t() ψ 2t()=

f t() ψ 4t()=

; a 1=

; a
1
2
---=

; a
1
4
---=

ωt(),sin a
ω.

f t() f t k–()

Wavelet function
ψ t() ψ t k–()

Shifted wavelet function
0

The Continuous Wavelet Transform
It’s really a very simple process. In fact, here are the five steps of an easy recipe
for creating a CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is
with this section of the signal. The higher C is, the more the similarity. Note
that the results will depend on the shape of the wavelet you choose.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you’ve covered
the whole signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.

Signal

Wavelet

C = 0.0102

Signal

Wavelet

Signal

Wavelet

C = 0.2247
1-11

1 Wavelets: A New Tool for Signal Analysis

1-1
When you’re done, you’ll have the coefficients produced at different scales by
different sections of the signal. The coefficients constitute the results of a
regression of the original signal performed on the wavelets.

How to make sense of all these coefficients? You could make a plot on which the
x-axis represents position along the signal (time), the y-axis represents scale,
and the color at each x-y point represents the magnitude of the wavelet
coefficient C. These are the coefficient plots generated by the graphical tools.

These coefficient plots resemble a bumpy surface viewed from above. If you
could look at the same surface from the side, you might see something like this:

The continuous wavelet transform coefficient plots are precisely the time-scale
view of the signal we referred to earlier. It is a different view of signal data than
the time-frequency Fourier view, but it is not unrelated.

Large
Coefficients

Small
Coefficients

S
ca

le

Time

Time

S
ca

le
C

oe
fs
2

The Continuous Wavelet Transform
Scale and Frequency
Notice that the scales in the coefficients plot (shown as y-axis labels) run from
1 to 31. Recall that the higher scales correspond to the most “stretched”
wavelets. The more stretched the wavelet, the longer the portion of the signal
with which it is being compared, and thus the coarser the signal features being
measured by the wavelet coefficients.

Thus, there is a correspondence between wavelet scales and frequency as
revealed by wavelet analysis:

• Low scale a ⇒ Compressed wavelet ⇒ Rapidly changing details ⇒ High
frequency .

• High scale a ⇒ Stretched wavelet ⇒ Slowly changing, coarse features ⇒ Low
frequency .

The Scale of Nature
It’s important to understand that the fact that wavelet analysis does not
produce a time-frequency view of a signal is not a weakness but a strength of
the technique.

Not only is time-scale a different way to view data, it is a very natural way to
view data deriving from a great number of natural phenomena.

Signal

Wavelet

Low scale High scale

ω

ω

1-13

1 Wavelets: A New Tool for Signal Analysis

1-1
Consider a lunar landscape, whose ragged surface (simulated below) is a result
of centuries of bombardment by meteorites whose sizes range from gigantic
boulders to dust specks.

If we think of this surface in cross-section as a one-dimensional signal, then it
is reasonable to think of the signal as having components of different scales —
large features carved by the impacts of large meteorites, and finer features
abraded by small meteorites.

Here is a case where thinking in terms of scale makes much more sense than
thinking in terms of frequency. Inspection of the CWT coefficients plot for this
signal reveals patterns among scales and shows the signal’s possibly fractal
nature.

Even though this signal is artificial, many natural phenomena — from the
intricate branching of blood vessels and trees, to the jagged surfaces of
mountains and fractured metals — lend themselves to an analysis of scale.
4

The Continuous Wavelet Transform
What’s Continuous About the Continuous
Wavelet Transform?
Any signal processing performed on a computer using real-world data must be
performed on a discrete signal — that is, on a signal that has been measured
at discrete time intervals. It is important to remember that the continuous
wavelet transform is also operating in discrete time. So what exactly is
“continuous” about it?

What’s “continuous” about the CWT, and what distinguishes it from the
discrete wavelet transform (to be discussed in the following section), are the
scales at which it operates.

Unlike the discrete wavelet transform, the CWT can operate at every scale,
from that of the original signal up to some maximum scale which you
determine by trading off your need for detailed analysis with available
computational horsepower.

The CWT is also continuous in terms of shifting: during computation, the
analyzing wavelet is shifted smoothly over the full domain of the analyzed
function.
1-15

1 Wavelets: A New Tool for Signal Analysis

1-1
The Discrete Wavelet Transform
Calculating wavelet coefficients at every possible scale is a fair amount of work,
and it generates an awful lot of data. What if we choose only a subset of scales
and positions at which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on
powers of two — so-called dyadic scales and positions — then our analysis will
be much more efficient and just as accurate. We obtain just such an analysis
from the discrete wavelet transform (DWT).

An efficient way to implement this scheme using filters was developed in 1988
by Mallat (see [Mal89]). The Mallat algorithm is in fact a classical scheme
known in the signal processing community as a two-channel subband coder
(see p. 1 of the book Wavelets and Filter Banks, by Strang and Nguyen).

This very practical filtering algorithm yields a fast wavelet transform — a box
into which a signal passes, and out of which wavelet coefficients quickly
emerge. Let’s examine this in more depth.

One-Stage Filtering: Approximations and Details
For many signals, the low-frequency content is the most important part. It is
what gives the signal its identity. The high-frequency content, on the other
hand, imparts flavor or nuance. Consider the human voice. If you remove the
high-frequency components, the voice sounds different, but you can still tell
what’s being said. However, if you remove enough of the low-frequency
components, you hear gibberish.

It is for this reason that, in wavelet analysis, we often speak of approximations
and details.
6

The Discrete Wavelet Transform
The approximations are the high-scale, low-frequency components of the
signal. The details are the low-scale, high-frequency components. The filtering
process, at its most basic level, looks like this:

The original signal, S, passes through two complementary filters and emerges
as two signals.

Unfortunately, if we actually perform this operation on a real digital signal, we
wind up with twice as much data as we started with. Suppose, for instance,
that the original signal S consists of 1000 samples of data. Then the
approximation and the detail will each have 1000 samples, for a total of 2000.

To correct this problem, we introduce the notion of downsampling. This simply
means throwing away every second data point. While doing this introduces
aliasing (a type of error, see p. 91 of the book Wavelets and Filter Banks, by
Strang and Nguyen) in the signal components, it turns out we can account for
this later on in the process.

The process on the right, which includes downsampling, produces DWT
coefficients.

To gain a better appreciation of this process, let’s perform a one-stage discrete
wavelet transform of a signal. Our signal will be a pure sinusoid with
high-frequency noise added to it.

S

highpass

A D

Filters
lowpass

S

cD

cA

1000 samples

~500 coefs

~500 coefs

S

D

A

1000 samples

~1000 samples

~1000 samples
1-17

1 Wavelets: A New Tool for Signal Analysis

1-1
Here is our schematic diagram with real signals inserted into it:

The MATLAB code needed to generate s, cD, and cA is:

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD consist mainly of the high-frequency noise,
while the approximation coefficients cA contain much less noise than does the
original signal.

» [length(cA) length(cD)]
ans =
 501 501

You may observe that the actual lengths of the detail and approximation
coefficient vectors are slightly more than half the length of the original signal.
This has to do with the filtering process, which is implemented by convolving
the signal with a filter. The convolution “smears” the signal, introducing
several extra samples into the result.

1000 data points

~500 DWT coefficients

~500 DWT coefficients

S

cD High Frequency

cA Low Frequency
8

The Discrete Wavelet Transform
Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations
being decomposed in turn, so that one signal is broken down into many
lower-resolution components. This is called the wavelet decomposition tree.

Looking at a signal’s wavelet decomposition tree can yield valuable
information.

Number of Levels
Since the analysis process is iterative, in theory it can be continued
indefinitely. In reality, the decomposition can proceed only until the individual
details consist of a single sample or pixel. In practice, you’ll select a suitable
number of levels based on the nature of the signal, or on a suitable criterion
such as entropy (see Chapter 6 for details).

S

cA1 cD1

cA2 cD2

cA3 cD3

S

cA1 cD1

cA2 cD2

cA3 cD3
1-19

1 Wavelets: A New Tool for Signal Analysis

1-2
Wavelet Reconstruction
We’ve learned how the discrete wavelet transform can be used to analyze, or
decompose, signals and images. The other half of the story is how those
components can be assembled back into the original signal with no loss of
information. This process is called reconstruction, or synthesis. The
mathematical manipulation that effects synthesis is called the inverse discrete
wavelet transform (IDWT).

To synthesize a signal in our toolbox, we reconstruct it from the wavelet
coefficients:

Where wavelet analysis involves filtering and downsampling, the wavelet
reconstruction process consists of upsampling and filtering. Upsampling is the
process of lengthening a signal component by inserting zeros between samples:

The wavelet toolbox includes commands, like idwt and waverec, that perform
one-level or multi-level reconstruction, respectively, on the components of
one-dimensional signals. These commands have their two-dimensional
analogues, idwt2 and waverec2.

S

H'

L'

H'

L'

Signal component Upsampled signal component
0

Wavelet Reconstruction
Reconstruction Filters
The filtering part of the reconstruction process also bears some discussion,
because it is the choice of filters that is crucial in achieving perfect
reconstruction of the original signal.

That perfect reconstruction is even possible is noteworthy. Recall that the
downsampling of the signal components performed during the decomposition
phase introduces a distortion called aliasing. It turns out that by carefully
choosing filters for the decomposition and reconstruction phases that are
closely related (but not identical), we can “cancel out” the effects of aliasing.
This was the breakthrough made possible by the work of Ingrid Daubechies.

A technical discussion of how to design these filters can be found in p. 347 of
the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and
highpass decomposition filters (L and H), together with their associated
reconstruction filters (L' and H'), form a system of what are called quadrature
mirror filters:

Reconstructing Approximations and Details
We have seen that it is possible to reconstruct our original signal from the
coefficients of the approximations and details.

S S

Decomposition Reconstruction

H

L

H'

L'

cD

cA

S

H'

L'

cD

cA

1000 samples
~500 coefs

~500 coefs
1-21

1 Wavelets: A New Tool for Signal Analysis

1-2
It is also possible to reconstruct the approximations and details themselves
from their coefficient vectors. As an example, let’s consider how we would
reconstruct the first-level approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to
reconstruct the original signal. However, instead of combining it with the
level-one detail cD1, we feed in a vector of zeros in place of the details:

The process yields a reconstructed approximation A1, which has the same
length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous
process:

The reconstructed details and approximations are true constituents of the
original signal. In fact, we find when we combine them that:

Note that the coefficient vectors cA1 and cD1 — because they were produced by
downsampling, contain aliasing distortion, and are only half the length of the
original signal — cannot directly be combined to reproduce the signal. It is
necessary to reconstruct the approximations and details before combining them.

A1

H'

L'

0

cA1

1000 samples
~500 zeros

~500 coefs

D1

H'

L'

cD1

0

1000 samples
~500 coefs

~500 zeros

A1 D1+ S=
2

Wavelet Reconstruction
Extending this technique to the components of a multi-level analysis, we find
that similar relationships hold for all the reconstructed signal constituents.
That is, there are several ways to reassemble the original signal:

Relationship of Filters to Wavelet Shapes
In the section “Reconstruction Filters” on page 1-21, we spoke of the
importance of choosing the right filters. In fact, the choice of filters not only
determines whether perfect reconstruction is possible, it also determines the
shape of the wavelet we use to perform the analysis.

In fact, to construct a wavelet of some practical utility, you seldom start by
drawing a waveform. Instead, it usually makes more sense to design the
appropriate quadrature mirror filters and then use them to create the
waveform. Let’s see how this is done by focusing on an example.

Consider the lowpass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux command:

» Lprime = dbaux(2)
Lprime =
 0.3415 0.5915 0.1585 –0.0915

S

A1 D1

A2 D2

A3 D3

= A2 D2 D1+ +

S A1 D1+=

= A3 D3 D2 D1+ + +

Reconstructed
Signal

Components

 db2 wavelet
1-23

1 Wavelets: A New Tool for Signal Analysis

1-2
If we reverse the order of this vector (see wrev), and then multiply every second
sample by –1, we obtain the highpass filter H':

Hprime =
 –0.0915 –0.1585 0.5915 –0.3415

Next, upsample Hprime by two (see dyadup), inserting zeros in alternate
positions:

HU =
 –0.0915 0 –0.1585 0 0.5915 0 –0.3415 0

Finally, convolve the upsampled vector with the original lowpass filter:

H2 = conv(HU,Lprime);
plot(H2)

If we iterate this process several more times, repeatedly upsampling and
convolving the resultant vector with the four-element filter vector Lprime, a
pattern begins to emerge:
4

Wavelet Reconstruction
The curve begins to look progressively more like the db2 wavelet. This means
that the wavelet’s shape is determined entirely by the coefficients of the
reconstruction filters.

This relationship has profound implications. It means that you cannot choose
just any shape, call it a wavelet, and perform an analysis. At least, you can’t
choose an arbitrary wavelet waveform if you want to be able to reconstruct the
original signal accurately. You are compelled to choose a shape determined by
quadrature mirror decomposition filters.

The Scaling Function
We’ve seen the interrelation of wavelets and quadrature mirror filters. The
wavelet function is determined by the highpass filter, which also produces
the details of the wavelet decomposition.

There is an additional function associated with some but not all wavelets. This
is the so-called scaling function, . The scaling function is very similar to the
wavelet function. It is determined by the lowpass quadrature mirror filters,
and thus is associated with the approximations of the wavelet decomposition.

In the same way that iteratively upsampling and convolving the highpass filter
produces a shape approximating the wavelet function, iteratively upsampling
and convolving the lowpass filter produces a shape approximating the scaling
function.

Multistep Decomposition and Reconstruction
A multistep analysis-synthesis process can be represented as:

ψ

φ

S 1000
~250

~250

S1000

~500

Analysis
Decomposition
DWT

Synthesis
Reconstruction

IDWT
Wavelet

Coefficients

.

H

L

H

L

H'

L'

H'

L'
1-25

1 Wavelets: A New Tool for Signal Analysis

1-2
This process involves three aspects: breaking up a signal to obtain the wavelet
coefficients, modifying the wavelet coefficients, and reassembling the signal
from the coefficients.

We’ve already discussed decomposition and reconstruction at some length. Of
course, there is no point breaking up a signal merely to have the satisfaction of
immediately reconstructing it. We perform wavelet analysis because the
coefficients thus obtained have many known uses, de-noising and compression
being foremost among them.

But wavelet analysis is still a new and emerging field. Many uncharted uses of
the wavelet coefficients no doubt lie in wait. The Wavelet Toolbox can be a
means of exploring possible uses and hitherto unknown applications of wavelet
analysis. Explore the toolbox functions and see what you discover.
6

Wavelet Packet Analysis
Wavelet Packet Analysis
The wavelet packet method is a generalization of wavelet decomposition that
offers a richer range of possibilities for signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The
approximation is then itself split into a second-level approximation and detail,
and the process is repeated. For an n-level decomposition, there are n+1
possible ways to decompose or encode the signal.

In wavelet packet analysis, the details as well as the approximations can be
split. This yields 2n different ways to encode the signal. This is the wavelet
packet decomposition tree:

For instance, wavelet packet analysis allows the signal S to be represented as
A1 + AAD3 + DAD3 + DD2. This is an example of a representation that is not
possible with ordinary wavelet analysis.

S

A1 D1

A2 D2

A3 D3

= A2 D2 D1+ +

S A1 D1+=

= A3 D3 D2 D1+ + +

S

A1 D1

AA2 DA2

AAA3 DAA3

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3
1-27

1 Wavelets: A New Tool for Signal Analysis

1-2
Choosing one out of all these possible encodings presents an interesting
problem. In this toolbox, we use an entropy-based criterion to select the most
suitable decomposition of a given signal. This means we look at each node of
the decomposition tree and quantify the information to be gained by
performing each split.

Simple and efficient algorithms exist for both wavelet packet decomposition
and optimal decomposition selection. This toolbox uses an adaptive filtering
algorithm, based on work by Coifman and Wickerhauser, with direct
applications in optimal signal coding and data compression.

Such algorithms allow the Wavelet Packet 1-D and Wavelet Packet 2-D
tools to include “Best Level” and “Best Tree” features that optimize the
decomposition both globally and with respect to each node.
8

History of Wavelets
History of Wavelets
From an historical point of view, wavelet analysis is a new method, though its
mathematical underpinnings date back to the work of Joseph Fourier in the
nineteenth century. Fourier laid the foundations with his theories of frequency
analysis, which proved to be enormously important and influential.

The attention of researchers gradually turned from frequency-based analysis
to scale-based analysis when it started to become clear that an approach
measuring average fluctuations at different scales might prove less sensitive to
noise.

The first recorded mention of the term “wavelet” was in 1909, in a thesis by
Alfred Haar.

The concept of wavelets in its present theoretical form was first proposed by
Jean Morlet and the team at the Marseille Theoretical Physics Center working
under Alex Grossmann in France.

The methods of wavelet analysis have been developed mainly by Y. Meyer and
his colleagues, who have ensured the methods’ dissemination. The main
algorithm dates back to the work of Stephane Mallat in 1988. Since then,
research on wavelets has become international. Such research is particularly
active in the United States, where it is spearheaded by the work of scientists
such as Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser.
1-29

1 Wavelets: A New Tool for Signal Analysis

1-3
An Introduction to the Wavelet Families
Several families of wavelets that have proven to be especially useful are
included in this toolbox. What follows is an introduction to these wavelet
families. To explore wavelet families on your own, check out the Wavelet
Display tool:

1 Type wavemenu from the MATLAB command line. The Wavelet Toolbox Main
Menu appears.

2 Click on the Wavelet Display menu item. The Wavelet Display tool
appears.

3 Select a family from the Wavelet menu at the top right of the tool.

4 Click the Display button. Pictures of the wavelets and their associated
filters appear.

5 Obtain more information by clicking on the information buttons located at
the right.
0

An Introduction to the Wavelet Families
Haar
Any discussion of wavelets begins with Haar, the first and simplest. Haar is
discontinuous, and resembles a step function. It represents the same wavelet
as Daubechies db1. See "Haar" on page 64 for more detail.

Daubechies
Ingrid Daubechies, one of the brightest stars in the world of wavelet research,
invented what are called compactly-supported orthonormal wavelets — thus
making discrete wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the
order, and db the “surname” of the wavelet. The db1 wavelet, as mentioned
above, is the same as Haar. Here are the next nine members of the family:

You can obtain a survey of the main properties of this family by typing
waveinfo('db') from the MATLAB command line. See “Daubechies Wavelets:
dbN” on page 6-63 for more detail.

db2 db3 db4 db5 db6

db7 db8 db9 db10
1-31

1 Wavelets: A New Tool for Signal Analysis

1-3
Biorthogonal
This family of wavelets exhibits the property of linear phase, which is needed
for signal and image reconstruction. By using two wavelets, one for
decomposition and the other for reconstruction instead of the same single one,
interesting properties are derived.

bior1.3 bior1.5

bior2.2 bior2.4

bior2.6 bior2.8

bior3.1 bior3.3

bior3.5 bior3.7

bior5.5 bior6.8

bior3.9 bior4.4
2

An Introduction to the Wavelet Families
You can obtain a survey of the main properties of this family by typing
waveinfo('bior') from the MATLAB command line. See “Biorthogonal
Wavelet Pairs: biorNr.Nd” on page 6-67 for more detail.

Coiflets
Built by I. Daubechies at the request of R. Coifman. The wavelet function has
2N moments equal to 0 and the scaling function has 2N-1 moments equal to 0.
The two functions have a support of length 6N-1. You can obtain a survey of the
main properties of this family by typing waveinfo('coif') from the MATLAB
command line. See “Coiflet Wavelets: coifN” on page 6-66 for more detail.

Symlets
The symlets are nearly symmetrical wavelets proposed by Daubechies as
modifications to the db family. The properties of the two wavelet families are
similar.

You can obtain a survey of the main properties of this family by typing
waveinfo('sym') from the MATLAB command line. See “Symlet Wavelets:
symN” on page 6-65 for more detail.

coif1 coif2 coif3 coif4 coif5

sym2 sym3 sym4 sym5

sym6 sym7 sym8
1-33

1 Wavelets: A New Tool for Signal Analysis

1-3
Morlet
 This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet:
morl” on page 6-72 for more detail.

Mexican Hat
This wavelet has no scaling function and is derived from a function that is
proportional to the second derivative function of the Gaussian probability
density function.

 You can obtain a survey of the main properties of this family by typing
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat
Wavelet: mexh” on page 6-71 for more information.
4

An Introduction to the Wavelet Families
Meyer
The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet:
meyr” on page 6-69 for more detail.
1-35

1 Wavelets: A New Tool for Signal Analysis

1-3
6

2-3 Continuous Wavelet Analysis (One-Dimensional)
2-3 Continuous Analysis Using the Command Line
2-7 Continuous Analysis Using the Graphical Interface
2-11 Importing and Exporting Information from the Graphical Interface

2-13 One-Dimensional Discrete Wavelet Analysis
2-15 One-Dimensional Analysis Using the Command Line
2-22 One-Dimensional Analysis Using the Graphical Interface
2-38 Importing and Exporting Information from the Graphical Interface

2-43 Two-Dimensional Discrete Wavelet Analysis
2-44 Two-Dimensional Analysis Using the Command Line
2-52 Two-Dimensional Analysis Using the Graphical Interface
2-59 Importing and Exporting Information from the Graphical Interface

2-66 Working with Indexed Images
2-66 Understanding Images in MATLAB
2-66 Indexed Images
2-68 Wavelet Decomposition of Indexed Images
2

Using Wavelets

2 Using Wavelets

2-2
The Wavelet Toolbox contains graphical tools and command line functions that
let you:

• Examine and explore characteristics of individual wavelets and wavelet
packet.

• Examine statistics of signals and signal components.

• Perform a continuous wavelet transform of a one-dimensional signal.

• Perform discrete analysis and synthesis of one- and two-dimensional signals.

• Perform wavelet packet analysis of one- and two-dimensional signals.

• Compress and remove noise from signals and images.

In addition to the above, the toolbox makes it easy to customize the
presentation and visualization of your data. You choose:

• Which signals to display

• A region of interest to magnify

• A coloring scheme for display of wavelet coefficient details

This chapter takes you step-by-step through examples that teach you how to
use the graphical tools and command line functions. These examples include:

• Continuous Wavelet Analysis (One-Dimensional)

• One-Dimensional Discrete Wavelet Analysis

• Two-Dimensional Discrete Wavelet Analysis

Chapter 5 describes using the toolbox to perform wavelet packet analysis.

Continuous Wavelet Analysis (One-Dimensional)
Continuous Wavelet Analysis (One-Dimensional)
This section takes you through the features of continuous wavelet analysis
using the MATLAB Wavelet Toolbox.

The Wavelet Toolbox requires only one function for continuous wavelet
analysis: cwt. You’ll find full information about this function in the Command
Reference (Chapter 8).

In this section, you’ll learn how to:

• Load a signal

• Perform a continuous wavelet transform of a signal

• Produce a plot of the coefficients

• Zoom in on detail

• Display coefficients in normal or absolute mode

• Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the
graphical interface tools, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient
information between the disk and the graphical tools.

Continuous Analysis Using the Command Line
This example involves a noisy sinusoidal signal.
2-3

2 Using Wavelets

2-4
Loading a Signal.

1 From the MATLAB prompt, type:

» load noissin;

You now have the signal noissin in your workspace:

» whos

Performing a Continuous Wavelet Transform.

2 Use the cwt command. Type:

» c = cwt(noissin,1:48,'db4');

The arguments to cwt specify the signal to be analyzed, the scales of the
analysis, and the wavelet to be used. The returned argument c contains the
coefficients at various scales. In this case, c is a 48-by-1000 matrix, each row
of which corresponds to a single scale.

Name Size Elements Bytes Class
noissin 1 by 1000 1000 8000 double array

Continuous Wavelet Analysis (One-Dimensional)
Plotting the Coefficients. The cwt command accepts a fourth argument. This is
a flag that, when present, causes cwt to produce a plot of the absolute values of
the continuous wavelet transform coefficients.

3 Type

» c = cwt(noissin,1:48,'db4','plot');

A plot appears:

Of course, coefficient plots generated from the command line can be
manipulated using ordinary MATLAB graphics commands. The colormap for
the picture above was changed to pink from the default cool by typing:

» colormap(pink)
2-5

2 Using Wavelets

2-6
Choosing Scales for the Analysis. The second argument to cwt gives you fine
control over the scale levels on which the continuous analysis is performed. In
the previous example, we used all scales from 1 to 48, but you can construct any
scale vector subject to these constraints:

• All scales must be real positive numbers.

• The initial scale must be positive.

• The scale increment must be positive.

• The highest scale cannot exceed a signal-dependent maximum.

4 Let’s repeat the analysis using every other scale from 2 to 128.
Type:

» c = cwt(noissin,2:2:128,'db4','plot');

A new plot appears:

This plot gives a clearer picture of what’s happening with the signal,
highlighting the periodicity.

Continuous Wavelet Analysis (One-Dimensional)
Continuous Analysis Using the Graphical Interface
We now use the Continuous Wavelet 1-D tool to analyze the same noisy
sinusoidal signal we examined using the command line interface in the
previous section.

Starting the Continuous Wavelet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

2 Click the Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for one-dimensional signal data
appears:
2-7

2 Using Wavelets

2-8
Loading a Signal.

3 Choose the File⇒Load Signal menu option.

4 When the Load Signal dialog box appears, select the demo MAT-file
noissin.mat, which should reside in the MATLAB directory toolbox/
wavelet/wavedemo. Click the OK button.

The noisy sinusoidal signal is loaded into the Continuous Wavelet 1-D
tool.

Performing a Continuous Wavelet Transform.

To start our analysis, let’s perform an analysis using the db4 wavelet at scales
1 through 48, just as we did using command line functions in the previous
section.

5 In the upper right portion of the Continuous Wavelet 1-D tool, select the
db4 wavelet and scale levels 1–48.

Select db4

Select levels 1-48
in steps of 1.

Continuous Wavelet Analysis (One-Dimensional)
6 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot.

Zooming in on Detail.

7 Drag a rubber band box (by holding down the left mouse button) over the
portion of the signal you want to magnify.
2-9

2 Using Wavelets

2-1
8 Click the X+ button (located at the bottom of the screen) to zoom horizontally
only.

The Continuous Wavelet 1-D tool enlarges the displayed signal and
coefficients plot.

As with the command line analysis on the preceding pages, you can change the
scales or the analyzing wavelet and repeat the analysis. To do this, just edit the
necessary fields and press the Analyze button.

Viewing Normal or Absolute Coefficients. The Continuous Wavelet 1-D
tool allows you to plot either the absolute values of the wavelet coefficients, or
the coefficients themselves.
0

Continuous Wavelet Analysis (One-Dimensional)
9 Choose either Absolute Mode or Normal Mode from the Coloration
Mode menu, located just above the Analyze button. In normal mode, the
colors are scaled between the minimum and maximum of the coefficients. In
absolute mode, the colors are scaled between zero and the maximum
absolute value of the coefficients (for more details on the Coloration Mode,
(See “Continuous Wavelet Tool Features” on page A-1).

The coefficients plot is redisplayed in the mode you select.

Importing and Exporting Information from the
Graphical Interface
The Continuous Wavelet 1-D graphical interface tool lets you import
information from and export information to your disk.

You can:

• Load signals from your disk into the Continuous Wavelet 1-D tool.

• Save wavelet coefficients from the Continuous Wavelet 1-D tool into your
disk.

Loading Signals into the Continuous Wavelet 1-D Tool
To load a signal you’ve constructed in your MATLAB workspace into the
Continuous Wavelet 1-D tool, save the signal in a MAT-file that has the
same name as the signal variable itself.

For instance, suppose you’ve designed a signal called warma and want to
analyze it in the Continuous Wavelet 1-D tool.

» save warma

 Absolute Mode Normal Mode
2-11

2 Using Wavelets

2-1
The workspace variable warma must be a vector.

» sizwarma = size(warma)
sizwarma =
 1 1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu
option File⇒Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Saving Wavelet Coefficients
The Continuous Wavelet 1-D tool lets you save wavelet coefficients to your
disk. The toolbox creates a MAT-file in the current directory with the extension
wc1 and a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the
menu option File⇒Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing
the coefficients.

Consider the demo analysis:

 File⇒Demo Analysis⇒with haar at scales [1:1:64] −−> Cantor curve.

After saving the continuous wavelet coefficients to the file cantor.wc1, load the
variables into your workspace.

» load cantor.wc1 -mat
» whos

Variables coefs and scales contain the continuous wavelet coefficients and
the associated scales. More precisely, in the above example coefs is a
64-by-2188 matrix, one row for each scale, and scales is the 1-by-64 vector
1:64.

Name Size Elements Bytes Class
coefs 64 by 2188 140032 1120256 double array
scales 1 by 64 64 512 double array
2

One-Dimensional Discrete Wavelet Analysis
 One-Dimensional Discrete Wavelet Analysis
This section takes you through the features of one-dimensional discrete
wavelet analysis using the MATLAB Wavelet Toolbox.

The Wavelet Toolbox provides these functions for one-dimensional signal
analysis. For more information, see the Command Reference (Chapter 8).

Analysis Decomposition Functions:

Synthesis Reconstruction Functions:

Function Name Purpose

dwt One-step decomposition

wavedec Decomposition

Function Name Purpose

idwt One-step reconstruction

waverec Full reconstruction

wrcoef Selective reconstruction

upcoef Single reconstruction
2-13

2 Using Wavelets

2-1
Decomposition Structure Utilities:Analysis Decomposition

Functions:

In this section, you’ll learn how to:

• Load a signal

• Perform a single-level wavelet decomposition of a signal

• Construct approximations and details from the coefficients

• Display the approximation and detail

• Regenerate a signal by inverse wavelet transform

• Perform a multi-level wavelet decomposition of a signal

• Extract approximation and detail coefficients

• Reconstruct the level 3 approximation

• Reconstruct the level 1, 2, and 3 details

• Display the results of a multi-level decomposition

• Reconstruct the original signal from the level 3 decomposition

• Remove noise from a signal

• Refine an analysis

• Compress a signal

• Show a signal’s statistics and histograms

Function Name Purpose

detcoef Extraction of detail coefficients

appcoef Extraction of approximation coefficients

upwlev Recomposition of decomposition structure

Function Name Purpose

ddencmp Provide default values for de-noising and
compression

wdencmp Wavelet de-noising and compression

wden Automatic wavelet de-noising
4

One-Dimensional Discrete Wavelet Analysis
Since you can perform analyses either from the command line or using the
graphical interface tools, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient
information between the disk and the graphical tools.

One-Dimensional Analysis Using the Command Line
This example involves a real-world signal — electrical consumption measured
over the course of three days. This signal is particularly interesting because of
noise introduced when a defect developed in the monitoring equipment as the
measurements were being made. Wavelet analysis effectively removes the
noise.

Loading a Signal.

1 From the MATLAB prompt, type:

» load leleccum;

2 Set the variables. Type:

» s = leleccum(1:3920);
» ls = length(s);

Performing A One-Step Wavelet Decomposition of a Signal.

3 Perform a one-step decomposition of the signal using the db1 wavelet. Type:

» [cA1,cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail
(cD1).
2-15

2 Using Wavelets

2-1
Constructing Approximations and Details from the Coefficients.

4 To construct the level 1 approximation and detail (A1 and D1) from the
coefficients cA1 and cD1, type:

» A1 = upcoef('a',cA1,'db1',1,ls);
» D1 = upcoef('d',cD1,'db1',1,ls);

Displaying the Approximation and Detail.

5 To display the results of the level-one decomposition, type:

» subplot(1,2,1); plot(A1); title('Approximation A1')
» subplot(1,2,2); plot(D1); title('Detail D1')

Regenerating a Signal by Inverse Wavelet Transform.

6 To find the inverse transform, type:

» A0 = idwt(cA1,cD1,'db1',ls);

Performing a Multilevel Wavelet Decomposition of a Signal.

7 To perform a level 3 decomposition of the signal (again using the db1
wavelet), type:

» [C,L] = wavedec(s,3,'db1');
6

One-Dimensional Discrete Wavelet Analysis
The coefficients of all the components of a third-level decomposition (that is,
the third-level approximation and the first three levels of detail) are
returned concatenated into one vector, C. Vector L gives the lengths of each
component.

Extracting Approximation and Detail Coefficients.

8 To extract the level 3 approximation coefficients from C, type:

» cA3 = appcoef(C,L,'db1',3);

9 To extract the levels 3, 2, and 1 detail coefficients from C, type:

» cD3 = detcoef(C,L,3);
» cD2 = detcoef(C,L,2);
» cD1 = detcoef(C,L,1);

Reconstructing the Level 3 Approximation.

10 To reconstruct the level 3 approximation from C, type:

» A3 = wrcoef('a',C,L,'db1',3);

Reconstructing the Level 1, 2, and 3 Details.

11 To reconstruct the details at levels 1, 2 and 3, from C, type:

» D1 = wrcoef('d',C,L,'db1',1);
» D2 = wrcoef('d',C,L,'db1',2);
» D3 = wrcoef('d',C,L,'db1',3);

S

cA1 cD1

cA2 cD2

cA3 cD3

cD1cD2cA3 cD3

C

2-17

2 Using Wavelets

2-1
Displaying the Results of a Multilevel Decomposition.

12 To display the results of the level 3 decomposition, type:

» subplot(2,2,1); plot(A3); title('Approximation A3')
» subplot(2,2,2); plot(D1); title('Detail D1')
» subplot(2,2,3); plot(D2); title('Detail D2')
» subplot(2,2,4); plot(D3); title('Detail D3')

Reconstructing the Original Signal From the Level 3 Decomposition.

13 To reconstruct the original signal from the wavelet decomposition structure,
type:

» A0 = waverec(C,L,'db1');
8

One-Dimensional Discrete Wavelet Analysis
Crude De-noising of a Signal.

Using wavelets to remove noise from a signal requires identifying which
component or components contain the noise and then reconstructing the signal
without those components.

In this example, we note that successive approximations become less and less
noisy as more and more high-frequency information is filtered out of the signal.

The level 3 approximation, A3, is quite clean as a comparison between it and
the original signal shows.

14 To compare the approximation to the original signal, type:

» subplot(2,1,1);plot(s);title('Original'); axis off
» subplot(2,1,2);plot(A3);title('Level 3 Approximation');
axis off

Of course, in discarding all the high-frequency information, we’ve also lost
many of the original signal’s sharpest features.

Optimal de-noising requires a more subtle approach called thresholding. This
involves discarding only the portion of the details that exceeds a certain limit.
2-19

2 Using Wavelets

2-2
Removing Noise by Thresholding.

Let’s look again at the details of our level 3 analysis.

15 To display the details D1, D2, and D3, type:

» subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off
» subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off
» subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

Most of the noise occurs in the latter part of the signal, where the details
show their greatest activity. What if we limited the strength of the details
by restricting their maximum values? This would have the effect of cutting
back the noise while leaving the details unaffected through most of their
durations. But there’s a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, and we could directly
manipulate each vector, setting each element to some fraction of the vectors’
peak or average value. Then we could reconstruct new detail signals D1, D2,
and D3 from the thresholded coefficients.

16 To de-noise the signal, use the ddencmp command to calculate the default
parameters and the wdencmp command to perform the actual de-noising,
type:

» [thr,sorh,keepapp] = ddencmp('den','wv',s);
» clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

Setting a
threshold
0

One-Dimensional Discrete Wavelet Analysis
Note that we pass in to wdencmp the results of the decomposition (C and L)
we calculated in Step 7 on page 2-16. We also specify that we used the db1
wavelet to perform the original analysis, and we specify the global
thresholding option 'gbl'. See the ddencmp and wdencmp reference entries
for more information about the use of these commands.

17 To display both the original and de-noised signals, type:

» subplot(2,1,1); plot(s(2000:3920)); title('Original')
» subplot(2,1,2); plot(clean(2000:3920)); title('De-noised')

We’ve plotted here only the noisy latter part of the signal. Notice how we’ve
removed the noise without compromising the sharp detail of the original
signal. This is a strength of wavelet analysis.

While using command line functions to remove the noise from a signal can be
cumbersome, the Wavelet Toolbox graphical interface tools include an
easy-to-use de-noising feature that includes automatic thresholding.
2-21

2 Using Wavelets

2-2
One-Dimensional Analysis Using the Graphical
Interface
In this section we explore the same electrical consumption signal as in the
previous section, but we use the graphical interface tools to analyze the signal.

Starting the 1-D Wavelet Analysis Tool.

1 From the MATLAB prompt, type:
» wavemenu.

The Wavelet Toolbox Main Menu appears.
2

One-Dimensional Discrete Wavelet Analysis
2 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

Loading a Signal.

3 From the File menu, choose the Load Signal option.
2-23

2 Using Wavelets

2-2
4 When the Load Signal dialog box appears, select the demo MAT-file
leleccum.mat, which should reside in the MATLAB directory
toolbox/wavelet/wavedemo. Click the OK button.

The electrical consumption signal is loaded into the Wavelet 1-D tool.

Performing A One-Step Wavelet Decomposition of a Signal.

To start our analysis, let’s perform a single-level decomposition using the db1
wavelet, just as we did using command line functions in the previous section.

5 In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet
and single-level decomposition.
4

One-Dimensional Discrete Wavelet Analysis
6 Click the Analyze button.

After a pause for computation, the tool displays the decomposition.
2-25

2 Using Wavelets

2-2
Zooming in On Relevant Detail.

One advantage of using the graphical interface tools is that you can zoom in
easily on any part of the signal and examine it in greater detail.

7 Drag a rubber band box (by holding down the left mouse button) over the
portion of the signal you want to magnify. Here, we’ve selected the noisy part
of the original signal.

8 Click the XY+ button (located at the bottom of the screen) to zoom both
horizontally and vertically.
6

One-Dimensional Discrete Wavelet Analysis
The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you’d expect them to. The
X-button, for example, zooms out horizontally. The history function keeps
track of all your views of the signal. Return to a previous zoom level by
clicking the left arrow button.

Performing a Multi-Level Decomposition of a Signal.

Again, we’ll use the graphical tools to emulate what we did in the previous
section using command line functions. To perform a level 3 decomposition of
the signal using the db1 wavelet:

9 Simply select “3” from the Level menu at the upper right, and then click the
Analyze button again.
2-27

2 Using Wavelets

2-2
After the decomposition is performed, you’ll see a new analysis appear in the
Wavelet 1-D tool.

Selecting Different Views of the Decomposition.

The menu at the middle right lets you choose different views of the wavelet
decomposition.

The default display mode is called “Full Decomposition Mode.” Other
alternatives include:

• “Separate Mode,” which shows the details and the approximations in
separate columns.

• “Superimpose Mode,” which shows the details on a single plot superimposed
in different colors. The approximations are plotted similarly.

• “Tree Mode,” which shows the decomposition tree, the original signal, and
one additional component of your choice. Click on the decomposition tree to
select the signal component you’d like to view.

Select
a view
8

One-Dimensional Discrete Wavelet Analysis
• “Show and Scroll Mode,” which displays three windows. The first shows the
original signal superimposed on an approximation you select. The second
window shows a detail you select. The third window shows the wavelet
coefficients.

You can change the default display mode on a per-session basis. Select the
desired mode from the Options ⇒Default Display Mode submenu.

Separate Mode Superimpose Mode

Tree Mode Show & Scroll Mode
2-29

2 Using Wavelets

2-3
Depending on which display mode you select, you may have access to additional
display options through the More Display Options button.

These options include the ability to suppress the display of various
components, and to choose whether or not to display the original signal along
with the details and approximations.

Removing Noise From a Signal.

The graphical interface tools feature a de-noising option with automatic
thresholding. This makes it very easy to remove noise from a signal.

10 Bring up the de-noising tool: click the De-noise button, located in the
middle right of the window, underneath the Analyze button.
0

One-Dimensional Discrete Wavelet Analysis
The Wavelet 1-D De-noising window appears.

While a number of options are available for fine-tuning the de-noising
algorithm, we’ll accept the defaults of soft thresholding and unscaled white
noise.
2-31

2 Using Wavelets

2-3
11 Continue by clicking the De-noise button.

The de-noised signal appears superimposed on the original. The tool also
plots the wavelet coefficients of both signals.

Zoom in on the plot of the original and de-noised signals for a closer look.
2

One-Dimensional Discrete Wavelet Analysis
12 Drag a rubber band box around the pertinent area, then click the XY+
button.

The De-noise window magnifies your view. By default, the original signal
is shown in red, and the de-noised signal in yellow.

13 Dismiss the Wavelet 1-D De-noising window: click the Close button.

You cannot have the De-noise and Compression windows open
simultaneously, so close the Wavelet 1-D De-noising window to continue.
When the Update Synthesized Signal dialog box appears, click No (if you
click Yes, the Synthesized Signal is then available in the Wavelet 1-D
main window).

Refining an Analysis.

The graphical tools make it easy to refine an analysis any time you want to. Up
to now, we’ve looked at a level 3 analysis using db1. Let’s refine our analysis of
the electrical consumption signal using the db3 wavelet at level 5.

14 Select 5 from the Level menu at the upper right, and select the db3 wavelet.
Click the Analyze button.
2-33

2 Using Wavelets

2-3
Compressing a Signal.

The graphical interface tools feature a compression option with automatic or
manual thresholding.

15 Bring up the Compression window: click the Compress button, located in
the middle right of the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing manual thresholding, here
we’ll take advantage of the automatic thresholding feature for quick and
easy compression.

Thresholding
menu

Threshold
slider

Compress
button
4

One-Dimensional Discrete Wavelet Analysis
Note: If you want to experiment with manual thresholding, choose that option
from the menu located at the top right of the Wavelet 1-D Compression
window. The sliders located below this menu then control the level-dependent
thresholds, indicated by yellow dotted lines running horizontally through the
graphs on the left of the window.

16 Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is
redisplayed in red with the compressed version superimposed in yellow.
Below, we’ve zoomed in to get a closer look at the noisy part of the signal.

You can see that the compression process removed most of the noise, but
preserved 99.74% of the energy of the signal. The automatic thresholding
was very efficient, zeroing out all but 3.2% of the wavelet coefficients.

17 Dismiss the Wavelet 1-D Compression window: click the Close button.
When the Update Synthesized Signal dialog box appears, click No.
2-35

2 Using Wavelets

2-3
Showing Statistics.

You can view a variety of statistics about your signal and its components.

18 From the Wavelet 1-D tool, click the Statistics button.

The Wavelet 1-D Statistics window appears.

19 Select the signal or signal component whose statistics you want to examine.
Click on the appropriate radio button, then press the Show Statistics
button. Here, we’ve chosen to examine the original signal:
6

One-Dimensional Discrete Wavelet Analysis
Displayed statistics include measures of tendency (mean, mode, median)
and dispersion (range, standard deviation).

In addition, the tool provides frequency-distribution diagrams (histograms
and cumulative histograms). You can plot these histograms separately using
the Histograms button from the Wavelets 1-D window.

20 Select the Approximation radio button. A menu appears from which you
choose the level of the approximation you want to examine.

21 Select Level 1 and again click the Show Statistics button.

Statistics appear for the level 1 approximation.
2-37

2 Using Wavelets

2-3
Importing and Exporting Information from the
Graphical Interface
The Wavelet 1-D graphical interface tool lets you import information from and
export information to your disk.

Saving Information to the Disk
You can save synthesized signals, coefficients, and decompositions from the
Wavelet 1-D tool to the disk, where the information can be manipulated and
later reimported into the graphical tool.

Saving Synthesized Signals.

You can process a signal in the Wavelet 1-D tool and then save the processed
signal to a MAT-file.

For example, load the demo analysis: File⇒Demo Analysis⇒with db3 at
level 5 −−> Sum of sines, and perform a compression or de-noising operation
on the original signal. When you close the De-noise or Wavelet 1-D
Compression window, update the synthesized signal by clicking Yes in the
dialog box.

Then, from the Wavelet 1-D tool, select the File⇒Save Synthesized Signal
menu option.

A dialog box appears allowing you to select a directory and filename for the
MAT-file. For this example, choose the name synthsig.

Load information from disk

Save information to disk
8

One-Dimensional Discrete Wavelet Analysis
To load the signal into your workspace, simply type:

» load synthsig
» whos

Saving Discrete Wavelet Transform Coefficients.

The Wavelet 1-D tool lets you save the coefficients of a discrete wavelet
transform (DWT) to your disk. The toolbox creates a MAT-file in the current
directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option
File⇒Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing
the coefficients.

Consider the demo analysis:
File⇒Demo Analysis⇒with db1 at level 5 −−> Cantor curve.

After saving the wavelet coefficients to the file cantor.mat, load the variables
into your workspace.

» load cantor
» whos

Variable coefs contains the discrete wavelet coefficients. More precisely, in the
above example coefs is a 1-by-2190 vector of concatenated coefficients, and
longs is a vector giving the lengths of each component of coefs.

Saving Decompositions.

The Wavelet 1-D tool lets you save the entire set of data from a discrete
wavelet analysis to your disk. The toolbox creates a MAT-file in the current
directory with a name you choose, followed by the extension wa1 (wavelet
analysis 1-D).

Name Size Elements Bytes Class
synthsig 1 by 1000 1000 8000 double array

Name Size Elements Bytes Class
coefs 1 by 2190 2190 17520 double array
longs 1 by 7 7 56 double array
2-39

2 Using Wavelets

2-4
Open the Wavelet 1-D tool and load the demo analysis:
File⇒Demo Analysis⇒with db3 at level 5 −−> Sum of sines.

To save the data from this analysis, use the menu option:
File⇒Save Decomposition.

A dialog box appears that lets you specify a directory and filename for storing
the decomposition data. Type the name wdecex.

After saving the decomposition data to the file wdecex1d.wa1, load the
variables into your workspace.

» load wdecex1d.wa1 -mat
» whos

Loading Information into the Wavelet 1-D Tool
You can load signals, coefficients, or decompositions into the graphical
interface. The information you load may have been previously exported from
the graphical interface and then manipulated in the workspace, or it may have
been information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used
by the Wavelet 1-D tool, or else errors will result when you try to load
information.

Loading Signals.

To load a signal you’ve constructed in your MATLAB workspace into the
Wavelet 1-D tool, save the signal in a MAT-file that has the same name as the
signal variable itself.

For instance, suppose you’ve designed a signal called warma and want to
analyze it in the Wavelet 1-D tool.

» save warma

Name Size Elements Bytes Class
coefs 1 by 1023 1023 8184 double array
data_name 1 by 8 8 64 double array
longs 1 by 64 64 512 double array
wave_name 1 by 3 3 24 double array
0

One-Dimensional Discrete Wavelet Analysis
The workspace variable warma must be a vector.

» sizwarma = size(warma)
sizwarma =
 1 1000

To load this signal into the Wavelet 1-D tool, use the menu option
File⇒Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Loading Discrete Wavelet Transform Coefficients.

To load discrete wavelet transform coefficients into the Wavelet 1-D tool, you
must first save the appropriate data in a MAT-file containing only the two
variables coefs and longs.

Variable coefs must be a vector of DWT coefficients (concatenated for the
various levels), and variable longs a vector specifying the length of each
component of coefs as well as the length of the original signal.

After constructing or editing the appropriate data in your workspace, type:

» save myfile

Use the File⇒Load Coefficients menu option from the Wavelet 1-D tool to
load the data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which
your data reside.

S

cA1 cD1

cA2 cD2

cA3 cD3

cD1cD2cA3 cD3

coefs

longs

Decomposition

1000

501

252

127 127

501 1000127 127 252
501

252
2-41

2 Using Wavelets

2-4
Loading Decompositions.

To load discrete wavelet transform decomposition data into the Wavelet 1-D
graphical interface, you must first save the appropriate data in a MAT-file with
extension wa1 (wavelet analysis 1-D). The MAT-file must contain these
variables:

After constructing or editing the appropriate data in your workspace, type:

» save myfile.wa1

Use the File⇒Load Decomposition menu option from the Wavelet 1-D tool
to load the decomposition data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which
your data reside.

Variable Description

coefs Vector of concatenated DWT coefficients

data_name String specifying name of decomposition

longs Vector specifying lengths of components of coefs
and of the original signal

wave_name String specifying name of wavelet used for
decomposition (e.g., db3)
2

Two-Dimensional Discrete Wavelet Analysis
Two-Dimensional Discrete Wavelet Analysis
This section takes you through the features of two-dimensional discrete
wavelet analysis using the MATLAB Wavelet Toolbox.

The Wavelet Toolbox provides these functions for image analysis. For more
information, see the Command Reference (Chapter 8).

Analysis-Decomposition Functions:

Synthesis-Reconstruction Functions:

Decomposition Structure Utilities:

Function Name Purpose

dwt2 One-step decomposition

wavedec2 Decomposition

Function Name Purpose

idwt2 One-step reconstruction

waverec2 Full reconstruction

wrcoef2 Selective reconstruction

upcoef2 Single reconstruction

Function Name Purpose

detcoef2 Extraction of detail coefficients

appcoef2 Extraction of approximation coefficients

upwlev2 Recomposition of decomposition structure
2-43

2 Using Wavelets

2-4
De-noising and Compression:

In this section, you’ll learn:

• How to load an image

• How to analyze an image

• How to perform one-step and multi-level image decompositions and
reconstructions (command line only)

• How to use Square and Tree mode features (GUI only)

• How to zoom in on detail (GUI only)

• How to compress an image

Two-Dimensional Analysis Using the Command Line
In this example we’ll show how you can use two-dimensional wavelet analysis
to compress an image efficiently without sacrificing its clarity.

Note: Instead of using directly image(I) in order to visualize the image I, we
use image(wcodemat(I)) which displays a rescaled version of I leading to a
clearer presentation of the details and approximations (see wcodemat in
Chapter 8).

Function Name Purpose

ddencmp Provide default values for de-noising and compression

wdencmp Wavelet de-noising and compression
4

Two-Dimensional Discrete Wavelet Analysis
Loading an Image.

1 From the MATLAB prompt, type:

» load wbarb;
» whos

2 Display the image. Type:

» image(X); colormap(map)

Converting an Indexed Image to a Grayscale Image.

3 If the colorbar is smooth, the wavelet transform can be directly applied to
the indexed image, otherwise the indexed image should be converted to
grayscale format. See “Working with Indexed Images” at the end of this
chapter for more information.

Since the colormap is smooth in this image, you can now perform the
decomposition.

Performing A One-Step Wavelet Decomposition of an Image.

4 Perform a one-step decomposition of the image using the bior3.7 wavelet.
Type:

» [cA1,cH1,cV1,cD1] = dwt2(X,'bior3.7');

This generates the coefficient matrices of the level-one approximation (cA1)
and horizontal, vertical and diagonal details (cH1,cV1,cD1, respectively).

Name Size Elements Bytes Class
X 256 by 256 65536 524288 double array
map 192 by 3 576 4608 double array

50 100 150 200 250

50

100

150

200

250

20

40

60

80

100

120

140

160

180
2-45

2 Using Wavelets

2-4
Constructing Approximations and Details from the Coefficients.

5 To construct the level-one approximation and details (A1, H1, V1, and D1) from
the coefficients cA1, cH1, cV1, and cD1, type:

» A1 = upcoef2('a',cA1,'bior3.7',1);
» H1 = upcoef2('h',cH1,'bior3.7',1);
» V1 = upcoef2('v',cV1,'bior3.7',1);
» D1 = upcoef2('d',cD1,'bior3.7',1);

Displaying the Approximation and Details.

6 To display the results of the level 1 decomposition, type:

» colormap(map);
» subplot(2,2,1); image(wcodemat(A1,192));
» title('Approximation A1')
» subplot(2,2,2); image(wcodemat(H1,192));
» title('Horizontal Detail H1')
» subplot(2,2,3); image(wcodemat(V1,192));
» title('Vertical Detail V1')
» subplot(2,2,4); image(wcodemat(D1,192));
» title('Diagonal Detail D1')
6

Two-Dimensional Discrete Wavelet Analysis
Regenerating an Image by One-Step Inverse Wavelet Transform.

7 To find the inverse transform, type:

» Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients of
the level 1 approximation and details.

Performing a Multi-Level Wavelet Decomposition of an Image.

8 To perform a level 2 decomposition of the image (again using the bior3.7
wavelet), type:

» [C,S] = wavedec2(X,2,'bior3.7');

where X is the original image matrix, and 2 is the level of decomposition.

The coefficients of all the components of a second-level decomposition (that
is, the second-level approximation and the first two levels of detail) are
returned concatenated into one vector, C. Argument S is a bookkeeping
matrix that keeps track of the sizes of each component.

Extracting Approximation and Detail Coefficients.

9 To extract the level 2 approximation coefficients from C, type:

» cA2 = appcoef2(C,S,'bior3.7',2);

10 To extract the first- and second-level detail coefficients from C, type:

» cH2 = detcoef2('h',C,S,2); cV2 = detcoef2('v',C,S,2);
» cD2 = detcoef2('d',C,S,2);
» cH1 = detcoef2('h',C,S,1); cV1 = detcoef2('v',C,S,1);
» cD1 = detcoef2('d',C,S,1);

where the first argument ('h', 'v', or 'd') determines the type of detail
(horizontal, vertical, diagonal) extracted, and the last argument determines
the level.
2-47

2 Using Wavelets

2-4
Reconstructing the Level 2 Approximation.

11 To reconstruct the level 2 approximation from C, type:

» A2 = wrcoef2('a',C,S,'bior3.7',2);

Reconstructing the Level 1 and 2 Details.

12 To reconstruct the level 1 and 2 details from C, type:

» H1 = wrcoef2('h',C,S,'bior3.7',1);
» V1 = wrcoef2('v',C,S,'bior3.7',1);
» D1 = wrcoef2('d',C,S,'bior3.7',1);
» H2 = wrcoef2('h',C,S,'bior3.7',2);
» V2 = wrcoef2('v',C,S,'bior3.7',2);
» D2 = wrcoef2('d',C,S,'bior3.7',2);
8

Two-Dimensional Discrete Wavelet Analysis
Displaying the Results of a Multi-Level Decomposition.

Note: With all the details involved in a multi-level image decomposition, it
makes sense to import the decomposition into the Wavelet 2-D graphical tool
in order to more easily display it. For information on how to do this, see
“Loading Decompositions” on page 67.

13 To display the results of the level 2 decomposition, type:

» colormap(map);
» subplot(2,4,1);image((wcodemat(A1,192));title('Approximation A1')
» subplot(2,4,2);image((wcodemat(H1,192));title('Horizontal
Detail H1')
» subplot(2,4,3);image((wcodemat(V1,192));title('Vertical
Detail V1')
» subplot(2,4,4);image((wcodemat(D1,192));title('Diagonal
Detail D1')
» subplot(2,4,5);image((wcodemat(A2,192));title('Approximation A2')
» subplot(2,4,6);image((wcodemat(H2,192));title('Horizontal
Detail H2')
» subplot(2,4,7);image((wcodemat(V2,192));title('Vertical
Detail V2')
» subplot(2,4,8);image((wcodemat(D2,192));title('Diagonal Detail D2')
2-49

2 Using Wavelets

2-5
Reconstructing the Original Image from the Multilevel Decomposition.

14 To reconstruct the original image from the wavelet decomposition structure,
type:

» X0 = waverec2(C,S,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients C of
the multi-level decomposition.

Compressing an Image.

15 To compress the original image X, use the ddencmp command to calculate the
default parameters and the wdencmp command to perform the actual
compression. Type:

» [thr,sorh,keepapp] = ddencmp('cmp','wv',X);
» [Xcomp,CXC,LXC,PERF0,PERFL2] =
» wdencmp('gbl',C,S,'bior3.7',2,thr,sorh,keepapp);

Note that we pass in to wdencmp the results of the decomposition (C and S)
we calculated in Step 7 on page 2-47. We also specify the bior3.7 wavelet,
because we used this wavelet to perform the original analysis. Finally, we
specify the global thresholding option 'gbl'. See the ddencmp and wdencmp
reference entries for more information about the use of these commands.
0

Two-Dimensional Discrete Wavelet Analysis
Displaying the Compressed Image.

16 To view the compressed image side by side with the original, type:

» colormap(map);
» subplot(121); image(X); title('Original Image');
» axis square
» subplot(122); image(Xcomp); title('Compressed Image');
» axis square

» PERF0
 86.6550
» PERFL2
 99.9779

These returned values tell, respectively, what percentage of the wavelet
coefficients was set to zero and what percentage of the image’s energy was
preserved in the compression process.

Note that, even though the compressed image is constructed from only about
half as many nonzero wavelet coefficients as the original, there is almost no
detectable deterioration in the image quality.
2-51

2 Using Wavelets

2-5
Two-Dimensional Analysis Using the Graphical
Interface
In this section we explore the same image as in the previous section, but we use
the graphical interface tools to analyze the image.

Starting the 2-D Wavelet Analysis Tool.

1 From the MATLAB prompt, type
» wavemenu.

The Wavelet Tool Main Menu appears.

2 Click the Wavelet 2-D menu item.

The discrete wavelet analysis tool for two-dimensional image data appears.
2

Two-Dimensional Discrete Wavelet Analysis
Loading an Image.

3 From the File menu, choose the Load Image option.

4 When the Load Image dialog box appears, select the demo MAT-file
wbarb.mat, which should reside in the MATLAB directory
toolbox/wavelet/wavedemo. Click the OK button.

The image is loaded into the Wavelet 2-D tool.
2-53

2 Using Wavelets

2-5
Analyzing an Image.

5 Using the Wavelet and Levels menus located to the upper right, determine
the wavelet family and type as well as the number of levels to be used for the
analysis.

For this analysis, select the bior3.7 wavelet at level 2.

6 Click the Analyze button.

After a pause for computation, the Wavelet 2-D tool displays its analysis.

Visualization

Decomposition

Original

Synthesized

image

image
4

Two-Dimensional Discrete Wavelet Analysis
Using Square Mode Features.

By default, the analysis appears in “Square Mode.” This mode includes four
different displays. In the upper left is the original image. Below that is the
image reconstructed from the various approximations and details. To the
lower right is a decomposition showing the coarsest approximation
coefficients and all the horizontal, diagonal, and vertical detail coefficients.
Finally, the visualization space at the top right displays any component of
the analysis that you want to look at more closely.

7 Click on any decomposition component in the lower right window.

A green border highlights the selected component. At the lower right of the
Wavelet 2-D window, there is a set of three buttons labeled “Operations on
selected image.”

8 Click the Visualize button.

The selected image is displayed in the visualization area. You are seeing the
raw, unreconstructed two-dimensional wavelet coefficients. Using the other
buttons, you can display the reconstructed version of the selected image
component, or you can view the selected component at full screen resolution.

Visualized Approximation A2 Reconstructed Approximation A2
2-55

2 Using Wavelets

2-5
Using Tree Mode Features.

9 Choose Tree from the View Mode menu.

Your display changes to reveal:

This is the same information shown in square mode, with in addition all the
approximation coefficients, but arranged to emphasize the tree structure of
the decomposition. The various buttons and menus work just the same as
they do in square mode.
6

Two-Dimensional Discrete Wavelet Analysis
Zooming in on Detail.

10 Drag a rubber band box (by holding down the left mouse button) over the
portion of the image you want to magnify.

11 Click the XY+ button (located at the bottom of the screen) to zoom
horizontally and vertically.

The Wavelet 2-D tool enlarges the displayed images.

To zoom back to original magnification, click the History <−− button.
2-57

2 Using Wavelets

2-5
Compressing an Image.

12 Click the Compress button, located to the upper right of the Wavelet 2-D
window.

The Wavelet 2-D Compression window appears.

The tool automatically selects thresholding levels to provide a good initial
balance between retaining the image’s energy while minimizing the number
of coefficients needed to represent the image.

However, you can also adjust thresholds manually using the Thresholding
menu and sliders or corresponding edits. Select from the menu whether you
want to adjust thresholds for horizontal, diagonal or vertical details, then
use the sliders to make the actual adjustments for each level.

For this example, we’ll accept the default thresholds.

Compress button

Threshold menu
8

Two-Dimensional Discrete Wavelet Analysis
13 To compress the original image, click the Compress button.

After a pause for computation, the compressed image appears beside the
original. Notice that compression eliminated almost half the coefficients, yet
no more than one-half of one percent of image energy was lost in the process.

Importing and Exporting Information from the
Graphical Interface
The Wavelet 2-D graphical tool lets you import information from and export
information to your disk, if you adhere to the proper file formats.

Saving Information to the Disk
You can save synthesized images, coefficients, and decompositions from the
Wavelet 2-D tool to the disk, where the information can be manipulated and
later reimported into the graphical tool.

Load information from disk

Save information to disk
2-59

2 Using Wavelets

2-6
Saving Synthesized Images.

You can process an image in the Wavelet 2-D tool and then save the processed
image to a MAT-file.

For example, load the demo analysis
File⇒Demo Analysis⇒at level 3, with sym4 −−> detail Durer, and
perform a compression on the original image. When you close the Wavelet 2-D
Compression window, update the synthesized image by clicking Yes in the
dialog box that appears.

Then, from the Wavelet 2-D tool, select the File⇒Save Synthesized Image
menu option.

A dialog box appears allowing you to select a directory and filename for the
MAT-file. For this example, choose the name symage.

To load the image into your workspace, simply type:

» load symage
» whos

Saving Discrete Wavelet Transform Coefficients.

The Wavelet 2-D tool lets you save the coefficients of a discrete wavelet
transform (DWT) to your disk. The toolbox creates a MAT-file in the current
directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option
File⇒Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing
the coefficients.

Consider the demo analysis
File⇒Demo Analysis⇒at level 3, with sym4 −−> Detail Durer.

Name Size Elements Bytes Class
map 64 by 3 192 1536 double array
symage 359 by 371 133189 1065512 double array
0

Two-Dimensional Discrete Wavelet Analysis
After saving the continuous wavelet coefficients to the file durer.mat, load the
variables into your workspace.

» load durer
» whos

Variables coefs and sizes contain the discrete wavelet coefficients and the
associated matrix sizes. More precisely, in the above example, coefs is a
1-by-142299 vector of concatenated coefficients, and sizes gives the length of
each component.

Saving Decompositions.

The Wavelet 2-D tool lets you save the entire set of data from a discrete
wavelet analysis to your disk. The toolbox creates a MAT-file in the current
directory with a name you choose, followed by the extension wa2 (wavelet
analysis 2-D).

Open the Wavelet 2-D tool and load the demo analysis File⇒Demo
Analysis⇒at level 3, with sym4 −−> Detail Durer.

To save the data from this analysis, use the menu option File⇒Save
Decomposition.

A dialog box appears that lets you specify a directory and filename for storing
the decomposition data. Type the name durer.

Name Size Elements Bytes Class
coefs 1 by 142299 142299 1138392 double array
sizes 5 by 2 10 80 double array
2-61

2 Using Wavelets

2-6
After saving the decomposition data to the file durer.wa2, load the variables
into your workspace.

» load durer.wa2 -mat
» whos

Variables coefs and sizes contain the wavelet decomposition structure. Other
variables contain the wavelet name, the colormap, and the filename containing
the data.

Loading Information into the Wavelet 2-D Tool
You can load images, coefficients, or decompositions into the graphical
interface. The information you load may have been previously exported from
the graphical interface and then manipulated in the workspace, or it may have
been information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used
by the Wavelet 2-D tool, or else errors will result when you try to load
information.

Loading Images.

This toolbox supports only indexed images. An indexed image is a matrix
containing only integers from 1 to n, where n is the number of colors in the
image.

This image may optionally be accompanied by a n-by-3 matrix called map. This
is the colormap associated with the image. When MATLAB displays such an
image, it uses the values of the matrix to look up the desired color in this
colormap. If the colormap is not given, the Wavelet 2-D tool uses a monotonic
colormap with max(max(X))–min(min(X))+1 colors.

Name Size Elements Bytes Class
coefs 1 by 142299 142299 1138392 double array
data_name 1 by 6 6 48 double array
map 64 by 3 192 1536 double array
sizes 5 by 2 10 80 double array
wave_name 1 by 4 4 32 double array
2

Two-Dimensional Discrete Wavelet Analysis
To load an image you’ve constructed in your MATLAB workspace into the
Wavelet 2-D tool, save the image (and optionally, the variable map) in a
MAT-file that has the same name as the image matrix itself.

For instance, suppose you’ve created an image called brain and want to
analyze it in the Wavelet 2-D tool. Type:

» save brain

To load this image into the Wavelet 2-D tool, use the menu option
File⇒Load Image.

A dialog box appears that lets you select the appropriate MAT -file to be loaded.

Caution: The graphical tools allow you to load an image that does not contain
integers from 1 to n. The computations will be correct since they act directly
on the matrix, but the display of the image will be strange. The values less
than 1 will be evaluated as 1, the values greater than n will be evaluated as n,
and a real value within the interval [1,n] will be evaluated as the closest
integer.

Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

In order to display these images in a suitable way, the Wavelet 2-D tool follows
these rules:

• Reconstructed approximations are displayed using the colormap map.

• The coefficients and the reconstructed details are displayed using the
colormap map applied to a rescaled version of the matrices.
2-63

2 Using Wavelets

2-6
Loading Discrete Wavelet Transform Coefficients.

To load discrete wavelet transform (DWT) coefficients into the Wavelet 2-D
tool, you must first save the appropriate data in a MAT-file containing only two
variables: coefficients vector coefs and bookkeeping matrix sizes.

Variable coefs must be a vector of concatenated DWT coefficients. The coefs
vector for an n-level decomposition contains 3n+1 sections, consisting of the
level-n approximation coefficients, followed by the horizontal, vertical, and
diagonal detail coefficients, in that order for each level. Variable sizes is a
matrix, the rows of which specify: the size of cAn, the size of cHn (or cVn,
or cDn),..., the size of cH1 (or cV1, or cD1) and the size of the original image X.
The sizes of vertical and diagonal details are the same as the horizontal detail.

After constructing or editing the appropriate data in your workspace, type:

» save myfile

Use the File⇒Load Coefficients menu option from the Wavelet 2-D tool to
load the data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which
your data reside.

Loading Decompositions.

To load discrete wavelet transform decomposition data into the Wavelet 2-D
tool, you must first save the appropriate data in a MAT-file with extension wa2
(wavelet analysis 2-D).

cAn

coefs (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

..
.

32 32

256 256

sizes (n+2-by-2)

512 512 X
4

Two-Dimensional Discrete Wavelet Analysis
The MAT-file must contain these variables:

After constructing or editing the appropriate data in your workspace, type:

» save myfile.wa2

Use the File⇒Load Decomposition menu option from the Wavelet 2-D tool
to load the image decomposition data.

A dialog box appears, allowing you to choose the directory and file in which
your data reside.

Variable Description

coefs Vector of concatenated DWT coefficients

data_name String specifying name of decomposition

map Optional n-by-3 colormap matrix.

sizes Matrix specifying sizes of components of coefs and of
the original image

wave_name String specifying name of wavelet used for decomposi-
tion (e.g., db3)
2-65

2 Using Wavelets

2-6
Working with Indexed Images
This section provides additional information about working with images in the
Wavelet Toolbox. It describes the types of supported images and how MATLAB
represents them, as well as techniques for analyzing color images.

Understanding Images in MATLAB
The basic data structure in MATLAB is the rectangular matrix, an ordered set
of real or complex elements. This object is naturally suited to the
representation of images, which are real-valued, ordered sets of color or
intensity data. (This toolbox does not support complex-valued images.)

In this supplement, the word pixel denotes a single element in an image
matrix. You can select a single pixel from an image matrix using normal matrix
subscripting. For example,

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. Pixel is
derived from picture element and usually denotes a single dot on a computer
display. By default, MATLAB scales images to fill the display axes; therefore,
an image pixel may use more than a single pixel on the screen.

Indexed Images
A typical color image requires two matrices: a colormap and an image matrix.
The colormap is an ordered set of values that represent the colors in the image.
For each image pixel, the image matrix contains a corresponding index into the
colormap. (The elements of the image matrix are floating-point integers, or
flints, which MATLAB stores as double-precision values.)

The size of the colormap matrix is n-by-3 for an image containing n colors. Each
row of the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that color.
R, G, and B are real scalars that range from 0.0 (black) to 1.0 (full intensity).
MATLAB translates these values into display intensities when you display an
image and its colormap.
6

Working with Indexed Images
When MATLAB displays an indexed image, it uses the values in the image
matrix to look up the desired color in the colormap. For instance, if the image
matrix contains the value 18 in matrix location (86,198), then the color for pixel
(86,198) is the color from row 18 of the colormap.

Outside MATLAB, indexed images with n colors often contain values from 0 to
n–1. These values are indices into a colormap with 0 as its first index. Since
MATLAB matrices start with index 1, you must increment each value in the
image, or shift up the image, to create an image that you can manipulate with
toolbox functions.

 75 10 12 21 40 53 53

 75 14 17 21 21 53 53

 75 8 5 8 10 30 15

 51 15 18 31 31 18 16

 56 31 18 31 31 31 31

 0.5176 0.1608 0.0627
 0.1608 0.3529 0.0627
 0.6471 0.1294 0.0627
 0.1922 0.2902 0.4510
 0.5804 0.1294 0.2902

21

1

128

Indexed Image Matrix

Colormap Matrix

17

load clown
image(X)
colormap(map)
2-67

2 Using Wavelets

2-6
Wavelet Decomposition of Indexed Images
The Wavelet Toolbox supports only indexed images with linear, monotonic
colormaps. These images can be thought of as scaled intensity images, with
matrix elements containing only integers from 1 to n, where n is the number of
discrete shades in the image.

If the colormap is not provided, the graphical user interface tools display the
image and processing results using a monotonic colormap with
max(max(X))–min(min(X))+1 colors.

Since the image colormap is only used for display purposes, some indexed
images may need to be preprocessed in order to achieve the correct results from
the wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps and
need to converted into the appropriate gray scale indexed image before
performing a wavelet decomposition. The Image Processing Toolbox provides a
comprehensive set of functions that let you easily convert between image types.

Should you not have the Image Processing Toolbox, the example below
demonstrates how this conversion may be performed, using basic MATLAB
commands.

» load xpmndrll
» whos

» image(X2), title('Original Color Indexed Image')
» colormap(map), colorbar

Name Size Elements Bytes Class
X2 192 by 200 38400 307200 double array
map 64 by 3 192 1536 double array
8

Working with Indexed Images
The color bar to the right of the image is not smooth and does not monotonically
progress from dark to light. This type of indexed image is not suitable for direct
wavelet decomposition with the toolbox and needs to be preprocessed.

First we separate the color indexed image into its RGB components,

» R = map(X2,1); R = reshape(R,size(X2));
» G = map(X2,2); G = reshape(G,size(X2));
» B = map(X2,3); B = reshape(B,size(X2));

Now we convert the RGB matrices into a gray scale intensity image, using the
standard perceptual weightings for the three color components,

» Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Orignal Color Indexed Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

10

20

30

40

50

60
2-69

2 Using Wavelets

2-7
Next, we convert the gray scale intensity image back to a gray scale indexed
image with 64 distinct levels, and create a new colormap with 64 levels of gray.

» n = 64; % Number of shades in new indexed image
» X = round(Xrgb*(n-1)) + 1;
» map2 = gray(n);

» figure
» image(X), title('Processed Gray Scale Indexed Image')
» colormap(map2), colorbar

The color bar of the converted image is now linear and has a smooth transition
from dark to light. The image is now suitable for wavelet decomposition.

0

10

20

30

40

50

60

Processed Gray Scale Indexed Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180
0

Working with Indexed Images
Finally, we save the converted image in a form compatible with the Wavelet
Toolbox graphical user interface,

» baboon= X;
» map = map2;
» save baboon baboon map

How Decompositions Are Displayed
Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

In order to display these images in a suitable way, the graphical user interface
tools follow these rules:

• Reconstructed approximations are displayed using the colormap map.

• The coefficients and the reconstructed details are displayed using the
colormap map applied to a rescaled version of the matrices.
2-71

2 Using Wavelets

2-7
2

3-3 Detecting Discontinuities and Breakdown Points I
3-4 Discussion

3-6 Detecting Discontinuities and Breakdown Points II
3-7 Discussion

3-8 Detecting Long-Term Evolution
3-9 Discussion

3-10 Detecting Self-Similarity
3-10 Wavelet Coefficients and Self-Similarity
3-11 Discussion

3-12 Identifying Pure Frequencies
3-12 Discussion

3-15 Suppressing Signals
3-16 Discussion

3-18 De-Noising Signals
3-18 Discussion

3-21 Compressing Signals
3-22 Discussion
3

Wavelet Applications

3 Wavelet Applications

3-2
This chapter explores various applications of wavelets by presenting a series of
sample analyses dealing with:

• Detecting Discontinuities and Breakdown Points (I and II)

• Detecting Long-Term Evolution

• Detecting Self-Similarity

• Identifying Pure Frequencies

• Suppressing Signals

• De-Noising Signals

• Compressing Signals

Each example is followed by a discussion of the usefulness of wavelet analysis
for the particular application area under consideration.

Use the graphical interface tools to follow along:

1 From the MATLAB command line, type:

» wavemenu.

2 Click on Wavelets 1-D (or other tool as appropriate).

3 Load the sample analysis by selecting the appropriate submenu item from
File⇒Demo Analysis.

Feel free to explore on your own — use the different options provided in the
graphical interface to look at different components of the signal, to compress or
de-noise the signal, to examine signal statistics, or to zoom in and out on
different signal features.

If you want, try loading the corresponding MAT-file from the MATLAB
command line, and use the wavelet toolbox functions to investigate further the
sample signals. The MAT-files are located in the directory: toolbox/wavelet/
wavedemo.

There are also other signals in the wavedemo directory that you can analyze on
your own.

Detecting Discontinuities and Breakdown Points I
Detecting Discontinuities and Breakdown Points I
The purpose of this example is to show how analysis by wavelets can detect the
exact instant when a signal changes. The discontinuous signal consists of a
“slow” sine wave abruptly followed by a “medium” sine wave.

The first- and second-level details (D1 and D2) show the discontinuity most
clearly, because the rupture contains the high frequency part. Note that if we
were only interested in identifying the discontinuity, db1 would be a more
useful wavelet to use for the analysis than db5.

The discontinuity is localized very precisely: only a small domain around
time = 500 contains any large first- or second-level details.

Here is a noteworthy example of an important advantage of wavelet analysis
over Fourier. If the same signal had been analyzed by the Fourier transform,
we would not have been able to detect the instant when the signal’s frequency
changed, whereas it is clearly observable here.

Demo Analysis:
Frequency
breakdown
MAT-file:
freqbrk.mat

Wavelet:
db5

Level:
5

3-3

3 Wavelet Applications

3-4
Details D3 and D4 contain the “medium” sine wave. The “slow” sine is clearly
isolated in approximation A5, from which the higher-frequency information has
been filtered.

Discussion
The deterministic part of the signal may undergo abrupt changes such as a
jump, or a sharp change in the first or second derivative. In image processing,
one of the major problems is edge detection, which also involves detecting
abrupt changes. Also in this category, we find signals with very rapid
evolutions such as transient signals in dynamic systems.

The main characteristic of these phenomena is that the change is localized in
time or in space.

The purpose of the analysis is to determine:

• The site of the change (e.g., time or position),

• The type of change (a rupture of the signal, or an abrupt change in its first
or second derivative),

• The amplitude of the change.

The local aspects of wavelet analysis are well adapted for processing this type
of event, as the processing scales are linked to the speed of the change.

Guidelines for Detecting Discontinuities
Short wavelets are often more effective than long ones in detecting a signal
rupture. In the initial analysis scales, the support is small enough to allow fine
analysis. The shapes of discontinuities that can be identified by the smallest
wavelets are simpler than those that can be identified by the longest wavelets.

Therefore, to identify:

• A signal discontinuity, use the haar wavelet.

• A rupture in the j-th derivative, select a sufficiently regular wavelet with at
least j vanishing moments. (See Detecting Discontinuities and Breakdown
Points II on page 3-6.)

Detecting Discontinuities and Breakdown Points I
The presence of noise, which is after all a fairly common situation in signal
processing, makes identification of discontinuities more complicated. If the
first levels of the decomposition can be used to eliminate a large part of the
noise, the rupture is sometimes visible at deeper levels in the decomposition.

Check, for example, the sample analysis File⇒Demo Analysis⇒ramp +
white noise (MAT-file wnoislop). The rupture is visible in the level-six
approximation (A6) of this signal.
3-5

3 Wavelet Applications

3-6
Detecting Discontinuities and Breakdown Points II
The purpose of this example is to show how analysis by wavelets can detect a
discontinuity in one of a signal’s derivatives. The signal, while apparently a
single smooth curve, is actually composed of two separate exponentials that are
connected at time = 500. The discontinuity occurs only in the second derivative,
at time = 500.

We have zoomed in on the middle part of the signal to show more clearly what
happens around time = 500. The details are high only in the middle of the
signal and are negligible elsewhere. This suggests the presence of
high-frequency information — a sudden change or discontinuity — around
time = 500.

Demo Analysis:
Second derivative
breakdown

MAT-file:
scddvbrk.mat

Wavelet:
db4

Level:
2

Detecting Discontinuities and Breakdown Points II
Discussion
Regularity can be an important criterion in selecting a wavelet. We have
chosen to use db4, which is sufficiently regular for this analysis. Had we chosen
the haar wavelet, the discontinuity would not have been detected. If you try
repeating this analysis using haar at level two, you’ll notice that the details are
equal to zero at time = 500.

Note that in order to detect a singularity the selected wavelet must be
sufficiently regular, which implies a longer filter impulse response.

See Chapter 6, “Advanced Topics” for a discussion of the mathematical
meaning of regularity and a comparison of the regularity of various wavelets.
3-7

3 Wavelet Applications

3-8
Detecting Long-Term Evolution
The purpose of this example is to show how analysis by wavelets can detect the
overall trend of a signal. The signal in this case is a ramp obscured by “colored”
(limited-spectrum) noise. (We have zoomed in along the x-axis to avoid showing
edge effects.)

There is so much noise in the original signal, s, that its overall shape is not
apparent upon visual inspection. In this level-six analysis, we note that the
trend becomes more and more clear with each approximation, A1 to A6. Why is
this?

The trend represents the slowest part of the signal. In wavelet analysis terms,
this corresponds to the greatest scale value. As the scale increases, the
resolution decreases, producing a better estimate of the unknown trend.

Demo Analysis:
Ramp + colored noise

MAT-file:
cnoislop.mat

Wavelet:
db3

Level:
6

Detecting Long-Term Evolution
Another way to think of this is in terms of frequency. Successive
approximations possess progressively less high-frequency information. With
the higher frequencies removed, what’s left is the overall trend of the signal.

Discussion
Wavelet analysis is useful in revealing signal trends, a goal that is
complementary to the one of revealing a signal hidden in noise. It’s important
to remember that the trend is the slowest part of the signal. If the signal itself
includes sharp changes, then successive approximations look less and less
similar to the original signal.

Consider the demo analysis File⇒Demo Analysis⇒Step signal (MAT-file
wstep.mat). It is instructive to analyze this signal using the Wavelet 1-D tool
and to see what happens to the successive approximations. Try it.
3-9

3 Wavelet Applications

3-1
Detecting Self-Similarity
The purpose of this example is to show how analysis by wavelets can detect a
self-similar, or fractal, signal. The signal here is the Koch curve — a synthetic
signal that is built recursively.

This analysis was performed with the Continuous Wavelet 1-D graphical
tool. A repeating pattern in the wavelet coefficients plot is characteristic of a
signal that looks similar on many scales.

Wavelet Coefficients and Self-Similarity
From an intuitive point of view, the wavelet decomposition consists of
calculating a “resemblance index” between the signal and the wavelet. If the
index is large, the resemblance is strong, otherwise it is slight. The indices are
the wavelet coefficients.

Demo Analysis:
Koch curve

MAT-file:
vonkoch.mat

Wavelet:
coif3

Level:
Continuous, 2:2:128
0

Detecting Self-Similarity
If a signal is similar to itself at different scales, then the “resemblance index,”
or wavelet coefficients also will be similar at different scales. In the coefficients
plot, which shows scale on the vertical axis, this self-similarity generates a
characteristic pattern.

Discussion
The work of many authors and the trials that they have carried out suggest
that wavelet decomposition is very well adapted to the study of the fractal
properties of signals and images.

When the characteristics of a fractal evolve with time and become local, the
signal is what is known as a multifractal. The wavelets then are an especially
suitable tool for practical analysis and generation.

3-11

3 Wavelet Applications

3-1
Identifying Pure Frequencies
The purpose of this example is to show how analysis by wavelets can effectively
perform what is thought of as a Fourier-type function — that is, resolving a
signal into constituent sinusoids of different frequencies. The signal is a sum
of three pure sine waves.

Discussion
The signal is a sum of three sines: “slow,” “medium,” and “rapid,” which have
periods (relative to the sampling period of 1) of 200, 20, and 2, respectively.

The “slow,” “medium,” and “rapid” sinusoids appear most clearly in
approximation A4, detail D4, and detail D1, respectively. The slight differences
that can be observed on the decompositions can be attributed to the sampling
period.

Demo Analysis:
Sum of sines

MAT-file:
sumsin.mat

Wavelet:
db3

Level:
5

2

Identifying Pure Frequencies
Detail D1 contains primarily the signal components whose period is between 1
and 2 (i.e., the “rapid” sine), but this period is not visible at the scale which is
used for the graph. Zooming in on detail D1 (see below) reveals that each “belly”
is composed of 10 oscillations, and this can be used to estimate the period. We
indeed find that it is close to 2.

The detail D3, and to an even greater extent, detail D4, contain the “medium”
sine frequencies. We notice that there is a breakdown between approximations
A3 and A4, from which the medium frequency information has been subtracted.
We should therefore use approximations A1 to A3 to estimate the period of the
“medium” sine. Zooming in on A1 reveals a period of around 20.

Now only the period of the “slow” sine remains to be determined. Examination
of approximation A4 (see the figure on the previous page) shows the distance
between two successive maximums to be 200.
3-13

3 Wavelet Applications

3-1
This “slow” sine still is visible in approximation A5, but were we to extend this
analysis to further levels, we would find that it disappears from the
approximation and move into the details at level 8.

In summation, we have used wavelet analysis to determine the frequencies of
pure sinusoidal signal components. We were able to do this because the
different frequencies predominate at a different scales, and each scale is taken
account of by our analysis.

Signal Component Found in Period Frequency

“Slow sine” Approximation A4 200 0.005

“Medium sine” Detail D4 20 0.05

“Rapid sine” Detail D1 2 0.5
4

Suppressing Signals
Suppressing Signals
The purpose of this example is to illustrate the property that causes the
decomposition of a polynomial to produce null details, provided the number of
“vanishing moments” of the wavelet (N for a Daubechies wavelet dbN) exceeds
the degree of the polynomial. The signal here is a second-degree polynomial
combined with a small amount of white noise.

Note that only the noise comes through in the details. The peak-to-peak
magnitude of the details is about 2, while the amplitude of the polynomial
signal is on the order of 105.

The db3 wavelet, which has three vanishing moments, was used for this
analysis. Note that a wavelet of the Daubechies family with fewer vanishing
moments would fail to suppress the polynomial signal. For more information,
see that section, Daubechies Wavelets: dbN on page 6-63.

Demo Analysis:
Noisy polynomial

MAT-file:
noispol.mat

Wavelet:
db3

Level:
4

3-15

3 Wavelet Applications

3-1
Here is what the first three details look like when we perform the same
analysis with db2.

The peak-to-peak magnitudes of the details D1, D2, and D3 are 2, 10, and 40,
respectively. These are much higher detail magnitudes than those obtained
using db3.

Discussion
For the db2 analysis, the details for levels 2 to 4 show a periodic form that is
very regular, and that increases with the level. This is explained by the fact
that the detail for level j takes into account primarily the fluctuations of the
polynomial function around its mean value on dyadic intervals that are 2j long.
The fluctuations are periodic and very large in relation to the details of the
noise decomposition.

On the other hand, for the db3 analysis, we find the presence of white noise
thus indicating that the polynomial does not come into play in any of the
details. The wavelet suppresses the polynomial part and analyzes the noise.

Suppressing part of a signal allows us to highlight the remainder.
6

Suppressing Signals
Vanishing Moments
The ability of a wavelet to suppress a polynomial depends on a crucial
mathematical characteristic of the wavelet called its number of vanishing
moments. A technical discussion of vanishing moments appears in Chapter 6,
“Advanced Concepts.” For the present discussion, it suffices to think of
“moment” as an extension of “average.” If a wavelet’s average value is zero,
then it has (at least) one vanishing moment.

More precisely, if the average value of is zero (where is the wavelet
function), for then the wavelet has vanishing moments and
polynomials of degree n are suppressed by this wavelet.

x
kψ x() ψ x()

k 0 … n,, ,= n 1+
3-17

3 Wavelet Applications

3-1
De-Noising Signals
The purpose of this example is to show how to de-noise a signal using wavelet
analysis. This example also gives us an opportunity to demonstrate the
automatic thresholding feature of the Wavelet 1-D graphical interface tool.
The signal to be analyzed is a Doppler-shifted sinusoid with some added noise.

Discussion
We note that the highest frequencies appear at the start of the original signal.
The successive approximations appear less and less noisy; however, they also
lose progressively more high-frequency information. In approximation A5, for
example, about the first 20% of the signal is truncated.

Demo Analysis:
Noisy Doppler

MAT-file:
noisdopp.mat

Wavelet:
sym4

Level:
5

8

De-Noising Signals
Click the De-noise button to bring up the Wavelet 1-D De-noising window.
This window shows each detail along with its automatically set de-noising
threshold.

Press the De-noise button. On the screen, the original and de-noised signals
appear superimposed in red and yellow, respectively. In this figure, the
de-noised signal is shown in blue for better contrast.
3-19

3 Wavelet Applications

3-2
Note that the de-noised signal is flat initially. Some of the highest-frequency
signal information was lost during the de-noising process, though less was lost
here than in the higher-level approximations A4 and A5.

For this signal, wavelet packet analysis does a better job of removing the noise
without compromising the high-frequency information. Explore on your own:
try repeating this analysis using the Wavelet Packet 1-D tool. Select the
menu item File⇒Demo Analysis⇒noisdopp.
0

Compressing Signals
Compressing Signals
The purpose of this example is to show how to compress an image using
two-dimensional wavelet analysis. Compression is one of the most important
applications of wavelets. The image to be compressed is a fingerprint.

For this example, open the Wavelet 2-D tool and select the menu item
File⇒Demo Analysis⇒at level 3, with haar −−> finger.

The analysis appears in the Wavelet 2-D tool. Click the Compress button
(located at the middle right) to bring up the Wavelet 2-D Compression
window.

Demo Analysis:
finger

MAT-file:
detfingr.mat

Wavelet:
haar

Level:
3

3-21

3 Wavelet Applications

3-2
Discussion
The graphical tool provides an automatically-generated threshold, which for
this example is 3.5. Values under the threshold are forced to zero, achieving
about 42% zeros while retaining almost all (99.95%) the energy of the original
image.

The automatic threshold usually achieves a reasonable balance between
number of zeros and retained image energy. Depending on your data and your
analysis criteria, you may find setting more aggressive thresholds achieves
better results.

Here we’ve set the individual thresholds to around 30. This results in a
compressed image consisting of 91.8% zeros with 97.7% retained energy.
2

4-3 Illustrated Examples
4-6 Advice to the Reader
4-8 Example #1: A Sum of Sines
4-10 Example #2: A Frequency Breakdown
4-12 Example #3: Uniform White Noise
4-14 Example #4: Colored AR(3) Noise
4-16 Example #5: Polynomial + White Noise
4-18 Example #6: A Step Signal
4-20 Example #7: Two Proximal Discontinuities
4-22 Example #8: A Second-Derivative Discontinuity
4-24 Example #9: A Ramp + White Noise
4-26 Example #10: A Ramp + Colored Noise
4-28 Example #11: A Sine + White Noise
4-30 Example #12: A Triangle + A Sine
4-32 Example #13: A Triangle + A Sine + Noise
4-34 Example #14: A Real Electricity Consumption Signal

4-36 A Case Study: An Electrical Signal
4-36 Data and the External Information
4-38 Analysis of the Midday Period
4-39 Analysis of the End of the Night Period
4-42 Suggestions for Further Analysis

4-48 Fast Multiplication of Large Matrices
4

Wavelets in Action:
Examples and Case Studies

4 Wavelets in Action: Examples and Case Studies

4-2
This chapter presents the different possibilities offered by wavelet
decomposition in the form of examples you can work with on your own.
Suggested areas for further exploration follow most examples, along with a
summary of the topics addressed by that example.

This chapter also includes a case study that examines the practical uses of
wavelet analysis in even greater detail, as well as a demonstration of the
application of wavelets for fast multiplication of large matrices.

An extended discussion of many of the topics addressed by the examples can be
found in Chapter 6, “Advanced Concepts.”

Illustrated Examples
Illustrated Examples
Fourteen illustrated examples are included in this section, organized as shown:

Figure Page Description of the Signal Signal
Name

MAT-file

Figure
4-1:

page 4-9 A sum of sines: s1(t) sumsin

Figure
4-2:

page 4-11 A frequency breakdown: s2(t) freqbrk

Figure
4-3:

page 4-12 A uniform white noise:

on the interval

b1(t) whitnois

Figure
4-4:

page 4-14 A colored AR(3) noise b2(t) warma

Figure
4-5:

page 4-17 A polynomial + a white noise:

on the interval

s3(t) noispol

Figure
4-6:

page 4-19 A step signal: s4(t) wstep

s1 t() 3t()sin 0.3t()sin 0.03t()sin+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s2 t() 0.03t()sin=

s2 t() 0.3t()sin=

0.5 – 0.5[]

b2 t() 1.5b2 t 1–()– 0.75b2 t 2–()–=

0.125b2 t 3–()– b1 t() 0.5+ +

1 1000[]

s3 t() t2 t– 1 b1 t()+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s4 t() 0=

s4 t() 20=
4-3

4 Wavelets in Action: Examples and Case Studies

4-4
Figure
4-7:

page 4-21 Two proximal discontinuities: s5(t) nearbrk

Figure
4-8:

page 4-23 A second-derivative discontinuity:

s6 is f3 sampled at 10-3

s6(t) scddvbrk

Figure
4-9:

page 4-25 A ramp + a white noise: s7(t) wnoislop

Figure
4-10:

page 4-28 A ramp + a colored noise: s8(t) cnoislop

Figure
4-11:

page 4-30 A sine + a white noise: s9(t) noissin

Figure
4-12:

page 4-21 A triangle + a sine: s10(t) trsin

Figure Page Description of the Signal Signal
Name

MAT-file

1 t 499,≤ ≤
500 t 510,≤ ≤
511 t,≤

s5 t() 3t=

s5 t() 1500=

s5 t() 3t 30–=

t 0.5 – 0.5[] R;⊂∈
t 0, f3 t()< 4t2–()exp=

t 0, f3 t()≥ t2–()exp=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s7 t() 3t

500
--------- b1 t()+=

s7 t() 3 b1 t()+=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s8 t() t

500
--------- b2 t()+=

s8 t() 1 b2 t()+=

s9 t() 0.03t()sin b1 t()+=

1 t 500,≤ ≤

501 t 1000,≤ ≤

s10 t() t 1–
500
---------- 0.3t()sin+=

s10 t() 1000 t–
500

------------------- 0.3t()sin+=

Illustrated Examples
Please note that:

• All the decompositions use Daubechies wavelets.

• The examples show the signal, the approximations, and the details.

The examples include specific comments and feature distinct domains — for
instance if the level of decomposition is 5:

• The left column contains the signal and the approximations A5 to A1.

• The right column contains the signal and the details D5 to D1.

• The approximation A1 is located under A2, A2 under A3 and so on. The same
is true for the details.

• The abscissa axis represents the time. The unit for the ordinate axis for
approximations and details is the same as that of the signal.

• When the approximations do not provide enough information, they are
replaced by details obtained by changing wavelets.

• The examples include questions for you to think about:

- What can be seen on the figure?

- What additional questions can be studied?

Figure
4-13:

page 4-34 A triangle + a sine + a noise: s11(t) wntrsin

Figure
4-14:

page 4-36 A real electricity consumption signal — leleccum

Figure Page Description of the Signal Signal
Name

MAT-file

501 t 1000,≤ ≤
s11 t() 1000 t–

500
------------------- 0.3t()sin b1 t()+ +=

1 t 500, s11 t() t 1–
500
---------- 0.3t()sin b1 t(+ +=≤ ≤
4-5

4 Wavelets in Action: Examples and Case Studies

4-6
Advice to the Reader
You should follow along and process these examples on your own, using either
the graphical interface or the command line functions.

Use the graphical interface for immediate signal processing. To execute the
analyses included in the figures:

1 To bring up the Wavelet Toolbox Main Menu type:
» wavemenu

2 Select the Wavelet 1-D menu option to open the Wavelet 1-D tool.

3 From the Wavelet 1-D tool, choose the File_Demo Analysis menu option.

4 From the dialog box, select the sample analysis in question.

This triggers the execution of the examples.

Illustrated Examples
When using the command line, follow the process illustrated in this M-file to
conduct calculations:

% Load original 1-D signal.
load sumsin; s = sumsin;

% Perform the decomposition of s at level 5, using coif3.
w = 'coif3'
[c,l] = wavedec(s,5,w);

% Reconstruct the approximation signals and detail signals at
% levels 1 to 5, using the wavelet decomposition structure [c,l].
for i = 1:5

eval(['a(',int2str(i),',:) = wrcoef(''a'',c,l,w,i);']);
eval(['d(',int2str(i),',:) = wrcoef(''d'',c,l,w,i);']);

end

Note: This loop replaces 10 separate wrcoef statements defining variables a1
through a5, and d1 through d5.

% Plots.
t = 100:900;
subplot(621); plot(t,s(t),‘r‘);
title(‘Orig. signal and approx. 1 to 5.‘);
subplot(622); plot(t,s(t),‘r‘);
title(‘Orig. signal and details 1 to 5.‘);
for i = 1:5,

subplot(6,2,2*i+1); plot(t,a(i,t),‘b‘);
subplot(6,2,2*i+2); plot(t,d(i,t),‘g‘);

end

About Further Exploration

Tip 1: On all figures, visually check that for j = 0, 1, ..., Aj = Aj+1 + Dj+1.

Tip 2: Don’t forget to change wavelets. Test the shortest ones first.
4-7

4 Wavelets in Action: Examples and Case Studies

4-8
Tip 3: Identify edge effects. They will create problems for a correct analysis. At
present, there is no easy way to avoid them perfectly. You can use tools
described in the section Dealing with Border Distortion on page 6-46 and see
also the dwtmode function in Chapter 8, “Reference”. They should eliminate or
greatly reduce these effects.

Tip 4: As much as possible, conduct calculations manually to cross-check
results with the values in the graphic representations. Manual calculations are
possible with the db1 wavelet.

For the sake of simplicity in the following examples, we use only the haar and
db family wavelets, which are the most frequently used wavelets.

Example #1: A Sum of Sines
Analyzing wavelet: db3

Decomposition levels: 5

The signal is composed of the sum of three sines: “slow”, “medium” and “rapid”
with regard to the sampling period equal to 1, the periods are approximately
200, 20 and 2 respectively. We should therefore see this later period in D1, the
medium sine in D4, and the slow sine in A4. The slight differences that can be
observed on the decompositions can be attributed to the sampling period. The
scale of the approximation charts is 2, 4 or 10 times larger than that of the
details. D1 contains primarily the components whose period is situated
between 1 and 2 (i.e., the “rapid” sine), but this period is not visible at the scale
which is used for the graph. Zooming in on D1 reveals that each “belly” is
composed of 10 oscillations, and can be used to estimate the period. We find
that the period is close to 2. D2 is very small. This is also seen in the
approximations: the first two resemble one another, since

The detail D3, and to an even great extent D4, contain the “medium” sine. We
notice that there is a breakdown between approximations 3 and 4.
Approximations A1 to A3 can be used to estimate the period of the medium sine.
Now, only the “slow” sine, which appears in A4 remains to be determined. The
distance between two successive maximums is equal to 200, which is the period
of the slow sine. This latter sine is still visible in A5, but will disappear from the
approximation and move into the details at level 8.

A1 A2 D2+=

Illustrated Examples
Figure 4-1: A Sum of Sines

Example #1: A Sum of Sines

Addressed topics • Detecting breakdown points

• Detecting long-term evolution

• Identifying pure frequencies

• The effect of a wavelet on a sine

• Details and approximations: a signal moves from
an approximation to a detail

• The level at which characteristics appear

Further exploration • Compare with a Fourier analysis

• Change the frequencies. Analyze other linear
combinations.

−1

0

1

a5

−1

0

1

a4

−2

0

2

a3

−2

0

2

a2

200 400 600 800 1000

−1

0

1

a1

−0.1

0

0.1

d5

−1

0

1

d4

−0.5

0

0.5

d3

−0.1

0

0.1

d2

200 400 600 800 1000
−1

0

1

d1

−2

0

2

s

Signal and Approximations

−2

0

2

s

Signal and Details
4-9

4 Wavelets in Action: Examples and Case Studies

4-1
Example #2: A Frequency Breakdown
Analyzing wavelet: db5

Decomposition levels: 5

The signal is formed of a “slow” sine and a “medium” sine, on either side of 500.
These two sines are not connected in a continuous manner: D1 and D2 can be
used to detect this discontinuity. It is localized very precisely: only a small
domain around 500 contains large details. This is because the rupture contains
the high frequency part; the frequencies in the rest of the signal are not as high.
It should be noted that if we are interested only in identifying the
discontinuity, db1 is more useful than db5.

D3 and D4 contain the “medium” sine as in the previous analysis. The “slow”
sine appears clearly alone in A5. It is more regular than in the s1 analysis, since
db5 is more regular than db3. If the same signal had been analyzed by the
Fourier transform, we would not have been able to detect the instant
corresponding to the signal’s frequency change, whereas it is clearly observable
here.
0

Illustrated Examples
Figure 4-2: A Frequency Breakdown

Example #2: A Frequency Breakdown

Addressed topics • Suppressing signals

• Detecting long-term evolution

Further exploration • Compare to the signal s1

• On a longer signal, have the slow sinusoid moved
into the details

• Compare with a Fourier analysis

• Compare with a windowed Fourier analysis

−0.5

0

0.5

1

a5

−0.5

0

0.5

1

a4

−1

0

1

a3

−1

0

1

a2

200 400 600 800 1000
−1

0

1

a1

−0.2

0

0.2

d5

−1

0

1

d4

−0.4
−0.2

0
0.2
0.4

d3

−0.1

0

0.1

0.2

d2

200 400 600 800 1000

−0.2

0

0.2

0.4

d1

−0.5

0

0.5

s

Signal and Approximations

−0.5

0

0.5

s

Signal and Details
4-11

4 Wavelets in Action: Examples and Case Studies

4-1
Example #3: Uniform White Noise
Analyzing wavelet: db3

Decomposition levels: 5

At all levels we encounter noise-type signals, which are clearly irregular. This
is due to the fact that all the frequencies carry the same energy. The variances
however, decrease regularly between one level and the next as can be seen
reading the detail chart (on the right) and the approximations (on the left).
The variance decreases two-fold between one level and the next, i.e.
variance(Dj) = variance(Dj - 1)/2. Lastly, it should be noted that the details and
approximations are not white noises, and that these signals are increasingly
interdependent as the resolution decreases. On the other hand, the wavelet
coefficients are random, non-correlated variables. This property is not evident
on the reconstructed signals shown here, but it can be guessed at from the
representation of the coefficients.

Figure 4-3: Uniform White Noise

−0.1

0

0.1

a5

−0.2

−0.1

0

0.1

a4

−0.2

0

0.2

a3

−0.2

0

0.2

a2

200 400 600 800 1000
−0.5

0

0.5

a1

−0.1

0

0.1

d5

−0.2

0

0.2

d4

−0.2

0

0.2

d3

−0.4
−0.2

0
0.2
0.4

d2

200 400 600 800 1000
−0.5

0

0.5

d1

−0.4
−0.2

0
0.2
0.4

s

Signal and Approximations

−0.4
−0.2

0
0.2
0.4

s

Signal and Details
2

Illustrated Examples
Example #3: Uniform White Noise

Addressed topics • Processing noise

• The shapes of the decomposition values

• The evolution of these shapes according to level:
the correlation increases, the variance decreases

• Compare the frequencies included in the details
with those in the approximations

Further exploration • Study the values of the coefficients and their
distribution

• On the continuous analysis, identify the chaotic
aspect of the colors

• Replace the uniform white noise by a Gaussian
white noise or other noise.
4-13

4 Wavelets in Action: Examples and Case Studies

4-1
Example #4: Colored AR(3) Noise
Analyzing wavelet: db3

Decomposition levels: 5

Note: AR(3) means AutoRegressive model of order 3.

This figure can be examined in view of the previous figure, since we are
confronted here with a non-white noise whose spectrum is mainly at the higher
frequencies. It is therefore found primarily in D1, which contains the major
portion of the signal. In this situation, which is commonly encountered in
practice, the effects of the noise on the analysis decrease considerably more
rapidly than in the case of white noise. In A3, A4 and A5, we encounter the same
scheme as that in the analysis of (see the table on page 4-3), the noise from
which is built using linear filtering.

Figure 4-4: Colored AR(3) Noise

b1
b2

0.12

0.14

0.16

0.18

a5

0.1

0.15

0.2

a4

0.05

0.1

0.15

0.2

a3

0

0.1

0.2

0.3

a2

200 400 600 800 1000

0

0.2

0.4

a1

−0.04
−0.02

0
0.02
0.04

d5

−0.05

0

0.05

0.1

d4

−0.1

0

0.1

0.2

d3

−0.2

0

0.2

d2

200 400 600 800 1000

−2

0

2

d1

−2

0

2

s

Signal and Approximations

−2

0

2

s

Signal and Details
4

Illustrated Examples
Example #4: Colored AR(3) Noise

Addressed topics • Processing noise

• The relative importance of different details

• The comparative importance of D1 and A1.

• Compare the detail frequencies with those in the
approximations.

Further exploration • Compare approximations A3, A4, and A5 with those
shown in Figure 4-3.

• Replace AR(3) with an ARMA (AutoRegressive
Moving Average) model noise. For instance:

• Study an ARIMA (Integrated ARMA) model noise.
For instance:

• Check that each detail can be modeled by an
ARMA process.

b3 t() 1.5– b3 t 1–() 0.75b3 t 2–()– 0.125b3 t 3–()–=

+ b1 t() 0.7b1 t 1–()–

b4 t() b4 t 1–() b3 t()+=
4-15

4 Wavelets in Action: Examples and Case Studies

4-1
Example #5: Polynomial + White Noise
Analyzing wavelets: db2 and db3

Decomposition levels: 4

The purpose of this analysis is to illustrate the property which causes the
decomposition by dbN of a p-degree polynomial to produce null details as long
as N > p. In this case, p=2 and we examine the first four levels of details for two
values of N: one is too small, N=2 on the left, and the other is sufficient, N=3 on
the right. The approximations are left out since they differ very little from the
signal itself.

For db2 (on the left), we obtain the decomposition of t2 + b1(t), since the -t + 1
part of the signal is suppressed by the wavelet. In fact, with the exception of
level 1, where noise-generated irregularities can be seen, the details for levels
2 to 4 show a periodic form that is very regular, and which increases with the
level. This is explained by the fact that the detail for level j takes into account
primarily the fluctuations of the function around its mean value on dyadic
intervals that are long. The fluctuations are periodic and very large in relation
to the details of the noise decomposition.

On the other hand, for db3 (on the right) we again find the presence of white
noise thus indicating that the polynomial does not come into play in any of the
details. The wavelet suppresses the polynomial part and analyzes the noise.
6

Illustrated Examples
Figure 4-5: Polynomial + White Noise

Example #5: Polynomial + White Noise

Addressed topics • Suppressing signals

• Compare the results of the processing for the
following wavelets: the short db2 and the longer
db3.

• Explain the regularity that is visible in D3 and D4
in the analysis by db2.

−0.5

0

0.5

d4

−0.5

0

0.5

d3

300 400 500 600 700

−1

0

1

d1

2

4

6

8

x 105

s

 Signal and Details with db3

−50

0

50

d4

−20

0

20

d3

−5

0

5

d2

300 400 500 600 700
−2

−1

0

1

d1

−0.5

0

0.5

1

d2

2

4

6

8

x 105

s

 Signal and Details with db2
4-17

4 Wavelets in Action: Examples and Case Studies

4-1
Example #6: A Step Signal
Analyzing wavelet: db2

Decomposition levels: 5

In this case we are faced with the simplest example of a rupture (i.e., a step).
The time instant when the jump occurs is equal to 500. The break is detected
at all levels, but it is obviously detected with greater precision in the higher
resolutions (levels 1 and 2) than in the lower ones (levels 4 and 5). It is very
precisely localized at level 1, where only a very small zone around the jump
time can be seen.

It should be noted that the reconstructed details are primarily composed of the
basic wavelet represented in the initial time.

What is more, the rupture is all the more precisely localized when the wavelet
corresponds to a short filter.
8

Illustrated Examples
Figure 4-6: A Step Signal

Example #6: A Step Signal

Addressed topics • Detecting breakdown points

• Suppressing signals

• Detecting long-term evolution

• Identify the range width of the variations of details
and approximations.

Further exploration • Use the coefficients of the FIR filter associated
with the wavelet to check the values of D1

• Replace the step by an impulse

• Add noise to the signal and repeat the analysis

0

10

20

a5

0

10

20

a4

0

10

20

a3

0

10

20

a2

−10

−5

0

5

d5

−4
−2

0
2
4
6

d4

−2

0

2

d3

−5

0

5

d2

200 400 600 800

−2
0
2
4

d1

0

10

20

s

Signal and Approximations

0

10

20

s

Signal and Details

200 400 600 800
0

10

20

a1
4-19

4 Wavelets in Action: Examples and Case Studies

4-2
Example #7: Two Proximal Discontinuities
Analyzing wavelet: db2 and db7

Decomposition levels: 5

The signal is formed of two straight lines with identical slopes, extending
across a very short plateau. On the initial signal, the plateau is in fact barely
visible to the naked eye. Two analyses are thus carried out, one on a well
localized wavelet with the short filter (db2) on the left and the other on a
wavelet having a longer filter (db7) on the right. In both analyses, the plateau
is detected clearly; with the exception of a fairly limited domain, D1 is equal to
zero. The regularity of the signal in the plateau however is clearly
distinguished for db2 (for which plateau beginning and end time are
distinguished), whereas for db7 both discontinuities are fused and only the
entire plateau can said to be “visible.” This example suggests that the selected
wavelets should be associated with short filters to distinguish proximal
discontinuities of the first derivative. A look at the other detail levels again
shows the lack of precision when detecting at low resolutions. The wavelet
filters the straight line and analyzes the discontinuities.
0

Illustrated Examples
Figure 4-7: Two Proximal Discontinuities

Example #7: Two Proximal Discontinuities

Addressed topics • Detecting breakdown points

• Move the discontinuities closer together and
further apart

Further exploration • Add noise to the signal until the rupture is no
longer visible

• Try using other wavelets, haar for instance.

−2

0

2

d5

−10

0

10

d5

−2

0

2

4

d4
−2

0
2
4
6

d4

−4
−2

0
2
4

d3
−1

0

1

d3

−1

0

1

2

d2
−0.5

0

0.5

d2

450 500 550 600
−0.5

0

0.5

d1

450 500 550 600

−0.2

0

0.2

d1

1300
1400
1500
1600
1700

s

Signal and Details with db2

1300
1400
1500
1600
1700

s

Signal and Details with db7
4-21

4 Wavelets in Action: Examples and Case Studies

4-2
Example #8: A Second-Derivative Discontinuity
Analyzing wavelet: db1 and db4

Decomposition levels: 2

This figure shows that the regularity can be an important criterion in selecting
a wavelet. The basic function is composed of two exponentials that are
connected at 0, and the analyzed signal is the sampling of the continuous
function with increments of 10–3. The sampled signal is analyzed using two
different wavelets: Haar which is insufficiently regular, on the left, and db4
which is sufficiently regular, on the right.

On the left we notice that the singularity has not been detected in the extent
that the details are equal to 0 at 0. The black areas correspond to very rapid
oscillations of the details. These values are equal to the difference between the
function and an approximation using a constant function. Close to 0, the slow
decrease of the details absolute values followed by a slow increase is due to the
fact that the function derivative is zero and continuous at 0. The value of the
details is very small (close to 10–3 for Haar and 10–4 for db4) since the signal is
very smooth and does not contain any high frequency. This value is even
smaller for db4, since the wavelet is more regular than db1.

However with db4 (on the right), the discontinuity is well detected: the details
are high only close to 0 and are 0 everywhere else. This is the only element that
can be derived from the analysis. In this case, as a conclusion, we notice that
the selected wavelet must be sufficiently regular, which thus implies a longer
filter impulse response in order to detect the singularity.
2

Illustrated Examples
Figure 4-8: A Second-Derivative Discontinuity

Example #8: A Second-Derivative Discontinuity

Addressed topics • Detecting breakdown points

• Suppressing signals

• Identifying a difficult discontinuity

• Carefully selecting a wavelet in order to reveal
an effect

Further exploration • Calculate the detail values for the Haar wavelet

• Beware of parasitic effects: rapid detail
fluctuations may be artifacts

• Add noise to the signal until the rupture is no
longer visible

−1

0

1

2

x 10−6

d2

−5

0

5

x 10−4

d2

0.95

0.96

0.97

0.98

0.99

1

s

Signal and Signals with db2

0.95

0.96

0.97

0.98

0.99

1

1.01

s

Signal and Details with db4

−0.1 −0.05 0 0.05 0.1
−4

−2

0

2

4

x 10−4

d1

−0.1 −0.05 0 0.05 0.1
−6

−4

−2

0

2

4

x 10−7

d1
4-23

4 Wavelets in Action: Examples and Case Studies

4-2
Example #9: A Ramp + White Noise
Analyzing wavelet: db3

Decomposition levels: 6

The signal is built from a trend plus noise. The trend is a slow linear rise from 0
to 3, up to t=500 and becoming constant afterwards. The noise is a uniform zero
mean white noise, varying between -0.5 and 0.5 (see the analyzed signal b1).

In the charts on the right, we again find the decomposition of noise in the
details. In the charts on the left, the approximations form increasingly precise
estimates of the ramp with less and less noise. These approximations are quite
acceptable from level 3, and the ramp is well reconstructed at level 6.

We can therefore separate the ramp from the noise. Although the noise affects
all scales, its effect decreases sufficiently quickly for the low-resolution
approximations to restore the ramp. It should also be noted that the breakdown
point of the ramp is shown with good precision. This is due to the fact that the
ramp is recovered at too low a resolution.

The uniform noise indicates that the ramp might be best estimated using half
sums for the higher and lower portions of the signal. This approach is not
applicable for other noises.
4

Illustrated Examples
Figure 4-9: A Ramp + White Noise

Example #9: A Ramp + White Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying noises and approximations

• Compare with the white noise b1(t) shown in
Figure 4-3.

• Identify the number of levels needed to suppress
the noise almost entirely.

Further exploration • Change the noise

1

2

3

a6

1

2

3

a5

1

2

3

a4

1

2

3

a3

0

1

2

3

a2

−0.1

0

0.1

d5

−0.2

0

0.2

d4

−0.2

0

0.2

d3

−0.4
−0.2

0
0.2
0.4

d2

200 400 600 800
−0.5

0

0.5

d1

0
1
2
3

s

Signal and Approximations

0
1
2
3

s

Signal and Details

200 400 600 800
0
1
2
3

a1

−0.1

0

0.1

d6
4-25

4 Wavelets in Action: Examples and Case Studies

4-2
Example #10: A Ramp + Colored Noise
Analyzing wavelet: db3

Decomposition levels: 6

The signal is built in the same manner as the previous example, using a trend
plus a noise. The trend is a slow linear increase from 0 to 1, up to t=500. Beyond
this time, the value remains constant. The noise is a zero mean AR(3) noise,
varying between -3 and 3 (see the analysed signal b2). The scale of the noise is
indeed six times greater than that of the ramp. At first glance, the situation
seems a little bit less favorable than in the previous example, in terms of the
separation between the ramp and the noise. This is actually a misconception,
since the two signal components are more precisely separated in frequency.

The charts on the right show the detail decomposition of the colored noise. The
charts on the left show a decomposition that resembles the one in the previous
analysis. Starting at level 3, the curves provide satisfactory approximations of
the ramp.
6

Illustrated Examples
Figure 4-10: A Ramp + Colored Noise

Example #10: A Ramp + Colored Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

• Compare with the s7(t) signal shown in Figure 4-9.

• Identify the number of levels needed to suppress
the noise almost entirely

Further exploration • Identify the noise characteristics. Use the
coefficients and the command line mode.

0.4
0.6
0.8

1
1.2

a6

0.5

1

a5

0.5

1

a4

0.2
0.4
0.6
0.8

1
1.2

a3

0.2
0.4
0.6
0.8

1
1.2

a2

−0.04
−0.02

0
0.02
0.04

d5

−0.05
0

0.05
0.1

d4

−0.1
0

0.1
0.2

d3

−0.2

0

0.2

d2

200 400 600 800

−2

0

2

d1

−1
0
1
2
3

s

Signal and Approximations

−1
0
1
2
3

s

Signal and Details

200 400 600 800
0

0.5

1
a1

−0.04
−0.02

0
0.02
0.04

d6
4-27

4 Wavelets in Action: Examples and Case Studies

4-2
Example #11: A Sine + White Noise
Analyzing wavelet: db5

Decomposition levels: 5

The signal is formed of the sum of two previously analyzed signals: the slow
sine with a period close to 200 and the uniform white noise b1. This example is
an illustration of the linear property of decompositions: the analysis of the sum
of two signals is equal to the sum of analyses.

The details correspond to those obtained during the decomposition of the white
noise.

The sine is found in the approximation A5. This is a high enough level for the
effect of the noise to be negligible in relation to the amplitude of the sine.
8

Illustrated Examples
Figure 4-11: A Sine + White Noise

Example #11: A Sine + White Noise

Addressed topics • Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Identify the noise characteristics. Use the
coefficients and the command line mode.

−1

−0.5

0

0.5

a5

−1

0

1

a4

−1

0

1

a3

−1

0

1

a2

200 400 600 800 1000

−1

0

1

a1

−0.1

0

0.1

d5

−0.2

0

0.2

d4

−0.2

0

0.2

d3

−0.4

−0.2
0

0.2
0.4

d2

200 400 600 800 1000
−0.5

0

0.5

d1

−1

0

1

s

Signal and Approximations

−1

0

1

s

Signal and Details
4-29

4 Wavelets in Action: Examples and Case Studies

4-3
Example #12: A Triangle + A Sine
Analyzing wavelet: db5

Decomposition levels: 6

The signal is the sum of a sine having a period of approximately 20 and of a
“triangle”.

D1 and D2 are very small. This suggests that the signal contains no components
with periods that are short in relation to the sampling period.

D3 and especially D4 can be attributed to the sine. The jump of the sine from A3
to D4 is clearly visible.

The details for the higher levels D5 and D6 are small, especially D5. D6 exhibits
some edge effects.

A6 contains the triangle which includes only low frequencies.
0

Illustrated Examples
Figure 4-12: A Triangle + A Sine

Example #12: A Triangle + A Sine

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Try using sinusoids whose period is a power of 2.

−0.4
−0.2

0
0.2
0.4

a6

−0.2
0

0.2
0.4

a5

−0.4
−0.2

0
0.2
0.4

a4

−1

0

1

a3

−1

0

1

a2

−0.1

0

0.1

d6

−0.04
−0.02

0
0.02
0.04

d5

−1

0

1

d4

−0.4
−0.2

0
0.2
0.4

d3

−0.02

0

0.02

d2

200 400 600 800

−5

0

5

x 10−4

d1

−1

0

1

s

Signal and Approximations

−1

0

1

s

Signal and Details

200 400 600 800

−1

0

1

a1
4-31

4 Wavelets in Action: Examples and Case Studies

4-3
Example #13: A Triangle + A Sine + Noise
Noise Analyzing wavelet: db5

Decomposition levels: 7

The signal examined here is the same as the previous signal plus a uniform
white noise divided by 3. The analysis can therefore be compared to the
previous analysis. All differences are due to the presence of the noise.

D1 and D2 are due to the noise.

D3 and especially D4 are due to the sine.

The higher-level details are increasingly low, and originate in the noise.

A7 contains a triangle, although it is not as well reconstructed as in the
previous example.
2

Illustrated Examples
Figure 4-13: A Triangle + A Sine + Noise

Example #13: A Triangle + A Sine + Noise

Addressed topics • Detecting long-term evolution

• Splitting signal components

Further exploration • Increase the amplitude of the noise

• Replace the triangle by a polynomial

• Replace the white noise by an ARMA noise

−0.2
0

0.2
0.4

a7

−0.4
−0.2

0
0.2
0.4

a6

−0.4
−0.2

0
0.2
0.4

a5

−0.4
−0.2

0
0.2
0.4

a4

−1
0
1

a3

−1

0

1

a2

−0.1

0

0.1

d7

−0.2

0

0.2

d6

−0.1

0

0.1

d5

−1

0

1

d4

−0.5

0

0.5

d3

−0.4
−0.2

0
0.2
0.4

d2

200 300 400 500 600 700 800
−0.5

0

0.5

d1

−1
0
1

s

Signal and Approximations

−1
0
1

s

Signal and Details

200 300 400 500 600 700 800

−1
0
1

a1
4-33

4 Wavelets in Action: Examples and Case Studies

4-3
Example #14: A Real Electricity Consumption Signal
Analyzing wavelet: db3

Decomposition levels: 5

The series presents a peak in the center, followed by two drops, a shallow drop,
and then a considerably weaker peak.

The details for levels 1 and 2 are of the same order of magnitude and give a good
expression of the local irregularities caused by the noise. The detail for level 3
presents high values in the beginning and at the end of the main “peak,” thus
allowing us to locate the corresponding drops. The detail D4 shows coarser
morphological aspects for the series i.e., three successive peaks. This fits the
shape of the curve remarkably well, and includes the essential signal
components for periods of less than 32 time-units. The approximations show
this effect clearly: A1 and A2 bear a strong resemblance; A3 forms a reasonably
accurate approximation of the original signal. A look at A4, however, shows
that a considerable amount of information has been lost.

In this case, as a conclusion, the multi-scale aspect is the most interesting and
the most significant feature: the essential components of the electrical signal
used to complete the description at 32 time-units (homogeneous to A5) are the
components with a period between 8 to 16 time-units.
4

Illustrated Examples
Figure 4-14: A Real Electricity Consumption Signal

This signal is explored in much greater detail in A Case Study: An Electrical
Signal on page 4-37.

Example #14: A Real Electricity Consumption Signal

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Detecting breakdown points

• Multiscale analysis

Further exploration • Try the same analysis on various sections of the
signal. Focus on a range other than the
[3600:3700] shown here.

300

320

340

a4

300

320

340

a3

300

320

340

a2

3600 3620 3640 3660 3680 3700
300

320

340

a1

300

320

340

a5

300

320

340

s

Signal and Details

300

320

340

s

Signal and Approximations

−10

0

10

d4

−10

0

10

d5

−10

0

10

d3

−10

0

10

d2

3600 3620 3640 3660 3680 3700

−10

0

10

d1
4-35

4 Wavelets in Action: Examples and Case Studies

4-3
A Case Study: An Electrical Signal
The goal of this section is to provide a statistical description of an electrical load
consumption using the wavelet decompositions as a multiscale analysis.

Two problems are addressed. They both deal with signal extraction from the
load curve corrupted by noise:

1 What information is contained in the signal, and what pieces of
information are useful?

2 Are there various kinds of noises, and can they be distinguished from
one another?

The context of the study is the forecast of the electrical load. Currently,
short-term forecasts are based on the data sampled over 30 minutes. After
eliminating certain components linked to weather conditions, calendar effects,
outliers and known external actions, a SARIMA parametric model is
developed. The model delivers forecasts from half-an-hour to two days. The
quality of the forecasts is very high at least for 90% of all days, but the method
fails when working with the data sampled over 1 minute.

Data and the External Information
The data consist of measurement of a complex, highly-aggregated plant: the
electrical load consumption, sampled minute by minute, over a 5-week period.
This time series of 50,400 points is partly plotted at the top of the Figure 4-17.

External information is given by electrical engineers, and additional
indications can be found in several papers. This information, used to define
reference situations for the purpose of comparison, includes these points:

• The load curve is the aggregation of hundreds of sensors measurements, thus
generating measurement errors.

• Roughly speaking, the consumption is accounted for by industry for 50% and
by individual consumers for the other half. The component of the load curve
produced by industry has a rather regular profile and exhibits low-frequency
changes. On the other hand, the consumption of individual consumers may
be highly irregular, leading to high-frequency components.
6

A Case Study: An Electrical Signal
• There are more than 10 millions individual consumers.

• The fundamental periods are the weekly-daily cycles, linked to
economic rhythms.

• Daily consumption patterns also change according to rate changes at
different times (e.g. relay-switched water heaters to benefit from special
night rates).

• Missing data have been replaced.

• Outliers have not been corrected.

• For the observations 2400 to 3400, the measurement errors are unusually
high, due to sensors failures.

From a methodological point of view, the wavelet techniques provide a
multiscale analysis of the signal as a sum of orthogonal signals corresponding
to different time scales, allowing a kind of time-scale analysis.

Because of the absence of a model for the one minute data, the description
strategy proceeds essentially by successive uses of various comparative
methods applied to signals obtained by the wavelet decomposition.

Without modeling, it is impossible to define a signal or a noise effect.
Nevertheless, we say that any repetitive pattern is due to signal and is
meaningful.

Finally it is known that two kinds of noise corrupt the signal: sensors errors
and the state noise.

We shall not report here the complete analysis which is included in a paper.
Instead, we illustrate the contribution of wavelet transforms to the local
description of time series. We choose two small samples: one taken at midday,
and the other at the end of the night.

In the first period the signal structure is complex, in the second one, much
simpler.The midday period has a complicated structure because the intensity
of the electricity consumers activity is high and it presents very large changes.
At the end of the night the activity is low and changes slowly.

For the local analysis, the decomposition is taken up to the level j = 5, because
25 = 32 is very close to half an hour. We are then able to study the components
of the signal for which the period is less than half an hour.

The analyzing wavelet used here is db3.
The results are described similarly for the two periods.
4-37

4 Wavelets in Action: Examples and Case Studies

4-3
Analysis of the Midday Period
This signal (see Figure 4-14) is also analyzed in Example #14: A Real
Electricity Consumption Signal on page 4-35 more crudely.

The shape is a middle mode between 00h30 pm and 01h00 pm, preceded and
followed by a hollow off-peak, and next a second smoother mode at 01h15 pm.
The approximation A5 corresponding to the time scale of 32 minutes, is a very
crude approximation, particularly for the central mode: there is a peak time lag
and an underestimation of the maximum value. So at this level the most
essential information is missing. We have to look at lower scales (4 for
instance).

Let us examine the corresponding details.

The details D1 and D2 have small values and may be considered as local
short-period discrepancies caused by the high frequency components of sensor
and state noises. In this bandpass, these noises are essentially due to
measurement errors and fast variations of the signal induced by millions of
state changes of personal electrical appliances.

The detail D3 exhibits high values at times corresponding to the start and the
end of the original middle mode. It allows time localization of the local minima.

The detail D4 contains the main patterns: three successive modes. It is
remarkably close to the shape of the curve. The ratio of the values of this level
to the other levels is equal to 5. The detail D5 does not bear much information.
So the contribution of the level 4 is the highest one, both in qualitative and
quantitative aspects. It captures the shape of the curve in the concerned period.
8

A Case Study: An Electrical Signal
In conclusion, with respect to the approximation A5, the detail D4 is the main
additional correction: the components of period 8 to 16 minutes contain the
crucial dynamics.

Figure 4-15: Analysis of the Midday Period

Analysis of the End of the Night Period
See Figure 4-16.

The shape of the curve during the end of the night is a slow descent globally
smooth but locally highly irregular. One can hardly distinguish two successive
local extrema in the vicinity of time t=1600 and t=1625. The approximation A5
is quite good except at these two modes.

The accuracy of the approximation can be explained by the fact that there
remains only a low frequency signal corrupted by noises. The massive and
simultaneous changes of personal electric appliances are absent.

300

320

340

a4

300

320

340

a3

300

320

340

a2

3600 3620 3640 3660 3680 3700
300

320

340

a1

300

320

340

a5

300

320

340

s

Signal and Details

300

320

340

s

Signal and Approximations

−10

0

10

d4

−10

0

10

d5

−10

0

10

d3

−10

0

10

d2

3600 3620 3640 3660 3680 3700

−10

0

10

d1
4-39

4 Wavelets in Action: Examples and Case Studies

4-4
The details D1, D2, and D3 show the kind of variation and have, roughly
speaking, similar shape and mean value. They contain the local short period
irregularities caused by noises and the inspection of D2 and D3 allows one to
detect the local minimum around t=1625.

The details D4 and D5 exhibit the slope changes of the regular part of the signal
and A4 and A5 are piecewise linear.

In conclusion, none of the time scales brings a significant contribution,
sufficiently different from the noise level, and no additional correction is
needed. The retained approximation is A4 or A5.

Figure 4-16: Analysis of the End of the Night Period

−5

0

5

d5

−5

0

5

d4

−5

0

5

d3

220
240
260
280
300

s

Signal and Approximations

220
240
260
280
300

a5

220
240
260
280
300

a4

220
240
260
280
300

a3

220
240
260
280
300

a2

1600 1650 1700

220
240
260
280
300

a1

220
240
260
280
300

s

Signal and Details

1600 1650 1700
−5

0

5

d1

−5

0

5

d2
0

A Case Study: An Electrical Signal
All the figures in this paragraph have been generated using the Graphical User
Interface tools, but the user can also process the analysis using the command
line mode. The following example gives some indications and corresponds to a
command line equivalent of producing Figure 4-17.

% Load the original 1-D signal, decompose, reconstruct details in
% original time and plot.
% load the signal.
load leleccum; s = leleccum;

% Decompose the signal s at level 5 using the wavelet w.
w = ‘db3‘; [c,l] = wavedec(s,5,w);

% Reconstruct the details using the coefficients.
for i = 1:5

eval(['d(',int2str(i),',:) = wrcoef(''d'',c,l,w,i);']);
end

Note: This loop replaces 5 separate wrcoef statements defining variables D1
through D5.

% Avoid edge effects by suppressing edge values and plot.
tt = 1+100:length(s)-100;
subplot(611); plot(tt,s(tt),‘r‘);
title(‘Electrical Signal and Details‘);
for i = 1:5, subplot(6,1,i+1); plot(tt,d(i,tt),‘g‘); end
4-41

4 Wavelets in Action: Examples and Case Studies

4-4
Figure 4-17: Decomposition of Three-Day Electrical Signal at
Level 5 Using db3

Suggestions for Further Analysis
Let us now make some suggestions for possible further analysis starting from
the details of the decomposition at level 5 of three days (see Figure 4-17).

Identify the Sensor Failure
Focus on the wavelet decomposition and try to identify the sensor failure
directly on the details D1, D2 and D3 and not the other ones. Try to identify the
other part of the noise.

−20

0

20

d5

−10

0

10

20

d3

−10

0
10

20

d2

500 1000 1500 2000 2500 3000 3500 4000
−20

0

20

d1

−20

0

20

40

d4

200

300

400

500

s

Electrical Signal and Details
2

A Case Study: An Electrical Signal
Indication: see Figure 4-18.

Figure 4-18: Identification of Sensor Failure

Suppress the Noise
Suppress measurement noise. Try by yourself and use, afterwards, the
de-noising tools.

−10

0

10

20

d3

2200 2400 2600 2800 3000 3200 3400 3600

−20

−10

0

10

20

d1

200

300

400

500

s

Signal and Details

−10

0

10

20

d2
4-43

4 Wavelets in Action: Examples and Case Studies

4-4
Indication: study the approximations and compare two successive days, the
first without sensor failure and the second corrupted by failure
(see Figure 4-19).

Figure 4-19: Comparison of Smoothed Versions of the Signal

Identify Patterns in the Details
The idea here is to identify a pattern in the details typical of relay-switched
water heaters.

200

300

400

500

a4

200

300

400

500

a3

200

300

400

500

a2

500 1000 1500 2000 2500 3000 3500 4000

200

300

400

500

a1

200

300

400

500

s

Signal and Approximations
4

A Case Study: An Electrical Signal
Indication: the Figure 4-20 gives an example of such a period. Focus on details
D2, D3 and D4 around abscissa 1350, 1383, and 1415 in order to detect abrupt
changes of the signal induced by automatic switches.

Figure 4-20: Location of the Water Heaters and Identification of the
Effects on the Details

340
360
380
400
420
440

s

Signal and Details

−10

0

10

d4

−10

0

10

d3

−5

0

5

d2

1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450

−2

0

2

d1
4-45

4 Wavelets in Action: Examples and Case Studies

4-4
Locate and Suppress Outlying Values
Suppress the outliers by setting the corresponding values of the details to 0.

Indication: the Figure 4-21 gives two examples of outliers around t = 1193 and
t = 1215, the effect produced on the details is clear when focusing on the low
levels. As far as outliers are concerned, D1 and D2 are synchronized with s, D3
shows a delayed effect.

Figure 4-21: Location of the Outliers and Identification of the Effects
on the Details

−10

0

10

20

d3

1170 1180 1190 1200 1210 1220 1230

−20

−10

0

10

20

d1

−10

0

10

20

d2

340

360

380

400

s

Signal and Details
6

A Case Study: An Electrical Signal
Study Missing Data
Missing data have been crudely substituted (around observation 2870) by
estimation of half an hour sampled data and spline smoothing for the
intermediate time points. Improve the interpolation by using an approximation
and portions of the details taken elsewhere, thus implementing a sort of
“graft.”

Indication: see Figure 4-22 focusing around time 2870, and use the small
variations part of D1 in order to detect the missing data.

Figure 4-22: Detection of Missing Data Replaced Using Splines

360

380

400

420

440

a2

2840 2860 2880 2900

360

380

400

420

440

a1

−10

−5

0

5

10

d2

2840 2860 2880 2900
−10

−5

0

5

10

d1

360

380

400

420

s

Signal and Details

360

380

400

420

s

Signal and Approximations
4-47

4 Wavelets in Action: Examples and Case Studies

4-4
Fast Multiplication of Large Matrices
This section illustrates matrix-vector multiplication in the wavelet domain.

• The problem is:

let m be a dense matrix of large size (n, n). We want to perform a large number
L of multiplications of m by vectors v.

• The idea is:

Stage 1: (executed once) compute the matrix approximation sm at a suitable
level k, the matrix being assimilated with an image.

Stage 2: (executed L times) divided in the following three steps:

1 Compute vector approximation.

2 Compute multiplication in wavelet domain.

3 Reconstruct vector approximation.

It is clear that when sm is a sufficiently good approximation of m, the error with
respect to ordinary multiplication can be small. This is the case in the first
example below where m is a magic square. Conversely, when the wavelet
representation of the matrix m is dense, for example if all the coefficients have
the same order of magnitude, the error will be large. This is the case in the
second example below where m is a two-dimensional Gaussian white noise. The
Figure 4-23 compares for n = 512, the number of flops required by wavelet
based method and by ordinary method versus L.
8

Fast Multiplication of Large Matrices
Example 1: Effective Fast Matrix Multiplication

n = 512; lev = 5; wav = ‘db1‘;

% Wavelet based matrix multiplication by a vector:
% a “good” example
% Matrix is magic(512) Vector is (1:512)

m = magic(n); v = (1:n)‘;
[LoF_D,HiF_D,LoF_R,HiF_R] = wfilters(wav);

% ordinary matrix multiplication by a vector.
flops(0), p = m * v; flomv = flops

flomv =
524288

% Compute matrix approximation at level 5.
flops(0)
sm = m;
for i = 1:lev

sm = dyaddown(conv2(sm,LoF_D),‘c‘);
sm = dyaddown(conv2(sm,LoF_D‘),‘r‘);

end
flmapp = flops

flmapp =
2095104

% The three steps:
% 1. Compute vector approximation.
% 2. Compute multiplication in wavelet domain.
% 3. Reconstruct vector approximation.
4-49

4 Wavelets in Action: Examples and Case Studies

4-5
flops(0)
sv = v;
for i = 1:lev, sv = dyaddown(conv(sv,LoF_D)); end
sp = sm * sv;
for i = 1:lev, sp = conv(dyadup(sp),LoF_R); end
sp = wkeep(sp,length(v));
flwmv = flops

flwmv =
8958

% Plot ordinary versus wavelet based m*v flops in loglog.

Figure 4-23: Wavelet Based Matrix Multiplication by a Vector

% Relative square norm error in percent when using wavelets.
rnrm = 100 ∗ (norm(p-sp)/norm(p))

rnrm =
2.9744e-06

10
0

10
1

10
2

10
3

10
4

10
5

10
5

10
6

10
7

10
8

10
9

10
10

10
11

log(L) for a given matrix

lo
g(

flo
ps

)

Ordinary (dashed line) versus wavelet (solid line) based m*v flops
0

Fast Multiplication of Large Matrices
Example 2: Ineffective Fast Matrix Multiplication
The commands used are the same as in Example 1.

% Wavelet based matrix multiplication by a vector:
% a “bad” example
% Matrix is randn(512,512) Vector is (1:512)
% Relative square norm error in percent
rnrm = 100 * (norm(p-sp)/norm(p))

rnrm =
98.8839
4-51

4 Wavelets in Action: Examples and Case Studies

4-5
2

5-3 About Wavelet Packet Analysis

5-6 One-Dimensional Wavelet Packet Analysis
5-14 De-Noising a Signal Using Wavelet Packet

5-19 Two-Dimensional Wavelet Packet Analysis

5-26 Importing and Exporting from Graphical Tools
5-26 Saving Information to the Disk

5-28 Loading Information into the Graphical Tools
5

Using Wavelet Packets

5 Using Wavelet Packets

5-2
The Wavelet Toolbox contains graphical tools and command line functions that
let you:

• Examine and explore characteristics of individual wavelet packets.

• Perform wavelet packet analysis of one- and two-dimensional signals.

• Use wavelet packets to compress and remove noise from signals and images.

This chapter takes you step-by-step through examples that teach you how to
use the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools. The
last section discusses how to transfer information from the graphical tools into
your disk, and back again.

Because of the inherent complexity of packing and unpacking complete wavelet
packet decomposition tree structures, we recommend using the Wavelet
Packet 1-D and Wavelet Packet 2-D graphical tools for performing
exploratory analyses.

The command line functions are also available and provide the same
capabilities. However, it is most efficient to use the command line only for
performing batch processing.

About Wavelet Packet Analysis
About Wavelet Packet Analysis
This chapter takes you through the features of one- and two-dimensional
wavelet packet analysis using the MATLAB Wavelet Toolbox. You’ll learn
how to:

• Load a signal or image

• Perform a wavelet packet analysis of a signal or image

• Remove noise from a signal

• Compress an image

• Show statistics and histograms

The Wavelet Toolbox provides these functions for wavelet packet analysis. For
more information, see the Command Reference (Chapter 8). The reference
entries for these functions include examples showing how to perform wavelet
packet analysis via the command line.

Analysis-Decomposition Functions:

Synthesis-Reconstruction Functions:

Function Name Purpose

wpdec and wpdec2 Full decomposition

wpsplt Decompose packet

Function Name Purpose

wprcoef Reconstruct coefficients

wprec Full reconstruction

wpjoin Recompose packet
5-3

5 Using Wavelet Packets

5-4
Decomposition Structure Utilities:

De-noising and Compression:

In the wavelet packet framework, compression and de-noising ideas are exactly
the same as those developed in the wavelet framework. The only difference is
that wavelet packets offer a more complex and flexible analysis, because in
wavelet packet analysis, the details as well as the approximations are split:

A single wavelet packet decomposition gives a lot of bases from which you can
look for the best representation with respect to a design objective. This can be
done by finding the “best tree” based on an entropy criterion.

Function Name Purpose

besttree Find best tree

bestlevt Find best level tree

wentropy Entropy

entrupd Update wavelet packets entropy

Function Name Purpose

ddencmp Default values for de-noising and compression

wpthcoef Wavelet packets coefficients thresholding

wpdencmp De-noising and compression using wavelet packets

S

A1 D1

AA2 DA2

AAA3 DAA3

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

About Wavelet Packet Analysis
De-noising and compression are interesting applications of wavelet packet
analysis. The wavelet packet de-noising or compression procedure involves
four steps:

1 Decomposition

For a given wavelet, compute the wavelet packet decomposition of signal x
at level N.

2 Computation of the best tree

For a given entropy, compute the optimal wavelet packet tree. Of course,
this step is optional. The graphical tools provide a Best Tree button for
making this computation quick and easy.

3 Thresholding of wavelet packet coefficients

For each packet (except for the approximation), select a threshold and apply
thresholding to coefficients.

The graphical tools automatically provide an initial threshold based on
balancing the amount of compression and retained energy. This threshold is
a reasonable first approximation for most cases. However, in general you
will have to refine your threshold by trial and error so as to optimize the
results to fit your particular analysis and design criteria.

The tools facilitate experimentation with different thresholds, and make it
easy to alter the trade-off between amount of compression and retained
signal energy.

4 Reconstruction

Compute wavelet packet reconstruction based on the original approximation
coefficients at level N and the modified coefficients.

In this example we’ll show how you can use one-dimensional wavelet packet
analysis to compress and to de-noise a signal.
5-5

5 Using Wavelet Packets

5-6
One-Dimensional Wavelet Packet Analysis
We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal that
is the sum of two linear chirps.

 Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.

One-Dimensional Wavelet Packet Analysis
Loading a Signal.

3 From the File menu, choose the Load Signal option.

4 When the Load Signal dialog box appears, select the demo MAT-file
sumlichr.mat, which should reside in the MATLAB directory
toolbox/wavelet/wavedemo. Click the OK button.

The sumlichr signal is loaded into the Wavelet Packet 1-D tool.
5-7

5 Using Wavelet Packets

5-8
Analyzing a Signal.

5 Make the appropriate settings for the analysis. Select the db2 wavelet, level
4, entropy type threshold, and threshold parameter 1. Click the Analyze
button.

The available entropy types are:

 Type Description

Shannon Non-normalized entropy involving the logarithm of
the squared value of each signal sample — or, more
formally:

Threshold The number of samples for which the absolute value
of the signal exceeds a threshold .

Norm The concentration in norm with .

Log Energy The logarithm of “energy,” defined as the sum over all
samples:

si
2

si
2()log∑–

ε

l
p

1 p 2<≤

si
2()log∑

One-Dimensional Wavelet Packet Analysis
For more information about the available entropy types, user-defined entropy,
and threshold parameters, see the reference entry for wentropy, and Chapter 6.

Note: Many capabilities are available using the command area on the right of
the Wavelet Packet 1-D window. Some of them are used in the sequel. Please
refer to the Appendix A, “GUI Reference” for a more complete description.

SURE (Stein’s Unbi-
ased Risk Estimate)

A threshold-based method in which the threshold
equals:

where n is the number of samples in the signal.

User An entropy type criterion you define in an M-file.

 Type Description

2loge nlog2 n()()
5-9

5 Using Wavelet Packets

5-1
Computing the Best Tree.

Because there are so many ways to reconstruct the original signal from the
wavelet packet decomposition tree, we select the best tree before attempting to
compress the signal.

6 Click the Best Tree button.

After a pause for computation, the Wavelet Packet 1-D tool displays the
best tree. Use the top and bottom sliders to spread nodes apart and pan over
to particular areas of the tree, respectively.

Observe that, for this analysis, the best tree and the initial tree are almost
the same. One branch at the far right of the tree was eliminated.

Spread or contract tree nodes

Pan left or right

to improve readability
0

One-Dimensional Wavelet Packet Analysis
Selecting a Threshold for Compression.

7 Click the Compress button.

The Wavelet Packet 1-D Compression window appears with an
approximate threshold value automatically selected.

The left most graph shows how the threshold (vertical yellow dotted line)
has been chosen automatically (1.482) to balance the number of zeros in the
compressed signal (blue curve that increases as the threshold increases)
with the amount of energy retained in the compressed signal (purple curve
that decreases as the threshold increases).

This threshold means that any signal element whose value is less than 1.482
will be set to zero when we perform the compression.

Threshold controls are located to the right (see red box in figure). Note that
the automatic threshold of 1.482 results in a retained energy of only 81.49%.
This may cause unacceptable amounts of distortion, especially in the peak
values of the oscillating signal. Depending on your design criteria, you may
want to choose a threshold that retains more of the original signal’s energy.
5-11

5 Using Wavelet Packets

5-1
8 Adjust the threshold by typing 0.8938 in the text field opposite the threshold
slider, then press the Enter key.

The value 0.8938 is a number that we have discovered through trial and
error yields more satisfactory results for this analysis.

After a pause, the Wavelet Packet 1-D Compression window displays
new information.

Note that, as we have reduced the threshold from 1.482 to 0.8938:

- The vertical yellow dotted line has shifted to the left.

- The retained energy has increased from 81.49% to 90.96%.

- The number of zeros (equivalent to the amount of compression) has
decreased from 81.55% to 75.28%.
2

One-Dimensional Wavelet Packet Analysis
 Compressing a Signal.

9 Click the Compress button.

The Wavelet Packet 1-D tool compresses the signal using the thresholding
criterion we selected.

The original (red) and compressed (yellow) signals are displayed
superimposed. Visual inspection suggests the compression quality is quite
good.

Looking more closely at the compressed signal, we see that the number of zeros
in the wavelet packets representation of the compressed signal is about 75.3%,
and the retained energy about 91%.

If you try to compress the same signal using wavelets with exactly the same
parameters, only 89% of the signal energy is retained, and only 59% of the
wavelet coefficients set to zero. This illustrates the superiority of wavelet
packets for performing compression, at least on certain signals.

You can demonstrate this to yourself by returning to the main Wavelet
Packet 1-D window, computing the wavelet tree, and then repeating the
compression.
5-13

5 Using Wavelet Packets

5-1
De-Noising a Signal Using Wavelet Packet
We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal. This
analysis illustrates the use of Stein’s Unbiased Estimate of Risk (SURE) as a
principle for selecting a threshold to be used for de-noising.

This technique calls for setting the threshold T to

where n is the length of the signal.

A more thorough discussion of the SURE criterion appears in Chapter 6. For
now, suffice it to say that this method works well if your signal is normalized
in such a way that the data fit the model x(t) = f(t) + e(t), where e(t) is a Gaussian
white noise with zero mean and unit variance.

If you’ve already started the Wavelet Packet 1-D tool and it is active on your
computer’s desktop, skip to step 3.

 Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

T 2loge nlog2 n()()=
4

One-Dimensional Wavelet Packet Analysis
2 Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.

Loading a Signal.

3 From the File menu, choose the Load Signal option.

4 When the Load Signal dialog box appears, select the demo MAT-file
noischir.mat, which should reside in the MATLAB directory
toolbox/wavelet/wavedemo. Click the OK button.
5-15

5 Using Wavelet Packets

5-1
The noischir signal is loaded into the Wavelet Packet 1-D tool. Notice
that the signal’s length is 1024. This means we should set the SURE
criterion threshold equal to sqrt(2.*log(1024.*log2(1024))), or 4.2975.

Analyzing a Signal.

5 Make the appropriate settings for the analysis. Select the db2 wavelet, level
4, entropy type sure, and threshold parameter 4.2975. Click the Analyze
button.

There is a pause while the wavelet packet analysis is computed.

Note: Many capabilities are available using the command area on the right of
the Wavelet Packet 1-D window. Some of them are used in the sequel. Please
refer to the Appendix A, “GUI Reference” for a more complete description.

Signal length
6

One-Dimensional Wavelet Packet Analysis
Computing the Best Tree and Performing De-Noising.

6 Click the Best Tree button.

Computing the best tree makes the de-noising calculations more efficient.

7 Click the De-noise button, bringing up the Wavelet Packet 1-D
De-Noising window.
5-17

5 Using Wavelet Packets

5-1
8 Click the De-noise button located at the center right side of the Wavelet
Packet 1-D De-Noising window.

The results of the de-noising operation are quite good, as can be seen by looking
at the thresholded coefficients. The frequency of the chirp signal increases
quadratically over time, and the thresholded coefficients essentially capture
the quadratic curve in the time-frequency plane.

You can also use the M-file wpdencmp to perform wavelet packet de-noising or
compression from the command line.
8

Two-Dimensional Wavelet Packet Analysis
Two-Dimensional Wavelet Packet Analysis
In this section, we employ the Wavelet Packet 2-D tool to analyze and
compress an image of a fingerprint. This is a real-world problem: the Federal
Bureau of Investigation (FBI) maintains a large database of fingerprints —
about 30 million sets of them. The cost of storing all this data runs to hundreds
of millions of dollars. By turning to wavelets, the FBI has achieved a 15:1
compression ratio. In this application, wavelet compression is better than the
more traditional JPEG compression, as it avoids small square artifacts, and is
particularly well suited to detect discontinuities (lines) in the fingerprint.
5-19

5 Using Wavelet Packets

5-2
 Starting the Wavelet Packet 2-D Tool.

1 From the MATLAB prompt, type:
» wavemenu.

The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet Packet 2-D menu item.

The tool appears on the desktop.
0

Two-Dimensional Wavelet Packet Analysis
Loading an Image.

From the File menu, choose the Load Image option.

3 When the Load Image dialog box appears, select the demo MAT-file
detfingr.mat, which should reside in the MATLAB directory
toolbox/wavelet/wavedemo. Click the OK button.

The fingerprint image is loaded into the Wavelet Packet 2-D tool.
5-21

5 Using Wavelet Packets

5-2
Analyzing an Image.

4 Make the appropriate settings for the analysis. Select the haar wavelet,
level 3, and entropy type shannon. Click the Analyze button.

There is a pause while the wavelet packet analysis is computed.

Note: Many capabilities are available using the command area on the right of
the Wavelet Packet 2-D window. Some of them are used in the sequel. Please
refer to the Appendix A, “GUI Reference” for a more complete description.

5 Click the Best Tree button to compute the best tree before compressing the
image.
2

Two-Dimensional Wavelet Packet Analysis
Compressing an image.

6 Click the Compress button to bring up the Wavelet Packet 2-D
Compression window.

Notice that the default threshold (7.25) provides about 64% compression
while retaining virtually all the energy of the original image. Depending on
your criteria, it may be worthwhile experimenting with more aggressive
thresholds to achieve a higher degree of compression. Recall that we are not
doing any quantization of the image, merely setting specific coefficients to
zero. This can be considered a pre-compression step in a broader
compression system.

7 Alter the threshold: type the number 30 in the text field opposite the
threshold slider located on the right side of the Wavelet Packet 2-D
Compression window. Then press the Enter key.
5-23

5 Using Wavelet Packets

5-2
Setting all wavelet packet coefficients whose value falls below 30 to zero
yields much better results. Note that the new threshold achieves a
compression ratio of better than 12:1, while still retaining nearly 98% of the
image energy. Compare this wavelet packet analysis to the wavelet analysis
of the same image in “Compressing Signals” in Chapter 3.

8 Click the Compress button to start the compression.

You can see the result obtained by wavelet packet coefficients thresholding
and image reconstruction. The visual recovery is correct but not perfect. The
compressed image, shown side-by-side with the original, shows some
artifacts.

9 Click the Close button located at the bottom of the Wavelet Packet 2-D
Compression window. Update the synthesized image by clicking Yes when
the dialog box appears.

Take this opportunity to try out your own compression strategy. Adjust the
threshold value, the entropy function, and the wavelet, and see if you can
obtain better results.

Hint: The bior6.8 wavelet is better suited to this analysis than is haar, and
can lead to a compression ratio of 24:1.
4

Two-Dimensional Wavelet Packet Analysis
Before concluding this analysis, it is worth turning our attention to the “colored
coefficients for terminal nodes plot” and considering the best tree
decomposition for this image.

This plot is shown in the lower right side of the Wavelet Packet 2-D tool. The
plot shows us which details have been decomposed and which have not. Larger
squares represent details that have not been broken down to as many levels as
smaller squares. Consider, for example, this level 2 decomposition pattern:

Looking at the pattern of small and large squares in the fingerprint analysis
shows that the best tree algorithm has apparently singled out the diagonal
details, often sparing these from further decomposition. Why is this?

If we consider the original image, we realize that much of its information is
concentrated in the sharp edges that constitute the fingerprint’s pattern.
Looking at these edges, we see that they are predominantly oriented
horizontally and vertically. This explains why the best tree algorithm has
“chosen” not to decompose the diagonal details — they do not provide very
much information.

Approximation, Level 2

Vertical Detail, Level 2

Diagonal Detail, Level 1

Decomposition of the Level 1
Horizontal Detail

Decomposition of the Level 1
Vertical Detail
5-25

5 Using Wavelet Packets

5-2
Importing and Exporting from Graphical Tools
The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import
information from and export information to your disk.

If you adhere to the proper file formats, you can:

• Save decompositions as well as synthesized signals and images from the
wavelet packet graphical tools into your disk.

• Load signals, images, and one- and two-dimensional decompositions from
your disk into the Wavelet Packet 1-D and Wavelet Packet 2-D graphical
tools.

Saving Information to the Disk
The graphical tools’ functions let you save synthesized signals or images, as
well as one- or two-dimensional wavelet packet decomposition structures,
using specific file formats. This feature provides flexibility and allows you to
combine command line and graphical interface operations.

Saving Synthesized Signals
You can process a signal in the Wavelet Packet 1-D tool and then save the
processed signal to a MAT-file.

For example, load the demo analysis: File⇒Demo Analysis⇒with db3 at
level 5 −−> Sum of sines, and perform a compression or de-noising operation
on the original signal. When you close the Wavelet Packet 1-D De-noising
or Wavelet Packet 1-D Compression window, update the synthesized signal
by clicking Yes in the dialog box.

Then, from the Wavelet Packet 1-D tool, select the File⇒Save Synthesized
Signal menu option.

A dialog box appears allowing you to select a directory and filename for the
MAT-file. For this example, choose the name synthsig.

To load the signal into your workspace, simply type:

» load synthsig
» whos

Name Size Elements Bytes Class
synthsig 1 by 1000 1000 8000 double array
6

Importing and Exporting from Graphical Tools
Saving Synthesized Images
You can process an image in the Wavelet Packet 2-D tool and then save the
processed image to a MAT-file.

For example, load the demo analysis File⇒Demo Analysis⇒db1 – depth: 1
– ent: shannon −−> woman, and perform a compression on the original
image. When you close the Wavelet Packet 2-D Compression window,
update the synthesized image by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File⇒Save Synthesized Image
menu option.

A dialog box appears allowing you to select a directory and filename for the
MAT-file. For this example, choose the name wpsymage.

To load the image into your workspace, simply type:

» load wpsymage
» whos

Saving One-Dimensional Decomposition Structures
The Wavelet Packet 1-D tool lets you save an entire wavelet packet
decomposition tree and related data to your disk. The toolbox creates a
MAT-file in the current directory with a name you choose, followed by the
extension wp1 (wavelet packet 1-D).

Open the Wavelet Packet 1-D tool and load the demo analysis File⇒Demo
Analysis⇒db1 – depth: 2 – ent: shannon −−> sumsin.

To save the data from this analysis, use the menu option File⇒Save
Decomposition.

A dialog box appears that lets you specify a directory and file name for storing
the decomposition data. Type the name wpdecex.

Name Size Elements Bytes Class
map 255 by 3 765 6120 double array
wpsymage 256 by 256 65536 524288 double array
5-27

5 Using Wavelet Packets

5-2
After saving the decomposition data to the file wpdecex1d.wp1, load the
variables into your workspace.

» load wpdecex1d.wp1 -mat
» whos

Variables tree_struct and data_struct contain the wavelet packet
decomposition structure (tree and data). The other variable contains the data
name.

Saving Two-Dimensional Decomposition Structures
The file format, variables, and conventions are exactly the same as in the
one-dimensional case except for the extension, which is wp2 (wavelet packet
2-D). The variables saved are the same as with the one-dimensional case, with
the addition of the colormap matrix map:

Loading Information into the Graphical Tools
You can load signals, images, or one- and two-dimensional wavelet packet
decompositions into the graphical interface tools. The information you load
may have been previously exported from the graphical interface and then
manipulated in the workspace, or it may have been information you generated
initially from the command line.

In either case, you must observe the strict file formats and data structures used
by the graphical tools, or else errors will result when you try to load
information.

Name Size Elements Bytes Class
data_name 1 by 6 6 48 double array
data_struct 1 by 1057 1057 8456 double array
tree_struct 2 by 5 3 80 double array

Name Size Elements Bytes Class
data_name 1 by 5 5 40 double array
data_struct 1 by 65590 65590 524720 double array
map 255 by 3 765 6120 double array
tree_struct 3 by 5 15 120 double array
8

Importing and Exporting from Graphical Tools
Loading Signals
To load a signal you’ve constructed in your MATLAB workspace into the
Wavelet Packet 1-D tool, save the signal in a MAT-file that has the same
name as the signal variable itself.

For instance, suppose you’ve designed a signal called warma and want to
analyze it in the Wavelet Packet 1-D tool.

» lsave warma

The workspace variable warma must be a vector.

» sizwarma = size(warma)
sizwarma =
 1 1000

To load this signal into the Wavelet Packet 1-D tool, use the menu option
File⇒Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Loading Images
This toolbox supports only indexed images. An indexed image is a matrix
containing only integers from 1 to n, where n is the number of colors in the
image.

This image may optionally be accompanied by a n-by-3 matrix called map. This
is the colormap associated with the image. When MATLAB displays such an
image, it uses the values of the matrix to look up the desired color in this
colormap. If the colormap is not given, the Wavelet Packet 2-D graphical tool
uses a monotonic colormap with max(max(X))–min(min(X))+1 colors.

To load an image you’ve constructed in your MATLAB workspace into the
Wavelet Packet 2-D tool, save the image (and optionally, the variable map) in
a MAT-file that has the same name as the image matrix itself.

For instance, suppose you’ve created an image called brain and want to
analyze it in the Wavelet Packet 2-D tool. Type:

» lsave brain

To load this image into the Wavelet Packet 2-D tool, use the menu option
File⇒Load Image.
5-29

5 Using Wavelet Packets

5-3
A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Caution: The graphical tools allow you to load an image that does not contain
integers from 1 to n. The computations will be correct since they act directly
on the matrix, but the display of the image will be strange. The values less
than 1 will be evaluated as 1, the values greater than n will be evaluated as n,
and a real value within the interval [1,n] will be evaluated as the closest
integer.

Note that the coefficients, approximations, and details produced by wavelet
packets decomposition are not indexed image matrices.

In order to display these images in a suitable way, the Wavelet Packet 2-D
tool follows these rules:

• Reconstructed approximations are displayed using the colormap map. The
same holds for the result of the reconstruction of selected nodes.

• The coefficients and the reconstructed details are displayed using the
colormap map applied to a rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures
You can load one- and two-dimensional wavelet packet decompositions into the
graphical tools providing you have previously saved the decomposition data in
a MAT-file of the appropriate format.

While it is possible to edit data originally created using the graphical tools and
then exported, you must be careful about doing so. Wavelet packet data
structures are complex, and the graphical tools do not do any consistency
checking. This can lead to errors if you try to load improperly formatted data.

One-dimensional data structures must contain the variables:

Variable Description

data_name String specifying name of decomposition

data_struct Vector specifying data in tree structure

tree_struct Vector specifying tree structure
0

Importing and Exporting from Graphical Tools
These variables must be saved in a MAT-file with the extension .wp1.

Two-dimensional data structures must contain the variables:

These variables must be saved in a MAT-file with the extension .wp2.

To load the properly-formatted data, use the menu option File⇒Load
Decomposition Structure from the appropriate tool, then select the desired
MAT-file from the dialog box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates its
display to show the new analysis.

Variable Description

data_name String specifying name of decomposition

data_struct Vector specifying data in tree structure

map Image map

tree_struct Vector specifying tree structure
5-31

5 Using Wavelet Packets

5-3
2

6-2 Mathematical Conventions

6-5 General Concepts

6-21 The Fast Wavelet Transform (FWT) Algorithm

6-34 One-Dimensional Wavelet Capabilities

6-40 Two-Dimensional Wavelet Capabilities

6-46 Dealing with Border Distortion

6-56 Frequently Asked Questions

6-62 Wavelet Families: Additional Discussion

6-73 Summary of Wavelet Families and Associated Properties

6-74 Wavelet Applications: More Detail

6-95 Wavelet Packets

6-114 References
6

Advanced Concepts

6 Advanced Concepts

6-2
This chapter presents an alternative and more advanced treatment of wavelet
methods. It assumes that the reader is comfortable with mathematical ideas.
For more detail on the theory, the reader is directed to the book Wavelets and
Filter Banks by Strang and Nguyen, and to the references at the end of this
Chapter.

Mathematical Conventions
This chapter and the reference section use certain mathematical conventions.

General Notation Interpretation

Dyadic scale. j is the level, 1/a or 2
-j
 is the resolution

Dyadic translation

t Continuous time

k or n Discrete time

(i, j) Pixel

s Signal or image. The signal is a function defined on R
or Z, the image is defined on R2 or Z2. A finite-length
signal is extended to all R, Z, R2 or Z2 using zeros (this
is zero-padding).

Fourier transform of the function f or the sequence f.

Continuous time

L
2(R) Set of signals of finite energy

Energy of the signal s

Scalar product of signals s and

L
2(R2) Set of images of finite energy

Energy of the image s

Scalar product of images s and

a 2
j

= j Z∈,

b ka= k Z∈,

f̂

s x()2
xd

R∫

s s′,〈 〉 s x()s′ x()d
R∫= s′

R∫ s x y,()2
xd yd

R∫
s s′,〈 〉 s x y,()s′ x y,() xd yd

R∫R∫= s′

Discrete time

l
2
(Z) Set of signals of finite energy

Energy of the signal s

Scalar product of signals s and

l
2(Z2) Set of images of finite energy

Energy of the image s

Scalar product of images s and

General Notation Interpretation

s n()2
Z∑

s s′,〈 〉 s n()s′ n()
Z∑= s′

Z∑ s n m,()2
Z∑

s s′,〈 〉 s n m,()s′ n m,()
Z∑Z∑= s′

Wavelet Notation Interpretation

Aj j-level approximation or approximation at level j

Dj j-level detail or detail at level j

f Scale or scaling function

y Wavelet

Family associated with the one-dimensional wavelet,
 and .

Family associated with the two-dimensional wavelet,
.

Family associated with the one-dimensional scale func-
tion for dyadic scales a = 2

j
, b = ka.

It should be noted that φ = φ0,0.

1

a
-------ψ x b–

a
----------- 

 
a 0> b R∈

1

a1a
2

---------------ψ
x1 b1–

a1

x2 b2–

a2
----------------, 

  x x1 x2(,)= R
2∈, a1 0 a2 0 b1 R b2 R∈,∈,>,>

φ j k, x() 2
j– 2⁄ φ 2

j–
x k–()= j Z∈ k Z∈, ,
6-3

6 Advanced Concepts

6-4
Family associated with the one-dimensional ψ for
dyadic scales a = 2

j
, b = ka.

It should be noted that ψ = ψ0,0.

Scale or scaling filter associated with a discrete
wavelet

Discrete wavelet

Wavelet Notation Interpretation

ψj k, x() 2
j– 2⁄ ψ 2

j–
x k–()= j Z∈ k Z∈, ,

hk() k Z∈,

gk() k Z∈,

General Concepts
General Concepts
This section presents a brief overview of wavelet concepts.

Wavelets: A New Tool for Signal Analysis
Wavelet analysis consists of decomposing a signal or an image into a
hierarchical set of approximations and details. The levels in the hierarchy often
correspond to those in a dyadic scale.

From the signal analyst’s point of view, wavelet analysis is a decomposition of
the signal on a family of analyzing signals, which is an “orthogonal function
method.” From an algorithmic point of view, wavelet analysis offers a
harmonious compromise between decomposition and smoothing techniques.

Wavelet Decomposition:
A Hierarchical Organization
Unlike conventional techniques, wavelet decomposition produces a family of
hierarchically organized decompositions The selection of a suitable level for
the hierarchy will depend on the signal and experience. Often the level is
chosen based on a desired low-pass cutoff frequency.

At each level j, we build the j-level approximation, Aj, or approximation at level
j, and a deviation signal called the j-level detail, Dj, or detail at level j. The
original signal we could consider as the approximation at level 0, denoted by
A0. The words “approximation” and “detail” are justified by the fact that A1 is
an approximation of A0 taking into account the “low frequencies” of A0, whereas
the detail D1 corresponds to the “high frequency” correction. The figure on Page
1-23 graphically represents this hierarchical decomposition.

As outlined in Chapter 1, one way of understanding this decomposition consists
of using an optical comparison. Successive images A1, A2, A3 of a given object are
built. We use the same type of photographic devices, but with increasingly poor
resolution. The images are successive approximations; one detail is the
discrepancy between two successive images. Image A2 is therefore the sum of
image A4 and intermediate details D4, D3:

A2 A3 D3 A4 D4 D3+ +=+=
6-5

6 Advanced Concepts

6-6
Finer and Coarser Resolutions
The organizing parameter, the scale a, is related to level j, by . If we
define resolution as 1/a, then the resolution increases as the scale decreases.
The greater the resolution, the smaller and finer are the details that can be
accessed.

From a technical point of view, the size of the revealed details for any j is
proportional to the size of the domain in which the wavelet or analyzing
function of the variable x, , is not too close to 0. The proportionality
coefficient depends on the wavelet.

Wavelet Shapes
One-dimensional analysis is based on one scaling function φ and one wavelet ψ.
Two-dimensional analysis (on a square or rectangular grid) is based on one
scaling function and three wavelets.

Figure 6-1 shows φ and ψ for each wavelet, except the Morlet wavelet and the
Mexican hat for which φ does not exist. All the functions decay quickly to zero.
The Haar wavelet is the only noncontinuous function with three points of
discontinuity (0, 0.5, 1). The ψ functions oscillate more than associated φ
functions. coif2 exhibits some angular points, db6 and sym6 are quite smooth.
The Morlet and Mexican hat wavelets are symmetrical.

j 10 9 ... 2 1 0 -1 -2

Scale 1024 512 ... 4 2 1 1/2 1/4

Resolution 1/210 1/29 ... 1/4 1/2 1 2 4

a 2
j

=

ψ x
a
--- 

 

φ x1 x2,()

General Concepts
Figure 6-1: Various One-Dimensional Wavelets

−4 −2 0 2

0.5

0

0.5

Morlet wavelet function

−5 0 5

0.2

0

0.2

0.4

0.6

0.8

Mexican hat wavelet function

−5 0 5

−0.5

0

0.5

1

Meyer scaling function

−5 0 5

−0.5

0

0.5

1

Meyer wavelet function

0 0.5 1

−1

−0.5

0

0.5

1

Haar scaling function

0 0.5 1

−1

−0.5

0

0.5

1

Haar wavelet function

0 5 10

−1

−0.5

0

0.5

1

db6 scaling function

0 5 10

−1

−0.5

0

0.5

1

db6 wavelet function

0 5 10
−1

−0.5

0

0.5

1

1.5

coif2 scaling function

0 5 10
−1

−0.5

0

0.5

1

1.5

coif2 wavelet function

0 5 10
−1

−0.5

0

0.5

1

1.5
sym6 scaling function

0 5 10
−1

−0.5

0

0.5

1

1.5
sym6 wavelet function
6-7

6 Advanced Concepts

6-8
Wavelets and Associated Families
In the one-dimensional context, we distinguish the wavelet ψ from the
associated function φ, called the scaling function. Some properties of the ψ and
φ are:

• The integral of ψ is zero, , and ψ is used to define the details.

• The integral of φ is 1, , and φ is used to define the
approximations.

The usual two-dimensional wavelets are defined as tensor products of
one-dimensional wavelets: φ(x,y) = φ(x)φ(y) is the scaling function and
ψ1(x,y) = φ(x)ψ(y), ψ2(x,y) = ψ(x)φ(y), ψ3(x,y) = ψ(x)ψ(y) are the three wavelets.

Figure 6-2 shows the four functions associated with the two-dimensional coif2
wavelet.

ψ x() xd∫ 0=()

φ x() xd∫ 1=()

General Concepts
Figure 6-2: Two-Dimensional coif2 Wavelet
6-9

6 Advanced Concepts

6-1
To each of these functions, we associate its doubly indexed family, which is
used to:

• Move the shape, translating it to position b (see Figure 6-3).

• Keep the shape while changing the one-dimensional time scale a (), see
Figure 6-4.

So a wavelet has to be thought as a function located at a position b, and having
a scale a.

In one-dimensional situations, the family of translated and scaled wavelets
associated with ψ is expressed as:

Figure 6-3: Translated Wavelets

Wavelet db3(x) is in the middle, db3(x + 8) on the left, db3(x-8) on the right.

Translation Change of scale Translation and change of scale

ψ(x-b)

a 0>

1

a
-------ψ x

a
--- 

  1

a
-------ψ x b–

a
----------- 

 

−10 −5 0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

2

0

General Concepts
Figure 6-4: Time scaled one-dimensional wavelet

Wavelet db3(x) is in the middle, db3(2x + 7) on the left, db3(x/2 - 7) on the right.
In a two-dimensional context, we have the translation by vector and a
change of scale of parameter .
Translation and change of scale become: where

.

In most cases, we will limit our choice of a and b values by using only the
following discrete set (coming back to the one-dimensional context):

What is more, let us define:

We now have a hierarchical organization similar to the organization of a
decomposition, which is represented in the example of the Figure 6-5. Let
k = 0 and leave the translations aside for the moment. The functions (expressed
as φj,0) associated with j = 0, 1, 2, 3 for φ and with j = 1, 2, 3 for ψ (expressed as
ψj,0) are displayed in Figure 6-5 for the db3 wavelet.

−10 −5 0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

b1 b2[,] ′
a1 a2[,] ′

1

a1a2

---------------ψ
x1 b1–

a1

x2 b2–

a2
---------------- , 

 
x x1 x2(,) R

2∈=

j k(,) Z
2∈ : a 2

j
,= b k2

j
ka.= =

j k(,) Z
2∈ : ψj k, 2

j 2⁄– ψ 2
j–
x k–() φ j k, 2

j 2⁄– φ 2
j–
x k–().=,=
6-11

6 Advanced Concepts

6-1
Figure 6-5: Wavelets Organization

0 20 40

−1

0

1

2
phi(x)

0 20 40

−1

0

1

2
phi(x/2)

0 20 40

−1

0

1

2
phi(x/4)

0 20 40

−1

0

1

2
psi(x/2)

0 20 40

−1

0

1

2
psi(x/4)

0 20 40

−1

0

1

2
phi(x/8)

0 20 40

−1

0

1

2
psi(x/8)
2

General Concepts
In Figure 6-5, the four level decomposition is shown, progressing from the top
to the bottom, we find φ0,0, then 21/2φ1,0, 2

1/2ψ1,0 then 2φ2,0, 2ψ2,0 then
23/2φ3,0, 23/2ψ3,0. The wavelet is db3.

Wavelets on a Regular Discrete Grid
To complement the wavelets introduced previously, we use wavelets defined on
grids, when the signal is sampled on a regular grid. The simplest of these
wavelets is deduced from wavelets capable of analyzing the signals that are
recorded continuously. Figure 6-6 shows some of these wavelets
(non-normalized).

Figure 6-6: Discrete wavelets

0 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Haar scaling filter

0 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Haar wavelet filter

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

db6 scaling filter

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

db6 wavelet filter

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

sym6 scaling filter

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

sym6 wavelet filter

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
coif2 scaling filter

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
coif2 wavelet filter
6-13

6 Advanced Concepts

6-1
The wavelet filter g, plays the role of ψ. The scaling filter h plays the role of φ.
They are defined on a regular grid ∆Z, where ∆ is the sampling period. Let us
set ∆ = 1. Like the previous wavelets, functions g and h are subjected to scalings
and translations.

Using a function g defined on Z and a scale equal to 2
j
, for and , we

define the function gj,k by:

Wavelet Transforms: Continuous and Discrete
The wavelet transform of a signal s is the family C(a,b), which depends on two
indices a and b. The set to which a and b belong is given below in the table. The
studies focus on three kinds of signals:

• Continuous time signal, recorded continuously

• Sampled signal

• Discrete time signal recorded in discrete time

and two transforms:

• Continuous transform

• Discrete transform.

From an intuitive point of view, the wavelet decomposition consists of
calculating a “resemblance index” between the signal and the wavelet. If the
index is large, the resemblance is strong, otherwise it is slight. The indexes
C(a,b) are called coefficients.

j N∈ k N∈

n Z∈ , gj k, n() 2
j– 2⁄

g 2
j–
n k–()=
4

General Concepts
We define the coefficients in the following tables. We have three types of
analysis at our disposal.

Let us illustrate the differences between the two transforms, for the analysis
of a fractal signal (see Figure 6-7).

Figure 6-7: Continuous versus discrete transform

Continuous time
“continuous” analysis

Continuous time
“discrete” analysis

Discrete time (∆ = 1)
“discrete” analysis

C a b,() s t() 1

a
-------ψ t b–

a
---------- 

  td
R
∫= C a b,() s t() 1

a
-------ψ t b–

a
---------- 

  td
R
∫= C a b,() C j k,() s n()gj k, n()

n Z∈
∑= =

a R
+

0{ }–∈ b R∈, a ∆2
j

= b ∆k2
j

= j k(,) Z
2∈, , a 2

j
= b k2

j
= j N∈ k Z∈, , ,

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02
Analyzed signal.

Discrete Transform, absolute coefficients.

le
ve

l

100 200 300 400 500

Continuous Transform, absolute coefficients.

Sc
al

e

100 200 300 400 500
6-15

6 Advanced Concepts

6-1
Using a redundant representation close to the so-called continuous analysis,
instead of a non-redundant discrete time-scale representation, can be useful for
analysis purposes. The non-redundant representation is associated with an
orthonormal basis, whereas the redundant representation uses much more
scale and position parameters than a basis. For a classical fractal signal, the
redundant methods are quite accurate.

• Graphic representation of continuous analysis: time is on the abscissa
and on the ordinate the scale varies almost continuously between 21 and 25
by step 1 (down to up). Keep in mind that when a scale is small, only small
details are analyzed, as in a geographical map.

• Graphic representation of discrete analysis: (in the middle of the
figure) time is on the abscissa and on the ordinate the scale a is dyadic: 21,
22, 23, 24 and 25 (down to up). Each coefficient of level k is repeated 2k times.

Local and Global Analysis
A small scale value permits us to perform a local analysis; a large scale value
is used for a global analysis. Combining local and global is a useful feature of
the method. Let us be a bit more precise about the local part and glance at the
frequency domain counterpart.

Imagine that the analyzing function φ or ψ is zero outside of a domain U, which
is contained in a disk of radius ρ: . The wavelet is localized.
The signal s and the function ψ are then compared in the disk, taking into
account only the x values in the disk. The signal values, which are located
outside of this domain, do not influence the value of the coefficient

. The same argument holds when ψ is translated to position b and

the corresponding coefficient analyzes s around b. So this analysis is local.

The wavelets having a compact support are used in local analysis. This is the
case for Haar and Daubechies wavelets, for example. The wavelets whose
values are considered as very small outside a domain U can be used with
caution, as if they were in fact actually zero outside U. Not every wavelet has a
compact support. This is the case, for instance, of the Meyer wavelet.

ψ u() = 0, u∀ U∉

s t()ψ t() td
R∫
6

General Concepts
The previous localization is temporal, and is useful in analyzing a temporal
signal (or spatial signal if analyzing an image). A result (linked to the
Heisenberg uncertainty principle) links the signal dispersion f and the
dispersion of its Fourier transform , and therefore of the dispersion of ψ
and . The product of these dispersions is always greater than a constant c
(which does not depend on the signal, but only on the dimension of the space).
So, it is impossible to reduce arbitrarily both time and frequency localization.

In the Fourier and spectral analysis, the basic function is .
This function is not a localized function. The support is R. Its Fourier
transform is a distribution concentrated at point . The function f is very
poorly localized in time, but is perfectly localized in frequency. The wavelets
generate an interesting “compromise” on the supports, and this compromise
differs from that of complex exponentials, sine, or cosine.

Synthesis: An Inverse Transform
In order to be efficient and useful, a method designed for analysis also has to
be able to perform synthesis. The wavelet method achieves this.

The analysis starts from s and results in the coefficients C(a,b). The synthesis
starts from the coefficients C(a,b) and reconstructs s. Synthesis is the reciprocal
operation of analysis.

For signals of finite energy, there are two formulas to perform the inverse
wavelet transform:

• Continuous synthesis:

 where is a constant depending on ψ.

• Discrete synthesis:

f̂
ψ̂

f x() exp iωx()=

f̂ ω
f̂

s t()
1

Kψ

R+∫ C a b,() 1

a
-------ψ t b–

a
---------- 

 
da db

a
2

R

∫=

Kψ

s t() C j k,()ψj k, t().
k Z∈
∑

j Z∈
∑=
6-17

6 Advanced Concepts

6-1
Details and Approximations
The equations for continuous and discrete synthesis are of considerable
interest and can be read in order to define the detail at level j:

1 Let us fix j and sum on k. A detail is nothing more than the function

2 Now let us sum on j. The signal is the sum of all the details: .

The details have just been defined. Take a reference level called J. There are
two sorts of details. Those associated with indices correspond to the scales

 which are the fine details. The others, which correspond to j > J, are
the coarser details. We group these latter details into

which defines what is called an approximation of the signal s. We have just
created the details and an approximation. They are connected. The equality

signifies that s is the sum of its approximation AJ and of its fine details. From
the previous formula, it is obvious that the approximations are related to one
another by:

The calculation of the approximation coefficients will be discussed later.

Dj

Dj t() C j k(,)ψj k, t().
k Z∈
∑=

s Djj Z∈∑=

j J≤
a 2

j
2

J≤=

AJ Dj
j J>
∑=

s AJ Dj
j J≤
∑+=

AJ 1– AJ DJ.+=
8

General Concepts
For an orthogonal analysis, in which the ψj,k is an orthonormal family,

• AJ is orthogonal to DJ, DJ-1, DJ-2, ...,

• s is the sum of the two orthogonal signals: AJ and ,

• .

• the quality (in energy) of the approximation of s by AJ is ,

• .

The following table contains definitions of details and approximations.

From a graphical point of view, when analyzing a signal, it is always valuable
to represent the different signals and coefficients.

Definition of the detail at level j

The signal is the sum of its details

The approximation at level J

Link between AJ-1 and AJ AJ-1 = AJ + DJ

Several decompositions

Dj
j J≤
∑

Dj Dk for j k≠⊥

qualJ
AJ

2

s
2

-------------=

qualJ 1– qualJ
DJ

2

s
2

--------------+=

Dj t() C j k(,)ψj k, t()
k Z∈∑=

s Djj Z∈∑=

AJ Djj J>∑=

s AJ Djj J≤∑+=
6-19

6 Advanced Concepts

6-2
Let us consider the Figure 6-8. The different signals that are presented exist in
the same time grid. We can consider that the t index of detail D4(t), for example,
that of an approximation A5(t) and that of the signal s(t), identify the same
temporal instant. This identity is of considerable practical interest in
understanding the composition of the signal, even if the wavelet sometimes
introduces dephasing.

Figure 6-8: Approximations, details and coefficients

200

400
s

200

300

400

500

a4

200

300

400

500

a3

200

300

400

500

a2

1000 2000 3000 4000

200

300

400

500

a1

−20

0

20

40

d4

−10
0

10
20

d3

−10
0

10
20

d2

1000 2000 3000 4000
−20

0

20

d1

200

300

400

500

a5

−20

0

20

d5

200

300

400

500

s

Signal and Approximation(s)

cfs

Signal and Detail(s)

1
2
3
4
5

0

The Fast Wavelet Transform (FWT) Algorithm
The Fast Wavelet Transform (FWT) Algorithm
In 1988, Mallat produced a fast wavelet decomposition and reconstruction
algorithm [Mal89]. The Mallat algorithm for discrete wavelet transform (DWT)
is, in fact, a classical scheme in the signal processing community, known as a
two channel subband coder using conjugate quadrature filters or quadrature
mirror filters (QMF).

• The decomposition algorithm starts with signal s, then calculates the
coordinates of A1 and D1, then those of A2 and D2 and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform
(IDWT), starts from the coordinates of AJ and DJ then calculates the
coordinates of AJ-1, then from the coordinates of AJ-1 and DJ-1 calculates those
of AJ-2 and so on.

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework (see [Dau92]
chap. 5), we start with the scaling function φ and the wavelet function ψ. One
of the fundamental relations is the twin-scale relation (dilation equation or
refinement equation):

All the filters used in DWT and IDWT are intimately related to the sequence
. Clearly if φ is compactly supported, the sequence (wn) is finite and can

be viewed as a filter. The filter W, which is called the scaling filter
(non-normalized), is:

• Finite Impulse Response (FIR)

• of length 2N

• of sum 1

• of norm

• a low-pass filter

1
2
---φ x

2
--- 

  wnφ x n–().
n Z∈
∑=

wn()
n Z∈

1

2

6-21

6 Advanced Concepts

6-2
For example, for the db3 scaling filter:

load db3
db3

db3 =

0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)

ans =
1.0000

norm(db3)
ans =

0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized
as follows:

The four filters are computed using the following scheme:

Filters Low-pass High-pass

Decomposition LoF_D HiF_D

Reconstruction LoF_R HiF_R

LoF_R =
norm(W)

LoF_D = wrev(LoF_R)

HiF_D = wrev(HiF_R)

W

W

HiF_R = qmf (LoF_R)
2

The Fast Wavelet Transform (FWT) Algorithm
where qmf is such that HiF_R and LoF_R are quadrature mirror filters (i.e.,
HiF_R(k) = (-1)kLoF_R(2N - 1 - k)). Note that wrev flips the filter coefficients. So
HiF_D an LoF_D are also quadrature mirror filters. The computation of these
filters is performed using orthfilt. Let us illustrate these properties with the
db6 wavelet. The plots associated with the following M-file are shown in the
Figure 6-9.

% Load scaling filter.
load db6; w = db6;
subplot(421); stem(w); title('Original scaling filter’);

% Compute the four filters.
[LoF_D,HiF_D,LoF_R,HiF_R] = orthfilt(w);
subplot(423); stem(LoF_D);
title('Decomposition low-pass filter’);
subplot(424); stem(HiF_D);
title('Decomposition high-pass filter’);
subplot(425); stem(LoF_R);
title('Reconstruction low-pass filter’);
subplot(426); stem(HiF_R);
title('Reconstruction high-pass filter’);

% High and low frequency illustration.
fftld = fft(LoF_D); ffthd = fft(HiF_D);
freq = [1:length(LoF_D)]/length(LoF_D);
subplot(427); plot(freq,abs(fftld));
title('Transfer modulus: low-pass’)
subplot(428); plot(freq,abs(ffthd));
title('Transfer modulus: high-pass’)
6-23

6 Advanced Concepts

6-2
Figure 6-9: The four wavelet filters

Algorithms
• Given a signal s of length N, the DWT consists of log2N stages at most. The

first step produces, starting from s, two sets of coefficients: approximation
coefficients cA1 and detail coefficients cD1. These vectors are obtained by
convolving s with the low-pass filter LoF_D for approximation, and with the
high-pass filter HiF_D for detail, followed by dyadic decimation.

0 5 10 15
−1

−0.5

0

0.5

1
Original scaling filter

0 5 10 15
−1

−0.5

0

0.5

1
Decomposition low−pass filter

0 5 10 15
−1

−0.5

0

0.5

1
Decomposition high−pass filter

0 5 10 15
−1

−0.5

0

0.5

1
Reconstruction low−pass filter

0 5 10 15
−1

−0.5

0

0.5

1
Reconstruction high−pass filter

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Transfer modulus: low−pass

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Transfer modulus: high−pass
4

The Fast Wavelet Transform (FWT) Algorithm
More precisely, the first step is:

The length of each filter is equal to 2N. If n = length(s), the signals F and G, are
of length n + 2N - 1 and then the coefficients cA1 and cD1 are of length

.

The next step splits the approximation coefficients cA1 in two parts using the
same scheme, replacing s by cA1, and producing cA2 and cD2, and so on.

So the wavelet decomposition of the signal s analyzed at level j has the
following structure: [cAj, cDj, ..., cD1].

s

LoF_D

HiF_D

high-pass filter

F

G

downsample

downsample approximation

cA1

cD1

2

detail

low-pass filter

2

where:

2

X Convolve with filter X.

Keep the even indexed elements
(see dyaddown).

 coefficients

coefficients

floor
n 1–

2
------------ 

  N+

One-Dimensional DWT

Decomposition step

LoF_D

HiF_D

cAj

2

Initialization

Convolve with filter X.

Downsample.

cA0 = s.

where

2

2

X

cAj+1

cDj+1

level j+1
level j
6-25

6 Advanced Concepts

6-2
 This structure contains for J=3, the terminal nodes of the following tree:

• Conversely, starting from cAj and cDj, the IDWT reconstructs cAj-1, inverting
the decomposition step by inserting zeros and convolving the results with the
reconstruction filters.

s

cD1

cD2

cD3cA3

cAj-1

LoF_R

HiF_R

high-pass

U

upsample

upsample

cAj

cDj

2

level j

low-pass

where: 2

X Convolve with filter X.

Insert zeros at odd-indexed elements.

Take the central part of U with the

2

wkeep

wkeep
convenient length.

level j-1

One-Dimensional IDWT

Reconstruction step
6

The Fast Wavelet Transform (FWT) Algorithm
• For images, a similar algorithm is possible for two-dimensional wavelets and
scaling functions obtained from one-dimensional wavelets by tensorial
product.

This kind of two-dimensional DWT leads to a decomposition of
approximation coefficients at level j in four components: the approximation
at level j + 1 and the details in three orientations (horizontal, vertical, and
diagonal).

The following charts describe the basic decomposition and reconstruction
steps for images:

Two-Dimensional DWT

Decomposition step

rows

Lo_D

Hi_D

rows

cAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns.

Downsample rows: keep the even indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

CA0 = s for the decomposition initialization.

Where:

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows
6-27

6 Advanced Concepts

6-2
Two-Dimensional IDWT

Reconstruction step

cAj

rows

Upsample columns: insert zeros at odd-indexed columns.

Upsample rows: insert zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

Where:

12

12

12

12

2 1

21

X

rows

Hi_R

Lo_R

X

rows

rows

Hi_R

Lo_R

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows

columns

Lo_R

Hi_R

columns

1 2

1 2

wkeep
8

The Fast Wavelet Transform (FWT) Algorithm
So, for J = 2, the two-dimensional wavelet tree has the form:

Finally, let us mention that, for biorthogonal wavelets, the same algorithms
hold but the decomposition filters on one hand and the reconstruction filters on
the other hand are obtained from two distinct scaling functions associated with
two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of
different odd lengths. This situation occurs, for example, for “splines”
biorthogonal wavelets used in the toolbox. By zero-padding, the four filters can
be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?
Let us denote h = LoF_R and g = HiF_R and focus on the one-dimensional case.

We first justify how to go from level j to level j+1, for the approximation vector.
This is the main step of the decomposition algorithm for the computation of the
approximations. The details are calculated in the same way using the filter g
instead of filter h.

 Let be the coordinates of the vector Aj:

cD
(h)
1 cD

(d)
1 cD

(v)
1

cA 2 cD
(h)
2 cD

(d)
2

cD
(v)
2

s

Ak
j()()k Z∈

Aj Ak
j()φj k,

k
∑=
6-29

6 Advanced Concepts

6-3

and the coordinates of the vector Aj+1:

 is calculated using the formula:

This formula resembles a convolution formula.

The computation is very simple. Let us define , and

We obtain:

We have to take the even index values of F. This is downsampling.

The initialization is carried out using where s(k) is the signal value
at time k.

There are several reasons for this surprising result, all of which are linked to
the multiresolution situation and to a few of the properties of the functions φj,k
and ψj,k.

Ak
j 1+()

Aj 1+ Ak
j 1+()φj 1+ k,

k
∑=

Ak
j 1+()

Ak
j 1+()

hn 2k– A
n

j()

n
∑=

h̃ k() h k–()=

Fk
j 1+()

h̃k n– An
j()

n
∑=

Ak
j 1+()

F2k
j 1+()

=

Ak
0()

s k()=
0

The Fast Wavelet Transform (FWT) Algorithm
Let us now describe some of them.

1 The family is formed of orthonormal functions. As a conse-
quence for any j, the family is orthonormal.

2 The double indexed family is orthonormal.

3 For any j, the are orthogonal to

4 Between two successive scales, we have a fundamental relation, called the
“twin-scale relation”:

Twin-scale relation for φ

φ0 k, k Z∈,()
φ j k, k Z∈,()

ψj k, j Z∈ k Z∈, ,()

φj k, k Z∈,() ψj ′ k, j ′ j≤ k Z∈, ,()

φ1 0, hkφ0 k,
k Z∈
∑= φj 1+ 0, hkφj k,

k Z∈
∑=
6-31

6 Advanced Concepts

6-3
This relation introduces the algorithm’s h filter (), see the section
“Filters Used to Calculate the DWT and IDWT” on page 6-21).

5 We check that:

a. the coordinate of on φj,k is and does not depend on j,

b. the coordinate of on φj,k is equal to: .

6 These relations supply the ingredients for the algorithm.

7 Up to now we used the filter h. The high-pass filter g is used in the twin
scales relation linking the ψ and φ functions. Between two successive scales,
we have the following twin-scale fundamental relation.

8 We justify now the reconstruction algorithm by building it. Let us simplify
the notation, starting from A1 and D1, let us study A0 = A1 + D1. The
procedure is the same to calculate Aj = Aj+1 + Dj+1.

Let us define αn, δn, by:

Let us assess the coordinates as:

We will focus our study on the first sum ; the second sum

Twin-scale relation between ψ and φ

hn 2wn=

φ j 1+ 0, hk

φj 1+ n, φj 1+ n, φj k,,〈 〉 hk 2n–=

ψ1 0, gkφ0 k,
k Z∈
∑= ψj 1+ 0, gkφj k,

k Z∈
∑=

αk
0

A1 αnφ1 n,
n
∑= , D1 δnψ1 n,

n
∑= , A0 αk

0φ0 k,
k
∑= ,

αk
0

αk
0

A0 φ0 k,,〈 〉 A1 D1+ φ0 k,,〈 〉 A1 φ0 k,,〈 〉 D1 φ0 k,,〈 〉+= = =

αn φ1 n, φ0 k,,〈 〉
n
∑ δn ψ1 n, φ0 k,,〈 〉

n
∑+=

αnhk 2n–
n
∑ δngk 2n–

n
∑+=

αnhk 2n–n∑
2

The Fast Wavelet Transform (FWT) Algorithm
 is handled in a similar manner. The calculations are easily

organized if we note that (taking k = 0 in the previous formulas, makes things
simpler):

If we transform the (αn) sequence into a new sequence defined by
..., α-1, 0, α0, 0, α1, 0, α2, 0, ... or

Then:

 and by extension:

Since the procedure thus becomes:

• Replace the α and δ sequences by upsampled versions and inserting
zeros

• Filter by h and g respectively

• Sum the obtained sequences

These are exactly the reconstruction steps.

δngk 2n–n∑

… α 1– h2 0h1 α0h0 0h 1– α1h 2– 0h 3– α2h 4– …+ + + + + + + +=

αnh 2n–
n
∑ … α 1– h2 α0h0 α1h 2– α2h 4– …+ + + + +=

α̃n()

α̃2n α̃n α̃2n 1+, 0= =

αnh 2n–
n
∑ α̃nh n–

n
∑=

αnhk 2n–
n
∑ α̃nhk n–

n
∑=

αk
0 α̃nhk n–

n
∑ δ̃ngk n–

n
∑+=

α̃ δ̃
6-33

6 Advanced Concepts

6-3
One-Dimensional Wavelet Capabilities
The basic one-dimensional objects are:

The analysis-decomposition capabilities are:

The synthesis-reconstruction capabilities are:

Objects Description

Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k

Coefficients in scale-related time cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1

Purpose Input Output M-file

Single-level decomposition s cA1, cD1 dwt

Single-level decomposition cAj cAj+1, cDj+1 dwt

Decomposition s [cAj, cDj, ..., cD1] wavedec

Purpose Input Output M-file

Single-level reconstruction cA1, cD1 s or A0 idwt

Single-level reconstruction cAj+1, cDj+1 cAj idwt

Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec

Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef

Single reconstruction cAj (or cDj) Aj (or Dj) upcoef
4

One-Dimensional Wavelet Capabilities
The decomposition structure utilities are:

Let us illustrate the command line mode for one-dimensional capabilities:

% Load original 1D signal.

load leleccum; s = leleccum(1:3920);
ls = length(s);

% Perform one step decomposition
% of s using db1.

[ca1,cd1] = dwt(s,'db1');

Results are displayed in Figure 6-10

% Perform one step reconstruction of
% ca1 and cd1.

a1 = upcoef('a',ca1,'db1',1,ls);
d1 = upcoef('d',cd1,'db1',1,ls);

Results are displayed in Figure 6-11.

Purpose Input Output M-file

Extraction of detail
coefficients

[cAj, cDj, ..., cD1] cDk,

1 ≤ k ≤ j

detcoef

Extraction of
approximation
coefficients

[cAj, cDj, ..., cD1] cAk,

0≤ k ≤ j

appcoef

Recomposition of
the decomposition
structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., cD1]

1 ≤ k ≤ j

upwlev
6-35

6 Advanced Concepts

6-3
Figure 6-10: Coefficients at level 1

0 500 1000 1500 2000 2500 3000 3500 4000
100

200

300

400

500

600
Original signal s.

0 500 1000 1500 2000
0

200

400

600

800
Approx. coef. : ca1

0 500 1000 1500 2000
−30

−20

−10

0

10

20

30
Detail coef. : cd1
6

One-Dimensional Wavelet Capabilities
Figure 6-11: Signals at level 1

% Invert direct decomposition of s
% using coefficients.

a0 = idwt(ca1,cd1,'db1',ls);

% Perform decomposition at level 3
% of s using db1.

[c,l] = wavedec(s,3,'db1');

% Extract the approximation coefficients
% at level 3, from the wavelet decomposition
% structure [c,l].

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600
Original signal s.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600
Approximation : a1.

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50
Detail : d1.
6-37

6 Advanced Concepts

6-3
ca3 = appcoef(c,l,'db1',3);

% Extract the detail coefficients at levels
% 1, 2 and 3, from the wavelet decomposition
% structure [c,l].

cd3 = detcoef(c,l,3);
cd2 = detcoef(c,l,2);
cd1 = detcoef(c,l,1);

Results are displayed in Figure 6-12, the signal s, ca3, cd3, cd2 and cd1 from
the top to the bottom.

Figure 6-12: Coefficients at levels 1 to 3

0 500
0

1000

2000
0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000
Original signal s and coefficients.

0 500
−100

0

100

0 500 1000
−50

0

50

0 500 1000 1500 2000
−50

0

50
8

One-Dimensional Wavelet Capabilities
% Reconstruct the approximation at level 3,
% from the wavelet decomposition
% structure [c,l].

a3 = wrcoef('a',c,l,'db1',3);

% Reconstruct the detail at
% level 2, from the wavelet
% decomposition structure [c,l].

d2 = wrcoef('d',c,l,'db1',2);

% Reconstruct s from the wavelet
% decomposition structure [c,l], s = a0.

a0 = waverec(c,l,'db1');
6-39

6 Advanced Concepts

6-4
Two-Dimensional Wavelet Capabilities
The basic two-dimensional objects are:

Dk stands for , the horizontal, vertical and diagonal
details at level k.

The same holds for cDk which stands for: .

The two-dimensional M-files are exactly the same as in one-dimensional case,
appending a 2 on the end of the command. For example, idwt becomes idwt2.

Objects Description

Image in original
resolution

s Original image

A0 Approximation at level 0

Ak, 1 ≤ k ≤ j Approximation at level k

Dk, 1 ≤ k ≤ j Details at level k

Coefficients in
scale-related
resolution

cAk, 1 ≤ k ≤ j Approximation coefficients at level k

cDk, 1 ≤ k ≤ j Detail coefficients at level k

[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk
h()

 Dk
v()

, Dk
d()

,[]

cDk
h()

 cDk
v()

, cDk
d()

,[]
0

Two-Dimensional Wavelet Capabilities
Let us illustrate the command line mode for two-dimensional capabilities:

% Load original image.
load woman;
sX = size(X);
% X contains the loaded image and
% map contains the loaded colormap.
row = sX(1); col = sX(2);

% Image coding.
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);

% Perform one step decomposition
% of X using db1.
[ca1,chd1,cvd1,cdd1] = dwt2(X,'db1');

% Images coding.
cod_ca1 = wcodemat(ca1,nbcol);
cod_chd1 = wcodemat(chd1,nbcol);
cod_cvd1 = wcodemat(cvd1,nbcol);
cod_cdd1 = wcodemat(cdd1,nbcol);
dec2d = [...

cod_ca1, cod_chd1; ...
cod_cvd1, cod_cdd1 ...
];

% Visualize the coefficients of the decomposition
% at level 1.

Results are displayed in Figure 6-13.
6-41

6 Advanced Concepts

6-4
Figure 6-13: Decomposition at level 1

% Perform second step decomposition:
% decompose approx. cfs of level 1.
[ca2,chd2,cvd2,cdd2] = dwt2(ca1,'db1');

% Invert directly decomposition of X
% using coefficients at level 1.
a0 = idwt2(ca1,chd1,cvd1,cdd1,'db1',sX);

% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');

Results are displayed in Figure 6-14.
2

Two-Dimensional Wavelet Capabilities
Figure 6-14: Decomposition at level 2

% Extract approximation coefficients
% at level 2, from wavelet decomposition
% structure [c,s].
ca2 = appcoef2(c,s,'db1',2);

% Extract details coefficients at level 2
% from wavelet decomposition
% structure [c,s].
chd2 = detcoef2('h',c,s,2);
cvd2 = detcoef2('v',c,s,2);
cdd2 = detcoef2('d',c,s,2);

% Extract approximation and details coefficients
% at level 1, from wavelet decomposition
% structure [c,s].
ca1 = appcoef2(c,s,'db1',1);
chd1 = detcoef2('h',c,s,1);
cvd1 = detcoef2('v',c,s,1);
cdd1 = detcoef2('d',c,s,1);
6-43

6 Advanced Concepts

6-4
% Reconstruct approximation at level 2,
% from the wavelet decomposition
% structure [c,s].
a2 = wrcoef2('a',c,s,'db1',2);

% Reconstruct details at level 2,
% from the wavelet decomposition
% structure [c,s].
hd2 = wrcoef2('h',c,s,'db1',2);
vd2 = wrcoef2('v',c,s,'db1',2);
dd2 = wrcoef2('d',c,s,'db1',2);

% One step reconstruction of wavelet
% decomposition structure [c,s].
sc = size(c)

sc =
1 65536

val_s = s

val_s =
64 64
64 64
128 128
256 256

[c,s] = upwlev2(c,s,'db1'); sc = size(c)

sc =
1 65536

val_s = s
val_s =

128 128
128 128
256 256
4

Two-Dimensional Wavelet Capabilities
% Reconstruct approximation and details
% at level 1, from coefficients.
%
% step 1: extract coefficients
% decomposition structure [c,s].
%
% step 2: reconstruct.

siz = s(size(s,1),:);
ca1 = appcoef2(c,s,'db1',1);
a1 = upcoef2('a',ca1,'db1',1,siz);
clear ca1

chd1 = detcoef2('h',c,s,1);
hd1 = upcoef2('h',chd1,'db1',1,siz);
clear chd1

cvd1 = detcoef2('v',c,s,1);
vd1 = upcoef2('v',cvd1,'db1',1,siz);
clear cvd1

cdd1 = detcoef2('d',c,s,1);
dd1 = upcoef2('d',cdd1,'db1',1,siz);
clear cdd1

% Reconstruct X from the wavelet
% decomposition structure [c,s].
a0 = waverec2(c,s,'db1');
6-45

6 Advanced Concepts

6-4
Dealing with Border Distortion
Classically the DWT is defined for sequences with length of some power of two,
and different ways of extending samples of other sizes are needed. Methods for
extending the signal include: zero-padding, periodic extension, and boundary
value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based
on a simple scheme; convolution and downsampling. As usual, when a
convolution is performed on finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization,
and Smooth Padding
In order to deal with border distortions, the border should be treated
differently. Various methods are available to deal with this problem, referred
as ''wavelets on the interval” (see [CohDJV93]). These interesting
constructions are effective in theory but are not entirely satisfactory from a
practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the
boundaries. This involves the computation of a few extra coefficients at each
stage of the decomposition process in order to get a perfect reconstruction.
Details about the rationale of these schemes can be found in Chapter 8 of the
book Wavelets and Filter Banks, by Strang and Nguyen.
6

Dealing with Border Distortion
The available signal extension modes are: (see dwtmode)

• zero-padding: This method is used in the version of the DWT given in the
previous sections and assumes that the signal is zero outside the original
support. It is the default mode of the wavelet transform in the toolbox.

The disadvantage of zero-padding is that discontinuities are artificially
created at the border.

• symmetrization: This method assumes that signals or images can be
recovered outside their original support by symmetric boundary value
replication.

Symmetrization has the disadvantage of artificially creating discontinuities
of the first derivative at the border, but this method works well in general for
images.

• smooth padding: This method assumes that signals or images can be
recovered outside their original support by a simple first order derivative
extrapolation. Smooth padding works well in general for smooth signals.

Before looking at an illustrative example, note that the decomposition step
with any of these three extension modes has the same inverse reconstruction
step. So all the capabilities described in the previous paragraphs are available
without any reference to the extension mode.

It is interesting to notice that if arbitrary extension is done, and decomposition
performed using the convolution-downsampling scheme, perfect reconstruction
is recovered using idwt or idwt2. This point is illustrated by the following
example.

% Set initial signal and get filters.
x = sin(0.3*[1:451]);
w = 'db9';
[LoF_D,HiF_D,LoF_R,HiF_R] = wfilters(w);

% In fact using a slightly redundant scheme, any signal
% extension strategy works well.
% For example use random padding.
6-47

6 Advanced Concepts

6-4
lx = length(x); lf = length(LoF_D);
randn('seed',654);
ex = [randn(1,lf) x randn(1,lf)];
axis([1 lx+2*lf -2 3])
subplot(211), plot(lf+1:lf+lx,x), title('Original signal')
axis([1 lx+2*lf -2 3])
subplot(212), plot(ex), title('Extended signal')
axis([1 lx+2*lf -2 3])

% Decomposition.
la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,LoF_D)),la);
dr = wkeep(dyaddown(conv(ex,HiF_D)),la);

% Reconstruction.
xr = idwt(ar,dr,w,lx);

% Check perfect reconstruction.
err0 = max(abs(x-xr))

err0 =

3.0464e-11

50 100 150 200 250 300 350 400 450
−2

−1

0

1

2

3
Original signal

50 100 150 200 250 300 350 400 450
−2

−1

0

1

2

3
Extended signal
8

Dealing with Border Distortion
Now let us illustrate the differences between the three methods both for 1-D
and 2-D signals.

Zero-Padding.

Using the GUI we will examine the effects of zero-padding.

1 From the MATLAB prompt, type

dwtmode('zpd')

2 From the MATLAB prompt, type wavemenu.The Wavelet Toolbox Main Menu
appears.

3 Click the Wavelet 1-D menu item.The discrete wavelet analysis tool for
one-dimensional signal data appears.

4 From the File menu, choose the Demo Analysis option and select with db2
at level 5 --> two nearby discontinuities.

5 Select Display Mode: Show and Scroll

The detail coefficients clearly show the signal end effects.

Symmetric Extension.

6 From the MATLAB prompt, type

dwtmode('sym')

7 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.
6-49

6 Advanced Concepts

6-5
8 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

9 From the File menu, choose the Demo Analysis option and select with
db2 at level 5 --> two nearby discontinuities.

10 Select Display Mode: Show and Scroll

The detail coefficients show the signal end effects are present, but the
discontinuities are well detected.
0

Dealing with Border Distortion
Smooth Padding.

11 From the MATLAB prompt, type

dwtmode('spd')

12 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

13 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

14 From the File menu, choose the Demo Analysis option and select with
db2 at level 5 --> two nearby discontinuities.

15 Select Display Mode: Show and Scroll

The detail coefficients show the signal end effects are not present, and the
discontinuities are well detected.

Let us now consider an image example.
6-51

6 Advanced Concepts

6-5
Original Image.

1 From the MATLAB prompt, type

load geometry; sX = size(X);
% X contains the loaded image and
% map contains the loaded colormap.
row = sX(1); col = sX(2);
nbcol = size(map,1);
colormap(pink(nbcol));
image(wcodemat(X,nbcol));
2

Dealing with Border Distortion
Zero-Padding.

Now we set the extension mode to zero-padding and perform a decomposition
of the image to level 3 using the sym4 wavelet, and then reconstruct the
approximation of level 3.

2 From the MATLAB prompt, type

dwtmode('zpd')
lev = 3;
[c,s] = wavedec2(X,lev,'sym4');
a = wrcoef2('a',c,s,'sym4',lev);
image(wcodemat(a,nbcol));
6-53

6 Advanced Concepts

6-5
Symmetric Extension.

Now we set the extension mode to symmetric extension and perform a
decomposition of the image again to level 3 using the sym4 wavelet, and then
reconstruct the approximation of level 3.

3 From the MATLAB prompt, type

dwtmode('sym')
[c,s] = wavedec2(X,lev,'sym4');
a = wrcoef2('a',c,s,'sym4',lev);
image(wcodemat(a,nbcol));
4

Dealing with Border Distortion
Smooth Padding.

Finally we set the extension mode to smooth padding and perform a
decomposition of the image again to level 3 using the sym4 wavelet, and then
reconstruct the approximation of level 3.

4 From the MATLAB prompt, type

dwtmode('spd')
[c,s] = wavedec2(X,lev,'sym4');
a = wrcoef2('a',c,s,'sym4',lev);
image(wcodemat(a,nbcol));

Periodized Wavelet Transform
Another method is the periodized wavelet transform. This method supposes
that signals or images are periodic. It is clear that in general it is far from a
reasonable assumption. The main advantage of this transform is that it does
not require extra coefficients.

In the toolbox, the periodized wavelet transform is handled separately (see
dwtper, dwtper2, idwtper, idwtper2). For the periodized wavelet transform,
the full command line capabilities described previously are not defined and the
GUI tools do not support the periodized wavelet transform.
6-55

6 Advanced Concepts

6-5
Frequently Asked Questions

Continuous or Discrete Analysis?
When is continuous analysis more appropriate than discrete analysis? To
answer this, consider the related questions: Do you need to know all values of
a continuous decomposition to reconstruct the signal s exactly? Can you
perform non-redundant analysis?

When the energy of the signal is finite, not all values of a decomposition are
needed to exactly reconstruct the original signal, provided that you are using a
wavelet that satisfies some admissibility condition (see [Dau92] p. 7, 24, 27).
Usual wavelets satisfy this condition. In that case, a continuous-time signal s
is entirely characterized by the knowledge of the discrete transform

. In such cases, discrete analysis is sufficient and continuous
analysis is redundant. When the signal is recorded in continuous time or on a
very fine time grid, both types of analysis are possible. Which should be used?
The answer is: each has its own advantages.

• Discrete analysis ensures space-saving coding and is sufficient for the
synthesis.

• Continuous analysis is often easier to interpret, since its redundancy tends
to reinforce the traits and makes all information more visible. This is
especially true of very subtle information. The analysis gains in “readability”
and in ease of interpretation what it loses in terms of space saving.

Why Are Wavelets Useful for Space-Saving Coding?
The family of functions (φ0,k;ψj,l) j ≤ 0, , used for the analysis is an
orthogonal basis, therefore leading to non-redundancy: as soon as

, and as soon as . Let us remember that

stands for , for one dimensional signals.

For biorthogonal wavelets, the idea is similar.

C j k,() j k(,), Z
2∈

k l, Z∈
φ0 k, ψj ′ k′,⊥

j ′ 0≤ ψj k, ψj ′ k′,⊥ j k(,) j ′ k′(,)≠ u v⊥

u x()v x() xd
R∫ 0=
6

Frequently Asked Questions
Why Do All Wavelets Have Zero Average and Sometimes
Several Vanishing Moments?
When the wavelet’s k + 1 moments are equal to zero (for

) all the polynomial signals have zero wavelet

coefficients, the details are also zero. This property ensures the suppression of
signals that are polynomials.

What About the Regularity of a Wavelet ψ?
The notion of regularity has been assuming increasing importance in
theoretical and practical studies. Wavelets are tools used to study regularity
and to conduct local studies. Deterministic fractal signals or Brownian motion
trajectories are locally very irregular; for example, the latter are continuous
signals, but their first derivative exists almost nowhere.

The definition of the concept of regularity is somewhat technical. To make
things simple, let us say that a signal f, defined on R, has a regularity of s.

When s is an integer, the regularity in x0 is defined as usual, s is the order of
differentiability. When s is not an integer, let m be the integer such that
m < s < m + 1, then f has a regularity of s in x0 if its derivative f(

m) of order m
resembles locally around x0.

The regularity of f in a domain is that of its least regular point.

The greater s, the more regular the signal.

The regularity of certain wavelets is known. The following table gives some
indications for Daubechies wavelets.

We have an asymptotic relation linking the size of the support of the
Daubechies wavelets dbN and their regularity: when ,

length(support) = 2N, regularity .

ψ db1 = Haar db2 db3 db4 db5 db7 db10

Regularity 0 0.5 0.91 1.27 1.59 2.15 2.90

t
jψ t() td

R∫ 0=

j 0= … k, , s t() aj t
j

0 j k≤ ≤
∑=

x x0–
s m–

N ∞→

s N
5
----≈
6-57

6 Advanced Concepts

6-5
The functions are more regular at certain points than at others
(see Figure 6-15).

Figure 6-15: Zooming in on db3 wavelet

Selecting a regularity and a wavelet for this regularity is useful in estimations
of the local properties of functions or signals. This can be used, for example, to
make sure that a signal has a constant regularity at all points. Work on
function estimation and nonlinear regression is currently underway, notably
by Donoho, Johnstone, Kerkyacharian and Picard, in order to adapt the
statistical estimators to unknown regularity. See also the remarks by
I. Daubechies (see [Dau92] p. 301).

From a practical point of view, these questions arise in the world of finance in
dealing with monetary and stock markets for fine studies of very fast
transactions.

Are Wavelets Useful in Fields Other Than Signal or
Image Processing?
• From a theoretical point of view, wavelets can be used to characterize large

sets of mathematical functions and are used in the study of operators linked
to partial differential equations.

• From a practical point of view, wavelets are used in several fields of
numerical analysis, making certain complex calculations easier to handle or
more precise.
8

Frequently Asked Questions
What Functions Are Candidates to Be a Wavelet?
If a function f is continuous, has null moments, decreases quickly towards 0
when x tends towards infinity, or is null outside a segment of R, it is a likely
candidate to become a wavelet. The family of shifts and dilations of f allows all
finite energy signals to be reconstructed using the details in all scales. Such a
function will be called ψ. This allows only continuous analysis.

In the toolbox, the ψ wavelet is usually associated with a scaling function φ.
There are, however, some ψ wavelets for which we do not know how to associate
a φ. In some cases we know how to prove that φ does not exist, for example, the
Morlet wavelet.

Is It Easy to Build a New Wavelet?
Not at the present time. More precisely, for a minimal requirement on the
wavelet properties, it is easy but without interest. But if more interesting
properties (like the existence of φ for example) are needed, then it is difficult.

Very few wavelets have an explicit analytical expression. Notable exceptions
are wavelets that are piecewise polynomials (Haar, Battle-Lemarie, see
[Dau92] p. 146), Morlet, or Mexican hat.

Wavelets, even db2, db3 ..., are defined by functional equations. The solution
for constructive equations is numerical, and is accomplished using a fairly
simple algorithm.

The basic property is the existence of a linear relation between the two
functions φ(x/2) and φ(x). Another relation of the same type links ψ(x/2) to φ(x).
These are the relations of the two scales, the twin-scale relation.

Indeed there are two sequences h and g of coefficients such that:

 andh l
2

Z()∈ g l
2

Z()∈,

1
2
---φ x

2
--- 

  1

2
------- hnφ x n–()

n Z∈
∑=

1
2
---ψ x

2
--- 

  1

2
------- gnφ x n–().

n Z∈
∑=
6-59

6 Advanced Concepts

6-6
By rewriting these formulas using Fourier transforms (expressed using a hat)
we obtain:

There are functions for which the h has a finite impulse response (FIR):
there is only a finite number of nonzero hn coefficients. The associated wavelets
were built by I. Daubechies (see [Dau92] in Chapter 6) and are used extensively
in the toolbox. The reader can refer to p. 164 and Chapter 10 of the book
Wavelets and Filter Banks, by Strang and Nguyen.

What Is the Link Between Wavelet and Fourier Analysis?
Wavelet analysis complements the Fourier analysis for which there are several
MATLAB functions: fft, spa, etfe, spectrum.

Fourier analysis uses the basic functions sin(ωt), cos(ωt), and exp(iωt), with ω
being the frequency.

• In the frequency domain, these functions are perfectly localized, since their
spectrum loads only two points -ω/2, and ω/2. The functions are suited to the
analysis and synthesis of signals with a simple spectrum, which is very well
localized in frequency, for example sin(ω1t) + 0.5sin(ω2t) - cos(ω3t).

• In the time domain, these functions are not localized. It is difficult for them
to analyze or synthesize complex signals presenting fast local variations such
as transients or abrupt changes: the Fourier coefficients for a frequency ω
will depend on all values in the signal. To limit the difficulties involved, it is
possible to “window” the signal using a regular function, which is zero or
nearly zero outside a time segment [-m, m]. We then build “a well localized
slice” as I. Daubechies (see [Dau92] p. 2) calls it. The windowed-Fourier
analysis coefficients are:

The analogy of this formula with that of the wavelet coefficients is obvious:

The large values of a correspond to small values of ω.

φ̂ 2ω() 1

2
-------h

ˆ ω()φ̂ ω()= ψ̂ 2ω() 1

2
-------ĝ ω() φ̂ ω()=

φ

ŝ ω t(,) s u()g t u–()e i ωu–
ud

R
∫=

C a t(,) s u() 1

a
------- 

 ψ t u–()
a

--------------- 
  ud

R
∫=
0

Frequently Asked Questions
The Fourier coefficient depends on the values of the signal s on the
segment with a constant width [t - m, t + m]. If ψ, like g, is zero outside of
[-m, m], the C(a,t) coefficients will depend on the values of the signal s on the
segment of width 2am, which varies as a function of [t - am, t + am]. This slight
difference solves several difficulties, allowing a kind of time-windowed analysis
at various scales a.

The wavelets stay however competitive, even in contexts considered favorable
for the Fourier technique. I. Daubechies (see [Dau92] p. 3-7) gives an example
of “Windowed Fourier” processing and complex Morlet wavelet processing

, of a signal composed mainly of the sum of two

sines. The wavelet analysis gives good results.

ŝ ω t(,)

ψ t() Ce
t– 2 α2⁄

e
i π t

e
π2– λ2 4⁄

–()=
6-61

6 Advanced Concepts

6-6
Wavelet Families: Additional Discussion
There are different types of wavelet families whose qualities vary according to
several criteria. The main criteria are:

• The support of ψ, and φ, : the speed of convergence at infinity to 0 of these
functions when the time or the frequency goes to infinity, which quantifies
both time and frequency localizations.

• The symmetry, which is useful in avoiding dephasing in image processing.

• The number of vanishing moments for ψ or for φ (if it exists), which is useful
for compression purpose.

• The regularity, which is useful for getting nice features, like smoothness of
the reconstructed signal or image.

These are associated with two properties that allow fast algorithm and
space-saving coding:

• The existence of a scaling function φ.
• The orthogonality or the biorthogonality of the resulting analysis,

and perhaps less important ones:

• The existence of an explicit expression.

• The ease of tabulating.

• The familiarity with use.

Typing waveinfo in command line mode displays a survey of the main
properties of all wavelet families available in the toolbox.

Let us mention that the φ and ψ functions can be computed using wavefun; the
filters are generated using wfilters. We provide definition equations for
several wavelets. Some are given explicitly by their time definition, others by
their frequency definition, and still others by their filter.

ψ̂ φ̂
2

Wavelet Families: Additional Discussion
The table below outlines the wavelet families included in the toolbox.

Daubechies Wavelets: dbN
In dbN, N is the order. Some authors use 2N instead of N. More about this family
can be found in [Dau92] p. 115, 132, 194, 242. By typing waveinfo('db), at the
MATLAB command prompt, you can obtain a survey of the main properties of
this family.

Figure 6-16: Daubechies wavelets db4 and db8

Wavelets in the toolbox

morl Morlet

mexh Mexican hat

meyr Meyer

haar Haar

dbN Daubechies

symN Symlets

coifN Coiflets

biorNr.Nd Splines biorthogonal wavelets

0 2 4 6
−1

−0.5

0

0.5

1

Scaling function phi

0 2 4 6
−1

−0.5

0

0.5

1

Wavelet function psi

0 1 2 3 4 5 6 7

−0.5

0

0.5

Decomposition low−pass filter

0 1 2 3 4 5 6 7

−0.5

0

0.5

Reconstruction low−pass filter
0 1 2 3 4 5 6 7

−0.5

0

0.5

Decomposition high−pass filter

0 1 2 3 4 5 6 7

−0.5

0

0.5

Reconstruction high−pass filter

0 5 10

−1

−0.5

0

0.5

1

Scaling function phi

0 5 10

−1

−0.5

0

0.5

1

Wavelet function psi

0 2 4 6 8 10 12 14

−0.5

0

0.5

Decomposition low−pass filter

0 2 4 6 8 10 12 14

−0.5

0

0.5

Reconstruction low−pass filter
0 2 4 6 8 10 12 14

−0.5

0

0.5

Decomposition high−pass filter

0 2 4 6 8 10 12 14

−0.5

0

0.5

Reconstruction high−pass filter
6-63

6 Advanced Concepts

6-6
This family includes the Haar wavelet, written db1, the simplest wavelet
imaginable and certainly the earliest. Using waveinfo('haar'), you can obtain
a survey of the main properties of this wavelet.

Haar

dbN
These wavelets have no explicit expression except for db1, which is the Haar
wavelet. However, the square modulus of the transfer function of h is explicit
and fairly simple.

• Let , where denotes the binomial

coefficients. Then:

where:

• The support length of and is 2N - 1. The number of vanishing moments
of is N.

• Most dbN are not symmetrical. For some, the asymmetry is very pronounced.

• The regularity increases with the order. When N becomes very large, and
 belong to C

µN, since µ is approximately equal to 0.2. For sure, this
asymptotic value is too pessimistic for small order N. Note that the functions
are more regular at certain points than at others.

• The analysis is orthogonal.

if

if

if

if

if

ψ x() 1= , 0 x
1
2
---<≤

ψ x() 1,–=
1
2
--- x 1<≤

ψ x() 0,= x 0 1,[]∉

φ x() 1= x 0 1,[]∈

φ x() 0= x 0 1,[]∉

P y() Ck
N 1 k+–

y
k

k 0=

N 1–∑= Ck
N 1 k+–

m0 ω() 2
cos

2ω
2
---- 

 N
P sin

2 ω
2
---- 

 
 
 =

m0 ω() 1

2
------- hke

i– kω
k 0=

2N 1–∑=

ψ φ
ψ

ψ
φ

4

Wavelet Families: Additional Discussion
Symlet Wavelets: symN
In symN, N is the order. Some authors use 2N instead of N. Symlets are only near
symmetric; consequently some authors do not call them symlets. More about
symlets can be found in [Dau92], p. 194, 254-257. By typing waveinfo('sym')
at the MATLAB command prompt, you can obtain a survey of the main
properties of this family.

Figure 6-17: Symlets sym4 and sym8

Daubechies proposes modifications of her wavelets such that their symmetry
can be increased while retaining great simplicity.

The idea consists of reusing the function m0 introduced in the dbN, considering
the as a function W of z = eiω. Then we can factor W in several different

ways in the form of . The roots of W with modulus not equal

to 1 go in pairs. If one is z1, is also a root.

• By selecting U such that the modulus of all its roots is strictly less than 1, we
build Daubechies wavelets dbN. The U filter is a “minimum phase filter.”

• By making another choice, we obtain more symmetrical filters; these are
symlets.

The symlets have other properties similar to those of the dbNs.

0 2 4 6

−1

−0.5

0

0.5

1

1.5

Scaling function phi

0 2 4 6

−1

−0.5

0

0.5

1

1.5

Wavelet function psi

0 1 2 3 4 5 6 7

−0.5

0

0.5

Decomposition low−pass filter

0 1 2 3 4 5 6 7

−0.5

0

0.5

Reconstruction low−pass filter
0 1 2 3 4 5 6 7

−0.5

0

0.5

Decomposition high−pass filter

0 1 2 3 4 5 6 7

−0.5

0

0.5

Reconstruction high−pass filter

0 5 10

−0.5

0

0.5

1

Scaling function phi

0 5 10

−0.5

0

0.5

1

Wavelet function psi

0 2 4 6 8 10 12 14

−0.5

0

0.5

Decomposition low−pass filter

0 2 4 6 8 10 12 14

−0.5

0

0.5

Reconstruction low−pass filter
0 2 4 6 8 10 12 14

−0.5

0

0.5

Decomposition high−pass filter

0 2 4 6 8 10 12 14

−0.5

0

0.5

Reconstruction high−pass filter

m0 ω() 2

W z() U z()U 1
z--- 

 =

1

z1

6-65

6 Advanced Concepts

6-6
Coiflet Wavelets: coifN
In coifN, N is the order. Some authors use 2N instead of N. For the coiflet
construction, see [Dau92] p. 258-259. By typing waveinfo('coif') at the
MATLAB command prompt, you can obtain a survey of the main properties of
this family.

Figure 6-18: Coiflets coif3 and coif5.

Built by Daubechies at the request of Coifman, the function has 2N moments
equal to 0 and, what is more original, the function has 2N-1 moments equal
to 0. The two functions have a support of length 6N-1.

The coifN and are much more symmetrical than the dbNs. With respect to
the support length, coifN has to be compared to db3N or sym3N; with respect to
the number of vanishing moments of , coifN has to be compared to db2N or
sym2N.

If s is a smooth continuous time signal, for large j: the coefficient

 (see the “Mathematical Conventions” section at the

beginning of this chapter). If s is a polynomial of degree d, d ≤ N -1 the
approximation becomes an equality. This property is used, connected with
sampling problems, when calculating the difference between an expansion over
the of a given signal and its sampled version.

0 5 10 15 20 25

−0.5

0

0.5

1

Scaling function phi

0 5 10 15 20 25

−0.5

0

0.5

1

Wavelet function psi

0 2 4 6 8 10121416182022242628

−0.5

0

0.5

Decomposition low−pass filter

0 2 4 6 8 10121416182022242628

−0.5

0

0.5

Reconstruction low−pass filter
0 2 4 6 8 10121416182022242628

−0.5

0

0.5

Decomposition high−pass filter

0 2 4 6 8 10121416182022242628

−0.5

0

0.5

Reconstruction high−pass filter

0 5 10 15

−0.5

0

0.5

1

1.5
Scaling function phi

0 5 10 15

−0.5

0

0.5

1

1.5
Wavelet function psi

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

Decomposition low−pass filter

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

Reconstruction low−pass filter
0 2 4 6 8 10 12 14 16

−0.5

0

0.5

Decomposition high−pass filter

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

Reconstruction high−pass filter

ψ
φ

ψ φ

ψ

s φj k,,〈 〉 2
j– 2⁄

s 2
j
k()≈

φ j k,
6

Wavelet Families: Additional Discussion
Biorthogonal Wavelet Pairs: biorNr.Nd
More about biorthogonal wavelets can be found in [Dau92] p. 259, 269-285 and
[Coh92]. By typing waveinfo('bior') at the MATLAB command prompt, you
can obtain a survey of the main properties of this family, as well as information
about Nr and Nd orders and associated filter lengths.

Figure 6-19: Biorthogonal wavelets bior2.4 and bior4.4

0 2 4 6 8

−1

0

1

2

Decomposition scaling function phi

0 2 4 6 8

−0.5

0

0.5

1

1.5
Reconstruction scaling function phi

0 2 4 6 8

−1

0

1

2

Decomposition wavelet function psi

0 2 4 6 8

−0.5

0

0.5

1

1.5
Reconstruction wavelet function psi

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Decomposition low−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Reconstruction low−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Decomposition high−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Reconstruction high−pass filter

0 2 4 6 8

−1

0

1

Decomposition scaling function phi

0 2 4 6 8

−0.5

0

0.5

1

1.5

Reconstruction scaling function phi

0 2 4 6 8

−1

0

1

Decomposition wavelet function psi

0 2 4 6 8

−0.5

0

0.5

1

1.5

Reconstruction wavelet function psi
0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Decomposition low−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Reconstruction low−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Decomposition high−pass filter

0 1 2 3 4 5 6 7 8 9

−0.5
0

0.5

Reconstruction high−pass filter
6-67

6 Advanced Concepts

6-6
The new family extends the wavelet family. It is well known in the subband
filtering community that symmetry and exact reconstruction are incompatible,
if the same FIR filters are used for reconstruction and decomposition. Two
wavelets, instead of just one, are introduced:

• One, , is used in the analysis, and the coefficients of a signal s are

• The other, , is used in the synthesis .

In addition, the wavelets are related by duality in the following sense:

 as soon as or and even

 as soon as .

It becomes apparent, as Cohen pointed out in his thesis (see [Coh92] p. 110),
that “the useful properties for analysis (e.g., oscillations, zero moments) can be
concentrated on the function whereas the interesting properties for
synthesis (regularity) are assigned to the function. The separation of these
two tasks proves very useful.”

, can have very different regularity properties, being more regular than
 (see [Dau92] p. 269).

The , , and functions are zero outside of a segment.

The calculation algorithms are maintained and thus very simple.

The filters associated to m0 and can be symmetrical. The functions used in
the calculations are easier to build numerically than those used in the usual
wavelets.

ψ̃

c̃j k, s x()ψ̃j k, x() xd∫=

ψ s c̃j k, ψj k,j k,∑=

ψ̃j k, x()ψj ′ k′, x() xd∫ 0= j j ′≠ k k′≠

φ̃0 k, x()φ0 k′, x() xd∫ 0= k k′≠

ψ̃
ψ

ψ̃ ψ ψ
ψ̃

ψ̃ ψ φ̃ φ

m̃0
8

Wavelet Families: Additional Discussion
Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an auxiliary
function ν (see [Dau92] p.117, 119, 137, 152). By typing waveinfo('meyr') at
the MATLAB command prompt, you can obtain a survey of the main properties
of this wavelet.

Figure 6-20: The Meyer wavelet

The Meyer wavelet and scaling function are defined in the frequency domain
by:

•

and

where

•

−5 0 5

−0.5

0

0.5

1

Meyer scaling function

−5 0 5

−0.5

0

0.5

1

Meyer wavelet function

ψ̂ ω() 2π() 1– 2⁄
e

i ω 2⁄ π
2
---ν 3

2π
------ ω 1– 

 
 
 sin= if

2π
3

------ ω 4π
3

------≤ ≤

ψ̂ ω() 2π() 1– 2⁄
e

i ω 2⁄ π
2
---ν 3

4π
------ ω 1– 

 
 
 cos= if

4π
3

------ ω 8π
3

------≤ ≤

ψ̂ ω() 0 if= ω 2π
3

------ 8π
3

------[,]∉

ν a() a
4

35 84a– 70a
2

20a
3

–+(),= a 0 1[,]∈

φ̂ ω() 2π() 1– 2⁄
= if ω 2π

3
------≤

φ̂ ω() 2π() 1– 2⁄
=

π
2
---ν 3

2π
------ ω 1– 

 
 
 cos if

2π
3

------ ω 4π
3

------≤ ≤

φ̂ ω() 0= if ω 4π
3

------>
6-69

6 Advanced Concepts

6-7
By changing the auxiliary function, one gets a family of different wavelets. For
the required properties of the auxiliary function ν, see the list of references.
This wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when ,
faster than any “inverse polynomial”:

 such that .

This property holds also for the derivatives:

The wavelet is infinitely differentiable.

Battle-Lemarie Wavelets
See [Dau92] p. 146-148, 151.

These wavelets are not included in the toolbox, but we use the spline functions
in the biorthogonal family.

There are two forms of the wavelet; one does not ensure the analysis to be an
orthogonal one, while the other does. For N=1, the scaling functions are linear
splines. For N=2, the scaling functions are quadratic B-spline with finite
support. More generally, for an N-degree B-splines:

with k = 0 if N is odd, k = 1 if N is even. This formula can be used to build the
filters.

The twin scale relation is:

x ∞→

n∀ Ν∈ Cn∃, ψ x() Cn 1 x
2

+()
n–

≤

k N n N Ck n, , such that ψ k()
x Ck n, 1 x

2
+()

n–
.≤∃,∈∀,∈∀

φ̂ ω() 2π() 1– 2⁄
e

i– κω 2⁄ ω 2⁄()sin
ω 2⁄

N 1+

=

φ x() 2
2M–

Cj
2M 1+ φ 2x M– 1 j+–()

j 0=

2M 1+∑= if N 2M=

φ x() 2
2M– 1–

Cj
2M 2+ φ 2x M– 1 j+–()

j 0=

2M 2+∑= if N 2M 1+=
0

Wavelet Families: Additional Discussion
• For an even N, φ is symmetrical around, x = 1/2; ψ is anti-symmetrical around
x = 1/2. For an odd N, φ is symmetrical around x = 0; ψ is symmetrical around
x = 1/2.

• The analysis becomes orthogonal if we transform the functions ψ and φ
somewhat. For N=1, for instance, let:

• The supports of ψ and are not finite, but the decrease of the functions ψ
and to 0 is exponential. See [Dau92] p. 151.

• The ψ functions have derivatives up to order N-1.

Mexican Hat Wavelet: mexh
See [Dau92] p. 75.

By typing waveinfo('mexh') at the MATLAB command prompt, you can obtain
a survey of the main properties of this wavelet.

Figure 6-21: The Mexican hat

φ⊥ ω() 3
1 2⁄

2π() 1– 2⁄ 4sin
2 ω 2⁄()

ω2
1 2cos

2 ω 2⁄()+[]
1 2⁄

---=

φ⊥

φ⊥

−5 0 5

0.2

0

0.2

0.4

0.6

0.8

Mexican hat wavelet function
6-71

6 Advanced Concepts

6-7
This function is proportional to the second derivative function of the Gaussian
probability density function.

As the φ function does not exist, the analysis is not orthogonal.

Morlet Wavelet: morl
See [Dau92] p. 76.

By typing waveinfo('morl') at the MATLAB command prompt you can obtain
a survey of the main properties of this wavelet.

Figure 6-22: The Morlet wavelet

The C constant is used for normalization in view of reconstruction.

As the φ function does not exist, the analysis is not orthogonal.

ψ x() 2

3
-------π 1– 4⁄

 
  1 x

2
–()e

x– 2 2⁄
=

−4 −2 0 2

0.5

0

0.5

Morlet wavelet function

ψ x() Ce
x– 2 2⁄

cos 5x()=
2

Summary of Wavelet Families and Associated Properties
Summary of Wavelet Families and Associated Properties

morl mexh meyr haar dbN symN coifN biorNr.Nd

“Crude” • •

Infinitely regular • • •

Compactly supported
orthogonal

• • • •

Compactly supported
biothogonal

•

Symmetry • • • • •

Asymmetry •

Near symmetry • •

Arbitrary number of
vanishing moments

• • • •

Vanishing moments for φ •

Arbitrary regularity • • • •

Existence of φ • • • • • •

Orthogonal analysis • • • • •

Biorthogonal analysis • • • • • •

Exact reconstruction • • • • • •

FIR filters • • • • •

Continuous transform • • • • • • • •

Discrete transform • • • • • •

Fast algorithm • • • • •

Explicit expression • • • for splines
6-73

6 Advanced Concepts

6-7
Wavelet Applications: More Detail
Chapters 3 and 4 illustrate wavelet applications with examples and case
studies. This section re-examines some of the applications with additional
theory and more detail.

Suppressing Signals
As shown in Chapter 3, ''Suppressing Signals,” by suppressing a part of a signal
the remainder may be highlighted.

Let be a wavelet with at least k+1 vanishing moments (for j = 0, ..., k,

).

If the signal s is a polynomial of degree k, then the coefficients C(a,b) = 0 for all
a and all b. Such wavelets automatically suppress the polynomials. The degree
of s can vary with time, provided that it remains less than k.

If s is now a polynomial of degree k on segment , then C(a,b) = 0 as long

as the support of the function is included in . The suppression is

local. Effects will appear on the edges of the segment.

Likewise, let us suppose that, on to which 0 belongs, we have the

expansion . The s and g
signals then have the same wavelet coefficients. This is the technical meaning
of the phrase: ''the wavelet suppresses a polynomial part of signal s” . The
signal g is the “irregular” part of the signal s. The wavelet systematically
suppresses the regular part and analyzes the irregular part. This effect is
easily seen in Figure 4-2 up to detail D4; the wavelet suppresses the slow sine
wave which is locally assimilated to a polynomial.

Another way of suppressing a component of the signal consists of forcing
certain coefficients C(a,b) to be equal to 0. Having selected a set E of indices, we
stipulate that , C(a,b) = 0. We then synthesize the signal using the
modified coefficients.

ψ

x
jψ x() xd

R∫ 0=

α β[,]

1

a
-------ψ x b–

a
----------- 

  α β[,]

α β[,]

s x() s 0() xs′ 0() x
2
s

2()
0() … x

k
s

k()
0() g x()+ + + + +=

ψ

a b(,)∀ E∈
4

Wavelet Applications: More Detail
Let us illustrate with the following M-file, some features of wavelet processing
using coefficients (resulting plots can be found in Figure 6-23).

% Load original 1-D signal.
load sumsin; s = sumsin;

% Set the wavelet name and perform the decomposition
% of s at level 4, using coif3.

w = 'coif3'; maxlev = 4;
[c,l] = wavedec(s,maxlev,w);
newc = c;

% Force to zero the detail coefficients at levels 3 and 4.
newc = wthcoef('d',c,l,[3,4]);

% Force the detail coefficients at level 1 to zero on
% original time interval [400:600] and shrink otherwise.
% determine first and last index of
% level 1 coefficients.

k = maxlev+1;
first = sum(l(1:k-1))+1; last = first+l(k)-1;
indd1 = first:last;

% shrink by dividing by 3.
newc(indd1) = c(indd1)/3;

% find at level 1 indices of coefficients
% in the interval [400:600],
% note that time t in original grid corresponds to time
% t/2^k on the grid at level k. Here k=1.

indd1 = first+400/2:first+600/2;

% force it to zero.
newc(indd1) = zeros(size(indd1));

% Set to 4 a coefficient at level 2 corresponding roughly
% to original time t = 500.

k = maxlev; first = sum(l(1:k-1))+1;
newc(first+500/2^2) = 4;

% Synthesize modified decomposition structure.
synth = waverec(newc,l,w);
6-75

6 Advanced Concepts

6-7
A simple procedure to select E, called the thresholding procedure, is carried out
using the wthresh function. The interface mode includes such procedures,
which are also used for de-noising and compression.

Figure 6-23: Suppress or modify signal components, acting on coefficients

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

Original signal

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Original detail cfs from level 4 to level 1

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Modified detail cfs from level 4 to level 1

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Synthesized signal
6

Wavelet Applications: More Detail
Splitting Signal Components
Wavelet analysis is a linear technique: the wavelet coefficients of the linear

combination of two signals are equal to the linear combination of
their wavelet coefficients . The same holds true for the

corresponding approximations and details, for example and
.

Noise Processing
Let us first analyze noise as an ordinary signal. Then the probability
characteristics: correlation function, spectrum, and distribution need to be
studied.

In general, for a one-dimensional discrete-time signal, the high frequencies
influence the details of the first levels, while the low frequencies influence the
deepest levels and the associated approximations.

If a signal comprised only of white noise is analyzed, (see for example, Figure
4-3, the details at the various levels decrease in amplitude as the level
increases. The variance of the details also decreases as the level increases. The
details and approximations are not white noise anymore, as color is introduced
by the filters.

On the coefficients C(j,k), where j stands for the scale and k for the time, we can
add often-satisfied properties for discrete time signals:

• If the analyzed signal s is stationary, zero mean, white noise, the coefficients
are uncorrelated.

• If furthermore s is Gaussian, the coefficients are independent and Gaussian.

• If s is a colored, stationary, zero mean Gaussian sequence, the coefficients
remain Gaussian. For each scale level j, the sequence of coefficients is a
colored stationary sequence. It could be interesting to know how to choose
the wavelet that would de-correlate the coefficients. This problem has not yet
been resolved. What is more, the wavelet (if indeed it exists) most probably
depends on the color of the signal. In order for the wavelet to be calculated,
the color must be known. In most instances, this is beyond our reach.

αs
1() βs

2()
+

αCj k,
1() βCj k,

2()
+

αAj
1() βAj

2()
+

αDj
1() βDj

2()
+

6-77

6 Advanced Concepts

6-7
• If s is a zero mean ARMA model stationary for each scale j, then
is also a stationary, zero mean ARMA process whose characteristics depend
on j.

• If s is a noise whose:

- correlation function is known, we know how to calculate the correlations
of C(j,k) and C(j,k′).

- spectrum is known, we know how to calculate the spectrum of C(j,k),
 and the cross spectrum of two different levels j and j′.

These results are easily established, since they can be deduced from the fact
that the C(a,b) coefficients are calculated primarily by convolving and s, and
using conventional formulas. The quantity that comes into play is the
self-reproduction function U(a,b), which is obtained by analyzing the wavelet
as if it was a signal:

.

From the results for coefficients we deduce the properties of the details (and of
the approximations), by using the formula:

,

where the C(j,k) coefficients are random variables and the functions are
not. If the support of is finite, only a finite number of terms will be summed.

C j k(,) k Z∈,

ρ

ρ̂
k Z∈

ψ

ψ

U a b(,) 1

a
-------ψ x b–

a
----------- 

 ψ x() xd
R
∫=

Dj n() C j k(,)ψj k, n()
k Z∈∑=

ψ j k,
ψ

8

Wavelet Applications: More Detail
De-Noising
This section discusses the problem of signal recovery from noisy data. This
problem is easy to understand looking at the following simple example, where
a slow sine is corrupted by a white noise.

Figure 6-24: What is de-noising?

100 200 300 400 500 600 700 800 900 1000
−5

0

5
Original signal

100 200 300 400 500 600 700 800 900 1000
−5

0

5
Noisy signal

100 200 300 400 500 600 700 800 900 1000
−5

0

5

De−noised signal
6-79

6 Advanced Concepts

6-8
The Basic One-Dimensional Model
The underlying model for the noisy signal is basically of the following form:

where time n is equally spaced.

In the simplest model we suppose that e(n) is a Gaussian white noise N(0,1) and
the noise level s is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to
recover f. From a statistical viewpoint, the model is a regression model over
time and the method can be viewed as a nonparametric estimation of the
function f using orthogonal basis.

De-Noising Procedure Principles
The de-noising procedure proceeds in three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of
the signal s at level N.

2 Threshold detail coefficients

For each level from 1 to N, select a threshold and apply soft thresholding to
the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction based on the original approximation
coefficients of level N and the modified detail coefficients of levels from
1 to N.

Two points must be addressed: how to choose the threshold and how to perform
the thresholding.

s n() f n() σe n()+=
0

Wavelet Applications: More Detail
Soft or Hard Thresholding?
Thresholding can be done using the function:

yt = wthresh(y,sorh,thr)

which returns soft or hard thresholding of input y, depending on the sorh
option. Hard thresholding is the simplest method. Soft thresholding has nice
mathematical properties and the corresponding theoretical results are
available.

Let us give a simple example.

y = linspace(-1,1,100);
thr = 0.28;
ythard = wthresh(y,'h',thr);
ytsoft = wthresh(y,'s',thr);

Figure 6-25: Hard and soft thresholding of the signal s = x

Comment: Let t denote the threshold. The hard threshold signal is x if |x| > t,
and is 0 if |x| ≤ t. The soft threshold signal is sign(x)(|x| - t) if |x| > t and is 0
if |x| ≤ t.

Hard thresholding can be described as the usual process of setting to zero the
elements whose absolute values are lower than the threshold. Soft
thresholding is an extension of hard thresholding, first setting to zero the
elements whose absolute values are lower than the threshold, then shrinking

−1 0 1
−1

−0.5

0

0.5

1
Original signal

−1 0 1
−1

−0.5

0

0.5

1
Hard thresholded signal

−1 0 1
−1

−0.5

0

0.5

1
Soft thresholded signal
6-81

6 Advanced Concepts

6-8
the nonzero coefficients towards 0 (see Figure 6-25). As can be seen in the
comment of Figure 6-25, the hard procedure creates discontinuities at x = ±t,
while the soft procedure does not.

Threshold Selection Rules
According to the basic noise model, four threshold selection rules are
implemented in the M-file thselect. Each rule corresponds to a tptr option in
the command:

thr = thselect(y,tptr)

which returns the threshold value.

• Option tptr = 'rigrsure' uses for the soft threshold estimator a threshold
selection rule based on Stein’s Unbiased Estimate of Risk (quadratic loss
function). You get an estimate of the risk for a particular threshold value t.
Minimizing the risks in t gives a selection of the threshold value.

• Option tptr = 'sqtwolog' uses a fixed form threshold yielding minimax
performance multiplied by a small factor proportional to log(length(s)).

• Option tptr = 'heursure' is a mixture of the two previous options. As a
result, if the signal-to-noise ratio is very small, the SURE estimate is very
noisy. So if such a situation is detected, the fixed form threshold is used.

• Option tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax
performance for mean square error against an ideal procedure. The minimax
principle is used in statistics in order to design estimators. Since the
de-noised signal can be assimilated to the estimator of the unknown
regression function, the minimax estimator is the option that realizes the
minimum of the maximum mean square error obtained for the worst
function in a given set.

Option Threshold selection rule

'rigrsure' Selection using principle of Stein’s Unbiased Risk
Estimate (SURE)

'sqtwolog' Fixed form threshold equal to sqrt(2∗log(length(s)))

'heursure' Selection using a mixture of the first two options

'minimaxi' Selection using minimax principle
2

Wavelet Applications: More Detail
Typically it is interesting to show how thselect works if y is a Gaussian white
noise N(0,1) signal.

y = randn(1,1000); thr = thselect(y,'rigrsure')
thr =

2.0735

thr = thselect(y,'sqtwolog')
thr =

3.7169

thr = thselect(y,'heursure')
thr =

3.7169

thr = thselect(y,'minimaxi')
thr =

2.2163

Because y is a standard Gaussian white noise, we expect that each method kills
roughly all the coefficients. For Stein’s Unbiased Risk Estimate and minimax
thresholds, roughly 3% of coefficients are saved. For other selection rules, all
the coefficients are set to 0.

We know that the detail coefficients vector is the superposition of the
coefficients of f and the coefficients of e, and that the decomposition of e leads
to detail coefficients, which are standard Gaussian white noises.

So minimax and SURE threshold selection rules are more conservative and
would be more convenient when small details of function f lie in the noise
range. The two other rules remove the noise more efficiently. The option
'heursure' is a compromise. In this example, the fixed form threshold wins.

Recalling step 2 of the de-noise procedure, the function thselect performs a
threshold selection and then each level is thresholded. This second step can be
done using wthcoef, directly handling the wavelet decomposition structure of
the original signal s.
6-83

6 Advanced Concepts

6-8
Dealing with Unscaled Noise and Non-White Noise
It is clear that in practice the basic model cannot be used directly. We examine
here the options available in the main de-noising function wden, in order to deal
with model deviations.

The simplest use of wden is:

sd = wden(s,tptr,sorh,scal,n,wav)

which returns the de-noised version sd of the original signal s obtained using
the tptr threshold selection rule. Other parameters needed are sorh,
thresholding of details coefficients of the decomposition at level n of s by the
wavelet called wav. The remaining parameter scal is to be specified. It
corresponds to threshold’s rescaling methods.

• Option scal = 'one' corresponds to the basic model.

• In general you can ignore the noise level that must be estimated. The detail
coefficients cD1 (the finest scale) are essentially noise coefficients with
standard deviation equal to σ. The median absolute deviation of the
coefficients is a robust estimate of σ. The use of a robust estimate is crucial
for two reasons. The first one is that if level 1 coefficients contain f details,
these details are concentrated in few coefficients if the function f is
sufficiently regular. The second reason is to avoid signal end effects, which
are pure artifacts due to computations on the edges.

Option scal = 'sln' handles threshold rescaling using a single estimation
of level noise based on the first level coefficients.

• When you suspect a nonwhite noise e, thresholds must be rescaled by a
level-dependent estimation of the level noise. The same kind of strategy is
used by estimating σlev level by level. This estimation is implemented in
M-file wnoisest, directly handling the wavelet decomposition structure of
the original signal s.
Option scal = 'mln' handles threshold rescaling using a level-dependent
estimation of the level noise.

Option Corresponding model

'one' Basic model

'sln' Basic model with unscaled noise

'mln' Basic model with non-white noise
4

Wavelet Applications: More Detail
A more general procedure wdencmp performs wavelet coefficients thresholding
for both de-noising and compression purposes directly handling
one-dimensional and two-dimensional signals. It allows you to define your own
thresholding strategy selecting in:

 xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

• opt = 'gbl' and thr is a positive real number for uniform threshold
opt = 'lvd' and thr is a vector for level dependent threshold.

• keepapp = 1 to keep approximation coefficients, as previously and
keepapp = 0 to allow approximation coefficients thresholding.

• x is the signal to be de-noised and wav, n, sorh are the same as above.

De-Noising in Action
We begin with examples of one-dimensional de-noising methods with the first
example credited to Donoho and Johnstone. For the first test function available
using wnoise, use the following M-file.

% Set signal to noise ratio and set rand seed.
snr = 4; init = 2055615866;

% Generate original signal xref and a noisy version x adding
% a standard Gaussian white noise.
[xref,x] = wnoise(1,11,snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 3 by sym8 wavelet.
xd = wden(x,'heursure','s','one',3,'sym8');
6-85

6 Advanced Concepts

6-8
Figure 6-26: Blocks de-noising

So despite the fact that only a small number of large coefficients characterize
the original signal, the method performs very well (see Figure 6-26). If you
want to see more about how the thresholding works, use the GUI.

As a second example, let us try the method on the highly perturbed part of the
electrical signal studied above.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20
Original signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20
Noisy signal

Signal to noise ratio = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

De−noised signal
6

Wavelet Applications: More Detail
According to this previous analysis, let us use db3 wavelet and decompose at
level 3. In order to deal with the composite noise nature, let us try a
level-dependent noise size estimation.

%Load electrical signal and select part of it.
load leleccum; indx = 2000:3450;
x = leleccum(indx);

% Find first value in order to avoid edge effects.
deb = x(1);

% De-noise signal using soft fixed form thresholding
% and unknown noise option.
xd = wden(x-deb,'sqtwolog','s','mln',3,'db3')+deb;

Figure 6-27: Electrical signal de-noising

The result is quite good in spite of the time heterogeneity of the nature of the
noise after and before the beginning of the sensor failure around time 2450.

2000 2500 3000 3500
100

200

300

400

500

600
Original electrical Signal

2000 2500 3000 3500
100

200

300

400

500

600
De−noised Signal
6-87

6 Advanced Concepts

6-8
Extension to Image De-Noising
The de-noising method described for the one-dimensional case applies also to
images and applies well to geometrical images. A direct translation of the
one-dimensional model is:

s(i,j) = f(i,j) + σe(i,j), i,j = 0, ..., m-1

where e is a white Gaussian noise with unit variance.

The two-dimensional de-noising procedure has the same three steps and uses
two-dimensional wavelet tools instead of one-dimensional ones. For the
threshold selection m2 is used instead of n if the fixed form threshold is used.

Note that except for the “automatic” one-dimensional de-noising case,
de-noising and compression are performed using wdencmp. As an example, you
can use the following M-file illustrating the de-noising of a synthetic image.

%Load original image.
load sinsin

% Generate noisy image.
init=2055615866; randn('seed',init);
x = X + 18*randn(size(X));

% Find default values using ddencmp.
% In this case fixed form threshold is used
% with estimation of level noise, thresholding
% mode is soft and the approximation coefficients
% are kept.
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% thr is roughly equal to 18*sqrt(log(prod(size(x))))
thr
thr =
80.6881

% De-noise image using global thresholding option.
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);
8

Wavelet Applications: More Detail
The result shown below is acceptable.

Figure 6-28: Image de-noising

More About De-Noising
Recently, new de-noising methods based on wavelet decomposition appear
mainly initiated by Donoho and Johnstone in the USA, and Kerkyacharian and
Picard in France. Meyer considers that this topic is one of the most significant
applications of wavelets (cf. [Mey93] p. 173). This chapter and the
corresponding M-files follow the work of the above mentioned researchers.
More details can be found in the bibliography by Donoho.

Original Image

20 40 60 80 100 120

20

40

60

80

100

120

Noisy Image

20 40 60 80 100 120

20

40

60

80

100

120

De−noised Image

20 40 60 80 100 120

20

40

60

80

100

120
6-89

6 Advanced Concepts

6-9
Data Compression
The compression features of a given wavelet basis are primarily linked to the
relative scarceness of the wavelet domain representation for the signal. The
notion behind compression is based on the concept that the regular signal
component can be accurately approximated using the following elements: a
small number of approximation coefficients (at a suitably chosen level) and
some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decompose

2 Threshold detail coefficients

For each level from 1 to N, a threshold is selected and hard thresholding is
applied to the detail coefficients.

3 Reconstruct

The difference with the de-noising procedure is found in step 2. There are two
compression approaches available. The first consists of taking the wavelet
expansion of the signal and keeping the largest absolute value coefficients. In
this case you can set a global threshold, a compression performance, or a
relative square norm recovery performance. Thus only a single parameter
needs to be selected. The second approach consists of applying visually
determined level-dependent thresholds.

Let us examine two real-life examples of compression using global
thresholding, for a given and unoptimized wavelet choice, to produce a nearly
complete square norm recovery for a signal (see Figure 6-29) and for an image
(see Figure 6-30).

% Load electrical signal and select a part.
load leleccum; indx = 2600:3100;
x = leleccum(indx);

% Perform wavelet decomposition of the signal.
n = 3; w = 'db3';
[c,l] = wavedec(x,n,w);

% Compress using a fixed threshold.
thr = 35;
[xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,w,n,thr,'h',1);
0

Wavelet Applications: More Detail
Figure 6-29: Signal compression

% Load original image.
load woman; x = X(100:200,100:200);
nbc = size(map,1);

% Wavelet decomposition of x.
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding.
thr = 20;
[xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,w,n,thr,'h',1);

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100
150

200

250

300

350

400

450
Original signal

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100
150

200

250

300

350

400

450
Compressed signal

2−norm rec.: 99.95 % −− zero cfs: 85.08
6-91

6 Advanced Concepts

6-9
Figure 6-30: Image compression

If the wavelet representation is too dense, similar strategies can be used in the
wavelet packet framework in order to obtain a sparser representation. You can
then determine the best decomposition with respect to a suitably selected
entropy-like criterion, which corresponds to the selected purpose (de-noising or
compression).

Original image

20 40 60 80 100

20

40

60

80

100

2−norm rec.: 99.14 % −− nul cfs : 79.51

threshold = 20

20 40 60 80 100

20

40

60

80

100
2

Wavelet Applications: More Detail
Default Values for De-Noising and Compression

De-noising.

Automatic mode.

Wavelet 1-D or 2-D:

The global threshold is derived from Donoho-Johnstone fixed form threshold
strategy for an unscaled white noise.

Manual mode.

Wavelet 1-D:

The level-dependent thresholds are derived from Birge-Massart strategy with
α = 3.

Wavelet 2-D:

The global threshold is derived from Donoho-Johnstone fixed form threshold
strategy for an unscaled white noise.

Compression.

Automatic mode.

Wavelet 1-D or 2-D and Wavelet Packet 1-D:

The global threshold is derived from an equal balance between the percentages
of retained energy and number of zeros.

Wavelet Packet 2-D:

The global threshold is the square root of the threshold value derived from an
equal balance between the percentages of retained energy and number of zeros.
6-93

6 Advanced Concepts

6-9
Manual mode.

Wavelet 1-D:

The level-dependent thresholds are derived from Birge-Massart strategy with
α = 1.5.

Wavelet 2-D:

The global threshold is based on the analysis of the level-one detail coefficients
cd1 and is equal to t = median(abs(cd1)) or 0.005*max(abs(cd1)) if t is zero.

About the Birge-Massart Strategy
The Birge-Massart strategy is based on results on adaptive functional
estimation in regression or density contexts (more details can be found in the
reference [BirM95] at the end of this Chapter).

Fortunately, this sophisticated estimate can be implemented in a very simple
way, like the previously described procedures for de-noising or compression.

It uses level-dependent thresholds obtained by the following wavelet
coefficients selection rule.

Let j0 be the decomposition level, m be the length of coarsest approximation
coefficients over 2 and α be a real greater than 1.

The numbers j0, m and α define the strategy:

• at level j0+1 (and coarser levels), everything is kept.

• for level j from 1 to j0, the kj larger coefficients in absolute value, are kept
with:

Typically the parameter α is equal to 1.5 for compression and α is equal to 3 for
de-noising.

kj m j0 1 j–+()α⁄=
4

Wavelet Packets
Wavelet Packets
The wavelet packet method is a generalization of wavelet decomposition that
offers a richer signal analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted
parameters: position and scale (as in wavelet decomposition and frequency).

For a given orthogonal wavelet function, we generate a library of wavelet
packet bases. Each of these bases offers a particular way of coding signals,
preserving global energy and reconstructing exact features. The wavelet
packets can then be used for numerous expansions of a given signal. We then
select the most suitable decomposition of a given signal with respect to an
entropy-based criterion.

There exist simple and efficient algorithms for both wavelet packet
decomposition and optimal decomposition selection. We can then produce
adaptive filtering algorithms with direct applications in optimal signal coding
and data compression.

From Wavelets to Wavelet Packets: Decomposing
the Details
In the orthogonal wavelet decomposition procedure, the generic step splits the
approximation coefficients into two parts. After splitting we obtain a vector of
approximation coefficients and a vector of detail coefficients, both at a coarser
scale. The information lost between two successive approximations is captured
in the detail coefficients. Then next step consists of splitting the new
approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packet situation, each detail coefficient vector is
also decomposed into two parts using the same approach as in approximation
vector splitting. This offers the richest analysis: the complete binary tree is
produced as shown in Figure 6-31.
6-95

6 Advanced Concepts

6-9
Figure 6-31: Wavelet packet decomposition tree at level 3

The idea of this decomposition is to start from a scale-oriented decomposition
and then to analyze the obtained signals on frequency subbands.

Wavelet Packets in Action: An Introduction
The following simple examples illustrate certain differences between wavelet
analysis and wavelet packet analysis.

Example 1: Analyzing a Sine Function
The signal to be analyzed is a sampled sine function of period 8. In order to
simplify the presentation, the length is 8192 and the haar wavelet is used. Only
a portion of the signal is displayed. Figure 6-32 contains the “time-frequency”
plot (x-axis is time and y-axis is frequency, high to low from the top to the
bottom) for the wavelet decomposition (on the left) and for the wavelet packet
decomposition (on the right), both corresponding to a decomposition at level 6.

Wavelet decomposition localizes the period of the sine within the interval
[8,16]. Wavelet packets provide a more precise estimation of the actual period.

Signal s = A(0)

A(1)

DD(2)AD(2)DA(2)AA(2)

DDD(3)ADD(3)DAD(3)AAD(3)DDA(3)ADA(3)DAA(3)AAA(3)

D(1)
6

Wavelet Packets
Figure 6-32: Wavelets (left) versus wavelet packets (right): a sine function

Example 2: Analyzing a Chirp Signal
The signal to be analyzed is a chirp: an oscillatory signal with increasing
modulation sin(250πt

2) sampled 512 times on [0, 1]. For this “linear” chirp, the
derivative of the phase is linear. On the left of Figure 6-33, a wavelet analysis
does not easily detect this time-frequency property of the signal. But on the
right of Figure 6-33, the linear slope for the greatest wavelet packet coefficients
in absolute value is obvious. The same experiment can be done with a
“quadratic” chirp of the form sin(kπt

3) in which the greatest wavelet packet
coefficients exhibit a quadratic time frequency pattern.
6-97

6 Advanced Concepts

6-9
Figure 6-33: Wavelets (left) versus wavelet packets (right):
damped oscillations.

Building Wavelet Packets
The computation scheme for wavelet packets generation, is easy when using an
orthogonal wavelet. We start with the two filters of length 2N, denoted h(n) and
g(n), corresponding to the wavelet. They are, respectively, the reversed versions
of the low-pass decomposition filter and the high-pass decomposition filter
divided by .2
8

Wavelet Packets
Now by induction let us define the following sequence of functions
(Wn(x), n = 0, 1, 2, ...) by:

where W0(x) = φ(x) is the scaling function and W1(x) = ψ(x) is the wavelet
function.

For example for the Haar wavelet we have:

 and .

The equations become:

 and .

W0(x) = φ(x) is the Haar scaling function and W1(x) = ψ(x) is the Haar wavelet,
both supported in [0, 1]. Then we can obtain W2n by adding two 1/2-scaled
versions of Wn with distinct supports [0,1/2] and [1/2,1] and obtain W2n+1 by
subtracting the same versions of Wn.

W2n x() 2 h k()Wn 2x k–()
k 0=

2N 1–

∑=

W2n 1+ x() 2 g k()Wn 2x k–()
k 0=

2N 1–

∑=

N 1 h 0(), h 1() 1 2⁄= = = g 0() g 1()– 1 2⁄= =

W2n x() Wn 2x() Wn 2x 1–()+= W2n 1+ x() Wn 2x() Wn 2x 1–()–=
6-99

6 Advanced Concepts

6-1
For n = 0 to 7, we have the W-functions shown below.

Figure 6-34: The Haar wavelet packets

This can be obtained using the following command:

[wfun,xgrid] = wpfun('db1',7,5);

which returns in wfun the approximate values of Wn for n = 0 to 7, computed on

a 1/25 grid of the support xgrid.

0 0.5 1
0

0.5

1

W0
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W1
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W2
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W3

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

W4
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W5
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W6
0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

W7
00

Wavelet Packets
Starting from more regular original wavelets and using a similar construction,
we obtain smoothed versions of this system of W-functions, all with support in
the interval [0, 2N-1]. Figure 6-35 presents the system of W-functions for the
original db2 wavelet.

Figure 6-35: The db2 wavelet packets

Wavelet Packet Atoms
Starting from the functions and following the same line leading
to orthogonal wavelets, we consider the three-indexed family of analyzing
functions (the waveforms):

 where and .

0 2 4
−0.5

0

0.5

1

1.5

W0
0 2 4

−2

−1

0

1

2

W1
0 2 4

−2

−1

0

1

2

3

W2
0 2 4

−2

−1

0

1

2

3

W3

0 2 4
−2

−1

0

1

2

3

W4
0 2 4

−2

−1

0

1

2

3

W5
0 2 4

−2

−1

0

1

2

3

W6
0 2 4

−2

−1

0

1

2

3

W7

Wn x() n N∈,()

Wj n k, , x() 2
j– 2⁄

Wn 2
j–
x k–()= n N∈ j k(,) Z

2∈
6-101

6 Advanced Concepts

6-1
As in the wavelet framework, k can be interpreted as a time-localization
parameter and j as a scale parameter. So what is the interpretation of n?

As can be seen in the previous figures, Wn(x) “oscillates” approximately n times.
So for fixed values of j and k, Wj,n,k analyzes the fluctuations of the signal
roughly around the position , at the scale and at various frequencies
for the different admissible values of the last parameter n.

In fact examining carefully the wavelet packets displayed in Figure 6-34 and
Figure 6-35, the naturally ordered Wn for n = 0, 1, ..., 7, ... does not match exactly
the property that Wm oscillates more than Wm’ if m > m’. More precisely,
counting the number of zero-crossing for the db1 wavelet packets, we have:

So in order to restore the property that the main frequency increases
monotonically with the order, it is convenient to define the “frequency” order
obtained from the natural one recursively.

To analyze a signal (the chirp of example 2 for instance), it is better to plot the
wavelet packet coefficients following the “frequency” order (on the right of the
Figure 6-36) from the low frequencies at the bottom to the high frequencies at
the top, rather than naturally ordered coefficients (on the left of Figure 6-36).

Natural order n 0 1 2 3 4 5 6 7

Number of zero-crossing for
db1 Wn

2 3 5 4 9 8 6 7

Natural order n 0 1 2 3 4 5 6 7

“Frequency” order σ(n) 0 1 3 2 6 7 5 4

2
j

k⋅ 2
j–
02

Wavelet Packets
Figure 6-36: Natural and frequency ordered wavelet packets coefficients

The two options are available when the GUI tools are used, since the packets
are organized following the natural order (see below) in order to preserve
consistency.
6-103

6 Advanced Concepts

6-1
Organizing the Wavelet Packets
The set of functions: Wj,n = (Wj,n,k(x),) is the (j,n) wavelet packet. For
positive values of integers j and n, wavelet packets are organized in trees. The
tree in Figure 6-37 is created in order to give a maximum level decomposition
equal to 3. For each scale j, the possible values of parameter n are: 0, 1, ..., 2j -1.

Figure 6-37: Wavelet packets organized in a tree, scale j defines depth and
frequency n defines position in the tree

The notation Wj,n, where j denotes scale parameter and n the frequency
parameter, is consistent with the usual depth-position tree labeling.

We have , and .

It turns out that the library of wavelet packet bases contains the wavelet basis.
More precisely if V0 denotes the space (spanned by the family W0,0) in which the
signal to be analyzed lies then (Wd,1; d ≥ 1) is an orthogonal basis of V0.

For every strictly positive integer D, (WD,0, (Wd,1; 1 ≤ d ≤ D)) is an orthogonal
basis of V0.

We also know that { (Wj+1,2n),(Wj+1,2n+1)} is an orthogonal basis of the space
spanned by Wj,n.

k Z∈

W0,0

W3,4

W2,2

W1,1

W3,3W3,2W3,1W3,0

W2,1W2,0

W1,0

W3,5

W2,3

W3,7W3,6

W0 0, φ x k–() k Z∈,()= W1 1, ψ x k–() k Z)∈,(=
04

Wavelet Packets
This last property gives a precise interpretation of splitting in the wavelet
packet organization tree, because all the developed nodes are of the form shown
in the figure below.

Figure 6-38: Wavelet packet tree: split and merge

It follows that the leaves of every connected binary subtree of the wavelet
packet tree correspond to an orthogonal basis of the initial space. For a finite
energy signal, any wavelet packet basis will provide exact reconstruction and
offer a specific way of coding the signal, using information allocation in
frequency scale subbands.

Choosing the Optimal Decomposition
Based on the organization of the wavelet packet library, it is natural to count
the decompositions issued from a given orthogonal wavelet. As a result, a
signal of length N = 2

L
 can be expanded in at most 2N different ways, the

number of binary subtrees of a complete binary subtree of depth L. As this
number may be very large, and since explicit enumeration is generally
unmanageable, it is interesting to find an optimal decomposition with respect
to a convenient criterion, computable by an efficient algorithm. We are looking
for a minimum of the criterion.

Functionals verifying an additivity-type property are well suited for efficient
searching of binary-tree structures and the fundamental splitting. Classical
entropy-based criteria match these conditions and describe
information-related properties for an accurate representation of a given signal.
Entropy is a common concept in many fields, mainly in signal processing. Let
us list four different entropy criteria (see [CoiW92]), many others are available
and can be easily integrated (type help wentropy). In the following expressions
s is the signal and (si)i the coefficients of s in an orthonormal basis.

Wj,n

Wj+1,2n Wj+1,2n+1
6-105

6 Advanced Concepts

6-1
The entropy E must be an additive cost function such that E(0) = 0 and

.

• The (non-normalized) Shannon entropy.

 so

 with the convention 0log(0) = 0.

• The concentration in l
p
 norm with 1 ≤ p < 2.

 so .

• The logarithm of the “energy” entropy.

 so

 with the convention log(0) = 0.

• The threshold entropy.

 if and 0 elsewhere so {such that } is the
number of time instants when the signal is greater than a threshold ε.

These entropy functions are available using the wentropy M-file.

E s() E si()
i∑=

E1 si() s– i
2

si
2()log= E1 s() si

2
si
2()log

i∑–=

E2 si() si
p

= E2 s() si
p

s p
p

=
i∑=

E3 si() si
2()log= E3 s() si

2()log
i∑=

E4 si() 1= si ε> E4 s() #= si ε>
06

Wavelet Packets
Example 1: Compute Various Entropies.

1 Generate a signal of energy equal to 1.

s = ones(1,16)*0.25;

2 Compute Shannon entropy of s.

e1 = wentropy(s,'shannon')
e1 = 2.7726

3 Compute l
1.5

 entropy of s, equivalent to norm(s,1.5)1.5.

e2 = wentropy(s,'norm',1.5)
e2 = 2

4 Compute the “log energy” entropy of s.

e3 = wentropy(s,'log energy')
e3 = -44.3614

5 Compute threshold entropy of s, using a threshold value of 0.24.

e4 = wentropy(s,'threshold', 0.24)
e4 = 16
6-107

6 Advanced Concepts

6-1
Example 2: Minimum-Entropy Decomposition.

This simple example illustrates the use of entropy to determine whether a new
splitting is of interest in order to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are
sufficient to define and to recover the signal (i.e., length and constant value).

w00 = ones(1,16)*0.25;

2 Compute entropy of original signal.

e00 = wentropy(w00,'shannon')
 e00 = 2.7726

3 Then split w00 using the haar wavelet.

[w10,w11] = dwt(w00,'db1');

4 Compute entropy of approximation at level 1

e10 = wentropy(w10,'shannon')
e10 = 2.0794

The detail of level 1, w11, is zero; the entropy e11 is zero. Due to the additivity
property the entropy of decomposition is given by e10+e11=2.0794. This has to
be compared to the initial entropy e00=2.7726. We have e10 + e11 < e00, so
the splitting is interesting.

5 Now split w10 and not w11 simply because the splitting of a null vector is
without interest, the entropy being zero.

[w20,w21] = dwt(w10,'db1');

6 We have w20=0.5*ones(1,4) and w21 is zero. The entropy of approximation
level 2 is:

e20 = wentropy(w20,'shannon')
e20 = 1.3863

Again we have e20 + 0 < e10, so splitting makes the entropy decrease.
08

Wavelet Packets
7 Then:

[w30,w31] = dwt(w20,'db1');
e30 = wentropy(w30,'shannon')

e30 = 0.6931
[w40,w41] = dwt(w30,'db1')

w40 = 1.0000
w41 = 0

e40 = wentropy(w40,'shannon')
e40 = 0

In the last splitting operation we find that only one piece of information is
needed to reconstruct the original signal. The wavelet basis at level 4 is a
best basis according to shannon entropy (with null optimal entropy since
e40+e41+e31+e21+e11 = 0).

8 All this work can be performed simply using:

s = ones(1,16)*0.25;

9 Perform wavelet packets decomposition.

[t,d] = wpdec(s,4,'haar','shannon');

The wavelet packet tree below shows the nodes labeled with original entropy
numbers.

Figure 6-39: Entropy values
6-109

6 Advanced Concepts

6-1
10 Now compute the best tree.

[bt,bd] = besttree(t,d);

The best tree is displayed in the figure below. In this case, the best tree
corresponds to the wavelet tree. The nodes are labeled with optimal entropy.

Figure 6-40: Optimal entropy values
10

Wavelet Packets
Wavelet Packets 1-D Decomposition Structure
Using wavelet packets requires tree-related actions and labeling. The
implementation of the user interface is built around this consideration. See the
Reference Section for more information on the technical details.

The complete binary tree of depth D corresponding to a wavelet packet
decomposition tree (WPT) developed at level D, is shown below:

Figure 6-41: Binary tree of depth 3

We have the following relationships:

Decomposition tree Subtree such that the set of leaves is a basis

Wavelet packets
decomposition tree

Complete binary tree: WPT of depth D

Wavelet packets optimal
decomposition tree

Binary subtree of WPT

Wavelet packets best-level
tree

Complete binary subtree of WPT

Wavelet decomposition tree Left unilateral binary subtree of WPT of
depth D

Wavelet best-basis tree Left unilateral binary subtree of WPT
6-111

6 Advanced Concepts

6-1
We deduce the following definitions of optimal decompositions, with respect to
an entropy criterion E.

For any nonterminal node in a complete binary tree of depth D corresponding
to a wavelet packet decomposition tree, we use the following basic step in order
to find the optimal subtree with respect to a given entropy criterion E (where
Eopt denotes the optimal entropy value):

with the natural initial condition on the reference tree, Eopt(t) = E(t) for each
terminal node t.

Decompositions Optimal
decomposition

Best-level
decomposition

Wavelet packet
decompositions

Search among 2
D

 trees Search among D trees

Wavelet decompositions Search among D trees Search among D trees

Entropy condition Action on tree and on entropy labelling

E node() Eopt c()
 c child of node

∑≤ If node root≠(), merge and set Eopt node() E node()=

E node() Eopt c()
 c child of node

∑> Split and set Eopt node() Eopt c()
 c child of node

∑=
12

Wavelet Packets
Wavelet Packets 2-D Decomposition Structure
Exactly as in the wavelet decomposition case, the preceding one-dimensional
framework can be extended to image analysis. Minor direct modifications lead
to quaternary tree related definitions. An example is shown below for depth 2.

Figure 6-42: Quaternary tree of depth 2

Wavelet Packets for Compression and De-Noising
In the wavelet packet framework, compression and de-noising ideas are
identical as those developed in the wavelet framework. The only new feature is
a more complex analysis that provides increased flexibility. A single
decomposition using wavelet packets generates a large number of bases. You
can then look for the best representation with respect to a design objective,
using the function besttree with an entropy function. See Chapter 5 for detail.
6-113

6 Advanced Concepts

6-1
References
[AntO95] Antoniadis, A., G. Oppenheim, Eds.(1995), ''Wavelets and
statistics'', Lecture Notes in Statistics 103, Springer Verlag.

[BirM95] Birgé, L., P. Massart, Preprint Univ. Paris Sud, France 95.41 p.
1-32(1995), To appear in Festscheift in honor of Le Cam (D. Pollard, E.
Torgersen,G. Young Eds., Springer Verlag.

[Chu92a] Chui, C.K. (1992a), “Wavelets: a tutorial in theory and applications'',
Academic Press.

[Chu92b] Chui, C.K. (1992b), “An introduction to wavelets'', Academic Press.

[Coh92] Cohen, A. (1992) “Ondelettes, analyses multirésolution et traitement
numérique du signal'', Ph. D. Thesis, University of Paris IX, Dauphine.

[CohDF92] Cohen, A., I. Daubechies, J.C. Feauveau (1992) “Biorthogonal
basis of compactly supported wavelets'', Comm. Pure Appli. Math. , vol. 45, pp
485-560.

[CohDJV93] Cohen, A., I. Daubechies , B. Jawerth, P. Vial (1993)
“Multiresolution analysis, wavelets and fast wavelet transform on an interval’’,
CRAS Paris, Ser. A, t. 316, p. 417-421.

[CoiMW92] Coifman, R.R., Y. Meyer, M.V. Wickerhauser (1992), “Wavelet
analysis and signal processing'', in Wavelets and their applications, M.B. Ruskai et
al. (Eds.), pp. 153-178, Jones and Bartlett.

[CoiW92] Coifman, R.R., M.V Wickerhauser, (1992), “Entropy-based
algorithms for best basis selection'', IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
713-718.

[Dau92] Daubechies, I. (1992), “Ten lectures on wavelets'', SIAM.

[DevJL92] DeVore, R.A., B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding’’, IEEE Trans. on Inf. Theory, vol. 38, 2, pp.
719-746.

[Don93] Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour'', in Progress in wavelet analysis and applications, Y. Meyer, S.
Roques, pp. 109-128. Frontières Ed.

[Don95] Donoho, D.L. (1995), “De-Noising by soft-thresholding’’, IEEE Trans.
on Inf. Theory, vol. 41, 3, pp. 613-627.
14

References
[DonJ94a] Donoho, D.L., I.M. Johnstone(1994),“Ideal spatial adaptation by
wavelet shrinkage'', Biometrika, vol 81, pp. 425-455.

[DonJ94b] Donoho, D.L., I.M. Johnstone(1994),“Ideal de-noising in an
orthonormal basis chosen from a library of bases'', CRAS Paris, t. 319, Ser I,
pp. 1317-1322.

[DonJKP95a] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1995), “Wavelet shrinkage: asymptopia'', Jour. Roy. Stat. Soc., series B, vol. 57
no. 2, pp. 301-369.

[DonJKP95b] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1995), “Density estimation by wavelet thesholding'', submitted for publication
to the Annals of Stat.

[KahL95] Kahane, J.P., P.G Lemarié (1995), “Fourier series and wavelets'',
Gordon and Research Publishers, Studies in the Development of Modern
Mathematics, vol 3.

[Kai94] Kaiser, G. (1994),“A friendly guide to wavelets'', Birkhauser.

[Lem90] Lemarié, P.G., Ed, (1990),“Les ondelettes en 1989'', Lecture Notes in
Mathematics, Springer Verlag.

[Mal89] Mallat, S. (1989), ''A theory for multiresolution signal decomposition:
the wavelet representation'', IEEE Pattern Anal. and Machine Intell., vol. 11,
no. 7, pp 674-693.

[Mey90] Meyer, Y. (1990), ''Ondelettes et opérateurs'', Tome 1, Hermann Ed.
(English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

[Mey93] Meyer, Y. (1993), ''Les ondelettes. Algorithmes et applications'', Colin
Ed., Paris, 2nd edition. (English translation: ''Wavelets: algorithms and
applications'', SIAM).

[MeyR93] Meyer, Y., S. Roques, Eds. (1993), ''Progress in wavelet analysis
and applications'', Frontières Ed.

[MisMOP93a] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993a),
''Analyse de signaux classiques par décomposition en ondelettes'', Revue de
Statistique Appliquée, vol. XLI, no. 4, pp 5-32.

[MisMOP93b] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993b),
''Ondelettes en statistique et traitement du signal'', Revue de Statistique
Appliquée, vol. XLI, no. 4, pp 33-43.
6-115

6 Advanced Concepts

6-1
[MisMOP94] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1994),
''Décomposion en ondelettes et méthodes comparatives: étude d'une courbe de
charge électrique'', Revue de Statistique Appliquée, vol. XLII, no. 2, pp 57-77.

[StrN96] Strang, G., T. Nguyen (1996), ''Wavelets and filter banks'',
Wellesley-Cambridge Press.

[Wic91] Wickerhauser, M.V., (1991) ''INRIA lectures on wavelet packet
algorithms'', Proceedings ondelettes et paquets d'ondes, 17-21 june,
Rocquencourt France, pp 31-99.

[Wic94] Wickerhauser, M.V., (1994) ''Adapted wavelet analysis from theory to
software algorithms'', A.K. Peters.
16

7-3 Preparing to Add a New Wavelet Family
7-3 Choose the Wavelet Family Full Name
7-3 Choose the Wavelet Family Short Name
7-4 Determine the Wavelet Type
7-4 Define the Orders of Wavelets Within the Given Family
7-5 Build a MAT-File or M-File
7-7 Define the Effective Support

7-8 How to Add a New Wavelet Family

7-16 After Adding a New Wavelet Family
7

Adding Your Own
Wavelets

7 Adding Your Own Wavelets

7-2
The Wavelet Toolbox contains a lot of wavelet families, but by using the
wavemngr function, you can add new wavelets to the existing ones in order to
implement your favorite or try out a wavelet of your own design. The toolbox
allows you to define new wavelets for use with both the command line functions
and the graphical tools.

Caution: This capability must be used carefully, because the toolbox does not
check that your wavelet meets all the mathematical requisites.

The wavemngr function affords extensive wavelet management. However, this
chapter focuses only on the addition of a wavelet family. For more complete
information, see the wavemngr reference entry in Chapter 8.

This chapter discusses:

• Preparing to Add a New Wavelet Family

• How to Add a New Wavelet Family

• After Adding a New Wavelet Family

Preparing to Add a New Wavelet Family
Preparing to Add a New Wavelet Family
The wavemngr command permits you to add new wavelets and wavelet families
to the predefined ones. However, before you can use the wavemngr command to
add a new wavelet, you must:

1 Choose the full name of the wavelet family (fn).

2 Choose the short name of the wavelet family (fsn).

3 Determine the wavelet type (wt).

4 Define the orders of wavelets within the given family (nums).

5 Build a MAT-file or a M-file (file).

6 For wavelets without FIR filters: Define the effective support.

The remainder of this section describes each of these steps.

Choose the Wavelet Family Full Name
The full name of the wavelet family, fn, must be a string. Predefined wavelet
family names are: Haar, Daubechies, BiorSplines, Coiflets, Symlets, Morlet,
Mexican_hat, and Meyer.

Choose the Wavelet Family Short Name
The short name of the wavelet family, fsn, must be a string of four characters
or less. Predefined wavelet family short names are: haar, db, bior, coif, sym,
morl, mexh, and meyr.
7-3

7 Adding Your Own Wavelets

7-4
Determine the Wavelet Type
We distinguish four types of wavelets:

• Orthogonal wavelets with FIR filters

These wavelets can be defined through the scaling filter w. Predefined
families of such wavelets include: Haar, Daubechies, Coiflets, and Symlets.

• Biorthogonal wavelets with FIR filters

These wavelets can be defined through the two scaling filters wr and wd, for
reconstruction and decomposition respectively. The BiorSplines wavelet
family is a predefined family of this type.

• Orthogonal wavelets without FIR filter but with scale function

These wavelets can be defined through the definition of the wavelet function
and the scaling function. The Meyer wavelet family is a predefined family of
this type.

• Wavelets without FIR filter and without scale function

These wavelets can be defined through the definition of the wavelet function.
Predefined families of such wavelets include: Morlet, and Mexican_hat.

Define the Orders of Wavelets
Within the Given Family
If a family contains many wavelets, the short name and the order are appended
in order to form the wavelet name. Argument nums is a string containing the
orders separated with blanks. This argument is not used for wavelets of type 3
or 4, nor is it used for a family that only has a single wavelet.

For example, for the first Daubechies wavelets,

fsn = 'db'
nums = '1 2 3'

yield the three wavelets db1, db2 and db3.

For the first BiorSplines wavelets,

fsn = 'bior'
nums = '1.1 1.3 1.5 2.2'

yield the four wavelets bior1.1, bior1.3, bior1.5, and bior2.2.

Preparing to Add a New Wavelet Family
Build a MAT-File or M-File
The wavemngr command requires a file argument, which is a string containing
a MAT-file or M-file name.

If a family contains many wavelets, a M-file must be defined and must be of a
specific form that depends on the wavelet type. The specific M-file formats are
described in the remainder of this section.

If a family contains a single wavelet, then a MAT-file can be defined for
wavelets of type 1. It must have the wavelet family short name (fsn) argument
as its name and must contain a single variable whose name is fsn and whose
value is the scaling filter. An M-file can also be defined as discussed below.

Type 1 (Orthogonal with FIR Filter)
The syntax of the first line in the M-file must be:

function w = file(wname)

where the input argument wname is a string containing the wavelet name, and
the output argument w is the corresponding scaling filter.

The filter w must be of even length otherwise it is zero-padded by the toolbox.

For predefined wavelets, the scaling filter is of sum 1. For a new wavelet, the
normalization is free (except 0 of course) since the toolbox uses a suitably
normalized version of this filter.

Examples of such M-files for predefined wavelets are: dbwavf.m for
Daubechies, coifwavf.m for Coiflets, and symwavf.m for Symlets.

Type 2 (Biorthogonal with FIR Filter)
The syntax of the first line in the M-file must be:

function [wr,wd] = file(wname)

where the input argument wname is a string containing the wavelet name and
the output arguments wr and wd are the corresponding reconstruction and
decomposition scaling filters, respectively.

The filters wr and wd must be of the same even length. In general, initial
biorthogonal filters do not meet these requirements, so they are zero-padded by
the toolbox.
7-5

7 Adding Your Own Wavelets

7-6
For predefined wavelets, the scaling filters are of sum 1. For a new wavelet, the
normalization is free (except 0 of course) since the toolbox uses a suitably
normalized version of these filters.

The M-file biorwavf.m (for BiorSplines) is an example of an M-file for a type-2
predefined wavelet family.

Type 3 (Orthogonal with Scale Function)
The syntax of the first line in the M-file must be:

function [phi,psi,t] = file(lb,ub,n)

which returns values of the scaling function phi and of the wavelet function psi
on a regular n-point grid with intervals of length t and bounded by [lb ub].

The M-file meyer.m is an example of an M-file for a type-3 predefined wavelet
family.

Type 4 (No FIR Filter; No Scale Function)
The syntax of the first line in the M-file must be:

function [psi,t] = file(lb,ub,n)

which returns values of the wavelet function psi on a regular n-point grid with
intervals of length t and bounded by [lb ub].

Examples of type-4 M-files for predefined wavelet families are mexihat.m (for
Mexican_hat) and morlet.m (for Morlet).

Preparing to Add a New Wavelet Family
Define the Effective Support
This definition is required only for wavelets of type 3 or 4, since they are not
compactly supported.

Defining the effective support means specifying an upper and lower bound. For
predefined wavelet families, we have:

Family Lower Bound (lb) Upper Bound (ub)

Meyer –8 8

Mexican_hat –5 5

Morlet –4 4
7-7

7 Adding Your Own Wavelets

7-8
How to Add a New Wavelet Family
To add a new wavelet, use the wavemngr command in one of two forms:

wavemngr('add',fn,fsn,wt,nums,file)

or

wavemngr('add',fn,fsn,wt,nums,file,b).

Here are a few examples to illustrate how you would use wavemngr to add some
of the predefined wavelet families:

Example 1
Let us take the example of Binlets proposed by Strang and Nguyen in the book
Wavelets and Filter Banks (See pp. 216-217).

Note: The M-files used in this example can be found in the wavedemo
directory.

The full family name is: Binlets.

The short name of the wavelet family is: binl.

The wavelet type is: 2 (Biorthogonal with FIR filters).

Type Syntax

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4
5','dbwavf');

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4 5
**','dbwavf');

2 wavemngr('add','Nbiorwavf','nbio',2,'1.1
1.3','biorwavf');

3 wavemngr('add','Nmeyer','nmey',3,'','meyer',[-8,8]);

4 wavemngr('add','Nmorlet','nmor',4,'','morlet',[-4,4]).

How to Add a New Wavelet Family
The order of the wavelet within the family is: 7.9 (we just use one in this
example).

The M-file used to generate the filters is binlwavf.m

Then to add the new wavelet, type:

% Add new family of biorthogonal wavelets.
 wavemngr(‘add’,’Binlets’,’binl’,2,’7.9’,’binlwavf’)

% List wavelets families.
 wavemngr(‘read’)

ans =

===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
Binlets binl
===================================
7-9

7 Adding Your Own Wavelets

7-1
If you want to get online information on this new family, you can build an
associated help file which would look like:

function binlinfo
%BINLINFO Information on biorthogonal wavelets (binlets).
%
% Biorthogonal Wavelets (Binlets)
%
% Family Binlets
% Short name binl
% Order Nr,Nd Nr = 7 , Nd = 9
%
% Orthogonal no
% Biorthogonal yes
% Compact support yes
% DWT possible
% CWT possible
%
% binl Nr.Nd ld lr
% effective length effective length
% of LoF_D of HiF_D
% binl 7.9 7 9

The associated M-file to generate the filters (binlwavf.m) is:

function [Rf,Df] = binlwavf(wname)
%BINLWAVF Biorthogonal wavelet filters (Binlets).
% [RF,DF] = BINLWAVF(W) returns two scaling filters
% associated with the biorthogonal wavelet specified
% by the string W.
% W = 'binlNr.Nd' where possible values for Nr and Nd are:
 Nr = 7 Nd = 9
% The output arguments are filters:
% RF is the reconstruction filter
% DF is the decomposition filter

% Check arguments.
if errargn('binlwavf',nargin,[0 1],nargout,[0:2]), error('*');
end
0

How to Add a New Wavelet Family
% suppress the following line for extension
Nr = 7; Nd = 9;

% for possible extension
% more wavelets in 'Binlets' family
%----------------------------------
if nargin==0
 Nr = 7; Nd = 9;
elseif isempty(wname)
 Nr = 7; Nd = 9;
else
 if isstr(wname)
 lw = length(wname);
 ab = abs(wname);
 ind = find(ab==46 | 47<ab | ab<58);
 li = length(ind);
 err = 0;
 if li==0
 err = 1;
 elseif ind(1)~=ind(li)-li+1
 err = 1;
 end
 if err==0 ,
 wname = str2num(wname(ind));
 if isempty(wname) , err = 1; end
 end
 end
 if err==0
 Nr = fix(wname); Nd = 10*(wname-Nr);
 else
 Nr = 0; Nd = 0;
 end
end
7-11

7 Adding Your Own Wavelets

7-1
% suppress the following lines for extension
% and add a test for errors.
%---
if Nr~=7 , Nr = 7; end
if Nd~=9 , Nd = 9; end

if Nr == 7
 if Nd == 9
 Rf = [-1 0 9 16 9 0 -1]/32;
 Df = [1 0 -8 16 46 16 -8 0 1]/64;
 end
end

Example 2
In the following example, new compactly supported orthogonal wavelets are
added to the toolbox. These wavelets, which are a slight generalization of the
Daubechies wavelets, are based on the use of Bernstein polynomials and are
due to Kateb and Lemarié in an unpublished work.

Note: The M-files used in this example can be found in the wavedemo
directory.

% List initial wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
===================================
2

How to Add a New Wavelet Family
% List all wavelets.
wavemngr('read',1)

ans =
===================================
Haar haar
===================================
Daubechies db

db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 dbxx
===================================
BiorSplines bior

bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
Coiflets coif

coif1 coif2 coif3 coif4
coif5
===================================
Symlets sym

sym2 sym3 sym4 sym5
sym6 sym7 sym8
===================================
Morlet morl
===================================
Mexican_hat mexh
===================================
Meyer meyr
===================================
7-13

7 Adding Your Own Wavelets

7-1
% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 1 2 3 4 5
% File driver: lemwavf
%
% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 1 2 3 4 5
% File driver: lemwavf
%
% and the function lemwavf.m must be as follow:
% function w = lemwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.
% wname = sh.name + number
% and w the corresponding scaling filter
% then addition is obtained using:

wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');

% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv' then it is modified and
% the mat file 'wavelets.inf' is generated.
4

How to Add a New Wavelet Family
% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
Lemarie lem
===================================
7-15

7 Adding Your Own Wavelets

7-1
After Adding a New Wavelet Family
When you use the wavemngr command to add a new wavelet, the toolbox creates
three wavelet extension files in the current directory: the two ASCII files
wavelets.asc and wavelets.prv, and the MAT-file wavelets.inf.

If you want to use your own extended wavelet families with the Wavelet
Toolbox, you should:

1 Create a new directory specifically to hold the wavelet extension files.

2 Move the previously mentioned files into this new directory.

3 Prepend this directory to the MATLAB’s directory search path (see the
reference entry for the path command).

4 Use this same directory for subsequent modifications. Allowing many
wavelet extension files to proliferate in different directories may lead to
unpredictable results.

5 Define an M-file called “<fsn>info.m” (For example, see dbinfo.m or
morlinfo.m).

This file will be associated automatically with the Wavelet Family button in
the Wavelet Display option of the graphical tools.
6

8

Reference

8 Reference

8-2
Commands Grouped by Function

Graphical User Interface Tools
wavemenu Start graphical user interface tools.

Wavelets: General
biorfilt Biorthogonal wavelet filter set.
dyaddown Dyadic downsampling.
dyadup Dyadic upsampling.
intwave Integrate wavelet function psi.
orthfilt Orthogonal wavelet filter set.
qmf Quadrature mirror filter.
wavefun Wavelet and scaling functions.
wfilters Wavelet filters.
wavemngr Wavelet manager.
wmaxlev Maximum wavelet decomposition level.

Wavelet Families
biorwavf Biorthogonal spline wavelet filters.
coifwavf Coiflets wavelet filters.
dbaux Daubechies wavelet filters computation.
dbwavf Daubechies wavelet filters.
mexihat Mexican hat wavelet.
meyer Meyer wavelet.
meyeraux Meyer wavelet auxiliary function.
morlet Morlet wavelet.
symwavf Symlets wavelet filters.

Commands Grouped by Function
Continuous Wavelet: One-Dimensional
cwt Continuous wavelet coefficients 1-D.

Discrete Wavelets: One-Dimensional
appcoef Extract 1-D approximation coefficients.
detcoef Extract 1-D detail coefficients.
dwt Single-level discrete 1-D wavelet transform.
dwtper Single-level discrete 1-D wavelet transform (peri-

odized).
dwtmode Discrete wavelet transform extension mode.
idwt Single-level inverse discrete 1-D wavelet transform.
idwtper Single-level inverse discrete 1-D wavelet transform

(periodized).
upcoef Direct reconstruction from 1-D wavelet coefficients.
upwlev Single-level reconstruction of wavelet decomposition

1-D.
wavedec Multi-level wavelet decomposition 1-D.
waverec Multi-level wavelet reconstruction 1-D.
wrcoef Reconstruct single branch from 1-D wavelet coeffi-

cients.
8-3

8 Reference

8-4
Discrete Wavelets: Two-Dimensional
appcoef2 Extract 2-D approximation coefficients.
detcoef2 Extract 2-D detail coefficients.
dwt2 Single-level discrete 2-D wavelet transform.
dwtper2 Single-level discrete 2-D wavelet transform (peri-

odized).
dwtmode Discrete wavelet transform extension mode.
idwt2 Single-level inverse discrete 2-D wavelet transform.
idwtper2 Single-level inverse discrete 2-D wavelet transform

(periodized).
upcoef2 Direct reconstruction from 2-D wavelet coefficients.
upwlev2 Single-level reconstruction of wavelet decomposition

2-D.
wavedec2 Multi-level wavelet decomposition 2-D.
waverec2 Multi-level wavelet reconstruction 2-D.
wrcoef2 Reconstruct single branch from 2-D wavelet coeffi-

cients.

Commands Grouped by Function
Wavelet Packet Algorithms
besttree Best tree (wavelet packet).
bestlevt Best level tree (wavelet packet).
entrupd Entropy update (wavelet packet).
wentropy Entropy (wavelet packet).
wp2wtree Extract wavelet tree from wavelet packet tree.
wpcoef Wavelet packet coefficients.
wpcutree Cut wavelet packets tree.
wpdec Wavelet packet decomposition 1-D.
wpdec2 Wavelet packet decomposition 2-D.
wpfun Wavelet packet functions.
wpjoin Recompose wavelet packet.
wprcoef Reconstruct wavelet packet coefficients.
wprec Wavelet packet reconstruction 1-D
wprec2 Wavelet packet reconstruction 2-D.
wpsplt Split (decompose) wavelet packet.

De-Noising and Compression for Signals and Images
ddencmp Default values for de-noising or compression.
thselect Threshold selection for de-noising.
wden Automatic 1-D de-noising using wavelets.
wdencmp De-noising or compression using wavelets.
wnoise Generate noisy wavelet test data.
wnoisest Estimate noise of wavelet coefficients 1-D.
wpdencmp De-noising or compression using wavelet packets.
wpthcoef Wavelet packet coefficients thresholding.
wthcoef Wavelet coefficients thresholding 1-D.
wthcoef2 Wavelet coefficients thresholding 2-D.
wthresh Perform soft or hard thresholding.
8-5

8 Reference

8-6
Tree Management Utilities
allnodes Tree nodes.
depo2ind Node depth-position to node index.
ind2depo Node index to node depth-position.
isnode True for existing node.
istnode True for terminal nodes.
maketree Make tree.
nodeasc Node ascendants.
nodedesc Node descendants.
nodejoin Recompose node.
nodepar Node parent.
nodesplt Split (decompose) node.
ntnode Number of terminal nodes.
plottree Plot tree.
tnodes Terminal nodes.
treedpth Tree depth.
treeord Tree order.
wdatamgr Manager for data structure.
wtreemgr Manager for tree structure.

General Utilities
deblankl Convert string to lowercase without blanks.
errargn Check function arguments number.
errargt Check function arguments type.
num2mstr Convert number to string in maximum precision.
wcodemat Extended pseudocolor matrix scaling.
wcommon Find common elements.
wkeep Keep part of a vector or a matrix.
wrev Flip vector.

Commands Grouped by Function
Other
instdfft Inverse nonstandard 1-D fast Fourier transform.
nstdfft Nonstandard 1-D fast Fourier transform.

Wavelets Information
waveinfo Information on wavelets.

Demos
wavedemo Wavelet toolbox demos.
8-7

allnodes
allnodesPurpose Tree nodes.

Syntax N = allnodes(T)
N = allnodes(T,'deppos')

Description allnodes is a tree management utility that returns one of two node
descriptions: either indices, or depths and positions. Tree nodes are numbered
from left to right and from top to bottom. The root index is 0.

N = allnodes(T) returns in column vector N the indices of all the nodes of the
tree structure T.

N = allnodes(T,'deppos') returns in matrix N the depths and positions of all
the nodes. N(i,1) is the depth and N(i,2) the position of the node i.

Examples % Create initial tree.
ord = 2;
t = maketree(ord,3); % Binary tree of depth 3.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

Node indices

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-8

allnodes
% List tt nodes (index).
aln_ind = allnodes(tt)

aln_ind =
0
1
2
3
4
5
6
7
8
13
14

% List tt nodes (depth-position).
aln_depo = allnodes(tt,'deppos')

aln_depo =
0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

See Also maketree

Node depth and position

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
8-9

appcoef
appcoefPurpose Extract 1-D approximation coefficients.

Syntax A = appcoef(C,L,'wname',N)
A = appcoef(C,L,'wname')
A = appcoef(C,L,Lo_R,Hi_R)
A = appcoef(C,L,Lo_R,Hi_R,N)

Description appcoef is a one-dimensional wavelet analysis function.

appcoef computes the approximation coefficients of a one-dimensional signal.

A = appcoef(C,L,'wname',N) computes the approximation coefficients at level
N using the wavelet decomposition structure [C,L] (see wavedec).

'wname' is a string containing the wavelet name. Level N must be an integer such
that 0 <= N <= length(L)-2.

A = appcoef(C,L,'wname') extracts the approximation coefficients at the last
level length(L)-2.

Instead of giving the wavelet name, you can give the filters. For
A = appcoef(C,L,Lo_R,Hi_R) or A = appcoef(C,L,Lo_R,Hi_R,N), Lo_R is the
reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.
8-10

appcoef
Examples % Load original one-dimensional signal.
load leleccum; s = leleccum(1:3920); ls = length(s);

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');

% Extract approximation coefficients at level 3, from the
% wavelet decomposition structure [c,l].

ca3 = appcoef(c,l,'db1',3);

Algorithm The input vectors C and L contain all the information about the signal
decomposition.

Let NMAX = length(L)-2, then C = [A(NMAX) D(NMAX) ... D(1)], where A and
the D are vectors.

If N = NMAX a simple extraction is done, otherwise appcoef computes iteratively
the approximation coefficients using the inverse wavelet transform.

See Also detcoef, wavedec

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600
Original signal s.

0 500
0

500

1000

1500

2000
Approx. coef. level 3 : ca3
8-11

appcoef2
appcoef2Purpose Extract 2-D approximation coefficients.

Syntax A = appcoef2(C,S,'wname',N)
A = appcoef2(C,S,'wname')
A = appcoef2(C,S,Lo_R,Hi_R)
A = appcoef2(C,S,Lo_R,Hi_R,N)

Description appcoef2 is a two-dimensional wavelet analysis function.

appcoef2 computes the approximation coefficients of a two-dimensional signal.

A = appcoef2(C,S,'wname',N) computes the approximation coefficients at level
N using the wavelet decomposition structure [C,S] (see wavedec2).

'wname' is a string containing the wavelet name. Level N must be an integer such
that 0 <= N <= size(S,1)-2.

A = appcoef2(C,S,'wname') extracts the approximation coefficients at the last
level size(S,1)-2.

Instead of giving the wavelet name, you can give the filters. For
A = appcoef2(C,S,Lo_R,Hi_R) or A = appcoef2(C,S,Lo_R,Hi_R,N), Lo_R is
the reconstruction low-pass filter and Hi_R is the reconstruction high-pass
filter.

Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.

[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
8-12

appcoef2
sizex =
256 256
sizec = size(c)

sizec =
 1 65536
val_s = s

val_s =
64 64
64 64
128 128
256 256

% Extract approximation coefficients
% at level 2.

ca2 = appcoef2(c,s,'db1',2);
sizeca2 = size(ca2)

sizeca2 =
64 64

% Compute approximation coefficients
% at level 1.

ca1 = appcoef2(c,s,'db1',1);
sizeca1 = size(ca1)

sizeca1 =
128 128

Algorithm The algorithm is built on the same principle as appcoef.

See Also detcoef2, wavedec2
8-13

bestlevt
bestlevtPurpose Best level tree (wavelet packet).

Syntax [T,D] = bestlevt(T,D)
[T,D,E] = bestlevt(T,D)

Description bestlevt is a one- or two-dimensional wavelet packet analysis function.

bestlevt computes the optimal complete sub-tree of an initial tree with respect
to an entropy type criterion. The resulting complete tree may be of smaller
depth than the initial one.

[T,D] = bestlevt(T,D) computes the modified tree structure T and data
structure D, corresponding to the best level tree decomposition.

[T,D,E] = bestlevt(T,D) returns the best tree T, data structure D, and in
addition, the best entropy value E.

Examples % Load signal.
load noisdopp;
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets, using
% default entropy (shannon) and decompose the packet [3 0].

[wpt,wpd] = wpdec(x,3,'db1');
[wpt,wpd] = wpsplt(wpt,wpd,[3 0]);
8-14

bestlevt
% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Compute best level tree.
[blt,bld] = bestlevt(wpt,wpd);

% Plot best level tree structure blt.
plottree(blt)

Algorithm See besttree algorithm section. The only difference is that the optimal tree is
searched among the complete sub-trees of the initial tree.

See Also besttree, maketree, wentropy, wpdec, wpdec2

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,0) (4,1)

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-15

besttree
besttreePurpose Best tree (wavelet packet).

Syntax [T,D] = besttree(T,D)
[T,D,E] = besttree(T,D)
[T,D,E,N] = besttree(T,D)

Description besttree is a one- or two-dimensional wavelet packet analysis function that
computes the optimal sub-tree of an initial tree with respect to an entropy type
criterion. The resulting tree may be much smaller than the initial one.

Following the organization of the wavelet packets library, it is natural to count
the decompositions issued from a given orthogonal wavelet. As a result, a
signal of length N = 2L can be expanded in at most 2N different ways, the
number of binary sub-trees of a complete binary sub-tree of depth L. As this
number may be very large, and since explicit enumeration is generally
intractable, it is interesting to find an optimal decomposition with respect to a
convenient criterion, computable by an efficient algorithm. We are looking for
a minimum of the criterion.

[T,D] = besttree(T,D) computes the modified tree structure T and data
structure D (see maketree), corresponding to the best entropy value.

[T,D,E] = besttree(T,D) returns the best tree T, the data structure D, and in
addition, the best entropy value E.

[T,D,E,N] = besttree(T,D) returns the best tree T, the data structure D, the
best entropy value E, and in addition, the vector N containing the indices of the
merged nodes.
8-16

besttree
Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets, using
% default entropy (shannon) and decompose the packet [3 0].

[wpt,wpd] = wpdec(x,3,'db1');
[wpt,wpd] = wpsplt(wpt,wpd,[3 0]);

% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Compute best tree.
[bt,bd] = besttree(wpt,wpd)

% Plot best tree structure bt.
plottree(bt)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,0) (4,1)

(0,0)

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1) (3,2) (3,3)

(4,0) (4,1)

(0,0)
8-17

besttree
Algorithm Consider the one-dimensional case. Starting with the root node, the best tree
is calculated using the following scheme. A node N is split into two nodes N1
and N2 if and only if the sum of the entropy of N1 and N2 is lower than the
entropy of N. This is a local criterion based only on the information available
at the node N.

Several entropy type criteria can be used (see wentropy). If the entropy
function is an additive function along the wavelet packet coefficients, this
Algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this algorithm, we
obtain the best tree among all the binary sub-trees of T.

See Also bestlevt, maketree, wentropy, wpdec, wpdec2

References R.R. Coifman, M.V Wickerhauser, (1992), “Entropy-based algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.
8-18

biorfilt
biorfiltPurpose Biorthogonal wavelet filter set.

Syntax [LO_D,HI_D,LO_R,HI_R] = biorfilt(DF,RF)
[LO_D1,HI_D1,LO_R1,HI_R1,LO_D2,HI_D2,LO_R2,HI_R2] =

biorfilt(DF,RF,'8')

Description The biorfilt command returns either four or eight filters associated with
biorthogonal wavelets.

[LO_D,HI_D,LO_R,HI_R] = biorfilt(DF,RF) computes four filters associated
with the biorthogonal wavelet specified by decomposition filter DF and
reconstruction filter RF. These filters are:

[LO_D1,HI_D1,LO_R1,HI_R1,LO_D2,HI_D2,LO_R2,HI_R2] =
biorfilt(DF,RF,'8') returns eight filters, the first four associated with the
decomposition wavelet, and the last four associated with the reconstruction
wavelet.

It is well known in the sub-band filtering community that if the same FIR
filters are used for reconstruction and decomposition, then symmetry and exact
reconstruction are incompatible (except with the Haar wavelet). Therefore,
with biorthogonal filters, two wavelets are introduced instead of just one:

• One wavelet, , is used in the analysis, and the coefficients of a signal s are
,

• The other wavelet, ψ, is used in the synthesis

Further, the two wavelets are related by duality in the following sense:
 as soon as or and

 as soon as .

LO_D Decomposition low-pass filter

HI_D Decomposition high-pass filter

LO_R Reconstruction low-pass filter

HI_R Reconstruction high-pass filter

ψ̃
c̃j k, s x()ψ̃j k, x() xd∫=

s c̃j k, ψj k,
j k,
∑=

ψ̃ j k, x()ψj ′ k′, x() xd∫ 0= j j ′≠ k k′≠

φ̃0 k, x()φ0 k′, x() xd∫ 0= k k′≠
8-19

biorfilt
It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that “the
useful properties for analysis (e.g., oscillations, null moments) can be
concentrated in the function whereas the interesting properties for
synthesis (regularity) are assigned to the ψ function. The separation of these
two tasks proves very useful.”

 and ψ can have very different regularity properties, ψ being more regular
than (see Daubechies p. 269).

The , ψ, and φ functions are zero outside a segment.

Examples % Compute the four filters associated with spline biorthogonal
% wavelet 3.5: bior3.5.

% Find the two scaling filters associated with bior3.5.
[Rf,Df] = biorwavf('bior3.5');
% Compute the four filters needed.
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(Df,Rf);
subplot(221); stem(Lo_D);
title('Dec. low-pass filter bior3.5');
subplot(222); stem(Hi_D);
title('Dec. high-pass filter bior3.5');
subplot(223); stem(Lo_R);
title('Rec. low-pass filter bior3.5');
subplot(224); stem(Hi_R);
title('Rec. high-pass filter bior3.5');

ψ̃

ψ̃
ψ̃

ψ̃ φ̃
8-20

biorfilt
% Orthogonality by dyadic translation is lost.
nzer = [Lo_D 0 0]*[0 0 Lo_D]'

nzer =
-0.6881
nzer = [Hi_D 0 0]*[0 0 Hi_D]'

nzer =
0.1875

% But using duality we have:
zer = [Lo_D 0 0]*[0 0 Lo_R]'

zer =
-2.7756e-17
zer = [Hi_D 0 0]*[0 0 Hi_R]'

zer =
2.7756e-17

% But perfect reconstruction via DWT is preserved.
x = randn(1,500);
[a,d] = dwt(x,Lo_D,Hi_D);
xrec = idwt(a,d,Lo_R,Hi_R);
err = norm(x-xrec)

err =
5.0218e-15

0 5 10 15
−1

−0.5

0

0.5

1
Dec. low−pass filter bior3.5

0 5 10 15
−1

−0.5

0

0.5

1
Dec. high−pass filter bior3.5

0 5 10 15
−1

−0.5

0

0.5

1
Rec. low−pass filter bior3.5

0 5 10 15
−1

−0.5

0

0.5

1
Rec. high−pass filter bior3.5
8-21

biorfilt
% High and low frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(221); plot(freq,abs(fftld),freq,abs(ffthd));
title('Transfer modulus for dec. filters')
fftlr = fft(Lo_R); ffthr = fft(Hi_R);
freq = [1:length(Lo_R)]/length(Lo_R);
subplot(222); plot(freq,abs(fftlr),freq,abs(ffthr));
title('Transfer modulus for rec. filters')
subplot(223); plot(freq, abs(fftlr.*fftld + ffthd.*ffthr));
title('One biorthogonality condition')
xlabel('|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2')

Note: For biorthogonal wavelets, the filters for decomposition and
reconstruction are in general of different odd lengths. This situation occurs,
for example, for “splines” biorthogonal wavelets used in the toolbox, where the
four filters are zero-padded to have the same even length.

0.2 0.4 0.6 0.8
0

1

2

3
Transfer modulus for dec. filters

0.2 0.4 0.6 0.8
0

1

2

3
Transfer modulus for rec. filters

0.2 0.4 0.6 0.8
0

2

4
One biorthogonality condition

|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2
8-22

biorfilt
See Also biorwavf, orthfilt

References A. Cohen (1992) “Ondelettes, analyses multirésolution et traitement
numérique du signal,” Ph. D. Thesis, University of Paris IX, DAUPHINE.

I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.
8-23

biorwavf
biorwavfPurpose Biorthogonal spline wavelet filters.

Syntax [RF,DF] = biorwavf(W)

Description [RF,DF] = biorwavf(W) returns two scaling filters associated with
biorthogonal wavelet specified by the string W.

W = 'biorNr.Nd' where possible values for Nr and Nd are:

The output arguments are filters:

• RF is the reconstruction filter.

• DF is the decomposition filter.

Examples % Set spline biorthogonal wavelet name.
wname = 'bior2.2';

% Compute the two corresponding scaling filters,
% rf is the reconstruction scaling filter and
% df is the decomposition scaling filter.

[rf,rd] = biorwavf(wname)

rf =
0 0.2500 0.5000 0.2500 0 0

df =
-0.1250 0.2500 0.7500 0.2500 -0.1250 0

See Also biorfilt, waveinfo

Nr = 1 Nd = 1 , 3 or 5

Nr = 2 Nd = 2 , 4 , 6 or 8

Nr = 3 Nd = 1 , 3 , 5 , 7 or 9

Nr = 4 Nd = 4

Nr = 5 Nd = 5

Nr = 6 Nd = 8
8-24

coifwavf
coifwavfPurpose Coiflets wavelets filters.

Syntax F = coifwavf(W)

Description F = coifwavf(W) returns the scaling filter associated with coiflet wavelet
specified by the string W, where W = 'coifN'. Possible values for N are: 1, 2, 3,
4 or 5.

Examples % Set coiflet wavelet name.
wname = 'coif2';

% Compute the corresponding scaling filter.
f = coifwavf(wname)

f =
Columns 1 through 7
0.0116 -0.0293 -0.0476 0.2730 0.5747 0.2949 -0.0541

Columns 8 through 12
-0.0420 0.0167 0.0040 -0.0013 -0.0005

See Also waveinfo
8-25

cwt
cwtPurpose Continuous 1-D wavelet coefficients.

Syntax coefs = cwt(s,scales,'wname')
coefs = cwt(s,scales,'wname','plot')

Description cwt is a one-dimensional wavelet analysis function.

coefs = cwt(s,scales,'wname') computes the continuous wavelet coefficients
of the vector s at real, positive scales, using the wavelet whose name is 'wname'
(see waveinfo).

coefs = cwt(s,scales,'wname','plot') computes, and in addition plots, the
continuous wavelet transform coefficients.

Let s be the signal and ψ the wavelet. Then the wavelet coefficient of s at scale
a and position b is defined by:

since s(t) is a discrete signal, we use a piecewise constant interpolation of the
s(k) values, k = 1 to length(s).

Then for any strictly positive scale a, we compute Ca,b for b = 1 to length(s).

Output argument coefs contains the wavelet coefficients for the scales within
the vector scales in the same order, stored rowwise.

Examples of valid uses are:

c = cwt(s,1:32,'meyr')
c = cwt(s,[64 32 16:-2:2],'morl')
c = cwt(s,[3 18 12.9 7 1.5],'db2')

Ca b, s t() 1

a
-------ψ t b–

a
---------- 

  td
R
∫=
8-26

cwt
Examples This example demonstrates the difference between discrete and continuous
wavelet transforms.

% Load original fractal signal.
load vonkoch
vonkoch=vonkoch(1:510);
lv = length(vonkoch);

subplot(311), plot(vonkoch);title('Analyzed signal.');
set(gca,'Xlim',[0 510])

% Perform discrete wavelet transform at level 5 by sym2.
% Levels 1 to 5 correspond to scales 2, 4, 8, 16 and 32.

[c,l] = wavedec(vonkoch,5,'sym2');

% Expand discrete wavelet coefficients for plot.
% Levels 1 to 5 correspond to scales 2, 4, 8, 16 and 32.

cfd = zeros(5,lv);
for k = 1:5

d = detcoef(c,l,k);
d = d(ones(1,2^k),:);
cfd(k,:) = wkeep(d(:)',lv);

end
cfd = cfd(:);
I = find(abs(cfd)<sqrt(eps));
cfd(I)=zeros(size(I));
cfd = reshape(cfd,5,lv);

% Plot discrete coefficients.
subplot(312), colormap(pink(64));
img = image(flipud(wcodemat(cfd,64,'row')));
set(get(img,'parent'),'YtickLabels',[]);
title('Discrete Transform, absolute coefficients.')
ylabel('level')

% Perform continuous wavelet transform by sym2 at all integer
% scales from 1 to 32.

subplot(313)
ccfs = cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients.')
colormap(pink(64));
ylabel('Scale')
8-27

cwt
Algorithm

since s(t) = s(k), if then

0 100 200 300 400 500
0

0.01

0.02
Analyzed signal.

Discrete Transform, absolute coefficients.

le
ve

l

100 200 300 400 500
Continuous Transform, absolute coefficients.

time (or space) b

S
ca

le

100 200 300 400 500

Ca b, s t() 1

a
-------ψ t b

a
---------- 

  td
R
∫=

Ca b, s
k

k 1+

∫ t() 1

a
-------ψ t b–

a
---------- 

  td
k
∑=

t k k 1+,[]∈

Ca b,
1

a
------- s k() ψ

k

k 1+

∫ t b–
a

---------- 
  td

k
∑=

Ca b,
1

a
------- s k() ψ t b–

a
---------- 

  td
∞–

k 1+

∫ ψ
∞–

k

∫–
t b–

a
---------- 

  td 
 

k
∑=
8-28

cwt
so at any scale a, the wavelet coefficients Ca,b for b = 1 to length(s) can be
obtained by convolving the signal s and a dilated and translated version of the

integrals of the form (given by intwave), and taking finite difference

using diff.

See Also wavedec, wavefun, waveinfo, wcodemat

ψ
∞–

k

∫ t() td
8-29

dbaux
dbauxPurpose Daubechies wavelets filters computation.

Syntax W = dbaux(N,SUMW)
W = dbaux(N)

Description W = dbaux(N,SUMW) is the order N Daubechies scaling filter such that
sum(W) = SUMW. Possible values for N are: 1, 2, 3, ...

Note: Instability may occur when N is too large.

W = dbaux(N) is equivalent to W = dbaux(N,1).

W = dbaux(N,0) is equivalent to W = dbaux(N,1).

Examples % P the “Lagrange a trous” filter for N=2 is explicit
% and given by:

P = [-1/16 0 9/16 1 9/16 0 -1/16]

P =
-0.0625 0 0.5625 1.0000 0.5625 0 -0.0625

% The db2 Daubechies scaling filter w, is a
% solution of the equation: P = conv(wrev(w),w) * 2.
%
% This filter P is symmetric, easy to generate, and w is
% a minimum phase solution of the previous equation,
% based on the roots of P.

rP = roots(P);

% Retaining only the root inside the unit circle (here it
% is the sixth value of rP), and two roots located at -1,
% we obtain the Daubechies wavelet of order 2:

ww = poly([rP(6) -1 -1]); % filter construction
ww = ww / sum(ww) % normalize sum
8-30

dbaux
ww =
0.3415 0.5915 0.1585 -0.0915

% Check that ww is correct and equal to
% the db2 Daubechies scaling filter w.

w = dbaux(2)

w =
0.3415 0.5915 0.1585 -0.0915

Algorithm The algorithm used is based on a result obtained by Shensa, showing a
correspondence between the “Lagrange a trous” filters and the convolutional
squares of the Daubechies wavelet filters.

The computation of the order N Daubechies scaling filter w proceeds in two
steps: compute a “Lagrange a trous” filter P and extract a square root. More
precisely:

• P the associated “Lagrange a trous” filter is a symmetric filter of length
4N-1. P is defined by:

P = [a(N) 0 a(N-1) 0 ... 0 a(1) 1 a(1) 0 a(2) 0 ... 0 a(N)]

• Then, if w denotes dbN Daubechies scaling filter of sum , w is a square root
of P. More precisely P = conv(wrev(w),w), and w is a filter of length 2N. The
corresponding polynomial has N zeros located at -1 and N-1 zeros less than 1
in modulus.

Note that other methods can be used; see various solutions of the spectral
factorization problem in Strang-Nguyen p. 157.

where a k()

1
2
--- i– 

 

i N– 1+=
i k≠

N

∏

k i–()
i N– 1+=

i k≠

N

∏
---------------------------------------for k 1= …, N,=

2

8-31

dbaux
Limitations The computation of the dbN Daubechies scaling filter requires the extraction of
the roots of a polynomial of order 4N. Instability may occur when N is too large.

See Also dbwavf, wfilters

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

M.J. Shensa (1992), “The discrete wavelet transform: wedding the a trous and
Mallat Algorithms,” IEEE Trans. on Signal Processing, vol. 40, 10, pp
2464-2482.

G. Strang, T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge
Press.
8-32

dbwavf
dbwavfPurpose Daubechies wavelets filters.

Syntax F = dbwavf(W)

Description F = dbwavf(W) returns the scaling filter associated with Daubechies wavelet
specified by the string W, where W = 'dbN'. Possible values for N are: 1, 2, 3, ...,
50.

Examples % Set Daubechies wavelet name.
wname = 'db4';

% Compute the corresponding scaling filter.
f = dbwavf(wname)

f =
Columns 1 through 7
0.1629 0.5055 0.4461 -0.0198 -0.1323 0.0218 0.0233
Column 8
-0.0075

See Also dbaux, waveinfo, wfilters
8-33

ddencmp
ddencmpPurpose Default values for de-noising or compression.

Syntax [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X)
[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X)
[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X)

Description ddencmp is a de-noising and compression oriented function.

ddencmp gives default values for all the general procedures related to
de-noising and compression of one- or two-dimensional signals, using wavelets
or wavelet packets.

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) returns default values for
de-noising or compression, using wavelets or wavelet packets, of an input
vector or matrix X, which can be a one- or two-dimensional signal. THR is the
threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to keep
approximation coefficients, and CRIT (used only for wavelet packets) is the
entropy name (see wentropy).

IN1 is 'den' or 'cmp'.

IN2 is 'wv' or 'wp'.

For wavelets (three output arguments):

[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X) returns default values for
de-noising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X. These values
can be used for wdencmp.

For wavelet packets (four output arguments):

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X) returns default values
de-noising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X. These values
can be used for wpdencmp.
8-34

ddencmp
Examples % Generate Gaussian white noise.
init = 2055415866; randn('seed',init);
x = randn(1,1000);

% Find default values for wavelets (3 output arguments).
% These values can be used for wdencmp with option 'gbl'.

% default for de-noising:
% soft thresholding and appr. cfs. kept
% thr = sqrt(2*log(n)) * s
% where s is an estimate of level noise.
[thr,sorh,keepapp] = ddencmp('den','wv',x)

thr =
3.8593

sorh =
s
keepapp =

1

% default for compression:
% hard thresholding and appr. cfs. kept
% thr = median(abs(detail at level 1)) if nonzero
% else thr = 0.05 * max(abs(detail at level 1)).
[thr,sorh,keepapp] = ddencmp('cmp','wv',x)

thr =
0.7003

sorh =
h
keepapp =

1

% Find default values for wavelet packets (4 output arguments).
% These values can be used for wpdencmp.

% default for de-noising:
% soft thresholding and appr. cfs. kept
% thr = sqrt(2*log(n*log(n)/log(2)))
% the noise level is supposed to be equal to 1;
% default entropy is 'sure' criterion.
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x)
8-35

ddencmp
thr =
4.2911

sorh =
h
keepapp =

1
crit =
sure

% default for compression.
% hard thresholding and appr. cfs. kept
% thr = median(abs(detail at level 1))
% default entropy is 'threshold' criterion.
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr =
0.7003

sorh =
h
keepapp =

1
crit =
threshold

See Also wdencmp, wentropy, wpdencmp

References D.L. Donoho (1995), “De-noising by soft-thresholding,” IEEE, Trans. on Inf.
Theory, 41, 3, pp. 613–627.

D.L. Donoho, I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

D.L. Donoho, I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen
from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.
8-36

deblankl
deblanklPurpose Convert string to lowercase without blanks.

Syntax S = deblankl(X)

Description deblankl is a general utility.

This function gives flexibility when using strings.

S = deblankl(X) is the string X converted to lowercase without blanks.

Examples x = 'AB1 C %9'

x =
AB1 C %9

y = deblankl(x)

y =
ab1c%9
8-37

depo2ind
depo2indPurpose Node depth-position to node index.

Syntax N = depo2ind(O,[D P])

Description depo2ind is a tree management utility.

For a tree of order O, N = depo2ind(O,[D P]) computes the indices N of the
nodes whose depths and positions are encoded within [D,P].

D, P and N are column vectors. The values of D, P and N are constrained by:

D = depths, 0 ≤ D ≤ dmax

P = positions at depth D, 0 ≤ P ≤ orderD-1

N = indices, 0 ≤ N < (order(dmax+1)-1)/(order-1)

Note that for a column vector X, we have depo2ind(O,X) = X.

Examples % Create initial tree.
ord = 2;
t = maketree(ord,3); % binary tree of depth 3.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

% List tt nodes (depth-position).
aln_depo = allnodes(tt,'deppos')

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
8-38

depo2ind
aln_depo =
0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

% Switch from depth-position to index.
aln_ind = depo2ind(ord,aln_depo)

aln_ind =
0
1
2
3
4
5
6
7
8
13
14

See Also ind2depo, maketree, wtreemgr
8-39

detcoef
detcoefPurpose Extract 1-D detail coefficients.

Syntax D = detcoef(C,L,N)
D = detcoef(C,L)

Description detcoef is a one-dimensional wavelet analysis function.

D = detcoef(C,L,N) extracts the detail coefficients at level N from the wavelet
decomposition structure [C,L] (see wavedec). Level N must be an integer such
that 1 <= N <= length(L)-2.

D = detcoef(C,L) extracts the detail coefficients at last level
n=length(L)-2.

Examples % Load original one-dimensional signal.
load leleccum;
s = leleccum(1:3920);
ls = length(s);

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
8-40

detcoef
% Extract detail coefficients at levels
% 1, 2 and 3, from wavelet decomposition
% structure [c,l].

cd3 = detcoef(c,l,3);
cd2 = detcoef(c,l,2);
cd1 = detcoef(c,l,1);

See Also appcoef, wavedec

500 1000 1500 2000 2500 3000 3500
0

500

1000
Original signal s

0 500
−100

0

100
Detail coef. level 3 : cd3

0 500 1000
−50

0

50
Detail coef. level 2 : cd2

0 1000 2000
−50

0

50
Detail coef. level 1 : cd1
8-41

detcoef2
detcoef2Purpose Extract 2-D detail coefficients.

Syntax D = detcoef2(O,C,S,N)

Description detcoef2 is a two-dimensional wavelet analysis function.

D = detcoef2(O,C,S,N) extracts from the wavelet decomposition structure
[C,S] (see wavedec2), the horizontal, vertical, or diagonal detail coefficients for
O = 'h'(or 'v' or 'd', respectively), at level N.

Level N must be an integer such that 1 <= N <= size(S,1)-2.

Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.

[c,s] = wavedec2(X,2,'db1');

sizex = size(X)
sizex =

256 256

sizec = size(c)
sizec =

1 65536

val_s = s
val_s =

64 64
64 64

128 128
256 256
8-42

detcoef2
% Extract details coefficients at level 2
% in each orientation, from wavelet decomposition
% structure [c,s].

chd2 = detcoef2('h',c,s,2);
cvd2 = detcoef2('v',c,s,2);
cdd2 = detcoef2('d',c,s,2);

sizecd2 = size(chd2)

sizecd2 =
64 64

% Extract details coefficients at level 1
% in each orientation, from wavelet decomposition
% structure [c,s].

chd1 = detcoef2('h',c,s,1);
cvd1 = detcoef2('v',c,s,1);
cdd1 = detcoef2('d',c,s,1);

sizecd1 = size(chd1)

sizecd1 =
128 128

See Also appcoef2, wavedec2
8-43

dwt
dwtPurpose Single-level discrete 1-D wavelet transform.

Syntax [cA,cD] = dwt(X,'wname')
[cA,cD] = dwt(X,Lo_D,Hi_D)

Description The dwt command performs a single-level one-dimensional wavelet
decomposition with respect to either a particular wavelet ('wname', see
wfilters) or particular wavelet decomposition filters (Lo_D and Hi_D) you
specify.

[cA,cD] = dwt(X,'wname') computes the approximation coefficients vector cA
and detail coefficients vector cD, obtained by wavelet decomposition of the
vector X.

[cA,cD] = dwt(X,Lo_D,Hi_D) computes the wavelet decomposition as above,
given these filters as input:

• Lo_D is the decomposition low-pass filter and

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

If lx is the length of X and lf is the length of the filters Lo_D and Hi_D, then
length(cA) = length(cD) = floor((lx+lf-1)/2).

For the different signal extension modes, see dwtmode.

Examples % Construct elementary original one-dimensional signal.
randn('seed',531316785)
s = 2 + kron(ones(1,8),[1 -1]) + ...

((1:16).^2)/32 + 0.2*randn(1,16);

% Perform single-level discrete wavelet transform of s by haar.
[ca1,cd1] = dwt(s,'haar');
subplot(311); plot(s); title('Original signal');
subplot(323); plot(ca1); title('Approx. coef. for haar');
subplot(324); plot(cd1); title('Detail coef. for haar');
8-44

dwt
% For a given wavelet, compute the two associated decomposition
% filters and compute approximation and detail coefficients
% using directly the filters.

[Lo_D,Hi_D] = wfilters('haar','d');
[ca1,cd1] = dwt(s,Lo_D,Hi_D);

% Perform single-level discrete wavelet transform of s by db2
% and observe edge effects for last coefficients.
% These extra coefficients are only used to ensure exact
% global reconstruction.

[ca2,cd2] = dwt(s,'db2');
subplot(325); plot(ca2); title('Approx. coef. for db2');
subplot(326); plot(cd2); title('Detail coef. for db2');

Algorithm Starting from a signal s, two sets of coefficients are computed: approximation
coefficients CA1 and detail coefficients CD1. These vectors are obtained by
convolving s with the low-pass filter Lo_D for approximation, and with the
high-pass filter Hi_D for detail, followed by dyadic decimation.

2 4 6 8 10 12 14 16
0

5

10
Original signal

2 4 6 8
0

10

20
Approx. coef. for haar

2 4 6 8
0

1

2
Detail coef. for haar

2 4 6 8
0

10

20
Approx. coef. for db2

2 4 6 8
−5

0

5
Detail coef. for db2
8-45

dwt
More precisely, the first step is:

The length of each filter is equal to 2N. If n = length(s), the signals F and G are
of length n + 2N - 1 and then the coefficients CA1 and CD1 are of length

.

Note: In order to deal with signal-end effects involved by convolution based
algorithm, a global variable managed by dwtmode is used. The possible options
are: zero-padding (used in the previous example, this mode is the default),
symmetric extension, and smooth extension. It should be noted that dwt has
the same single inverse function idwt for the three extension modes.

Limitations Periodized wavelet transform is handled separately (see dwtper and idwtper).

See Also dwtmode, dwtper, idwt, wavedec, waveinfo

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989), “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.

Y. Meyer (1990), “Ondelettes et opérateurs,” Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

2

s

Lo_D

Hi_D

high-pass

F

G

downsample

downsample approximation coefs

cA1

cD1

2

detail coefs

low-pass

2

Where:
X Convolve with filter X

Keep the even indexed elements
(We call this operation downsampling)

floor
n 1–

2
------------ 

  N+
8-46

dwt2
dwt2Purpose Single-level discrete 2-D wavelet transform.

Syntax [cA,cH,cV,cD] = dwt2(X,'wname')
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)

Description The dwt2 command performs a single-level two-dimensional wavelet
decomposition with respect to either a particular wavelet ('wname', see
wfilters) or particular wavelet decomposition filters (Lo_D and Hi_D) you
specify.

[cA,cH,cV,cD] = dwt2(X,'wname') computes the approximation coefficients
matrix cA and the details coefficients matrices cH, cV, and cD (horizontal,
vertical, and diagonal), obtained by wavelet decomposition of the input
matrix X.

[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) computes the two-dimensional wavelet
decomposition as above, based on wavelet decomposition filters you specify:

• Lo_D is the decomposition low-pass filter and

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length. If sx = size(X) and lf is the length
of filters, then size(cA) = size(cH) = size(cV) = size(cD) =
floor((sx+lf-1)/2).

For information about the different discrete wavelet transform extension
modes, see dwtmode.

Examples % Load original image.
load woman;
% X contains the loaded image.
% map contains the loaded colormap.
nbcol = size(map,1);

% Perform single-level decomposition
% of X using db1.

[cA1,cH1,cV1,cD1] = dwt2(X,'db1');
8-47

dwt2
% Images coding.
cod_X = wcodemat(X,nbcol);
cod_cA1 = wcodemat(cA1,nbcol);
cod_cH1 = wcodemat(cH1,nbcol);
cod_cV1 = wcodemat(cV1,nbcol);
cod_cD1 = wcodemat(cD1,nbcol);
dec2d = [...

cod_cA1, cod_cH1; ...
cod_cV1, cod_cD1 ...
];

Algorithm For images, an algorithm similar to the one-dimensional case is possible for
two-dimensional wavelets and scaling functions obtained from
one-dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of approximation
coefficients at level j in four components: the approximation at level j + 1 and
the details in three orientations (horizontal, vertical, and diagonal).

Original image X.

50 100 150 200 250

50

100

150

200

250

One step decomposition

50 100 150 200 250

50

100

150

200

250
8-48

dwt2
The following chart describes the basic decomposition steps for images:

Note: In order to deal with signal-end effects involved by convolution based
algorithm, a global variable managed by dwtmode is used. The possible options
are: zero-padding (used in the previous example, this mode is the default),
symmetric extension, and smooth extension. It should be noted that dwt2 has
the same single inverse function idwt2 for the three extension modes.

Limitations Periodized wavelet transform is handled separately (see dwtper2 and
idwtper2).

Two-Dimensional DWT

Decomposition step

rows

Lo_D

Hi_D

rows

CAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns

Downsample rows: keep the even indexed rows

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

CA0 = s for the decomposition initialization

Where:

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

CAj+1

CDj+1

CDj+1

CDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows
8-49

dwt2
See Also dwtmode, dwtper2, idwt2, wavedec2, waveinfo

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989),”A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.

Y. Meyer (1990),”Ondelettes et opérateurs,” Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)
8-50

dwtmode
dwtmodePurpose Discrete wavelet transform extension mode.

Syntax dwtmode
dwtmode('mode') Where 'mode' can be 'zpd', 'sym', or 'spd'

Description The dwtmode command sets the signal or image extension mode for discrete
wavelet and wavelet packet transforms. The extension modes represent
different ways of handling the problem of border distortion in signal and image
analysis. For more information, see “Dealing with Border Distortion” in
Chapter 6.

dwtmode or dwtmode('status') displays the current mode.

dwtmode('mode') sets the DWT extension mode according to the value of 'mode':

If dwtmode is called with two input arguments, the second one is dummy and
no text (status or warning) is displayed in the MATLAB command window.

The dwtmode function updates a global variable allowing three ways of signal
extension. Only dwt and dwt2 use the global variable.

Examples % If the DWT extension mode global variable does not
% exist, default is zero-padding.
clear global
dwtmode

** DWT Extension Mode: Zero-padding **

'mode' DWT Extension Mode
'zpd' Zero-padding (default)
'sym' Symmetrization (boundary value replication)
'spd' Smooth padding (first derivative interpolation at the edges)
8-51

dwtmode
% Display current DWT signal extension mode.
dwtmode

** DWT Extension Mode: Zero-Padding **

% Change to symmetrization extension mode.
dwtmode('sym')

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! WARNING: Change DWT Extension Mode !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

**
** DWT Extension Mode: Symmetrization **
**

% Display current DWT signal extension mode.
dwtmode

**
** DWT Extension Mode: Symmetrization **
**

Note: You should change the extension mode only by using dwtmode; avoid
changing the global variable directly.

Limitations Periodized wavelet transform is handled separately (see dwtper, dwtper2,
idwtper, idwtper2).

See Also dwt, dwt2
8-52

dwtper
dwtperPurpose Single-level discrete 1-D wavelet transform (periodized).

Syntax [cA,cD] = dwtper(X,'wname')
[cA,cD] = dwtper(X,Lo_D,Hi_D)

Description dwtper is a one-dimensional wavelet analysis function.

[cA,cD] = dwtper(X,'wname') computes the approximation coefficients vector
cA and detail coefficients vector cD, obtained by periodized wavelet
decomposition of the vector X.

'wname' is a string containing the wavelet name (see wfilters).

Instead of giving the wavelet name, you can give the filters. When used with
three arguments: [cA,cD] = dwtper(X,Lo_D,Hi_D), Lo_D is the decomposition
low-pass filter and Hi_D is the decomposition high-pass filter.

If lx = length(X) then length(cA) = length(cD) = ceil(lx/2).

Examples % Set initial signal and get filters.
x = sin(0.3*[1:300]); lx = length(x)
lx =

300

w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);

% DWT with zero-padding signal extension.
[cazp,cdzp] = dwt(x,w);

% The transform uses some extra coefficients,
% at most 2 if lx is odd.
lxtzp = 2*length(cazp)
lxtzp =

316
8-53

dwtper
% Reconstruction.
xzp = idwt(cazp,cdzp,w,lx);

% Error with zero-padding.
errzp = max(abs(x-xzp))
errzp =

7.3231e-12

% Periodized DWT.
[cap,cdp] = dwtper(x,w);

% The transform uses a minimum of extra coefficients.
lxtp = 2*length(cap)
lxtp =

300

% Reconstruction.
xp = idwtper(cap,cdp,w,lx);

% Error with periodized DWT.
errp = max(abs(x-xp))
errp =
 1.4588e-11

Algorithm The algorithm is the same as in dwt but the signal X is extended assuming
periodicity. More precisely, if lx = length(X) is even, the extended signal is
extX = [X(lx-lf+1:lx) X X(1:lf)] where lf is the length of the filter. Then,
usual convolution and downsampling operations are done, followed by keeping
the central part of length lx/2.

See Also dwt, idwtper
8-54

dwtper2
dwtper2Purpose Single-level discrete 2-D wavelet transform (periodized).

Syntax [cA,cH,cV,cD] = dwtper2(X,'wname')
[cA,cH,cV,cD] = dwtper2(X,Lo_D,Hi_D)

Description dwtper2 is a two-dimensional wavelet analysis function.

[cA,cH,cV,cD] = dwtper2(X,'wname') computes the approximation
coefficients matrix cA and details coefficients matrices cH, cV, and cD, obtained
by periodized wavelet decomposition of the input matrix X.

'wname' is a string containing the wavelet name (see wfilters).

Instead of giving the wavelet name, you can give the filters. When used with
three arguments: [cA,cH,cV,cD] = dwtper2(X,Lo_D,Hi_D), Lo_D is the
decomposition low-pass filter and Hi_D is the decomposition high-pass filter.

If sx = size(X) then size(cA) = size(cH) = size(cV) = size(cD) =
ceil(sx/2).

Examples % Set initial signal and get filters.
load tire
% X contains the loaded image.
sx = size(X)

sx =
205 232

w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);

% DWT with zero-padding image extension.
[ca0,ch0,cv0,cd0] = dwt2(X,w);

% The transform uses some extra coefficients.
sxtzp = 2*size(ca0)
sxtzp =

222 248
8-55

dwtper2
% Reconstruction
x0 = idwt2(ca0,ch0,cv0,cd0,w,sx);

% Error with zero-padding.
err0 = max(max(abs(X-x0)))
err0 =

6.3292e-09

% Periodized DWT
[cap,chp,cvp,cdp] = dwtper2(X,w);

% The transform uses a minimum of extra coefficients.
lxtp = 2*size(cap)
lxtp =

206 232

% Reconstruction.
xp = idwtper2(cap,chp,cvp,cdp,w,sx);

% Error with periodized DWT.
errp = max(max(abs(X-xp)))
errp =

6.7353e-09

Algorithm See the dwtper algorithm section.

See Also dwt2, idwtper2
8-56

dyaddown
dyaddownPurpose Dyadic downsampling.

Syntax Y = dyaddown(X,evenodd)
Y = dyaddown(X)
Y = dyaddown(X,evenodd,'type')
Y = dyaddown(X,'type',evenodd)

Description Y = dyaddown(X,evenodd), where X is a vector, returns a version of X that has
been downsampled by 2. Whether Y contains the even- or odd-indexed samples
of X depends on the value of positive integer evenodd:

• If evenodd is even, then Y(k) = X(2k).

• If evenodd is odd, then Y(k) = X(2k+1).

If you omit the evenodd argument, dyaddown(X) defaults to evenodd = 0
(even-indexed samples).

Y = dyaddown(X,evenodd,'type') or Y = dyaddown(X,'type',evenodd), where X
is a matrix, return a version of X obtained by suppressing:

If you omit the evenodd or 'type' arguments, dyaddown defaults to
evenodd = 0 (even-indexed samples) and 'type' = 'c' (columns).

Examples % For a vector.
s = 1:10
s =

1 2 3 4 5 6 7 8 9 10

dse = dyaddown(s) % Downsample elements with even indices.
dse =

 2 4 6 8 10

Columns of X If 'type' = 'c'

Rows of X If 'type' = 'r'

Rows and columns of X) If 'type' = 'm'
8-57

dyaddown
% or equivalently
dse = dyaddown(s,0)
dse =

 2 4 6 8 10

dso = dyaddown(s,1) % Downsample elements with odd indices.
dso =

 1 3 5 7 9

% For a matrix.
s = (1:3)'*[1:4]
s =

1 2 3 4
2 4 6 8
3 6 9 12

dec = dyaddown(s,0,'c') % Downsample columns with even indices.
dec =

 2 4
4 8
6 12

der = dyaddown(s,1,'r') % Downsample rows with odd indices.
der =
 1 2 3 4
3 6 9 12

See Also dyadup

References G. Strang, T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge
Press.
8-58

dyadup
dyadupPurpose Dyadic upsampling.

Syntax Y = dyadup(X,evenodd)
Y = dyadup(X)
Y = dyadup(X,evenodd,'type')
Y = dyadup(X,'type',evenodd)

Description dyadup implements a simple zero-padding scheme very useful in the wavelet
reconstruction algorithm.

Y = dyadup(X,evenodd), where X is a vector, returns an extended copy of vector
X obtained by inserting zeros. Whether the zeros are inserted as even- or
odd-indexed elements of Y depends on the value of positive integer evenodd:

• If evenodd is even, then Y(2k–1) = X(k), Y(2k) = 0.

• If evenodd is odd, then Y(2k–1) = 0, Y(2k) = X(k).

If you omit the evenodd argument, dyadup(X) defaults to evenodd = 1 (zeros in
odd-indexed positions).

Y = dyadup(X,evenodd,'type') or Y = dyadup(X,'type',evenodd), where X is a
matrix, return extended copies of X obtained by inserting:

If you omit the evenodd or 'type' arguments, dyadup defaults to evenodd = 1
(zeros in odd-indexed positions) and 'type' = 'c' (insert columns).

Columns in X If 'type' = 'c'

Rows in X If 'type' = 'r'

Rows and columns in X If 'type' = 'm'
8-59

dyadup
Examples % For a vector.
s = 1:5

s =
1 2 3 4 5

dse = dyadup(s) % Upsample elements at odd indices.
dse =

0 1 0 2 0 3 0 4 0 5 0
% or equivalently
dse = dyadup(s,1)

dse =
0 1 0 2 0 3 0 4 0 5 0
dso = dyadup(s,0) % Upsample elements at even indices.

dso =
1 0 2 0 3 0 4 0 5

% For a matrix.
s = (1:2)'*[1:3]

s =
1 2 3
2 4 6
der = dyadup(s,1,'r') % Upsample rows at even indices.

der =
0 0 0
1 2 3
0 0 0
2 4 6
0 0 0
doc = dyadup(s,0,'c') % Upsample columns at odd indices.

doc =
1 0 2 0 3
2 0 4 0 6
8-60

dyadup
% Using default values for dyadup and dyaddown, we have:
% dyaddown(dyadup(s)) = s.
s = 1:5

s =
1 2 3 4 5
uds = dyaddown(dyadup(s))

uds =
1 2 3 4 5
% In general reversed identity is false.

See Also dyaddown

References G. Strang, T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge
Press
8-61

entrupd
entrupdPurpose Entropy update (wavelet packet).

Syntax NDATA = entrupd(TREE,DATA,ENT)
NDATA = entrupd(TREE,DATA,ENT,PAR)

Description entrupd is a one- or two-dimensional wavelet packets utility.

NDATA = entrupd(TREE,DATA,ENT) or
NDATA = entrupd(TREE,DATA,ENT,PAR) returns for a given wavelet packet
decomposition structure [TREE,DATA] (see maketree), the updated data
structure NDATA corresponding to entropy function ENT with optional parameter
PAR (see wentropy).

[TREE,NDATA] is the resulting decomposition structure.

Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 2 with db1 wavelet packets
% using shannon entropy.

[t,d] = wpdec(x,2,'db1','shannon');

% Read entropy of all the nodes.
nodes = allnodes(t);
ent = wdatamgr('read_ent',d,nodes)

ent =
1.0e+04 *
-5.8615 -6.8204 -0.0350 -7.7901 -0.0497 -0.0205 -0.0138

% Update nodes entropy without changing tree
% and data structures.

d = entrupd(t,d,'threshold',0.5);
nent = wdatamgr('read_ent',d,nodes)

nent =
937 488 320 241 175 170 163

See Also wentropy, wpdec, wpdec2
8-62

errargn
errargnPurpose Check function arguments number.

Syntax err = errargn('function',numargin,argin,numargout,argout)

Description errargn is a general utility.

err = errargn('function',numargin,argin,numargout,argout) is equal to 1
if either the number of input (argin) or output (argout) arguments of the
specified function does not belong to the vector of allowed values (numargin
and
numargout, respectively). Otherwise err = 0.

If err = 1, errargn displays an error message in the command window. The
header of this error message contains the string 'function'.

Examples In this example, errargn reports an improper call to function line:

» err = errargn('line',4,[2 3],0,[0 1]);

**
ERROR ...
--
 line ---> invalid number of arguments
**

Here, surf is passed the proper number of arguments, so no error message
results:

» err = errargn('surf',4,[3 4],0,[0 1]);

See Also errargt
8-63

errargt
errargtPurpose Check function arguments type.

Syntax ERR = errargt(NDFCT,VAR,TYPE)
ERR = errargt(NDFCT,VAR,'msg')

Description errargn is a general utility.

ERR = errargt(NDFCT,VAR,TYPE) is equal to 1 if any element of input vector
or matrix VAR (depending on TYPE choice listed below) is not of type prescribed
by input string TYPE. Otherwise ERR = 0.

If ERR = 1, an error message is displayed in the command window. In the header
message, the string NDFCT is displayed. This string contains the name of a
function.

Available options for TYPE are:

'int' Strictly positive integers (excluding zero)

'in0' Positive integers (including zero)

'rel' Integers

'rep' Strictly positive reals (excluding zero)

're0' Positive reals (including zero)

'str' String

'vec' Vector

'row' Row vector

'col' Column vector

'dat' Dates AAAAMMJJHHMNSS with:

'mon' Months MM with:

0 AAAA 9999≤ ≤
1 MM 12≤ ≤
1 JJ 31≤ ≤
0 HH 23≤ ≤
0 MN 59≤ ≤
0 SS 59≤ ≤

1 MM 12≤ ≤
8-64

errargt
A special use of errargt is:

ERR = errargt(NDFCT,VAR,'msg') for which ERR = 1 and the string VAR is the
error message.

See Also errargn
8-65

idwt
idwtPurpose Single-level inverse discrete 1-D wavelet transform.

Syntax X = idwt(cA,cD,'wname')
X = idwt(cA,cD,Lo_R,Hi_R)
X = idwt(cA,cD,'wname',L)
X = idwt(cA,cD,Lo_R,Hi_R,L)

Description The idwt command performs a single-level one-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see
wfilters) or particular wavelet reconstruction filters (Lo_R and Hi_R) you
specify.

X = idwt(cA,cD,'wname') returns the single-level reconstructed
approximation coefficients vector X based on approximation and detail
coefficients vectors cA and cD, and using the wavelet 'wname'.

X = idwt(cA,cD,Lo_R,Hi_R)reconstructs as above using filters you specify:

• Lo_R is the reconstruction low-pass filter

• Hi_R is the reconstruction high-pass filter

Lo_R and Hi_R must be the same length. If la is the length of cA (which also
equals the length of cD) and lf is the length of the filters Lo_R and Hi_R, then
length(X) = 2*la-lf+2.

X = idwt(cA,cD,'wname',L) or X = idwt(cA,cD,Lo_R,Hi_R,L), returns the
length-L central portion of the result obtained using idwt(cA,cD,'wname'). L
must be less than 2*la-lf+2.

Examples idwt is the inverse function of dwt in the sense that the abstract statement
idwt(dwt(X,'wname'),'wname') gives back X. Consider this example.

% Construct elementary one-dimensional signal s.
randn('seed',531316785)
s = 2 + kron(ones(1,8),[1 -1]) + ...

((1:16).^2)/32 + 0.2*randn(1,16);
8-66

idwt
% Perform single-level dwt of s using db2.
[ca1,cd1] = dwt(s,'db2');
subplot(221); plot(ca1);
title('Approx. coef. for db2');
subplot(222); plot(cd1);
title('Detail coef. for db2');

% Perform single-level inverse discrete wavelet transform,
% illustrating that idwt is the inverse function of dwt.

ss = idwt(ca1,cd1,'db2');
err = norm(s-ss); % Check reconstruction.
subplot(212); plot([s;ss]');
title('Original and reconstructed signals');
xlabel(['Error norm = ',num2str(err)])

% For a given wavelet, compute the two associated
% reconstruction filters and inverse transform using
% the filters directly.

[Lo_R,Hi_R] = wfilters('db2','r');
ss = idwt(ca1,cd1,Lo_R,Hi_R);

2 4 6 8
0

5

10

15
Approx. coef. for db2

2 4 6 8
−1

0

1

2
Detail coef. for db2

2 4 6 8 10 12 14 16
0

5

10
Original and reconstructed signals

Error norm = 1.435e−12
8-67

idwt
Algorithm Starting from the approximation and detail coefficients at level j, cAj and cDj,
the inverse discrete wavelet transform reconstructs cAj-1, inverting the
decomposition step by inserting zeros and convolving the results with the
reconstruction filters.

See Also dwt, idwtper, upwlev

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989), “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.

Y. Meyer (1990), “Ondelettes et opérateurs,” Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

cAj-1

Lo_R

Hi_R

high-pass

U

upsample

upsample

cAj

cDj

2

level j

low-pass

Where: 2

X Convolve with filter X

Insert zeros at odd-indexed elements

Take the central part of U with the

2

wkeep

wkeep
convenient length

level j-1

One-Dimensional IDWT

Reconstruction step
8-68

idwt2
idwt2Purpose Single-level inverse discrete 2-D wavelet transform.

Syntax X = idwt2(cA,cH,cV,cD,'wname')
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwt2(cA,cH,cV,cD,'wname',S)
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

Description The idwt2 command performs a single-level two-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see
wfilters) or particular wavelet reconstruction filters (Lo_R and Hi_R) you
specify.

X = idwt2(cA,cH,cV,cD,'wname') uses the wavelet 'wname' to compute the
single-level reconstructed approximation coefficients vector X based on
approximation vector cA and (horizontal, vertical, and diagonal) detail vectors
cH,cV and cD.

X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R) reconstructs as above, using filters you
specify:

• Lo_R is the reconstruction low-pass filter

• Hi_R is the reconstruction high-pass filter

Lo_R and Hi_R must be the same length.

If sa = size(cA) = size(cH) = size(cV) = size(cD) and lf is the length of
the filters, then size(X) = 2*size(cA)-lf+2.

X = idwt2(cA,cH,cV,cD,'wname',S) and X =
idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) return the size S central portion of the
result obtained using the syntax idwt2(cA,cH,cV,cD,'wname'). S must be less
than 2*size(cA)-lf+2.

Examples idwt2 is the inverse function of dwt2 in the sense that the abstract statement
idwt2(dwt2(X,'wname'),'wname') gives back X. Consider this example.

% Load original image.
load woman;
% X contains the loaded image.
sX = size(X);
8-69

idwt2
% Perform single-level decomposition
% of X using db4.

[cA1,cH1,cV1,cD1] = dwt2(X,'db4');

% Invert directly decomposition of X
% using coefficients at level 1.

A0 = idwt2(cA1,cH1,cV1,cD1,'db4',sX);

% Check for perfect reconstruction.
max(max(X-A0))

ans =
3.3032e-10

Algorithm

See Also dwt2, idwtper2, upwlev2

Two-Dimensional IDWT

Reconstruction step

cAj

rows

Upsample columns: insert zeros at odd-indexed columns

Upsample rows: insert zeros at odd-indexed rows

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

Where:

12

12

12

12

2 1

21

X

rows

Hi_R

Lo_R

X

rows

rows

Hi_R

Lo_R

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows

columns

Lo_R

Hi_R

columns

1 2

1 2

wkeep
8-70

idwtper
idwtperPurpose Single-level inverse discrete 1-D wavelet transform (periodized).

Syntax X = idwtper(cA,cD,'wname')
X = idwtper(cA,cD,Lo_R,Hi_R)
X = idwtper(cA,cD,'wname',L)
X = idwtper(cA,cD,Lo_R,Hi_R,L)

Description idwtper is a one-dimensional wavelet analysis function.

X = idwtper(cA,cD,'wname') returns the single-level reconstructed
approximation coefficients vector X based on approximation and detail vectors
cA and cD at a given level, using the periodized inverse wavelet transform.
'wname' is a string containing the wavelet name (see wfilters).

Instead of giving the wavelet name, you can give the filters.

For X = idwtper(cA,cD,Lo_R,Hi_R):

Lo_R is the reconstruction low-pass filter.

Hi_R is the reconstruction high-pass filter.

If la = length(cA) = length(cD) then length(X) = 2*la.

For X = idwtper(cA,cD,'wname',L) or X = idwtper(cA,cD,Lo_R,Hi_R,L), L is
the length of the result.

idwtper is the inverse function of dwtper in the sense that the abstract
statement idwtper(dwtper(X,'wname'),'wname') gets back to X.

Examples % Set initial signal and get filters.
x = sin(0.3*[1:300]); lx = length(x)
lx =

300

w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);

% DWT with zero-padding signal extension.
[cazp,cdzp] = dwt(x,w);
8-71

idwtper
% The transform uses some extra coefficients,
% at most 2 if lx is odd.
lxtzp = 2*length(cazp)
lxtzp =

316

% Reconstruction.
xzp = idwt(cazp,cdzp,w,lx);

% Error with zero-padding.
errzp = max(abs(x-xzp))
errzp =

7.3231e-12

% Periodized DWT.
[cap,cdp] = dwtper(x,w);

% The transform uses a minimum of extra coefficients.
lxtp = 2*length(cap)
lxtp =

300

% Reconstruction.
xp = idwtper(cap,cdp,w,lx);

% Error with periodized DWT.
errp = max(abs(x-xp))
errp =

1.4588e-11

Note: In general, the following abstract statement is not true:
idwtper(dwt(X,'wname'),'wname') = X .

See Also dwtper
8-72

idwtper2
idwtper2Purpose Single-level inverse discrete 2-D wavelet transform (periodized).

Syntax X = idwtper2(cA,cH,cV,cD,'wname')
X = idwtper2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwtper2(cA,cH,cV,cD,'wname',S)
X = idwtper2(cA,cH,cV,cD,Lo_R,Hi_R,S)

Description idwtper2 is a two-dimensional wavelet analysis function.

X = idwtper2(cA,cH,cV,cD,'wname') returns the single-level reconstructed
approximation coefficients vector X based on approximation and details vectors
cA, cH, cV, and cD at a given level, using the periodized inverse wavelet
transform. 'wname' is a string containing the wavelet name (see wfilters).

Instead of giving the wavelet name, you can give the filters.

For X = idwtper2(cA,cH,cV,cD,Lo_R,Hi_R), Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.

If sa = size(cA) = size(cH) = size(cV) = size(cD), then size(X) = 2*sa.

For X = idwtper2(cA,cH,cV,cD,'wname',S) or
X = idwtper2(cA,cH,cV,cD,Lo_R,Hi_R,S), S is the size of the result.

idwtper2 is the inverse function of dwtper2 in the sense the abstract statement
idwtper2(dwtper2(X,'wname'),'wname') gets back to X.

Examples % Set initial signal and get filters.
load tire

% X contains the loaded image.
sx = size(X)

sx =
205 232

w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);

% DWT with zero-padding image extension.
[ca0,ch0,cv0,cd0] = dwt2(X,w);
8-73

idwtper2
% The transform uses some extra coefficients.
sxtzp = 2*size(ca0)
sxtzp =

222 248

% Reconstruction.
x0 = idwt2(ca0,ch0,cv0,cd0,w,sx);

% Error with zero-padding.
err0 = max(max(abs(X-x0)))
err0 =

6.3292e-09

% Periodized DWT.
[cap,chp,cvp,cdp] = dwtper2(X,w);

% The transform uses a minimum of extra coefficients.
lxtp = 2*size(cap)
lxtp =

206 232

% Reconstruction.
xp = idwtper2(cap,chp,cvp,cdp,w,sx);

% Error with periodized DWT.
errp = max(max(abs(X-xp)))
errp =

6.7353e-09

Note: In general, the following abstract statement is not true:
idwtper2(dwt2(X,'wname'),'wname') = X.

See Also dwtper2
8-74

ind2depo
ind2depoPurpose Node index to node depth-position.

Syntax [D,P] = ind2depo(ORD,N)

Description ind2depo is a tree management utility.

For a tree of order ORD, [D,P] = ind2depo(ORD,N) computes the depths D and
the positions P (at this depths D) for the nodes with indices N.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

D, P, N are column vectors. The values of D, P, N are constrained by:

D = depths, 0 ≤ D ≤ dmax

P = positions at depth D, 0 ≤ P ≤ orderD-1

N = indices, 0 ≤ N < (order(dmax+1)-1)/(order-1)

Note that [D,P] = ind2depo(ORD,[D P]).

Examples % Create initial tree.
ord = 2; t = maketree(ord,3); % Binary tree of depth 3.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-75

ind2depo
% List tt nodes (index).
aln_ind = allnodes(tt)

aln_ind =
0
1
2
3
4
5
6
7
8
13
14

% Switch from index to depth-position.
[depth,pos] = ind2depo(ord,aln_ind);
aln_depo = [depth,pos]
aln_depo =

0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

See Also depo2ind, maketree, wtreemgr
8-76

instdfft
instdfftPurpose Inverse nonstandard 1-D fast Fourier transform.

Syntax [X,T] = instdfft(XHAT,LOWB,UPPB)

Description instdfft is a general mathematical utility.

[X,T] = instdfft(XHAT,LOWB,UPPB) returns the inverse nonstandard FFT of
XHAT, on a power of 2 regular grid (not necessarily integers) on the interval
[LOWB,UPPB].

Output arguments are X the recovered signal computed on the time interval T
given by T = LOWB + [0:n-1]*(UPPB-LOWB)/n, where n is the length of XHAT.

Outputs are vectors of length n.

Algorithm See nstdfft algorithm section.

Limitations The length of XHAT must be a power of two.

See Also fft, ifft, nstdfft
8-77

intwave
intwavePurpose Integrate wavelet function psi.

Syntax [INTEG,XVAL] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC,PFLAG)
[INTEG,XVAL] = intwave('wname')

Description [INTEG,XVAL] = intwave('wname',PREC) returns values of the wavelet function
ψ integrals INTEG (from to XVAL values): for x in XVAL.

The function ψ is approximated on the 2PREC points grid XVAL, where PREC is a
positive integer. 'wname' is a string containing the name of the wavelet ψ (see
wfilters).

When used with three arguments, the third one is a dummy argument.

[INTEG,XVAL] = intwave('wname',PREC,PFLAG) in addition plots INTEG on XVAL
grid if PFLAG is nonzero.

[INTEG,XVAL] = intwave('wname',PREC) is equivalent to
[INTEG,XVAL] = intwave('wname',PREC,0).

[INTEG,XVAL] = intwave('wname') is equivalent to
[INTEG,XVAL] = intwave('wname',8).

intwave is used only for continuous analysis (see cwt).

∞– ψ y() yd
∞–

x

∫

8-78

intwave
Examples % Set wavelet name.
wname = 'db4';

% Plot wavelet function.
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet');

% Compute and plot wavelet integrals approximations
% on a dyadic grid.

[integ,xval] = intwave(wname,7);
subplot(212); plot(xval,integ);
title(['Wavelet integrals over [-Inf x] ' ...

'for each value of xval']);

Algorithm First, the wavelet function is approximated on a grid of 2PREC points using
wavefun. A piecewise constant interpolation is used in order to compute the
integrals using cumsum.

See Also wavefun

0 1 2 3 4 5 6 7
−1

0

1

2
Wavelet

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4
Wavelet integrals over [−Inf x] for each value of xval
8-79

isnode
isnodePurpose True for existing node.

Syntax R = isnode(T,N)

Description isnode is a tree management utility.

R = isnode(T,N) returns 1’s for nodes N, which exist in the tree structure T,
and 0’s for others. N can be a column vector containing the indices of nodes or a
matrix, that contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of i-th node and N(i,2) is the position of
i-th node.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

Examples % Create initial tree.
ord = 2;
t = maketree(ord,3); % binary tree of depth 3.
tt = nodejoin(t,5);
8-80

isnode
tt = nodejoin(tt,4);
plottree(tt)

% Check node index.
isnode(tt,[1;3;25])

ans =
1
1
0

% Check node depth-position.
isnode(tt,[1 0;3 1;4 5])

ans =
1
1
0

See Also istnode, maketree, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-81

istnode
istnodePurpose Check if nodes are terminal nodes.

Syntax R = istnode(T,N)

Description istnode is a tree management utility.

R = istnode(T,N) returns ranks (in left to right terminal nodes ordering) for
terminal nodes N belonging to the tree structure T and 0’s for others.

N can be a column vector containing the indices of nodes or a matrix that
contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of i-th node and N(i,2) is the position of
i-th node.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

Examples % Create initial tree.

ord = 2;
t = maketree(ord,3); % binary tree of depth 3.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)
8-82

istnode
% Find terminal nodes and return indices for terminal
% nodes in the tree structure.

istnode(tt,[14])
ans =

6

istnode(tt,[15])
ans =

0

istnode(tt,[1;7;14;25])
ans =

0
1
6
0

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-83

istnode
istnode(tt,[1 0;3 1;4 5])
ans =

0
2
0

See Also isnode, maketree, wtreemgr
8-84

maketree
maketree

8

Purpose Make tree.

Syntax [T,NB] = maketree(ORD,D)
[T,NB] = maketree(ORD,D,NBI)
[T,NB] = maketree(ORD)

Description maketree is a tree management utility.

maketree creates a tree of order ORD and depth D. ORD is an integer equal to the
number of children of a generic node. Each nonterminal node has ORD children.

For wavelet packet decomposition, a convenient structure is a binary tree for
the one-dimensional case (ORD = 2) and a quaternary tree for the
two-dimensional case (ORD = 4). The depth D is the number of levels of the tree.

[T,NB] = maketree(ORD,D) creates a tree structure of order ORD with depth D.
Output argument NB is the number of terminal nodes (NB = ORD^D). Output
vector T is organized as:

[T(1) ... T(NB+1)] where T(i), i = 1, ..., NB are the indices of the
terminal nodes and T(NB+1) = -ORD.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

When used with three input arguments, [T,NB] = maketree(ORD,D,NBI)
computes T as a (1+NBI)-by-(NB+1) matrix with T(1,:) as above and in the
range T(2:NBI+1,:) the user is free to add their own material.

[T,NB] = maketree(ORD) is equivalent to [T,NB] = maketree(ORD,0,0).
[T,NB] = maketree(ORD,D) is equivalent to [T,NB] = maketree(ORD,D,0).
8-85

maketree
Examples % Create binary tree (tree of order 2) of depth 3.
t2 = maketree(2,3);

% Plot tree structure t2.
plottree(t2)

% Create binary tree (tree of order 4) of depth 2.
t4 = maketree(4,2);

% Plot tree structure t4.
plottree(t4)

See Also plottree, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (2,10) (2,11) (2,12) (2,13) (2,14) (2,15)

(0,0)
8-86

mexihat
mexihatPurpose Mexican hat wavelet.

Syntax [PSI,X] = mexihat(LB,UB,N)

Description [PSI,X] = mexihat(LB,UB,N) returns values of the Mexican hat wavelet on an
N point regular grid, X, on the interval [LB,UB].

Output arguments are the wavelet function psi computed on the grid X, and
the grid X.

This wavelet has [-5 5] as effective support.

This function is proportional to the second derivative function of the Gaussian
probability density function.

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute and plot Mexican hat wavelet.
[psi,x] = mexihat(lb,ub,n);
plot(x,psi), title('Mexican hat wavelet')

See Also waveinfo

ψ x() 2

3
-------π 1– 4⁄

 
  1 x

2
–()e

x2– 2⁄
=

−5 0 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mexican hat wavelet
8-87

meyer
meyerPurpose Meyer wavelet.

Syntax [PHI,PSI,T] = meyer(LOWB,UPPB,N)
[PHI,T] = meyer(LOWB,UPPB,N,'phi')
[PSI,T] = meyer(LOWB,UPPB,N,'psi')

Description [PHI,PSI,T] = meyer(LOWB,UPPB,N) returns Meyer wavelet and scaling
functions evaluated on an N point regular grid on the interval [LOWB,UPPB].

N must be a power of two.

Output arguments are the scaling function PHI and the wavelet function PSI
computed on the grid T. These functions have [-8 8] as effective support.

A fourth argument is allowed if only one function is required:
[PHI,T] = meyer(LOWB,UPPB,N,'phi')
[PSI,T] = meyer(LOWB,UPPB,N,'psi')

when the fourth argument is used but not equal to 'phi' or 'psi'. Outputs are
the same as in the main option.

The Meyer wavelet and scaling function are defined in the frequency domain
by:

•

•

•

 ψ̂ ω() 0 if= ω 2π
3

8π
3

------[,]∉

ψ̂ ω() 2π() 1– 2⁄
e

i ω 2⁄ π
2
---ν 3

2π
------ ω 1– 

 
 
 sin=

if 2π
3

------ ω 4π
3

------≤ ≤

ψ̂ ω() 2π() 1– 2⁄
e

i ω 2⁄ π
2
---ν 3

4π
------ ω 1– 

 
 
 cos= if

4π
3

------ ω 8π
3

------≤ ≤
8-88

meyer
where

•

•

•

By changing the auxiliary function (see meyeraux), you get a family of different
wavelets. For the required properties of the auxiliary function ν, see References
in Chapter 6.

ν a() a
4

35 84a– 70a
2

20a
3

–+(),= a 0 1[,]∈

φ̂ ω() 2π() 1– 2⁄
= if ω 2π

3
------≤ ,

φ̂ ω() 2π() 1– 2⁄
=

π
2
---ν 3

2π
------ ω 1– 

 
 
 cos if

2π
3

------ ω 4π
3

------≤ ≤

φ̂ ω() 0= if ω 4π
3

------>
8-89

meyer
Examples % Set effective support and grid parameters.
lowb = -8; uppb = 8; n = 1024;

% Compute and plot Meyer wavelet and scaling function.
[phi,psi,x] = meyer(lowb,uppb,n);
subplot(211), plot(x,psi)
title('Meyer wavelet')
subplot(212), plot(x,phi)
title('Meyer scaling function')

Algorithm Starting from an explicit form of the Fourier transform of φ, meyer computes
the values of on a regular grid and then the values of φ are computed using
instdfft, the inverse nonstandard discrete FFT.

The procedure for ψ is along the same lines.

See Also meyeraux, wavefun, waveinfo

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed. pp 117-119, 137, 152.

−8 −6 −4 −2 0 2 4 6 8
−1

0

1

2
Meyer wavelet

−8 −6 −4 −2 0 2 4 6 8
−0.5

0

0.5

1

1.5
Meyer scaling function

φ̂
φ̂

8-90

meyeraux
meyerauxPurpose Meyer wavelet auxiliary function.

Syntax Y = meyeraux(X)

Description Y = meyeraux(X) returns values of the auxiliary function used for Meyer
wavelet generation evaluated at the elements of the vector or matrix X.

The function is

See Also meyer

35x
4

84x
5

– 70x
6

20x
7

–+
8-91

morlet
morletPurpose Morlet wavelet.

Syntax [PSI,X] = morlet(LB,UB,N)

Description [PSI,X] = morlet(LB,UB,N) returns values of the Morlet wavelet on an N point
regular grid, X, on the interval [LB,UB].

Output arguments are the wavelet function PSI computed on the grid X, and
the grid X. This wavelet has [-4 4] as effective support.

Examples % Set effective support and grid parameters.
lb = -4; ub = 4; n = 1000;

% Compute and plot Morlet wavelet.
[psi,x] = morlet(lb,ub,n);
plot(x,psi), title('Morlet wavelet')

See Also waveinfo

ψ x() e
x– 2 2⁄

5x()cos=

−4 −2 0 2 4
−1

−0.5

0

0.5

1
Morlet wavelet
8-92

nodeasc
nodeascPurpose Node ascendants.

Syntax A = nodeasc(T,N)
A = nodeasc(T,N,'deppos')

Description nodeasc is a tree management utility.

A = nodeasc(T,N) returns the indices of all the ascendants of the node N in the
tree structure T. N can be the index node or the depth and position of node. A is
a column vector with A(1) = index of node N.

A = nodeasc(T,N,'deppos') is a matrix that contains the depths and positions
of all ascendants. A(i,1) is the depth of i-th ascendant and A(i,2) is the
position of i-th ascendant.
8-93

nodeasc
Examples % Create binary tree of depth 3.
t = maketree(2,3);
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-94

nodeasc
% Node descendants.
nodedesc(tt,2)

ans =
7
3
1
0

nodedesc(tt,2,'deppos')
ans =

nodeasc(tt,[2 2])
ans =

5
2
0

nodeasc(tt,[2 2],'deppos')
ans =

2 2
1 1
0 0

See Also maketree, nodedesc, nodepar, wtreemgr
8-95

nodedesc
nodedescPurpose Node descendants.

Syntax D = nodedesc(T,N)
D = nodedesc(T,N,'deppos')

Description nodedesc is a tree management utility.

D = nodedesc(T,N) returns the indices of all the descendants of the node N in
the tree structure T. N can be the index node or the depth and position of node.
D is a column vector with D(1) = index of node N.

D = nodedesc(T,N,'deppos') is a matrix that contains the depths and
positions of all descendants. D(i,1) is the depth of i-th descendant and D(i,2)
is the position of i-th descendant.
8-96

nodedesc
Examples % Create binary tree of depth 3.
t = maketree(2,3);
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-97

nodedesc
% Node descendants.
nodedesc(tt,2)

ans =
2
5
6
13
14

nodedesc(tt,2,'deppos')
ans =

1 1
2 2
2 3
3 6
3 7

nodedesc(tt,[2 2],'deppos')
ans =

2 2

nodedesc(tt,[1 1],'deppos')
ans =

1 1
2 2
2 3
3 6
3 7

nodedesc(tt,[1 1])
ans =

2
5
6
13
14

See Also maketree, nodeasc, nodepar, wtreemgr
8-98

nodejoin
nodejoinPurpose Recompose node.

Syntax T = nodejoin(T,N)
T = nodejoin(T)

Description nodejoin is a tree management utility.

T = nodejoin(T,N) returns the modified tree structure T corresponding to a
recomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

T = nodejoin(T) is equivalent to T = nodejoin(T,0).

Examples % Create binary tree of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(0)
8-99

nodejoin
% Merge nodes of indices 4 and 5.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);

% Plot new tree structure tt.
plottree(tt)

See Also maketree, nodesplt, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-100

nodepar
nodeparPurpose Node parent.

Syntax F = nodepar(T,N)
F = nodepar(T,N,'deppos')

Description nodepar is a tree management utility.

F = nodepar(T,N) returns the indices of the “parent(s)” of the nodes N in the
tree structure T. N can be a column vector containing the indices of nodes or a
matrix that contains the depths and positions of nodes. In the last case, N(i,1)
is the depth of i-th node and N(i,2) is the position of i-th node.

F = nodepar(T,N,'deppos') is a matrix that contains the depths and positions
of returned nodes. F(i,1) is the depth of i-th node and F(i,2) is the position
of i-th node.

nodepar(T,0) or nodepar(T,[0,0]) returns-1.
nodepar(T,0,'deppos') or nodepar(T,[0,0],'deppos') returns [-1,0].
8-101

nodepar
Examples % Create binary tree of depth 3.
t = maketree(2,3);
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)

% Nodes parent.
nodepar(tt,[2 2],'deppos')

ans =
1 1

nodepar(tt,[1;7;14])
ans =

0
3
6

See Also maketree, nodeasc, nodedesc, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-102

nodesplt
nodespltPurpose Split (decompose) node.

Syntax T = nodesplt(T,N)

Description nodesplt is a tree management utility.

T = nodesplt(T,N) returns the modified tree structure T corresponding to the
decomposition of the node N.

Examples % Create binary tree (tree of order 2) of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(0)
8-103

nodesplt
Split node of index 10.
tt = nodesplt(t,10);

% Plot new tree structure tt.
plottree(tt)

See Also maketree, nodejoin, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(21) (22)

(0)
8-104

nstdfft
nstdfftPurpose Nonstandard 1-D fast Fourier transform.

Syntax [XHAT,OMEGA] = nstdfft(X,LOWB,UPPB)

Description nstdfft is a general mathematical utility.

[XHAT,OMEGA] = nstdfft(X,LOWB,UPPB) returns a non-standard FFT of signal
X sampled on a power of 2 regular grid (not necessarily integers) on the interval
[LOWB,UPPB].

Output arguments are XHAT, the shifted FFT of X computed on the interval
OMEGA given by OMEGA = [-n:2:n-2] / (2*(UPPB - LOWB)), where n is the
length of X. Outputs are vectors of length n.

Length of X must be a power of two.

Algorithm Given observations between two bounds l and u: x1, x2, . . . , xN, which
are regularly sampled from a continuous signal f:

xk = f(l + (k - 1)δ) for k = 1 to N where δ = (u - 1)/N

nstdfft computes approximations of the continuous Fourier transform

coefficients: for : : using the

standard discrete fast fourier transform fft.

For a given frequency ω: can be rewritten

as using t = sNδ + l .

The integral term can be approximated by the finite sum:

.

N 2
q

=

f̂ ω() f t()e 2– iπω t
td

l

u

∫= ω 1–
2δ
------=

1
Nδ
------- 1

2δ
------ 1

Nδ
-------–

f̂ ω() f t()e
2– i πωt

td
l

u

∫=

f̂ ω() Nδe
2i πω l–

f l sNδ+()e 2– iπω tsNδ
sd

0

1

∫=

1
N
---- fl k 1–()+ δ)e 2– i πω k 1–()δ

k 1=

N

∑

8-105

nstdfft
Since : :

then : 1 : , which are the usual frequencies of the discrete

Fourier transform.

It turns out that can be approximated by:

 where

which can be computed using standard fft and a normalization. The function
instdfft inverts this transform in three steps: normalization, use of ifft, and
translation in time.

The length of X must be a power of two.

See Also fft, fftshift, instdfft

ω 1–
2δ
------=

1
Nδ
------- 1

2δ

1
Nδ
-------–

j ωδN
N–
2

-------= =
N
2
---- 1–

f̂ ω()

δe
2– i πω l

xkω k 1–() j

k 1=

N

∑ ωN e
2i π N⁄–

=

8-106

ntnode
ntnodePurpose Number of terminal nodes.

Syntax NB = ntnode(T)

Description ntnode is a tree management utility.

NB = ntnode(T) returns the number of terminal nodes in the tree structure T.

Examples % Create binary tree (tree of order 2) of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

% Number of terminal nodes.
ntnode(t)

ans =
8

See Also maketree, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-107

num2mstr
num2mstrPurpose Convert number to string in maximum precision.

Syntax S = num2mstr(N)

Description num2mstr is a general utility.

S = num2mstr(N) converts real numbers of input matrix N to string output
vector S, in maximum precision.

See Also num2str
8-108

orthfilt
orthfiltPurpose Orthogonal wavelet filter set.

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W)

Description [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters associated
with the scaling filter W corresponding to a wavelet:

For an orthogonal wavelet, in the multiresolution framework, we start with the
scaling function φ and the wavelet function ψ. One of the fundamental relations
is the twin-scale relation:

All the filters used in DWT and IDWT are intimately related to the sequence
. Clearly if φ is compactly supported, the sequence (wn) is finite and

can be viewed as a FIR filter. The scaling filter W is:

• A low-pass FIR filter

• Of length 2N

• Of sum 1

• Of norm

Lo_D Decomposition low-pass filter

Hi_D Decomposition high-pass filter

Lo_R Reconstruction low-pass filter

Hi_R Reconstruction high-pass filter

1
2
---φ x

2
--- 

  wnφ x n–().
n Z∈
∑=

wn()
n Z∈

1

2

8-109

orthfilt
For example, for the db3 scaling filter:

load db3
db3
db3 =

0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

1.000

norm(db3)
ans =

0.7071

From filter W, we define four FIR filters, of length 2N and norm 1, organized as
follows:

The four filters are computed using the following scheme:

where qmf is such that Hi_R and Lo_R are quadrature mirror filters
(i.e. Hi_R(k) = (-1)kLo_R(2N - 1 - k)), and where wrev flips the filter coefficients.
So Hi_D and Lo_D are also quadrature mirror filters. The computation of these
filters is performed using orthfilt.

Filters Low-pass High-pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

Lo_R =
W

norm(W)

Hi_R = qmf(Lo_R) Hi_D = wrev(Hi_R)

W

8-110

orthfilt
Examples % Load scaling filter.
load db8; w = db8;
subplot(421); stem(w);
title('Original scaling filter');

% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(424); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(425); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(426); stem(Hi_R);
title('Reconstruction high-pass filter');

% Check for orthonormality.
df = [Lo_D;Hi_D];
rf = [Lo_R;Hi_R];
id = df*df'

id =
1.0000 -0.0000
 -0.0000 1.0000
id = rf*rf'

id =
1.0000 0.0000
0.0000 1.0000

% Check for orthogonality by dyadic translation, for example:
df = [Lo_D 0 0;Hi_D 0 0];
dft = [0 0 Lo_D; 0 0 Hi_D];
zer = df*dft'

zer =

1.0e-12 *
-0.1883 0.0000
-0.0000 -0.1883
8-111

orthfilt
% High and low frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(427); plot(freq,abs(fftld));
title('Transfer modulus: low-pass')
subplot(428); plot(freq,abs(ffthd));
title('Transfer modulus: high-pass')

See Also biorfilt, qmf, wfilters

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed. pp 117-119, 137, 152.

0 10 20
−1

0

1
Original scaling filter

0 10 20
−1

0

1
Decomposition low−pass filter

0 10 20
−1

0

1
Decomposition high−pass filter

0 10 20
−1

0

1
Reconstruction low−pass filter

0 10 20
−1

0

1
Reconstruction high−pass filter

0.2 0.4 0.6 0.8
0

1

2
Transfer modulus: low−pass

0.2 0.4 0.6 0.8
0

1

2
Transfer modulus: high−pass
8-112

plottree
plottreePurpose Plot tree.

Syntax plottree(T)

Description plottree is a graphical tree management utility.

plottree(T) plots the tree structure T (see maketree).

Examples % Create binary tree of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

% Creates a figure containing the tree
% and a simple menu bar allowing:
% - to close the window
% - to choose node labeling mode between
% index and depth-position.
8-113

plottree
See Also maketree, wpdec, wpdec2
8-114

qmf
qmfPurpose Quadrature mirror filter.

Syntax Y = qmf(X,P)
Y = qmf(X)

Description Y = qmf(X,P) changes the signs of the even index entries of the reversed vector
filter coefficients X if P is even. If P is odd the same holds for odd index entries.
Y = qmf(X) is equivalent to Y = qmf(X,0).

Let x be a finite energy signal. Two filters F0 and F1 are quadrature mirror
filters (QMF) if, for any x:

where y0 is a decimated version of the signal x filtered with F0 so y0 is defined
by x0 = F0(x) and y0(n) = x0(2n), and similarly, y1 is defined by x1 = F1(x) and
y1(n) = x1(2n). This property ensures a perfect reconstruction of the associated
two-channel filter banks scheme (See Strang-Nguyen p. 103).

For example, if F0 is a Daubechies scaling filter and F1 = qmf(F0) then the
transfer functions F0(z) and F1(z) of the filters F0 and F1 satisfy the condition
(see the example for db10):

Examples % Load scaling filter associated with an orthogonal wavelet.
load db10;
subplot(321); stem(db10); title('db10 low-pass filter');

% Compute the quadrature mirror filter.
qmfdb10 = qmf(db10);
subplot(322); stem(qmfdb10); title('QMF db10 filter');
% Check for frequency condition (necessary for orthogonality): %
abs(fft(filter))^2 + abs(fft(qmf(filter))^2 = 1 at each
% frequency.
m = fft(db10);
mt = fft(qmfdb10);

γ0
2 γ1

2
x

2
=+

F0
z() 2

F1
z() 2

+ 1=
8-115

qmf
freq = [1:length(db10)]/length(db10);
subplot(323); plot(freq,abs(m));
title('Transfer modulus of db10')
subplot(324); plot(freq,abs(mt));
title('Transfer modulus of QMF db10')

subplot(325); plot(freq,abs(m).^2 + abs(mt).^2);
title('Check QMF condition for db10 and QMF db10')
xlabel(' abs(fft(db10))^2 + abs(fft(qmf(db10))^2 = 1')

% Check for orthonormality.
df = [db10;qmfdb10]*sqrt(2);
id = df*df'

id =
1.0000 0.0000
0.0000 1.0000

References G. Strang, T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge
Press

0 10 20
−0.5

0

0.5
db10 low−pass filter

0 10 20
−0.5

0

0.5
QMF db10 filter

0 0.5 1
0

0.5

1
Transfer modulus of db10

0 0.5 1
0

0.5

1
Transfer modulus of QMF db10

0.2 0.4 0.6 0.8
0

1

2
Check QMF condition for db10 and QMF db10

 abs(fft(db10))^2 + abs(fft(qmf(db10))^2 = 1
8-116

symwavf
symwavfPurpose Symlets wavelet filters.

Syntax F = symwavf('symname')

Description F = symwavf('symname') returns the scaling filter associated with the symlet
wavelet specified by 'symname'. Possible values for N are: 2, 3, 4, 5, 6, 7 or 8.

Examples % Compute the scaling filter corresponding to wavelet sym4.
w = symwavf('sym4')

w =
Columns 1 through 7

0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 -0.0210
Column 8

-0.0536

See Also waveinfo
8-117

thselect
thselectPurpose Threshold selection for de-noising.

Syntax THR = thselect(X,TPTR)

Description thselect is a one-dimensional de-noising oriented function.

THR = thselect(X,TPTR) returns threshold X-adapted value using selection
rule defined by string TPTR.

Available selection rules are:

TPTR = 'rigrsure', adaptive threshold selection using principle of Stein’s
Unbiased Risk Estimate.

TPTR = 'heursure', heuristic variant of the first option.

TPTR = 'sqtwolog', threshold is sqrt(2*log(length(X))).

TPTR = 'minimaxi', minimax thresholding.

Threshold selection rules are based on the underlying model y = f(t) + e where
e is a white noise N(0,1). Dealing with unscaled or nonwhite noise can be
handled using rescaling output threshold THR (see SCAL parameter in wden).

Available options are:

• tptr = 'rigrsure' uses for the soft threshold estimator a threshold selection
rule based on Stein’s Unbiased Estimate of Risk (quadratic loss function).
One gets an estimate of the risk for a particular threshold value t.
Minimizing the risks in t gives a selection of the threshold value.

• tptr = 'sqtwolog' uses a fixed form threshold yielding minimax
performance multiplied by a small factor proportional to log(length(s)).

• tptr = 'heursure' is a mixture of the two previous options. As a result, if the
signal to noise ratio is very small, the SURE estimate is very noisy. If such a
situation is detected, the fixed form threshold is used.

• tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax
performance for mean square error against an ideal procedure. The minimax
principle is used in statistics in order to design estimators. Since the
de-noised signal can be assimilated to the estimator of the unknown
regression function, the minimax estimator is the one that realizes the
8-118

thselect
minimum of the maximum mean square error obtained for the worst
function in a given set.

Examples % Generate Gaussian white noise.
init = 2055415866; randn('seed',init);
x = randn(1,1000);

% Find threshold for each selection rule.
% adaptive threshold using SURE.
thr = thselect(x,'rigrsure')

thr =
1.8065

% Fixed form threshold.
thr = thselect(x,'sqtwolog')

thr =
3.7169

% Heuristic variant of the first options.
thr = thselect(x,'heursure')

thr =
3.7169

% Minimax threshold.
thr = thselect(x,'minimaxi')

thr =
2.2163

See Also wden

References D.L. Donoho (1993), “Progress in wavelet analysis and WVD: a ten minute
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques,
pp. 109–128. Frontières Ed.

D.L. Donoho, I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

D.L. Donoho (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf.
Theory, 41, 3, pp. 613–627.
8-119

tnodes
tnodesPurpose Terminal nodes.

Syntax N = tnodes(T)
N = tnodes(T,'deppos')
[N,K] = tnodes(T)
[N,K] = tnodes(T,'deppos')

Description tnodes is a tree management utility.

N = tnodes(T) returns the indices of terminal nodes of the tree structure T
(see maketree). N is a column vector.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

N = tnodes(T,'deppos') returns a matrix N which contains the depths and
positions of terminal nodes.

N(i,1) is the depth of i-th terminal node. N(i,2) is the position of i-th
terminal node.

For [N,K] = tnodes(T) or [N,K] = tnodes(T,'deppos'), M = N(K) are the
indices reordered in tree T, from left to right.

Examples % Create initial tree.
ord = 2; t = maketree(ord,3); % Binary tree of depth 3.
tt = nodejoin(t,5);
tt = nodejoin(tt,4);
plottree(tt)
8-120

tnodes
% List terminal nodes (index).
tnodes(tt)

ans =
4
5
7
8
13
14

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
8-121

tnodes
% List terminal nodes (depth-position).
tnodes(tt,'deppos')

ans =
2 1
2 2
3 0
3 1
3 6
3 7

See Also maketree, wtreemgr
8-122

treedpth
treedpthPurpose Tree depth.

Syntax D = treedpth(T)

Description treedpth is a tree management utility.

D = treedpth(T) returns the depth D of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

% Tree depth.
treedpth(t)

ans =
3

See Also maketree, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-123

treeord
treeordPurpose Tree order.

Syntax ORD = treeord(T)

Description treeord is a tree management utility.

ORD = treeord(T) returns the order ORD of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3.
t = maketree(2,3);

% Plot tree structure t.
plottree(t)

% Tree order.
treeord(t)

ans =
2

See Also maketree, wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-124

upcoef
upcoefPurpose Direct reconstruction from 1-D wavelet coefficients.

Syntax Y = upcoef(O,X,'wname',N)
Y = upcoef(O,X,'wname',N,L)
Y = upcoef(O,X,Lo_R,Hi_R,N)
Y = upcoef(O,X,Lo_R,Hi_R,N,L)
Y = upcoef(O,X,'wname')
Y = upcoef(O,X,Lo_R,Hi_R)

Description upcoef is a one-dimensional wavelet analysis function.

Y = upcoef(O,X,'wname',N) computes the N steps reconstructed coefficients of
vector X.

'wname' is a string containing the wavelet name.

N must be a strictly positive integer.

If O = 'a', approximation coefficients are reconstructed.

If O = 'd', detail coefficients are reconstructed.

Y = upcoef(O,X,'wname',N,L) computes the N steps reconstructed coefficients
of vector X and takes the length-L central portion of the result. Instead of giving
the wavelet name, you can give the filters.

For Y = upcoef(O,X,Lo_R,Hi_R,N) or Y = upcoef(O,X,Lo_R,Hi_R,N,L), Lo_R
is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass
filter.

Y = upcoef(O,X,'wname') is equivalent to Y = upcoef(O,X,'wname',1).

Y = upcoef(O,X,Lo_R,Hi_R) is equivalent to Y = upcoef(O,X,Lo_R,Hi_R,1).

Examples % Approximation signals, obtained from a single coefficient
% at levels 1 to 6.
cfs = [1]; % Decomposition reduced a single coefficient.
essup = 10; % Essential support of the scaling filter db6.
figure(1)
for i=1:6
8-125

upcoef
% Reconstruct at the top level an approximation
% which is equal to zero except at level i where only
% one coefficient is equal to 1.
rec = upcoef('a',cfs,'db6',i);

% essup is the essential support of the
% reconstructed signal.
subplot(6,1,i),h = plot(rec(1:essup));
set(get(h,'parent'),'xlim',[1 325]);
essup = essup*2;

end
subplot(611)
title(['Approximation signals, obtained from a single ' ...

 'coefficient at levels 1 to 6'])

% The same can be done for details.
% Details signals, obtained from a single coefficient
% at levels 1 to 6.

cfs = [1];
mi = 12; ma = 30; % Essential support of

% the wavelet filter db6.

50 100 150 200 250 300
−1

0
1

Approximation signals, obtained from a single coefficient at levels 1 to 6

50 100 150 200 250 300
−1

0
1

50 100 150 200 250 300
−0.5

0
0.5

50 100 150 200 250 300
−0.5

0
0.5

50 100 150 200 250 300
−0.2

0
0.2

50 100 150 200 250 300
−0.2

0
0.2
8-126

upcoef
rec = upcoef('d',cfs,'db6',1);
figure(2)
subplot(611), plot(rec(3:12))
for i=2:6

% Reconstruct at top level a single detail
% coefficient at level i.
rec = upcoef('d',cfs,'db6',i);
subplot(6,1,i), plot(rec(mi*2^(i-2):ma*2^(i-2)))

end
subplot(611)
title(['Detail signals obtained from a single ' ...

'coefficient at levels 1 to 6'])

Algorithm upcoef is equivalent to the N times repeated use of the inverse wavelet
transform.

See Also idwt

1 2 3 4 5 6 7 8 9
−1

0
1

Detail signals obtained from a single coefficient at levels 1 to 6

2 4 6 8 10 12 14 16 18
−1

0
1

5 10 15 20 25 30 35
−0.5

0
0.5

10 20 30 40 50 60 70
−0.5

0
0.5

20 40 60 80 100 120 140
−0.2

0
0.2

50 100 150 200 250
−0.2

0
0.2
8-127

upcoef2
upcoef2Purpose Direct reconstruction from 2-D wavelet coefficients.

Syntax Y = upcoef2(O,X,'wname',N,S)
Y = upcoef2(O,X,Lo_R,Hi_R,N,S)
Y = upcoef2(O,X,'wname',N)
Y = upcoef2(O,X,Lo_R,Hi_R,N)
Y = upcoef2(O,X,'wname')
Y = upcoef2(O,X,Lo_R,Hi_R)

Description upcoef2 is a two-dimensional wavelet analysis function.

Y = upcoef2(O,X,'wname',N,S) computes the N steps reconstructed coefficients
of matrix X and takes the central part of size S. 'wname' is a string containing the
name of the wavelet.

If O = 'a', approximation coefficients are reconstructed; otherwise if O = 'h'
('v' or 'd' respectively), horizontal (vertical or diagonal respectively) detail
coefficients are reconstructed. N must be a strictly positive integer.

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef2(O,X,Lo_R,Hi_R,N,S), Lo_R is the reconstruction low-pass
filter and Hi_R is the reconstruction high-pass filter.

Y = upcoef2(O,X,'wname',N) or Y = upcoef2(O,X,Lo_R,Hi_R,N) return the
computed result without any truncation.

Y = upcoef2(O,X,'wname') is equivalent to Y = upcoef2(O,X,'wname',1).

Y = upcoef2(O,X,Lo_R,Hi_R) is equivalent to
Y = upcoef2(O,X,Lo_R,Hi_R,1).
8-128

upcoef2
Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db4.

[c,s] = wavedec2(X,2,'db4');

% Reconstruct approximation and details
% at level 1, from coefficients.
% This can be done using wrcoef2, or
% equivalently using:
%
% Step 1: Extract coefficients from the
% decomposition structure [c,s].
%
% Step 2: Reconstruct using upcoef2.

siz = s(size(s,1),:);

ca1 = appcoef2(c,s,'db4',1);
a1 = upcoef2('a',ca1,'db4',1,siz);

chd1 = detcoef2('h',c,s,1);
hd1 = upcoef2('h',chd1,'db4',1,siz);

cvd1 = detcoef2('v',c,s,1);
vd1 = upcoef2('v',cvd1,'db4',1,siz);

cdd1 = detcoef2('d',c,s,1);
dd1 = upcoef2('d',cdd1,'db4',1,siz);

Algorithm See upcoef.

See Also idwt2
8-129

upwlev
upwlevPurpose Single-level reconstruction of 1-D wavelet decomposition.

Syntax [NC,NL,cA] = upwlev(C,L,'wname')
[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R)

Description upwlev is a one-dimensional wavelet analysis function.

[NC,NL,cA] = upwlev(C,L,'wname') performs the single-level reconstruction of
the wavelet decomposition structure [C,L] giving the new one [NC,NL], and
extracts the last approximation coefficients vector cA.

[C,L] is a decomposition at level n = length(L)-2, so [NC,NL] is the same
decomposition at level n-1 and cA is the approximation coefficients vector at
level n.

'wname' is a string containing the wavelet name, C is the original wavelet
decomposition vector, and L the corresponding bookkeeping vector (for detailed
storage information, see wavedec).

Instead of giving the wavelet name, you can give the filters.

For [NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R), Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.

Examples % Load original one-dimensional signal.
load sumsin; s = sumsin;

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
subplot(311); plot(s);
title('Original signal s.');
subplot(312); plot(c);
title('Wavelet decomposition structure, level 3')
xlabel(['Coefs for approx. at level 3 ' ...

'and for det. at levels 3, 2 and 1'])
8-130

upwlev
% One step reconstruction of the wavelet decomposition
% structure at level 3 [c,l], so the new structure [nc,nl]
% is the wavelet decomposition structure at level 2.

[nc,nl] = upwlev(c,l,'db1');
subplot(313); plot(nc);
title('Wavelet decomposition structure, level 2')
xlabel(['Coefs for approx. at level 2 ' ...

'and for det. at levels 2 and 1'])

See Also idwt, upcoef, wavedec

0 200 400 600 800 1000
−5

0

5
Original signal s.

0 200 400 600 800 1000
−10

0

10
Wavelet decomposition structure, level 3

Coefs for approx. at level 3 and for det. at levels 3, 2 and 1

0 200 400 600 800 1000
−5

0

5
Wavelet decomposition structure, level 2

Coefs for approx. at level 2 and for det. at levels 2 and 1
8-131

upwlev2
upwlev2Purpose Single-level reconstruction of 2-D wavelet decomposition.

Syntax [NC,NS,cA] = upwlev2(C,S,'wname')
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)

Description upwlev2 is a two-dimensional wavelet analysis function.

[NC,NS,cA] = upwlev2(C,S,'wname') performs the single-level reconstruction
of wavelet decomposition structure [C,S] giving the new one [NC,NS], and
extracts the last approximation coefficients matrix cA.

[C,S] is a decomposition at level n = size(S,1)-2, so [NC,NS] is the same
decomposition at level n-1 and cA is the approximation matrix at level n.

'wname' is a string containing the wavelet name, C is the original wavelet
decomposition vector, and S the corresponding bookkeeping matrix (for
detailed storage information, see wavedec2).

For [NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.
8-132

upwlev2
Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.

[c,s] = wavedec2(X,2,'db1');
sc = size(c)

sc =
1 65536
val_s = s

val_s =
64 64
64 64
128 128
256 256

% One step reconstruction of wavelet
% decomposition structure [c,s].

[nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)

snc =
1 65536

val_ns = ns
val_ns =

128 128
128 128
256 256

See Also idwt2, upcoef2, wavedec2
8-133

wavedec
wavedecPurpose Multi-level 1-D wavelet decomposition.

Syntax [C,L] = wavedec(X,N,'wname')
[C,L] = wavedec(X,N,Lo_D,Hi_D)

Description wavedec performs a multi-level one-dimensional wavelet analysis using either
a specific wavelet ('wname', see wfilters) or specific wavelet decomposition
filters (Lo_D and Hi_D).

[C,L] = wavedec(X,N,'wname') returns the wavelet decomposition of the signal
X at level N, using 'wname'. N must be a strictly positive integer (see wmaxlev).
The output decomposition structure contains the wavelet decomposition vector
C and bookkeeping vector L. The structure is organized as in this level-3
decomposition example:

[C,L] = wavedec(X,N,Lo_D,Hi_D) returns the decomposition structure as
above, given the low- and high-pass decomposition filters you specify.

X

cA1 cD1

cA2 cD2

cA3 cD3

C:

L:

Decomposition:

cD1cD2cA3 cD3

cA3
length of

cD3
length of

cD2

length of length of
X

length
ofcD1
8-134

wavedec
Examples % Load original one-dimensional signal.
load sumsin; s = sumsin;

% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');

Algorithm Given a signal s of length N, the DWT consists of log2 N stages at most. The first
step produces, starting from s, two sets of coefficients: approximation
coefficients CA1 and detail coefficients CD1. These vectors are obtained by
convolving s with the low-pass filter Lo_D for approximation, and with the
high-pass filter Hi_D for detail, followed by dyadic decimation (downsampling).

100 200 300 400 500 600 700 800 900

−2

−1

0

1

2

Original signal s.

100 200 300 400 500 600 700 800 900

−4

−2

0

2

4

Wavelet decomposition structure

Coefs for approx. at level 3 and for det. at levels 3, 2 and 1
8-135

wavedec
More precisely, the first step is:

The length of each filter is equal to 2N. If n = length(s), the signals F and G
are of length n + 2N - 1 and the coefficients cA1 and cD1 are of length

.

The next step splits the approximation coefficients cA1 in two parts using the
same scheme, replacing s by cA1, and producing cA2 and cD2, and so on.

s

Lo_D

Hi_D

high-pass

F

G

downsample

downsample approximation coefs

cA1

cD1

2

detail coefs

low-pass

2

where:

2

X Convolve with filter X

Keep the even indexed elements
(We call this operation downsampling.)

floor
n 1–

2
------------ 

  N+

One-Dimensional DWT

Decomposition step

Lo_D

Hi_D

cAj

2

Initialization

Convolve with filter X

Downsample

cA0 = s

where:

2

2

X

cAj+1

cDj+1

level j+1level j
8-136

wavedec
The wavelet decomposition of the signal s analyzed at level j has the following
structure: [cAj, cDj, ..., cD1].

This structure contains, for J = 3, the terminal nodes of the following tree:

See Also dwt, waveinfo, wfilters, wmaxlev

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989), “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.

 Y. Meyer (1990), “Ondelettes et opérateurs,” Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

s

cD1

cD2

cD3cA3
8-137

wavedec2
wavedec2Purpose Multi-level 2-D wavelet decomposition.

Syntax [C,S] = wavedec2(X,N,'wname')
[C,S] = wavedec2(X,N,Lo_D,Hi_D)

Description wavedec2 is a two-dimensional wavelet analysis function.

[C,S] = wavedec2(X,N,'wname') returns the wavelet decomposition of the
matrix X at level N, using the wavelet named in string 'wname' (see wfilters).

Outputs are the decomposition vector C and the corresponding bookkeeping
matrix S.

N must be a strictly positive integer (see wmaxlev).

Instead of giving the wavelet name, you can give the filters.

For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass
filter and Hi_D is the decomposition high-pass filter. The output wavelet
two-dimensional decomposition structure [C,S] contains the wavelet
decomposition vector C and the corresponding bookkeeping matrix S.

Vector C is organized as:

C = [A(N) | H(N) | V(N) | D(N) | ...

H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1)].

where A, H, V, D, are row vectors such that:

A = approximation coefficients

H = horizontal detail coefficients

V = vertical detail coefficients

D = diagonal detail coefficients

each vector is the vector columnwise storage of a matrix.

Matrix S is such that:

S(1,:) = size of approximation coefficients(N)

S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and
S(N+2,:) = size(X).
8-138

wavedec2
Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using db1.

[c,s] = wavedec2(X,2,'db1');

% Decomposition structure organization.
sizex = size(X)

sizex =
256 256
sizec = size(c)

sizec =
1 65536
val_s = s

val_s =
64 64
64 64
128 128
256 256

cAn

coefs (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

..
.

32 32

256 256

sizes (n+2-by-2)

512 512 X
8-139

wavedec2
Algorithm For images, an algorithm similar to the one-dimensional case is possible for
two-dimensional wavelets and scaling functions obtained from
one-dimensional ones by tensor product.

This kind of two-dimensional DWT leads to a decomposition of approximation
coefficients at level j in four components: the approximation at level j+1 and the
details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

Two-Dimensional DWT

Decomposition step

rows

Lo_D

Hi_D

rows

cAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns

Downsample rows: keep the even indexed rows

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

cA0 = s for the decomposition initialization

where

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

rows

columns
8-140

wavedec2
So, for J=2, the two-dimensional wavelet tree has the form:

See Also dwt2, waveinfo, wfilters, wmaxlev

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989), “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.

 Y. Meyer(1990), “Ondelettes et opérateurs,” Tome 1, Hermann Ed. (English
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

cD
h
1 cD

d
1 cD

v
1

cA 2 cD
h
2 cD

d
2 cD

v
2

s

8-141

wavedemo
wavedemoPurpose Wavelet toolbox demos.

Syntax wavedemo

Description wavedemo brings up a GUI that allows you to choose between several Wavelet
Toolbox demos.
8-142

wavefun
wavefunPurpose Wavelet and scaling functions.

Syntax [phi,psi,XVAL] = wavefun('wname',iter)
[phi1,psi1,phi2,psi2,XVAL] = wavefun('wname',iter)
[psi,XVAL] = wavefun('wname',iter)
wavefun ('wname',a,b)

Description The function wavefun returns approximations of the wavelet function 'wname'
and the associated scaling function, if it exists. Positive integer iter
determines the number of iterations computed, and thus the refinement of the
approximations.

For an orthogonal wavelet:
[phi,psi,XVAL] = wavefun('wname',iter) returns the scaling and wavelet
functions on the 2iter points grid XVAL.

For a biorthogonal wavelet:
[phi1,psi1,phi2,psi2,XVAL] = wavefun('wname',iter) returns the scaling
and wavelet functions both for decomposition (phi1,psi1) and for
reconstruction (phi2,psi2).

For a Meyer wavelet:
[phi,psi,XVAL] = wavefun('wname',iter)

For a Morlet or Mexican Hat wavelet:
[psi,XVAL] = wavefun('wname',iter)

wavefun('wname',a,b), where a and b are positive integers, is equivalent to
wavefun('wname',max(a,b)), and draws plots of the wavelet and scale
approximations.

When a is set equal to the special value 0,

wavefun('wname',0) is equivalent to wavefun('wname',8,b).

wavefun('wname') is equivalent to wavefun('wname',8).
8-143

wavefun
Examples On the following graph, 10 piecewise linear approximations of the sym4 wavelet
obtained after each iteration of the cascade algorithm are shown.

% Set number of iterations and wavelet name.
iter = 10;
wav = 'sym4';

% Compute approximations of the wavelet function using the
% cascade algorithm.

for i = 1:iter
[phi,psi,xval] = wavefun(wav,i);
plot(xval,psi);
hold on

end
title(['Approximations of the wavelet ',wav, ...

' for 1 to ',num2str(iter),' iterations']);
hold off

Algorithm For compactly supported wavelets defined by filters, in general no closed form
analytic formula exists.

The algorithm used is the cascade algorithm. It uses the single-level inverse
wavelet transform repeatedly.

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

2
Approximations of the wavelet sym4 for 1 to 10 iterations
8-144

wavefun
Let us begin with the scaling function φ.

Since φ is also equal to , (according to the notation used in Chapter 6), this

function is characterized by the following coefficients in the orthogonal
framework:

<φ, > = 1 only if n = 0 and equal to 0 otherwise

<φ, > = 0 for positive j, and all k.

This expansion can be viewed as a wavelet decomposition structure. Detail
coefficients are all zeros and approximation coefficients are all zeros except one
equal to 1.

Then we use the reconstruction algorithm in order to approximate the function
 over a dyadic grid, according to the following result:

For any dyadic rational of the form x = n2-j in which the function is continuous
and where j is sufficiently large, we have pointwise convergence and:

where C is a constant, and α is a positive constant depending on the wavelet
regularity.

Then using a good approximation of φ on dyadic rationals, we can use piecewise
constant or piecewise linear interpolations η on dyadic intervals, for which
uniform convergence occurs with similar exponential rate:

So using a J-steps reconstruction scheme, we obtain an approximation that
converges exponentially towards φ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the
support of the function to be approximated.

φ0 0,

φ0 n,

ψ j– k,

φ

φ x() 2

j
2

– φ φ,
j– n2

j J–,
〈 〉 C.2

j α–≤

φ η– ∞ C.2
jα–≤
8-145

wavefun
Since a scaled version of the wavelet function ψ can also be expanded on the
, the same scheme can be used, after a single-level reconstruction

starting with the appropriate wavelet decomposition structure. Approximation
coefficients are all zeros and detail coefficients are all zeros except one equal
to 1.

For biorthogonal wavelets, the same ideas can be applied on each of the two
multiresolution schemes in duality.

Note: This algorithm may diverge if the function to be approximated is not
continuous on dyadic rationals.

See Also intwave, waveinfo, wfilters

References I. Daubechies, “Ten lectures on wavelets,” CBMS, SIAM, 1992, p. 202-213.

G. Strang, T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge
Press.

φ 1 n,–()
n

8-146

waveinfo
waveinfoPurpose Information on wavelets.

Syntax waveinfo
waveinfo('wname')

Description waveinfo gives information on all wavelets.

waveinfo('wname') gives information on the wavelet family whose short name
is specified by the string 'wname'. Available family short names are:

or user-defined short names for their own wavelet families (see wavemngr).

waveinfo('wsys') gives information on wavelet packets.

'haar' : Haar wavelet.

'db' : Daubechies wavelets.

'sym' : Symlets.

'coif' : Coiflets.

'bior' : Biorthogonal wavelets.

'meyr' : Meyer wavelet.

'mexh' : Mexican hat wavelet.

'morl' : Morlet wavelet.
8-147

waveinfo
Examples waveinfo('db')

DBINFO Information on Daubechies wavelets.
Daubechies Wavelets
General characteristics: Compactly supported
wavelets with extremal phase and highest
number of vanishing moments for a given
support width. Associated scaling filters are
minimum-phase filters.

Family Daubechies
Short name db
Order N N strictly positive integer
Examples db1 or haar, db4, db15

Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible

Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Number of vanishing moments for psi N

Reference: I. Daubechies,
Ten lectures on wavelets CBMS, SIAM, 61, 1994, 194-202.

See Also wavemngr
8-148

wavemenu
wavemenuPurpose Start graphical user interface tools.

Syntax wavemenu

Description wavemenu brings up a menu for accessing the various graphical tools provided
in the Wavelet Toolbox. For instructions on using these tools see:

Examples wavemenu

Continuous Wavelet 1-D Chapter 2

Wavelet 1-D and Wavelet 2-D Chapter 2

Wavelet Packet 1-D and Wavelet Packet 2-D Chapter 5

Wavelet Display and Wavelet Packet Display Chapter 1
8-149

wavemngr
wavemngrPurpose Wavelet manager.

Syntax wavemngr('create')
wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add',FN,FSN,WT,NUMS,FILE,B)
wavemngr('del',N)
wavemngr('restore')
wavemngr('restore',IN2)
OUT1 = wavemngr('read')
OUT1 = wavemngr('read',IN2)
OUT1 = wavemngr('read_asc')

Description wavemngr is a type of wavelets manager. It allows you to create, add, delete,
restore, or read wavelets.

wavemngr('create') creates the wavelets.inf MAT-file using the
wavelets.asc ASCII-file.

wavemngr('add',FN,FSN,WT,NUMS,FILE) or
wavemngr('add',FN,FSN,WT,NUMS,FILE,B), adds a new wavelet family to the
toolbox.

FN = Family Name (string)

FSN = Family Short Name (string of length less than four characters)

WT = Wavelet type

WT = 1, orthogonal wavelets

WT = 2, biorthogonal wavelets

WT = 3, wavelet with scaling function

WT = 4, wavelet without scaling function

NUMS = String of numbers

FILE = MAT-file or M-file name (string). See the example for usage.

B = [lb ub] lower and upper bounds of effective support for wavelets of
type = 3 or 4.
8-150

wavemngr
This option is fully documented in Chapter Chapter 7, “Adding Your Own
Wavelets .”

wavemngr('del',N), deletes a wavelet family. FSN = Family Short Name or
Wavelet Name (in the family).

wavemngr('restore') or wavemngr('restore',IN2), restores previous or
initial wavelets. If nargin = 1, the previous wavelets.asc file is restored;
otherwise the initial wavelets.asc file is restored. Here IN2 is a dummy
argument.

OUT1 = wavemngr('read') OUT1 gives all wavelets families.

OUT1 = wavemngr('read',IN2) returns all wavelets, IN2 is a dummy
argument.

OUT1 = wavemngr('read_asc') reads wavelets.asc ASCII-file and OUT1 gives
all wavelets information.
8-151

wavemngr
Examples % List initial wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
===================================
% List all wavelets.

wavemngr('read',1)

ans =
===================================
Haar haar
===================================
Daubechies db

db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 dbxx
===================================
BiorSplines bior

bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
Coiflets coif

coif1 coif2 coif3 coif4
coif5
===================================
8-152

wavemngr
Symlets sym

sym2 sym3 sym4 sym5
sym6 sym7 sym8
===================================
Morlet morl
===================================
Mexican_hat mexh
===================================
Meyer meyr
===================================

In the following example, new compactly supported orthogonal wavelets are
added to the toolbox. These wavelets, which are a slight generalization of the
Daubechies wavelets, are based on the use of Bernstein polynomials and are
due to Kateb and Lemarié in an unpublished work.

Note: The M-files used in this example can be found in the wavedemo directory.

% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 1 2 3 4 5
% File driver: lemwavf
%
% The function lemwavf.m must be as follow:
% function w = lemwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh.name + number
% and w the corresponding scaling filter.
% Ten addition is obtained using:
8-153

wavemngr
wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');

% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv', then it is modified and
% the MAT file 'wavelets.inf' is generated.

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
Lemarie lem
===================================
% Remove the added family.

wavemngr('del','Lemarie');

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
===================================
8-154

wavemngr
% Restore the previous ascii file
% 'wavelets.prv', then build
% the MAT-file 'wavelets.inf'.

wavemngr('restore');

% List restored wavelets.
wavemngr('read',1)

ans =
===================================
Haar haar
===================================
Daubechies db

db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 dbxx
===================================
BiorSplines bior

bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
Coiflets coif

coif1 coif2 coif3 coif4 coif5
===================================
Symlets sym

sym2 sym3 sym4 sym5
sym6 sym7 sym8
===================================
Morlet morl
===================================
Mexican_hat mexh
===================================
Meyer meyr
===================================
8-155

wavemngr
Lemarie lem

lem1 lem2 lem3 lem4 lem5
===================================
% Restore initial wavelets.
%
% Restore the initial ascii file
% 'wavelets.ini' and initial
% MAT-file 'wavelets.bin'.

wavemngr('restore',0);

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
BiorSplines bior
Coiflets coif
Symlets sym
Morlet morl
Mexican_hat mexh
Meyer meyr
===================================
% Add new family of orthogonal wavelets.

wavemngr('add','Lemarie','lem',1,'1 2 3','lemwavf');

% All command line capabilities are available for
% the new wavelets.
%
% Example 1: compute the four associated filters.

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');

% Example 2: compute scale and wavelet functions.
[phi,psi,xval] = wavefun('lem3');
8-156

wavemngr
% Add a new family of orthogonal wavelets: special form
% for the GUI mode.
%
% The M-file lemwavf allows you to compute the filter for
% any order. If you want to get a popup of the form
% 1 2 3 **, associated with the family, then wavelets are
% appended for GUI mode using:

wavemngr('restore',0);
wavemngr('add','Lemarie','lem',1,'1 2 3 **','lemwavf');

% After this sequence, all GUI capabilities are available for
% the new wavelets.
% Note that the last command allows a short cut in the
% order definition only if possible orders are integers.

Caution: wavemngr works on the current directory. If you add a new wavelet
family, it is available in this directory only. Refer to Chapter 7, “Adding Your
Own Wavelets .”

Limitations wavemngr allows you to add a new wavelet. You must verify that it is truly a
wavelet. No check is performed either about this point or about the type of the
new wavelet.
8-157

waverec
waverecPurpose Multi-level 1-D wavelet reconstruction.

Syntax X = waverec(C,L,'wname')
X = waverec(C,L,Lo_R,Hi_R)

Description waverec performs a multi-level one-dimensional wavelet reconstruction using
either a specific wavelet ('wname', see wfilters) or specific reconstruction filters
(Lo_R and Hi_R). waverec is the inverse function of wavedec in the sense that
the abstract statement waverec(wavedec(X,N,'wname'),'wname') returns X.

X = waverec(C,L,'wname') reconstructs the signal X based on the multi-level
wavelet decomposition structure [C,L] and wavelet 'wname'. (For information
about the decomposition structure, see wavedec.)

X = waverec(C,L,Lo_R,Hi_R) reconstructs the signal X as above, using the
reconstruction filters you specify.

Remarks Note that X = waverec(C,L,'wname') is equivalent to
X = appcoef(C,L,'wname',0).

Examples % Load original one-dimensional signal.
load leleccum; s = leleccum(1:3920); ls = length(s);

% Perform decomposition of signal at level 3 using db5.
[c,l] = wavedec(s,3,'db5');

% Reconstruct s from the wavelet decomposition structure [c,l].
a0 = waverec(c,l,'db5');

% Check for perfect reconstruction.
err = norm(s-a0)

err =
3.2079e-09

See Also appcoef, idwt, wavedec
8-158

waverec2
waverec2Purpose Multi-level 2-D wavelet reconstruction.

Syntax X = waverec2(C,S,'wname')
X = waverec2(C,S,Lo_R,Hi_R)

Description waverec2 is a two-dimensional wavelet analysis function.

X = waverec2(C,S,'wname') performs a multi-level wavelet reconstruction of
two-dimensional signal X based on the wavelet decomposition structure [C,S]
(for detailed storage information, see wavedec2). 'wname' is a string containing
the name of wavelet (see wfilters).

Instead of giving the wavelet name, you can give the filters. For
X = waverec2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter and
Hi_R is the reconstruction high-pass filter.

waverec2 is the inverse function of wavedec2 in the sense that the abstract
statement waverec2(wavedec2(X,N,'wname'),'wname') gets back to X.

Remarks Note that X = waverec2(C,S,'wname') is equivalent to
X = appcoef2(C,S,'wname',0).

Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using sym4.

[c,s] = wavedec2(X,2,'sym4');

% Reconstruct X from the wavelet
% decomposition structure [c,s].

a0 = waverec2(c,s,'sym4');

% Check for perfect reconstruction.
max(max(X-a0))

ans =
1.9463e-10

See Also appcoef2, idwt2, wavedec2
8-159

wcodemat
wcodematPurpose Extended pseudocolor matrix scaling.

Syntax Y = wcodemat(X,NB,OPT,ABSOL)
Y = wcodemat(X,NB,OPT)
Y = wcodemat(X,NB)
Y = wcodemat(X)

Description wcodemat is a general utility.

Y = wcodemat(X,NB,OPT,ABSOL) returns a coded version of input matrix X if
ABSOL = 0, or ABS(X) if ABSOL is nonzero, using the first NB integers. Coding
can be done rowwise (OPT = 'row'), columnwise (OPT = 'col') or globally
(OPT = 'mat'). Coding uses a regular grid between the minimum and the
maximum values of each row (column or matrix, respectively).

Y = wcodemat(X,NB,OPT) is equivalent to Y = wcodemat(X,NB,OPT,1).

Y = wcodemat(X,NB) is equivalent to Y = wcodemat(X,NB, 'mat',1).

Y = wcodemat(X) is equivalent to Y = wcodemat(X,16,'mat',1).
8-160

wcommon
wcommonPurpose Find common elements.

Syntax [XI,YI] = wcommon(X,Y)

Description wcommon is a general utility.

For two vectors X and Y with integer components, [XI,YI] = wcommon(X,Y)
returns two vectors with 0 and 1 components such that:

XI(k) = 1 if X(k) belongs to Y; otherwise XI(k) = 0 and
YI(j) = 1 if Y(j) belongs to X; otherwise YI(j) = 0.

Examples % Define two vectors.
x = [10 20 30 40 50];
y = [60 50 70 30 20 12 31];

% Find common elements.
[xi,yi] = wcommon(x,y)

xi =
0 1 1 0 1

yi =
0 1 0 1 1 0 0

% List common elements.
comelem = x(find(xi))

comelem =
20 30 50
8-161

wdatamgr
wdatamgrPurpose Manager for data structure.

Syntax [OUT1,OUT2] = wdatamgr(O,D,IN3,IN4,IN5)

Description wdatamgr is a tree management utility.

[OUT1,OUT2] = wdatamgr(O,D,IN3,IN4,IN5) where D is the data structure
and O is a string option. The possible options are:

'write_cfs': writes coefficients for a terminal node
data = wdatamgr('write_cfs',data,tree,node,coefs);

'read_cfs': reads coefficients for a terminal node
coefs = wdatamgr('read_cfs',data,tree,node);

'read_ent': reads the entropy vector
ent = wdatamgr('read_ent',data,nodes);

'read_ento': reads the optimal entropy vector
ento = wdatamgr('read_ento',data,nodes);

'read_tp_ent': reads the type and the parameter for entropy
[type_ent,param] = wdatamgr('read_tp_ent',data);

'read_wave': reads the name of the wavelet
wave = wdatamgr('read_wave',data);
8-162

wdatamgr
Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.

[t,d] = wpdec(x,3,'db1','shannon');

% Read entropy name.
ent_name = wdatamgr('read_tp_ent',d)

ent_name =
shannon

% Read wavelet name.
wav_name = wdatamgr('read_wave',d)

wav_name =
db1
8-163

wdatamgr
% Read packet (3,2) coefficients.
cfs = wdatamgr('read_cfs',d,t,[3 2]);

% Read packet (3,2) entropy and optimal entropy.
ind_node = depo2ind(2,[3 2]);
ent = wdatamgr('read_ent',d,ind_node)

ent =
-318.4298

% Optimal entropy is NaN because no optimization has been done.
ento = wdatamgr('read_ento',d,ind_node)

ento =
NaN

% Modify packet (3,2) coefficients.
ncfs = cos(cfs); % or any other modification !

% Update packet (3,2) coefficients.
d = wdatamgr('write_cfs',d,t,[3 2],ncfs);

% Update nodes entropy.
d = entrupd(t,d,'shannon');
nent = wdatamgr('read_ent',d,ind_node)

nent =
22.2830

See Also wpdec, wpdec2, wtreemgr
8-164

wden
wdenPurpose Automatic 1-D de-noising using wavelets.

Syntax [XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname')
[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname')

Description wden is a one-dimensional de-noising oriented function.

wden performs an automatic de-noising process of a one-dimensional signal
using wavelets.

[XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname') returns a de-noised
version XD of input signal X obtained by thresholding the wavelet coefficients.

Additional output arguments [CXD,LXD] are the wavelet decomposition
structure (see wavedec) of the de-noised signal XD.

TPTR string contains threshold selection rules:

'rigrsure' use the principle of Stein’s Unbiased Risk.

'heursure' is an heuristic variant of the first option.

'sqtwolog' for universal threshold .

'minimaxi' for minimax thresholding (see thselect for more details).

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more details).

SCAL defines multiplicative threshold rescaling:

'one' for no rescaling.

'sln' for rescaling using a single estimation of level noise based on first level
coefficients.

'mln' for rescaling done using level-dependent estimation of level noise.

Wavelet decomposition is performed at level N and 'wname' is a string containing
the name of the desired orthogonal wavelet (see wmaxlev and wfilters).

[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname') returns the same
output arguments, using the same options as above, but obtained directly from
the input wavelet decomposition structure [C,L] of the signal to be de-noised,
at level N and using 'wname' orthogonal wavelet.

2 .()log
8-165

wden
The underlying model for the noisy signal is basically of the following form:

where time n is equally spaced.

In the simplest model, suppose that e(n) is a Gaussian white noise N(0,1) and
the noise level a is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to
recover f.

The de-noising procedure proceeds in three steps:

1 Decomposition. Choose a wavelet, and choose a level N. Compute the wavelet
decomposition of the signal s at level N.

2 Detail coefficients thresholding. For each level from 1 to N, select a threshold
and apply soft thresholding to the detail coefficients.

3 Reconstruction. Compute wavelet reconstruction based on the original
approximation coefficients of level N and the modified detail coefficients of
levels from 1 to N.

More details about threshold selection rules can be found in Chapter 6 and in
the help for thselect. Let us point out that:

• The detail coefficients vector is the superposition of the coefficients of f and
the coefficients of e, and that the decomposition of e leads to detail
coefficients that are standard Gaussian white noises.

• Minimax and SURE threshold selection rules are more conservative and are
more convenient when small details of function f lie in the noise range. The
two other rules remove the noise more efficiently. The option 'heursure' is
a compromise.

In practice the basic model cannot be used directly. This section examines the
options available, in order to deal with model deviations. The remaining
parameter scal has to be specified. It corresponds to threshold rescaling
methods.

• Option scal = 'one' corresponds to the basic model.

s n() f n() σe n()+=

σ

8-166

wden
• In general you can ignore the noise level that must be estimated. The detail
coefficients CD1 (the finest scale) are essentially noise coefficients with
standard deviation equal to . The median absolute deviation of the
coefficients is a robust estimate of . The use of a robust estimate is crucial
for two reasons. The first is that if level 1 coefficients contain f details, these
details are concentrated in few coefficients. The second reason is to avoid
signal end effects, which are pure artifacts due to computations on the edges.

Option scal = 'sln' handles threshold rescaling using a single estimation
of level noise based on the first level coefficients.

• When you suspect a nonwhite noise e, thresholds must be rescaled by a level
dependent estimation of the level noise. The same kind of strategy is used by
estimating level by level. This estimation is implemented in M-file
wnoisest, which handles the wavelet decomposition structure of the original
signal s directly.

Option scal = 'mln' handles threshold rescaling using a level-dependent es-
timation of the level noise.

Examples % Set signal to noise ratio and set rand seed.
snr = 3; init = 2055615866;

% Generate original signal and a noisy version adding
% a standard Gaussian white noise.

[xref,x] = wnoise(3,11,snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 5 by sym8 wavelet.

lev = 5;
xd = wden(x,'heursure','s','one',lev,'sym8');

σ
σ

σ lev
8-167

wden
% Plot signals.
subplot(611), plot(xref), axis([1 2048 -10 10]);
title('Original signal');
subplot(612), plot(x), axis([1 2048 -10 10]);
title(['Noisy signal - Signal to noise ratio = ',...
num2str(fix(snr))]);
subplot(613), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - heuristic SURE');

% De-noise noisy signal using soft SURE thresholding
xd = wden(x,'heursure','s','one',lev,'sym8');

% Plot signal.
subplot(614), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - SURE');

% De-noise noisy signal using fixed form threshold with
% a single level estimation of noise standard deviation.

xd = wden(x,'sqtwolog','s','sln',lev,'sym8');

% Plot signal.
subplot(615), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Fixed form threshold');

% De-noise noisy signal using minimax threshold with
% a multiple level estimation of noise standard deviation.

xd = wden(x,'minimaxi','s','sln',lev,'sym8');

% Plot signal.
subplot(616), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Minimax');

% If many trials are necessary, it is better to perform
% decomposition once and threshold it many times:

% decomposition.
[c,l] = wavedec(x,lev,'sym8');
% threshold the decomposition structure [c,l].
xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');
8-168

wden
See Also thselect, wavedec, wdencmp, wfilters, wthresh

References A. Antoniadis, G. Oppenheim, Eds. (1995), “Wavelets and statistics,” 103,
Lecture Notes in Statistics, Springer Verlag.

 D.L. Donoho (1993), “Progress in wavelet analysis and WVD: a ten minute
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques,
pp. 109–128. Frontières Ed.

 D.L. Donoho, I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

D.L. Donoho (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf.
Theory, 41, 3, pp. 613–627.

D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet
shrinkage: asymptotia,” Jour. Roy. Stat. Soc., series B, vol. 57, no. 2, pp. 301–
369.

−10
0

10
Original signal

−10
0

10
Noisy signal − Signal to noise ratio = 3

−10
0

10
De−noised signal − heuristic SURE

−10
0

10
De−noised signal − SURE

−10
0

10
De−noised signal − Fixed form threshold

500 1000 1500 2000
−10

0
10

De−noised signal − Minimax
8-169

wdencmp
wdencmpPurpose De-noising or compression using wavelets.

Syntax [XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('gbl',X,'wname',N,THR,SORH,KEEPAPP)

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH)

Description wdencmp is a one- or two-dimensional de-noising and compression oriented
function.

wdencmp performs a de-noising or compression process of a signal or an image,
using wavelets.

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,'wname',N,THR,SORH,
KEEPAPP) returns a de-noised or compressed version XC of input signal X (one-
or two-dimensional) obtained by wavelet coefficients thresholding using global
positive threshold THR.

Additional output arguments [CXC,LXC] are the wavelet decomposition
structure of XC (see wavedec or wavedec2). PERF0 and PERFL2 are L2-norm
recovery and compression score in percentage.

PERFL2 = 100 ∗ (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes the
wavelet decomposition structure of X.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is

reduced to .

Wavelet decomposition is performed at level N and 'wname' is a string containing
wavelet name (see wmaxlev and wfilters). SORH ('s' or 'h') is for soft or hard
thresholding (see wthresh for more details). If KEEPAPP = 1, approximation
coefficients cannot be thresholded, otherwise it is possible.

wdencmp('gbl',C,L,'wname',N,THR,SORH,KEEPAPP) has the same output
arguments, using the same options as above, but obtained directly from the
input wavelet decomposition structure [C,L] of the signal to be de-noised or
compressed, at level N and using 'wname' wavelet.

100 XC
2

X
2

8-170

wdencmp
For the one-dimensional case and 'lvd' option:

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)

or

[XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,SORH)

has the same output arguments, using the same options as above, but allowing
level-dependent thresholds contained in vector THR (THR must be of length N).
In addition, the approximation is kept. Note that, with respect to wden
(automatic de-noising), wdencmp allows more flexibility and you can implement
your own de-noising strategy.

For the two-dimensional case and 'lvd' option:

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)
or

[XC,CXC,LXC,PERF0,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,SORH)

THR must be a matrix 3 by N containing the level-dependent thresholds in the
three orientations; horizontal, diagonal, and vertical.

Ideas for de-noising can be found in Chapter 2, “Using Wavelets ,” and in the
Description section of the wden reference entry.

The compression features of a given wavelet basis are primarily linked to the
relative scarceness of the wavelet domain representation for the signal. The
notion behind compression is based on the concept that the regular signal
component can be accurately approximated using a small number of
approximation coefficients (at a suitably selected level) and some of the detail
coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decomposition.

2 Detail coefficient thresholding. For each level from 1 to N, a threshold is se-
lected and hard thresholding is applied to the detail coefficients.

3 Reconstruction.

The difference with the de-noising procedure is found in step 2.
8-171

wdencmp
Examples % Load original image.
load sinsin

% X contains the loaded image.

% Generate noisy image.
init=2055615866; randn('seed',init);
x = X + 18*randn(size(X));

% Use wdencmp for image de-noising.
% find default values (see ddencmp).
[thr,sorh,keepapp] = ddencmp('den','wv',x);
% de-noise image using global thresholding option.
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);

Original Image

20 40 60 80 100 120

20

40

60

80

100

120

Noisy Image

20 40 60 80 100 120

20

40

60

80

100

120

De−noised Image

20 40 60 80 100 120

20

40

60

80

100

120
8-172

wdencmp
% Load electrical signal and select a part.
load leleccum; indx = 2600:3100;
x = leleccum(indx);

% Use wdencmp for signal compression.
% compress using a fixed threshold.
thr=35;
[xd,cxd,lxd,perf0,perfl2] = ...

wdencmp('gbl',x,'db3',3,thr,'h',1);

% Use wdencmp for signal de-noising.
% Find default values (see ddencmp).
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% De-noise signal using global thresholding option.
xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);

2600 2700 2800 2900 3000 3100
100

200

300

400

500
Original signal

2600 2700 2800 2900 3000 3100
100

200

300

400

500
Compressed signal

2_norm rec.: 99.95 % −− zero cfs: 85.08 %
8-173

wdencmp
% Load original image.
load woman;
% X contains the loaded image.

x=X(100:200,100:200);
nbc = size(map,1);

% Use wdencmp for image compression.
% Wavelet decomposition of x.
n = 5; w = 'sym2';
[c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding.
thr=20;
[xd,cxd,lxd,perf0,perfl2] = ...

wdencmp('gbl',c,l,w,n,thr,'h',1);

2600 2700 2800 2900 3000 3100
100

200

300

400

500
Original signal

2600 2700 2800 2900 3000 3100
100

200

300

400

500
De−noised signal
8-174

wdencmp
% In addition the first option allows level and orientation-
% dependent thresholds. In this case the approximation is kept.
% The level-dependent thresholds in the three orientations
% horizontal, diagonal and vertical are as follows:

thr_h = [17 18]; % Horizontal thresholds.
thr_d = [19 20]; % Diagonal thresholds.
thr_v = [21 22]; % Vertical thresholds.

thr = [thr_h ; thr_d ; thr_v]
thr =

17 18
19 20
21 22
[xd,cxd,lxd,perf0,perfl2] = ...
wdencmp('lvd',x,'sym8',2,thr,'h');

See Also ddencmp, wavedec, wavedec2, wden, wpdencmp, wthresh

References R.A. DeVore, B. Jawerth, B.J. Lucier (1992), “Image compression through
wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, pp.
719-746.

D.L. Donoho (1993), “Progress in wavelet analysis and WVD: a ten minute
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques,
pp. 109-128. Frontières Ed.

Original image

20 40 60 80 100

20

40

60

80

100

threshold = 20

2_norm rec.: 99.14 % −− nul cfs : 79.51 %
20 40 60 80 100

20

40

60

80

100
8-175

wdencmp
D.L. Donoho, I.M. Johnstone(1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet
shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

D.L. Donoho, I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen
from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.

D.L. Donoho (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf.
Theory, 41, 3, pp. 613–627.
8-176

wentropy

8

wentropy

8

Purpose Entropy (wavelet packet).

Syntax E = wentropy(X,T,P)
E = wentropy(X,T)

Description E = wentropy(X,T,P) returns the entropy E of the vector or matrix input X. In
both cases, output E is a real number. T is a string containing the type of
entropy:

T = 'shannon', 'threshold', 'norm', 'log energy', 'sure', 'user'

P is an optional parameter depending on T value:

If T = 'shannon' or 'log energy', P is not used.

If T = 'threshold' or 'sure', P is the threshold and must be a positive
number.

If T = 'norm', P is the power and must be such that 1 <= P < 2.

If T = 'user', P is a string containing the M-file name of your own entropy
function, with a single input X.

E = wentropy(X,T) is equivalent to E = wentropy(X,T,0).

Functionals verifying an additive-type property are well suited for efficient
searching of binary-tree structures and the fundamental splitting property of
the wavelet packets decomposition. Classical entropy-based criteria match
these conditions and describe information-related properties for an accurate
representation of a given signal. Entropy is a common concept in many fields,
mainly in signal processing. The following example lists different entropy
criteria, many others are available and can be easily integrated. In the
following expressions s is the signal and (si)i the coefficients of s in an
orthonormal basis.
-177

wentropy
The entropy E must be an additive cost function such that E(0) = 0 and
.

• The (non-normalized) Shannon entropy.

 so

with the convention 0log(0) = 0.

• The concentration in lp norm with 1 ≤ p < 2.

• E2(si) = |si|
p so

• The “log energy” entropy.

• so

• with the convention log(0) = 0.

• The threshold entropy.

• E4(si) = 1 if |si| > p and 0 elsewhere so E4(s) = #{i such that |si| > p} is the
number of time instants when the signal is greater than a threshold p.

• The “SURE” entropy.

E5(s) = n-#{i such that

See the section entitled “Using wavelet packets for compression and de-nois-
ing” in Chapter 6 for more information.

E s() E si()
i

∑=

E1 si() si
2

si
2()log= E1 s() si

2
si
2()log

i
∑–=

E2 s() si
p

i
∑ s p

p
= =

E3 si() si
2()log= E3 s() si

2()log
i

∑=

si p} min si
2

p
2

(,)
i

∑+≤
8-178

wentropy
Examples % Generate initial signal.
x = randn(1,200);

% Compute Shannon entropy of x.
e = wentropy(x,'shannon')

e =
-142.7607

% Compute log energy entropy of x.
e = wentropy(x,'log energy')

e =
-281.8975

% Compute threshold entropy of x
% with threshold equal to 0.2.

e = wentropy(x,'threshold',0.2)
e =

162

% Compute Sure entropy of x
% with threshold equal to 3.

e = wentropy(x,'sure',3)
e =
 -0.6575

% Compute norm entropy of x with power equal to 1.1.
e = wentropy(x,'norm',1.1)

e =
 160.1583
8-179

wentropy
% Compute user entropy of x with a user defined
% function: userent for example.
% this function must be an M-file, with first line
% of the following form:
%
% function e = userent(x)
%
% where x is a vector and e is a real number.
% Then a new entropy is defined and can be used typing:
%
% e = wentropy(x,'user','userent')

References R.R. Coifman, M.V. Wickerhauser, (1992), “Entropy-based Algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

D.L. Donoho, I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen
from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.
8-180

wfilters
wfiltersPurpose Wavelet filters.

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
[F1,F2] = wfilters('wname','type')

Description [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters associated
with the orthogonal or biorthogonal wavelet named in the string 'wname'.

The four output filters are:

• Lo_D, the decomposition low-pass filter

• Hi_D, the decomposition high-pass filter

• Lo_R, the reconstruction low-pass filter

• Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname' are:

[F1,F2] = wfilters('wname','type') returns the following filters:

Daubechies : 'db1' or 'haar', 'db2', ... ,'db10', ... ,'db50'

Coiflets : 'coif1', ... , 'coif5'

Symlets : 'sym2', ... , 'sym8'

Biorthogonal : 'bior1.1', 'bior1.3', 'bior1.5'

 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8'

 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'

 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'

Lo_D and Hi_D (Decomposition filters) If 'type' = 'd'

Lo_R and Hi_R (Reconstruction filters) If 'type' = 'r'

Lo_D and Lo_R (Low-pass filters) If 'type' = 'l'

Hi_D and Hi_R (High-pass filters) If 'type' = 'h'
8-181

wfilters
Examples % Set wavelet name.
wname = 'db5';

% Compute the four filters associated with wavelet name given
% by the input string wname.

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);
subplot(221); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(222); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(223); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(224); stem(Hi_R);
title('Reconstruction high-pass filter');
xlabel('The four filters for db5')

0 5 10
−1

−0.5

0

0.5

1
Decomposition low−pass filter

0 5 10
−1

−0.5

0

0.5

1
Decomposition high−pass filter

0 5 10
−1

−0.5

0

0.5

1
Reconstruction low−pass filter

0 5 10
−1

−0.5

0

0.5

1

The four filters for coif5

Reconstruction high−pass filter
8-182

wfilters
% When used with two input arguments, depending on second
% argument, outputs are one row or one column of the previous
% figure.

% Decomposition filters (first row).
[Lo_D,Hi_D] = wfilters(wname,'d');
% Reconstruction filters (second row).
[Lo_R,Hi_R] = wfilters(wname,'r');
% Low-pass filters (first column).
[Lo_D,Lo_R] = wfilters(wname,'l');
% High-pass filters (second column).
[Hi_D,Hi_R] = wfilters(wname,'h');

See Also biorfilt, orthfilt, waveinfo

References I. Daubechies (1992), “Ten lectures on wavelets,” CBMS-NSF conference series
in applied mathematics. SIAM Ed.

S. Mallat (1989), “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no.
7, pp 674–693.
8-183

wkeep
wkeepPurpose Keep part of a vector or a matrix.

Syntax Y = wkeep(X,L,O)
Y = wkeep(X,L)

Description wkeep is a general utility.

For a vector, Y = wkeep(X,L,O) extracts the vector Y from the vector X. L is the
length of result Y. If O = 'c' ('l' , 'r' respectively), Y is the central (left, right
respectively) part of X.

Y = wkeep(X,L) is equivalent to Y = wkeep(X,L,'c').

For a matrix, Y = wkeep(X,S) extracts the central part of the matrix X. S is the
size of Y.

Examples % For a vector.
x = 1:10;
y = wkeep(x,6,'c')

y =
3 4 5 6 7 8

y = wkeep(x,6)
y =

3 4 5 6 7 8

y = wkeep(x,7,'c')
y =

2 3 4 5 6 7 8

y = wkeep(x,6,'l')
y =

1 2 3 4 5 6

y = wkeep(x,6,'r')
y =

5 6 7 8 9 10
8-184

wkeep
% For a matrix.
x = magic(5)

x =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

y = wkeep(x,[3 2])
y =

5 7
6 13
12 19
8-185

wmaxlev
wmaxlevPurpose Maximum wavelet decomposition level.

Syntax L = wmaxlev(S,'wname')

Description wmaxlev is a one- or two-dimensional wavelet or wavelet packets oriented
function.

wmaxlev can help you avoid unreasonable maximum level values.
L = wmaxlev(S,'wname') returns the maximum level decomposition of signal or
image of size S using the wavelet named in the string 'wname' (see wfilters).

wmaxlev gives the maximum allowed level decomposition, but in general, a
smaller value is taken.

Usual values are 5 for the one-dimensional case and 3 for the two-dimensional
case.

Examples % For a 1_D signal.
s = 2^10;
w = 'db1';

% Compute maximum level decomposition.
% The rule is the last level for which at least
% one coefficient is correct.

l = wmaxlev(s,w)

l =
10

% Change wavelet.
w = 'db7';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
6

8-186

wmaxlev
% For a 2_D signal.
s = [2^9 2^7];
w = 'db1';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
7

% which is the same as:
l = wmaxlev(min(s),w)

l =
7

% Change wavelet.
w = 'db7';

% Compute maximum level decomposition.
l = wmaxlev(s,w)

l =
3

See Also wavedec, wavedec2, wpdec, wpdec2
8-187

wnoise
wnoisePurpose Generate noisy wavelet test data.

Syntax X = wnoise(NUM,N)
[X,XN] = wnoise(NUM,N,SNRAT)
[X,XN] = wnoise(NUM,N,SNRAT,INIT)

Description X = wnoise(NUM,N) returns values of test function number NUM, on a 2N sample
of [0,1].

[X,XN] = wnoise(NUM,N,SNRAT) returns a test vector X as above, rescaled such
that std(x) = SNRAT. The returned vector XN contains the same test vector
corrupted by additive Gaussian white noise N(0,1). XN has a signal-to-noise
ratio of SNRAT.

[X,XN] = wnoise(NUM,N,SNRAT,INIT) returns previous vector X and XN, but
the generator seed is set to INIT value.

The six functions are due to Donoho and Johnstone (See Reference):

Examples % Generate 2^10 samples of 'Heavy sine' (item 3).
x = wnoise(3,10);

% Generate 2^10 samples of 'Doppler' (item 4) and of
% noisy 'Doppler' with a signal-to-noise ratio of 7.

[x,noisyx] = wnoise(4,10,7);

NUM = 1 Blocks

NUM = 2 Bumps

NUM = 3 Heavy sine

NUM = 4 Doppler

NUM = 5 Quadchirp

NUM = 6 Mishmash
8-188

wnoise
% To introduce your own rand seed, a fourth
% argument is allowed:

init = 2055415866;
[x,noisyx] = wnoise(4,10,7,init);

% Plot all the test functions.
ind = linspace(0,1,2^10);
for i = 1:6

x = wnoise(i,10);
subplot(6,1,i), plot(ind,x)

end

See Also wden

References D.L. Donoho, I.M. Johnstone(1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

0 0.2 0.4 0.6 0.8 1
−10

0
10

0 0.2 0.4 0.6 0.8 1
0
5

10

0 0.2 0.4 0.6 0.8 1
−10

0
10

0 0.2 0.4 0.6 0.8 1
−0.5

0
0.5

0 0.2 0.4 0.6 0.8 1
−1

0
1

0 0.2 0.4 0.6 0.8 1
−5

0
5

8-189

wnoisest
wnoisestPurpose Estimate noise of 1-D wavelet coefficients.

Syntax STDC = wnoisest(C,L,S)

Description STDC = wnoisest(C,L,S) returns estimates of detail coefficients standard
deviation for levels contained in input vector S. [C,L] is the input wavelet
decomposition structure (see wavedec).

The estimator used is Maximum Absolute Deviation / 0.6745, well suited for
zero mean Gaussian white noise in de-noising one-dimensional models (see
thselect).

Examples % Generate Gaussian white noise.
init = 2055415866; randn('seed',init);
x = randn(1,1000);

% Decompose x at level 2 using db3 wavelet.
[c,l] = wavedec(x,2,'db3');

% Estimate standard deviation of coefficients
% at each level 1 and 2.
% Since x is a Gaussian white noise with unit
% variance, estimates must be close to 1.

wnoisest(c,l,1:2)

ans =
1.0111 1.0763

% Now suppose that x contains 10 outliers.
ind = 50:50:500;
x(ind) = 100 * ones(size(ind));

% Decompose x at level 1 using db3 wavelet.
[ca,cd] = dwt(x,'db3');
8-190

wnoisest
% Ordinary estimate of cd standard deviation
% overestimates noise level.

std(cd)

ans =
8.0206

% Robust estimate of cd standard deviation
% remains close to 1 the noise level.

median(abs(cd))/0.6745

ans =
1.0540

Limitations This procedure is well suited for Gaussian white noise.

See Also thselect, wavedec, wden

References D.L. Donoho, I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.
8-191

wp2wtree
wp2wtreePurpose Extract wavelet tree from wavelet packet tree.

Syntax [T,D] = wp2wtree(T,D)

Description wp2wtree is a one- or two-dimensional wavelet packet analysis function.

[T,D] = wp2wtree(T,D) computes the modified tree structure T and data
structure D (see maketree), corresponding to the wavelet decomposition tree.

Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
[wpt,wpd] = wpdec(x,3,'db1');

% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Compute wavelet tree.
[wt,wd] = wp2wtree(wpt,wpd);

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-192

wp2wtree
% Plot wavelet tree structure wt.
plottree(wt)

See Also maketree, wpdec, wpdec2

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1)

(0,0)
8-193

wpcoef
wpcoefPurpose Wavelet packet coefficients.

Syntax X = wpcoef(S,D,N)
X = wpcoef(S,D)

Description wpcoef is a one- or two-dimensional wavelet packet analysis function.

X = wpcoef(S,D,N) returns the coefficients associated with the node N. S is the
tree structure and D the data structure (see maketree). If N doesn’t exist,
X = [];

X = wpcoef(S,D) is equivalent to X = wpcoef(S,D,0).

Examples % Load signal.
load noisdopp; x = noisdopp;

figure(1); subplot(211);
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.

[t,d] = wpdec(x,3,'db1','shannon');

% Plot tree structure.
plottree(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-194

wpcoef
% Read packet (2,1) coefficients.
cfs = wpcoef(t,d,[2 1]);

figure(1); subplot(212);
plot(cfs); title('Packet (2,1) coefficients');

See Also maketree, wpdec, wpdec2

200 400 600 800 1000
−10

−5

0

5

10
Original signal

50 100 150 200 250
−5

0

5
Packet (2,1) coefficients
8-195

wpcutree
wpcutreePurpose Cut wavelet packet tree.

Syntax [T,D] = wpcutree(T,D,L)
[T,D,RN] = wpcutree(T,D,L)

Description wpcutree is a one- or two-dimensional wavelet packet analysis function.

[T,D] = wpcutree(T,D,L) cuts the tree T at level L and computes the
corresponding data structure D (see maketree).

[T,D,RN] = wpcutree(T,D,L) returns the same arguments as above and in
addition, the vector RN contains the indices of the reconstructed nodes.

Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
[wpt,wpd] = wpdec(x,3,'db1');

% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Cut wavelet packet tree at level 2.
[nwpt,nwpd] = wpcutree(wpt,wpd,2);

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-196

wpcutree
% Plot new wavelet packet tree structure wpt.
plottree(nwpt)

See Also maketree, wpdec, wpdec2

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(0,0)
8-197

wpdec
wpdecPurpose Wavelet packet decomposition 1-D.

Syntax [T,D] = wpdec(X,N,'wname',E,P)
[T,D] = wpdec(X,N,'wname')

Description wpdec is a one-dimensional wavelet packet analysis function.

[T,D] = wpdec(X,N,’wname’,E,P) returns a tree structure T and a data
structure D (see maketree), corresponding to a wavelet packet decomposition of
the vector X, at level N, with a particular wavelet ('wname', see wfilters).

E is a string containing the type of entropy (see wentropy):

E = 'shannon', 'threshold', 'norm', 'log energy', 'sure', 'user'

P is an optional parameter:

'shannon' or 'log energy': P is not used

'threshold' or 'sure': P is the threshold (0 ≤ P)

'norm': P is a power (1 ≤ P < 2)

'user': P is a string containing a name of an user-defined function

[T,D] = wpdec(X,N,'wname') is equivalent to
[T,D] = wpdec(X,N,'wname','shannon').

The wavelet packets method is a generalization of wavelet decomposition that
offers a richer signal analysis. Wavelet packets atoms are waveforms indexed
by three naturally interpreted parameters: position and scale as in wavelet
decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is
generated. Each of these bases offers a particular way of coding signals,
preserving global energy and reconstructing exact features. The wavelet
packets can then be used for numerous expansions of a given signal. The most
suitable decomposition of a given signal with respect to an entropy-based
criterion is then selected.

Simple and efficient algorithms exist for both wavelet packets decomposition
and optimal decomposition selection. Adaptive filtering algorithms with direct
applications in optimal signal coding and data compression can then be
produced.
8-198

wpdec
In the orthogonal wavelet decomposition procedure, the generic step splits the
approximation coefficients into two parts. After splitting we obtain a vector of
approximation coefficients and a vector of detail coefficients, both at a coarser
scale. The information lost between two successive approximations is captured
in the detail coefficients. The next step consists in splitting the new
approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is
also decomposed into two parts using the same approach as in approximation
vector splitting. This offers the richest analysis: the complete binary tree is
produced in the one-dimensional case or a quaternary tree in the
two-dimensional case.

Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.

[t,d] = wpdec(x,3,'db1','shannon');

% The result is the wavelet packets decomposition structure
% which consists of a tree structure t and the associate
% data structure d.

% Plot tree structure (binary tree, or tree of order 2).
plottree(t)

% Operations on the structure are defined in M-file
% wdatamgr and you are not supposed to handle
% this internal structure directly.

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-199

wpdec
Algorithm The algorithm used for the wavelet packets decomposition follows the same
line as the wavelet decomposition process (see dwt, wavedec).

See Also maketree, waveinfo, wdatamgr, wentropy, wpdec2, wtreemgr

References R.R. Coifman, M.V. Wickerhauser, (1992), “Entropy-based Algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

 Y. Meyer (1993), “Les ondelettes. Algorithmes et applications,” Colin Ed.,
Paris, 2nd edition. (English translation: “Wavelets: Algorithms and
Applications,” SIAM).

M.V. Wickerhauser, (1991) “INRIA lectures on wavelet packet algorithms,”
Proceedings ondelettes et paquets d’ondes 17-21 June, Rocquencourt France, pp
31–99.

M.V. Wickerhauser, (1994) “Adapted wavelet analysis from theory to software
algorithms,” A.K. Peters.
8-200

wpdec2
wpdec2Purpose Wavelet packet decomposition 2-D.

Syntax [T,D] = wpdec2(X,N,'wname',E,P)
[T,D] = wpdec2(X,N,'wname')

Description wpdec2 is a two-dimensional wavelet packet analysis function.

[T,D] = wpdec2(X,N,'wname',E,P) returns a tree structure T and a data
structure D (see maketree), corresponding to a wavelet packet decomposition of
the matrix X, at level N, with a particular wavelet ('wname', see wfilters).

E is a string containing the type of entropy (see wentropy):

E = 'shannon', 'threshold', 'norm', 'log energy', 'sure', 'user'

P is an optional parameter:

'shannon' or 'log energy': P is not used

'threshold' or 'sure': P is the threshold (0 ≤ P)

'norm': P is a power (1 ≤ P < 2)

'user': P is a string containing a name of an user-defined function

[T,D] = wpdec2(X,N,'wname') is equivalent to
[T,D] = wpdec2(X,N,'wname','shannon').

See wpdec for a more complete description.
8-201

wpdec2
Examples % Load image.
load tire
% X contains the loaded image.

% For an image the decomposition is performed using:
[t,d] = wpdec2(X,2,'db1');
% default entropy is the shannon one.

% Plot tree structure (quarternary tree, or tree of order 4).
plottree(t)

Algorithm The algorithm used for the wavelet packets decomposition follows the same
line as the wavelet decomposition process (see dwt2, wavedec2).

See Also maketree, waveinfo, wdatamgr, wentropy, wpdec, wtreemgr

References R.R. Coifman, M.V. Wickerhauser, (1992), “Entropy-based algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

 Y. Meyer (1993), “Les ondelettes. Algorithmes et applications,” Colin Ed.,
Paris, 2nd edition. (English translation: “Wavelets: Algorithms and
Applications,” SIAM).

M.V. Wickerhauser, (1991) “INRIA lectures on wavelet packet algorithms,”
Proceedings ondelettes et paquets d’ondes 17-21 June Rocquencourt France, pp
31–99.

M.V. Wickerhauser, (1994) “Adapted wavelet analysis from theory to software
Algorithms,” A.K. Peters.

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (2,10) (2,11) (2,12) (2,13) (2,14) (2,15)

(0,0)
8-202

wpdencmp
wpdencmpPurpose De-noising or compression using wavelet packet.

Syntax [XD,TREED,DATAD,PERF0,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPAPP)

[XD,TREED,DATAD,PERF0,PERFL2] =
wpdencmp(TREE,DATA,SORH,CRIT,PAR,KEEPAPP)

Description wpdencmp is a one- or two-dimensional de-noising and compression oriented
function.

wpdencmp performs a de-noising or compression process of a signal or an image,
using wavelet packet. The ideas and the procedures for de-noising and
compression using wavelet packet are the same as those used in the wavelets
framework (see wden and wdencmp).

[XD,TREED,DATAD,PERF0,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPAPP) returns a de-noised or
compressed version XD of input signal X (one- or two-dimensional) obtained by
wavelet packet coefficients thresholding.

Additional output arguments [TREED,DATAD] are the wavelet packet best
decomposition structure (see besttree) of XD. PERFL2 and PERF0 are L2 recovery
and compression scores in percentages.

PERFL2 = 100 * (vector-norm of WP-cfs of XD / vector-norm of WP-cfs of X)2.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is

reduced to .

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more details).

Wavelet packet decomposition is performed at level N and 'wname' is a string
containing wavelet name. Best decomposition is performed using entropy
criterion defined by string CRIT and parameter PAR (see wentropy for details).
Threshold parameter is also PAR. If KEEPAPP = 1, approximation coefficients
cannot be thresholded, otherwise it is possible.

100 XD
2

X
2

8-203

wpdencmp
[XD,TREED,DATAD,PERF0,PERFL2] =
wpdencmp(TREE,DATA,SORH,CRIT,PAR,KEEPAPP)has the same output
arguments, using the same options as above, but obtained directly from the
input wavelet packet decomposition structure [TREE,DATA] (see maketree and
wpdec) of the signal to be de-noised or compressed.

In addition if CRIT = 'nobest' no optimization is done and the current
decomposition is thresholded.

Examples % Load original signal.
load sumlichr; x = sumlichr;

% Use wpdencmp for signal compression.
% find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr =
0.5193

sorh =
h

keepapp =
1

crit =
threshold

% Denoise signal using global thresholding with
% threshold best basis.
[xc,treed,datad,perf0,perfl2] = ...
8-204

wpdencmp
wpdencmp(x,sorh,3,'db2',crit,thr,keepapp);

% Load original image.
load sinsin

% Generate noisy image.
init = 2055615866; randn('seed',init);
x = X/18 + randn(size(X));

% Use wpdencmp for image de-noising.
% find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x)

thr =
4.9685

sorh =
h

100 200 300 400 500

−2

−1

0

1

2

Original signal

100 200 300 400 500

−2

−1

0

1

2

Compressed Signal using Wavelet Packets

2_norm rec.: 97.52 % −− zero cfs: 53.98 %
8-205

wpdencmp
keepapp =
1

crit =
sure
% Denoise image using global thresholding with
% SURE best basis.
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);

% Generate heavy sine and a noisy version of it.
[xref,x] = wnoise(5,11,7,init);

% Use wpdencmp for signal de-noising.
n = length(x);
thr = sqrt(2*log(n*log(n)/log(2)));
xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);

% Compare with wavelet-based de-noising result.
xwd = wden(x,'rigrsure','s','one',4,'sym4');

Original Image

20 40 60 80100120

20

40

60

80

100

120

Noisy Image

20 40 60 80100120

20

40

60

80

100

120

De−noised Image

20 40 60 80100120

20

40

60

80

100

120
8-206

wpdencmp
See Also ddencmp, wdencmp, wentropy, wpdec, wpdec2

References A. Antoniadis, G. Oppenheim, Eds. (1995), “Wavelets and statistics,” Lecture
Notes in Statistics, 103, Springer Verlag.

R.R. Coifman, M.V. Wickerhauser, (1992), “Entropy-based algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

R.A. DeVore, B. Jawerth, B.J. Lucier (1992), “Image compression through
wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719–
746.

D.L. Donoho (1993), “Progress in wavelet analysis and WVD: a ten minute
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques,
pp. 109–128. Frontières Ed.

D.L. Donoho, I.M. Johnstone(1994), “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol 81, pp. 425–455.

D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet
shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

500 1000 1500 2000

−10
0

10

Original signal

500 1000 1500 2000

−10
0

10

Noisy Signal

500 1000 1500 2000

−10
0

10

De−noised Signal using Wavelet Packets

500 1000 1500 2000

−10
0

10

De−noised Signal using Wavelets
8-207

wpfun
wpfunPurpose Wavelet packet functions.

Syntax [WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)

Description wpfun is a wavelet packet analysis function.

[WPWS,X] = wpfun('wname',NUM,PREC) computes the wavelet packets for a
wavelet 'wname' (see wfilters), on dyadic intervals of length 2-PREC.

PREC must be a positive integer. Output matrix WPWS contains the W functions
of index from 0 to NUM, stored rowwise as [W0; W1;...; WNUM]. Output vector X is
the corresponding common X-grid vector.

[WPWS,X] = wpfun('wname',NUM) is equivalent to
[WPWS,X] = wpfun('wname',NUM,7).

The computation scheme for wavelet packets generation is easy when using an
orthogonal wavelet. We start with the two filters of length 2N, denoted h(n) and
g(n), corresponding to the wavelet. They are the reversed versions of the
low-pass decomposition filter and the high-pass decomposition filter divided by

respectively.

Now by induction let us define the following sequence of functions
(Wn(x) , n = 0,1,2,...) by:

where W0(x) = (x) is the scaling function and W1(x) = (x) is the wavelet
function.

2

W2n x() 2 h k()
k 0= … 2N 1–, ,

∑ Wn 2x k–()=

W2n 1+ x() 2 g k()
k 0= … 2N 1–, ,

∑ Wn 2x k–()=

φ ψ
8-208

wpfun
For example for the Haar wavelet we have:

N = 1, h(0) = h(1) = 1/2 and g(0) = - g(1) = 1/2.

The equations become:

W0(x) = (x) is the haar scaling function and W1(x) = (x) is the Haar wavelet,
both supported in [0,1].

Then we can obtain W2n by adding two 1/2-scaled versions of Wn with distinct
supports [0,1/2] and [1/2,1] and obtain W2n+1 by subtracting the same versions
of Wn.

Starting from more regular original wavelets, using a similar construction, we
obtain smoothed versions of this system of W-functions, all with support in the
interval [0, 2N-1].

W2n x() Wn 2x() Wn 2x 1–()+=

W2n 1+ x() Wn 2x() Wn 2x 1–()–=

φ ψ
8-209

wpfun
Examples % Compute the db2 Wn functions for n = 0 to 7, generating
% the db2 wavelet packets.
[wp,x] = wpfun('db2',7);

See Also wavefun, waveinfo

References R.R. Coifman, M.V. Wickerhauser, (1992), “Entropy-based Algorithms for best
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

 Y. Meyer (1993), “Les ondelettes. Algorithmes et applications,” Colin Ed.,
Paris, 2nd edition. (English translation: “Wavelets: Algorithms and
applications,” SIAM).

M.V. Wickerhauser, (1991) “INRIA lectures on wavelet packet algorithms,”
Proceedings ondelettes et paquets d’ondes 17-21 June Rocquencourt France, pp
31–99.

M.V. Wickerhauser, (1994) “Adapted wavelet analysis from theory to software
algorithms,” A.K. Peters.

0 2 4
−0.5

0

0.5

1

1.5

W0
0 2 4

−2

−1

0

1

2

W1
0 2 4

−2

−1

0

1

2

3

W2
0 2 4

−2

−1

0

1

2

3

W3

0 2 4
−2

−1

0

1

2

3

W4
0 2 4

−2

−1

0

1

2

3

W5
0 2 4

−2

−1

0

1

2

3

W6
0 2 4

−2

−1

0

1

2

3

W7
8-210

wpjoin
wpjoinPurpose Recompose wavelet packet.

Syntax [T,D] = wpjoin(T,D,N)
[T,D,X] = wpjoin(T,D,N)
[T,D] = wpjoin(T,D)
[T,D,X] = wpjoin(T,D)

Description wpjoin is a one- or two-dimensional wavelet packet analysis function. wpjoin
updates the tree and data structures after the recomposition of a node.

The nodes are numbered from left to right and from top to bottom. The root
index is 0.

[T,D] = wpjoin(T,D,N) returns the modified tree structure T and the modified
data structure D (see maketree), corresponding to a recomposition of the node N.

[T,D,X] = wpjoin(T,D,N) also returns the coefficients of the node.

[T,D] = wpjoin(T,D) is equivalent to [T,D] = wpjoin(T,D,0).

[T,D,X] = wpjoin(T,D) is equivalent to [T,D,X] = wpjoin(T,D,0).
8-211

wpjoin
Examples % Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
[wpt,wpd] = wpdec(x,3,'db1');

% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Recompose packet (1,1) or 2
[wpt,wpd] = wpjoin(wpt,wpd,[1 1]);

% Plot wavelet packet tree structure wpt.
plottree(wpt)

See Also maketree, wpdec, wpdec2, wpsplt

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1) (3,2) (3,3)

(0,0)
8-212

wprcoef
wprcoefPurpose Reconstruct wavelet packet coefficients.

Syntax X = wprcoef(T,D,N)

Description wprcoef is a one- or two-dimensional wavelet packet analysis function.

X = wprcoef(T,D,N) computes reconstructed coefficients of the node N. T is the
tree structure and D the data structure (see maketree).

X = wprcoef(T,D) is equivalent to X = wprcoef(T,D,0).

Examples % Load signal.
load noisdopp; x = noisdopp;

figure(1); subplot(211);
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.

[t,d] = wpdec(x,3,'db1','shannon');

% Plot tree structure.
plottree(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
8-213

wprcoef
% Reconstruct packet (2,1).
rcfs = wprcoef(t,d,[2 1]);

figure(1); subplot(212);
plot(rcfs); title('Reconstructed packet (2,1)');

See Also maketree, wpdec, wpdec2, wprec, wprec2

200 400 600 800 1000
−10

−5

0

5

10
Original signal

200 400 600 800 1000
−4

−2

0

2

4
Reconstructed packet (2,1)
8-214

wprec
wprecPurpose Wavelet packet reconstruction 1-D.

Syntax X = wprec(T,D)

Description wprec is a one-dimensional wavelet packet analysis function.

X = wprec(T,D) returns the reconstructed vector X corresponding to a wavelet
packet decomposition structure [T,D]. T is the tree structure and D the data
structure (see maketree).

wprec is the inverse function of wpdec in the sense that the abstract statement
wprec(wpdec(X,'wname')) gets back to X.

See Also maketree, wpdec, wpdec2, wpjoin, wprec2, wpsplt
8-215

wprec2
wprec2Purpose Wavelet packet reconstruction 2-D.

Syntax X = wprec2(T,D)

Description wprec2 is a two-dimensional wavelet packet analysis function.

X = wprec2(T,D) returns the reconstructed matrix X corresponding to a
wavelet packet decomposition structure [T,D]. T is the tree structure and D the
data structure (see maketree).

wprec2 is the inverse function of wpdec2 in the sense that the abstract
statement wprec2(wpdec2(X,'wname')) gets back to X.

See Also maketree, wpdec, wpdec2, wpjoin, wprec, wpsplt
8-216

wpsplt
wpspltPurpose Split (decompose) wavelet packet.

Syntax [T,D] = wpsplt(T,D,N)
[T,D,cA,cD] = wpsplt(T,D,N)
[T,D,cA,cH,cV,cD] = wpsplt(T,D,N)

Description wpsplt is a one- or two-dimensional wavelet packet analysis function.

wpsplt updates the tree and data structures after the decomposition of a node.

[T,D] = wpsplt(T,D,N) returns the modified tree structure T and the modified
data structure D, corresponding to the decomposition of the node N.

For a one-dimensional decomposition:

[T,D,cA,cD] = wpsplt(T,D,N) with cA = approximation and cD = detail of
node N.

For a two-dimensional decomposition:

[T,D,cA,cH,cV,cD] = wpsplt(T,D,N) with cA = approximation and
cH,cV,cD = details of node N.
8-217

wpsplt
Examples % Load signal.
load noisdopp;
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets.
[wpt,wpd] = wpdec(x,3,'db1');

% Plot wavelet packet tree structure wpt.
plottree(wpt)

% Decompose packet (3,0).
[wpt,wpd] = wpsplt(wpt,wpd,[3 0]);
% or equivalently wpsplt(wpt,wpd,7).

% Plot wavelet packet tree structure wpt.
plottree(wpt)

See Also maketree, wavedec, wavedec2, wpdec, wpdec2, wpjoin

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,0) (4,1)

(0,0)
8-218

wpthcoef
wpthcoefPurpose Wavelet packet coefficients thresholding.

Syntax NDATA = wpthcoef(DATA,TREE,KEEPAPP,SORH,THR)

Description wpthcoef is a one- or two-dimensional de-noising and compression utility.

NDATA = wpthcoef(DATA,TREE,KEEPAPP,SORH,THR) returns a new data
structure obtained from the wavelet packet decomposition structure
[DATA,TREE] (see maketree) by coefficients thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded, otherwise it is
possible.

If SORH = 's', soft thresholding is applied, if SORH = 'h', hard thresholding is
applied (see wthresh).

THR is the threshold value.

See Also maketree, wpdec, wpdec2, wpdencmp, wthresh
8-219

wrcoef
wrcoefPurpose Reconstruct single branch from 1-D wavelet coefficients.

Syntax X = wrcoef('type',C,L,'wname',N)
X = wrcoef('type',C,L,Lo_R,Hi_R,N)
X = wrcoef('type',C,L,'wname')
X = wrcoef('type',C,L,Lo_R,Hi_R)

Description wrcoef reconstructs the coefficients of a one-dimensional signal, given a
wavelet decomposition structure (C and L) and either a specified wavelet
('wname', see wfilters) or specified reconstruction filters (Lo_R and Hi_R).

X = wrcoef('type',C,L,'wname',N) computes the vector of reconstructed
coefficients, based on the wavelet decomposition structure [C,L] (see wavedec),
at level N.

Argument 'type' determines whether approximation ('type' = 'a') or detail
('type' = 'd') coefficients are reconstructed. When 'type' = 'a', N is allowed to
be 0, otherwise strictly positive N is required. Level N must be an integer such
that N <= length(L)-2.

X = wrcoef('type',C,L,Lo_R,Hi_R,N)computes coefficients as above, given the
reconstruction filters you specify.

X = wrcoef('type',C,L,'wname') and X = wrcoef('type',C,L,Lo_R,Hi_R)
reconstruct coefficients of maximum level N = length(L)-2.
8-220

wrcoef
Examples % Load original one-dimensional signal.
load sumsin; s = sumsin;

% Perform decomposition at level 5 of s using sym4.
[c,l] = wavedec(s,5,'sym4');

% Reconstruct approximation at level 5,
% from the wavelet decomposition structure [c,l].

a5 = wrcoef('a',c,l,'sym4',5);

See Also appcoef, detcoef, wavedec

0 200 400 600 800 1000
−4

−2

0

2

4
Original signal s.

0 200 400 600 800 1000
−2

−1

0

1

2
Reconstructed approximation at level 5 : a5
8-221

wrcoef2
wrcoef2Purpose Reconstruct single branch from 2-D wavelet coefficients.

Syntax X = wrcoef2('type',C,S,'wname',N)
X = wrcoef2('type',C,S,Lo_R,Hi_R,N)
X = wrcoef2('type',C,S,'wname')
X = wrcoef2('type',C,S,Lo_R,Hi_R)

Description wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2 reconstructs
the coefficients of an image.

X = wrcoef2('type',C,S,'wname',N) computes the matrix of reconstructed
coefficients of level N, based on the wavelet decomposition structure [C,S] (see
wavedec2).

'wname' is a string containing the name of the wavelet. If 'type' = 'a',
approximation coefficients are reconstructed; otherwise if 'type' = 'h' ('v' or
'd' respectively), horizontal (vertical or diagonal respectively) detail
coefficients are reconstructed.

Level N must be an integer such that: 0 <= N <= size(S,1)-2 if 'type' = 'a'
and such that 1 <= N <= size(S,1)-2 if 'type' = 'h', 'v' or 'd'.

Instead of giving the wavelet name, you can give the filters.

For X = wrcoef2('type',C,S,Lo_R,Hi_R,N), Lo_R is the reconstruction
low-pass filter and Hi_R is the reconstruction high-pass filter.

X = wrcoef2('type',C,S,'wname') or X = wrcoef2('type',C,S,Lo_R,Hi_R)
reconstructs coefficients of maximum level N = size(S,1)-2.
8-222

wrcoef2
Examples % Load original image.
load woman;
% X contains the loaded image.

% Perform decomposition at level 2
% of X using sym5.

[c,s] = wavedec2(X,2,'sym5');

% Reconstruct approximations at
% levels 1 and 2, from the wavelet
% decomposition structure [c,s].

a1 = wrcoef2('a',c,s,'sym5',1);
a2 = wrcoef2('a',c,s,'sym5',2);

% Reconstruct details at level 2,
% from the wavelet decomposition
% structure [c,s].
% 'h' is for horizontal,
% 'v' is for vertical,
% 'd' is for diagonal.

hd2 = wrcoef2('h',c,s,'sym5',2);
vd2 = wrcoef2('v',c,s,'sym5',2);
dd2 = wrcoef2('d',c,s,'sym5',2);

% All these images are of same size sX.
sX = size(X)

sX =
256 256

sa1 = size(a1)

sa1 =
256 256

shd2 = size(hd2)

shd2 =
256 256

See Also appcoef2, detcoef2, wavedec2
8-223

wrev
wrevPurpose Flip vector.

Syntax Y = wrev(X)

Description wrev is a general utility.

Y = wrev(X) reverses the vector X.

Examples % Set simple vector.
v = [1 2 3];

% Reverse v.
wrev(v)

ans =
3 2 1

% Reverse v transpose.
wrev(v')

ans =
3
2
1

See Also fliplr, flipud
8-224

wthcoef
wthcoefPurpose Wavelet coefficients thresholding 1-D.

Syntax NC = wthcoef('d',C,L,N,P)
NC = wthcoef('d',C,L,N)
NC = wthcoef('a',C,L)
NC = wthcoef('t',C,L,N,T,SORH)

Description wthcoef is a one-dimensional de-noising and compression oriented function.

NC = wthcoef('d',C,L,N,P) returns coefficients obtained from the wavelet
decomposition structure [C,L] (see wavedec), by rate compression defined in
vectors N and P. N contains the detail levels to be compressed and P the
corresponding percentages of lower coefficients to be set to zero. N and P must
be of same length. Vector N must be such that 1 <= N(i) <= length(L)-2.

NC = wthcoef('d',C,L,N) returns coefficients obtained from [C,L] by setting
to zero all the coefficients of detail levels defined in N.

NC = wthcoef('a',C,L) returns coefficients obtained by setting approximation
coefficients to zero.

NC = wthcoef('t',C,L,N,T,SORH) returns coefficients obtained from the
wavelet decomposition structure [C,L] by soft (if SORH='s') or hard (if
SORH='h') thresholding (see wthresh) defined in vectors N and T. N contains the
detail levels to be thresholded and T the corresponding thresholds. N and T
must be of the same length.

[NC,L] is the resulting wavelet decomposition structure.

See Also wavedec, wthresh
8-225

wthcoef2
wthcoef2Purpose Wavelet coefficients thresholding 2-D.

Syntax NC = wthcoef2('type',C,S,N,T,SORH)
NC = wthcoef2('type',C,S,N)
NC = wthcoef2('a',C,S)
NC = wthcoef2('t',C,S,N,T,SORH)

Description wthcoef2 is a two-dimensional de-noising and compression oriented function.

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type',C,S,N,T,SORH) returns the
horizontal (vertical or diagonal respectively) coefficients obtained from the
wavelet decomposition structure [C,S] (see wavedec2), by soft (if SORH='s') or
hard (if SORH='h') thresholding defined in vectors N and T. N contains the detail
levels to be compressed and T the corresponding thresholds. N and T must be of
the same length. The vector N must be such that 1 <= N(i) <= size(S,1)-2.

For 'type' = 'h' ('v' or 'd' respectively), NC = wthcoef2('type',C,S,N)
returns the coefficients of 'type' orientation obtained from [C,S] by setting to
zero all the coefficients of detail levels defined in N.

NC = wthcoef2('a',C,S) returns the coefficients obtained by setting
approximation coefficients to zero.

NC = wthcoef2('t',C,S,N,T,SORH) returns the detail coefficients obtained
from the wavelet decomposition structure [C,S] by soft (if SORH='s') or hard
(if SORH='h') thresholding (see wthresh) defined in vectors N and T. N contains
the detail levels to be thresholded and T the corresponding thresholds which
are applied in the three detail orientations. N and T must be of the same length.

[NC,S] is the resulting wavelet decomposition structure.

See Also wavedec2, wthresh
8-226

wthresh
wthreshPurpose Perform soft or hard thresholding.

Syntax Y = wthresh(X,SORH,T)

Description Y = wthresh(X,SORH,T) returns the soft (if SORH = 's') or hard (if SORH = 'h')
T-thresholding of the input vector or matrix X. T is the threshold value.

Y = wthresh(X,'s',T) returns , soft thresholding is
wavelet shrinkage.

Y = wthresh(X,'h',T) returns , hard thresholding is more
crude.

Examples % Generate signal and set threshold.
y = linspace(-1,1,100);
thr = 0.4;

% Perform hard thresholding.
ythard = wthresh(y,'h',thr);

% Perform soft thresholding.
ytsoft = wthresh(y,'s',thr);

See Also wden, wdencmp, wpdencmp

Y SIGN X() X T–()+⋅=

Y X.1 X T>()=

−1 0 1
−1

−0.5

0

0.5

1
Original signal

−1 0 1
−1

−0.5

0

0.5

1
Hard thresholded signal

−1 0 1
−1

−0.5

0

0.5

1
Soft thresholded signal
8-227

wtreemgr
wtreemgrPurpose Manager for tree structure.

Syntax [OUT1,OUT2,OUT3,OUT4] = wtreemgr(OPT,STRUCTURE,IN3,IN4,IN5)

Description wtreemgr is a tree management utility.

Allowed values for OPT and associated uses are described in the functions listed
in the See Also section:

For tree structure implementation see maketree.

See Also allnodes, isnode, istnode, maketree, nodeasc, nodedesc, nodepar, ntnode,
tnodes, treedpth, treeord

'allnodes' : All nodes

'isnode' : Check if node

'istnode' : Check if terminal node

'create' : Create a tree

'nodeasc' : Node ascendants

'nodedesc' : Node descendants

'nodepar' : Node parent

'ntnode' : Number of terminal nodes

'tnodes' : Terminal nodes

'order' : Order of tree

'depth' : Depth of tree
8-228

A-3 General Features
A-3 Color Coding
A-3 Connectedness of Plots
A-4 Using the Mouse
A-6 Controlling the Colormap
A-7 Controlling the Number of Colors
A-8 Controlling the Coloration Mode
A-8 Customizing Graphical Objects
A-10 Customizing Print Settings
A-11 Using Menus

A-14 Continuous Wavelet Tool Features

A-15 Wavelet 1-D Tool Features
A-15 Tree Mode
A-15 More Display Options

A-17 Wavelet 2-D Tool Features

A-18 Wavelet Packet Tool Features (1-D and 2-D)
A-19 Node Action Functionality

A-22 Wavelet Display Tool

A-23 Wavelet Packet Display Tool
B

GUI Reference

B GUI Reference

B-2
This appendix explains some of the features of the Wavelet Toolbox graphical
user interface (GUI) that have not been described in the previous chapters.
Topics include:

• General Features

• Continuous Wavelet Tool Features

• Wavelet 1-D Tool Features

• Wavelet 2-D Tool Features

• Wavelet Packet Tool Features (1-D and 2-D)

• Wavelet Display Tool

• Wavelet Packet Display Tool

General Features
General Features
Some features of the Wavelet Toolbox’s graphical user interface apply to all or
several of the tools in the toolbox. These include:

• Color coding

• “Connectedness” of plots

• Using the mouse

• Controlling the colormap

• Controlling the number of colors

• Controlling the coloration mode

• Customizing graphical objects

• Customizing print settings

• Using menus

Color Coding
In all the graphical tools, the various signals and analysis components are color
coded in this way:

Connectedness of Plots
Plots that contain related information and are graphed on the same abscissa
are “connected” in the sense that manipulations performed on one plot affect
all the others in the same way.

Signal Shown in

Original Red
Reconstructed or synthesized Yellow

Approximations Variegated shades of blue
(high level = darker)

Details Variegated shades of green
(high level = darker)
B-3

B GUI Reference

B-4
For example, the approximations and details shown in the separate mode view
of a decomposition all respond together when any of the plots is magnified or
“zoomed”:

Using the Mouse
The Wavelet Toolbox uses three distinct types of mouse control:

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections,
activate controls.

Display a cross-hair to
show
position-dependent
information

Translate plots up and
down, and left and
right

Zooming

Magnifies all

unison

here

the plots in

Shift + Option +

General Features
Making Selections and Activating Controls
Most of the work you do with the Wavelet Toolbox graphical tools involves
making selections and activating controls. You do this using the left (or only)
mouse button.

Translating Plots
By holding down the right mouse button (or its equivalent on a one- or
two-button mouse), you can move the mouse to draw a rectangle in either a
horizontal or vertical orientation. Releasing the middle mouse button then
causes the plot to shift horizontally or vertically by an amount proportional to
the size of the rectangle.

Displaying Position-Dependent Information
When you hold down the middle mouse button (or its equivalent on a one- or
two-button mouse), a cross-hair cursor appears over the graph or plot.
Position-dependent information also appears in the Position box located at the
bottom center of the tool.

The type of information that appears depends on what tool you are using and
on what plot your cursor is in.
B-5

B GUI Reference

B-6
Controlling the Colormap
The Colormap selection box, located at the bottom right of the window, allows
you to adjust the colormap that is used to plot images or wavelet coefficients.
This is more than an esthetic adjustment: you are likely to see different
features depending on your colormap selection.

Consider these images of the Mandelbrot set generated in the Wavelet Packet
2-D tool, here using the bone and 1–bone colormaps:

Colormap

bone 1–bone

General Features
Controlling the Number of Colors
The Nb. Colors slider, also located at the bottom right of the window, allows you
to adjust how many colors the tool uses to plot images or wavelet packet
coefficients (you can also use the edit control). At first glance, this might not
seem to be particularly important. However, adjusting the number of colors can
highlight different features of the plot.

Consider the coefficients plot of the Koch curve generated in the Continuous
Wavelet tool, here using 129 colors:

and here using 68 colors:

Nb. Colors
B-7

B GUI Reference

B-8
Controlling the Coloration Mode
In Wavelet 1-D tool and Continuous Wavelet tool the coloration of
coefficients can be done in several different ways.

Customizing Graphical Objects
In order to customize your graphics settings, you can select in all the windows
the Options⇒Handles Graphics Settings menu option. When the Axes Settings
sub-menu option is selected, you are asked to disable or not the Dynamical
Visualization Tool (DVT), located at the bottom of the window. So, after the
desired customization is performed, you must disable the Axes Settings
sub-menu option in order to reactive the DVT.

Three parameters are used to do coefficients col-
oration:
init or current :

by level or all levels:

abs (or not):

When init is selected, coloration is per-
formed with all the coefficients values.
When current is selected, only a por-
tion of the coefficients is used to make
the coloration. This portion is taken
from the current axis limits of the dis-
played coefficients.

When by level is selected, the colora-
tion is done separately for each detail
level. Otherwise the wavelet coeffi-
cients at all levels are used to scale the
coloration.

When abs is selected, the absolute val-
ues of the coefficients are used.

Coloration mode

General Features
When the sub-menu Window Settings is enabled, you can edit the current figure
parameters.

When the sub-menu Axes Settings is enabled, clicking with the mouse on an axis
will select it for editing.
B-9

B GUI Reference

B-1
When the sub-menu Texts Settings is enabled, double-clicking with the mouse
on an axis will select it for editing.

Customizing Print Settings
Using the menu option File⇒Print Settings you can access to the Print
Parameters window.

If you want to print to a file,
enter a name here.
0

General Features
Using Menus
Almost all the windows provide a similar structure at the top of the window.
The main analysis windows have a File⇒Demo Analysis menu option which
allows you to select an example of analysis with pre-defined parameters. Here
is an example of the Wavelet 1-D tool.

The Options menu allows you to change the current settings in your windows.
B-11

B GUI Reference

B-1
Choosing Zoom Preferences:

Enabling or disabling the graphical objects settings modification:

Choosing the Default Display Mode you want to be used in the first display of
the Wavelet 1-D tool:
2

General Features
The Windows menu allows to jump directly from a window to another.
B-13

B GUI Reference

B-1

s

Continuous Wavelet Tool Features
The Continuous Wavelet Tool has been almost completely described in the
section “Continuous Analysis Using the Graphical Interface” on page 2-7. Here
is an example of an option, previously not described, that allows you to perform
analysis using different scale modes.

The three edit boxes allow you to
specify the first scale value, the
maximum scale value and the step
size.
Default: min=2, step=2, max=32

In power 2 mode, the scale values
used are: 20, ..., 21, 2k, where k is
the popup menu value.
The scale values are the same a
those used for the discrete analysis.

This edit box allows you to specify
the scales used for the continuous
analysis, using MATLAB syntax
for the input.
4

Wavelet 1-D Tool Features
Wavelet 1-D Tool Features
The Wavelet 1-D Tool has been almost completely described in the section
“One-Dimensional Analysis Using the Graphical Interface” on page 2- 22.
Here are two examples of options not covered previously.

Tree Mode
This is one of the display options in which by selecting a node in the tree you
can view the corresponding signal.

Here on the left, the node d3 is selected and the corresponding detail is
displayed under the original signal.

More Display Options
This option allows you to customize what is displayed and is dependent on the
current visualization mode.

In this example for the Separate Mode, we have chosen not to display the
coefficients of approximation for levels2 and 3, as well as the coefficients of
detail for levels 4 and 5. The coefficients’ coloration mode has been changed,
B-15

B GUI Reference

B-1
and the synthesized signal is displayed in the right hand column, rather than
the original signal.
6

Wavelet 2-D Tool Features
Wavelet 2-D Tool Features
The Wavelet 2-D Tool has been almost completely described in the section
“Two-Dimensional Analysis Using the Graphical Interface” on page 2-52.

Here is an example of an option that allows you to view a selected part of the
window at a full window resolution.
B-17

B GUI Reference

B-1
Wavelet Packet Tool Features (1-D and 2-D)
The Wavelet Packet 1-D Tool and Wavelet Packet2-D Tool have been described
in Chapter 5. They are almost identical in their layout and function. The only
difference involves the extra coloration modes available in the Wavelet Packet
1-D tool, as well as the ability of the tools to work with signals or images as
appropriate. Let us focus on the 1-D capabilities.

Coefficients coloration:
NAT or FRQ is for Natural or
Frequency order (see Wavelet
Packet Atoms on page 101 of
Chapter 6).
By level or Global is for a col-
oration made level by level or
taking all detail levels.
abs is used to take the absolute
values of coefficients.

Node Action:
When you select a node
in the tree, the selected
option is performed. A
complete description of
options is provided on
the next page.

Node Label:
The node labels may be
changed using the
pop-up menu. For exam-
ple, the Type option la-
bels the with (a) for
approximation and (d)
for detail.
8

Wavelet Packet Tool Features (1-D and 2-D)
Node Action Functionality
The available options in the Node Action pop-up menu are:

• Visualize: When you select a node in the wavelet packet tree the
corresponding signal is displayed.

• Split/Merge: If a terminal node is selected it is split, growing the wavelet
packet tree. Selecting other nodes, has the behavior of merging all the nodes
below it in the wavelet packet tree.

SPLIT

MERGE
B-19

B GUI Reference

B-2
• Recons.: When you select a node in the wavelet packet tree, the corresponding
reconstructed signal is displayed.

• Select On/Off: When On, you can select many nodes in the wavelet packet tree
and then you can reconstruct a synthesized signal from the selected nodes
using the Reconstruct push-button in the main window. The Off selection is
used to unselect all the previous selected nodes.
0

Wavelet Packet Tool Features (1-D and 2-D)
• Statistics: When you select a node in the wavelet packet tree, the Statistics
Tool is displayed using the signal corresponding to the selected node.

• View Col. Cfs.: When active, this option removes all the colored coefficients
displayed and lets you redraw only the corresponding coefficients, by
selecting a node in the wavelet packet tree.
B-21

B GUI Reference

B-2
Wavelet Display Tool
The Wavelet Display Tool is mentioned in the section “An Introduction to the
Wavelet Families” on page 30 of Chapter 1.

Here, the main window and the associated information windows are displayed
with some additional comments.

Information on the selected waveletInformation on all the wavelets

This parameter decides the

precision used for the wave-

let computation. Here, func-

tions are computed over 28

points.
2

Wavelet Packet Display Tool
Wavelet Packet Display Tool
The Wavelet Packet Display Tool is very similar to the Wavelet Display Tool.

Here, the main window and the associated information windows are displayed
with some additional comments.

This parameter decides the

precision used for the wave-

let computation. Here, func-

tions are computed over 28

points.

Information on the selected waveletInformation on wavelet packets
B-23

B GUI Reference

B-2
4

Index
A
Adding a new wavelet 7-2-7-16
Algorithm

Cascade 8-144
Coifman-Wickerhauser 1-28, 6-112
Decomposition 6-24-6-27, 6-29-6-30
Fast Wavelet Transform (FWT) 6-21
Filters 6-21-6-24
For biorthogonal 6-29
Mallat 1-16, 6-21
Rationale 6-29-6-33
Reconstruction 6-26-6-29, 6-32-6-33

Aliasing 1-17
Analysis

Biorthogonal 6-29, 6-67-6-68
Case study 4-36-4-47
Continuous 1-10-1-15, 2-3-2-12, 6-15-6-16
Continuous or discrete 6-56
Discrete 1-16-1-19, 2-13-??, 6-15-6-16
Illustrated examples 4-3-4-35
Local 1-5
Local and global 6-16
Multiscale 4-35, 4-36
One-dimensional discrete wavelet 2-13-??
One-dimensional wavelet packet 5-6-??
Orthogonal 6-21, 6-31, 6-62, 6-64
Redundant 6-16
Time-scale 1-5, 1-12, 6-16
Two-dimensional discrete wavelet ??-2-65
Two-dimensional wavelet packet ??-5-25
Wavelet 1-5, 1-7
Wavelet Packet 5-2-??

analysis
Discrete ??-2-65
Two-dimensional discrete wavelet 2-43-??

Approximation 1-16-1-18, 6-5, 6-18-6-20
Coefficients 2-17, 2-47, 6-24-6-25
Definition 6-3, 6-19
Quality 6-18
Reconstruction 1-21-1-22, 2-17

B
Basis 6-29-6-32, 6-104
Biorthogonal wavelets 1-32, 6-67-6-68

See also Analysis
Border distortion 6-46

Boundary value replication 6-46
Periodic extension 6-46
Periodized Wavelet Transform 6-55
Smooth padding 6-47, 6-51, 6-55
Symmetric extension 6-49, 6-54
Symmetrization 6-46
Zero-padding 6-47, 6-49, 6-52

Breakdown 3-6, 4-18-4-23, 4-25, 4-27, 4-35
Frequency 3-3-3-4, 4-10-4-11

C
Chirp 5-7, 6-97, 6-102
Coefficients

Approximation 2-17, 2-47, 6-24-6-25
Continuous Wavelet 2-5
Detail 2-17, 2-47, 6-24-6-25
Discrete Wavelet 2-41, 2-64
Load 2-41, 2-64
Save 2-12, 2-39, 2-60, 5-27, 5-28

Coiflets 1-33, 6-66
Coloration mode 2-11, A-3, A-6
colormap (matrix)

RGB components 2-66
Compression 2-14, 2-50, 2-58, 3-21-3-22, 5-23,

6-90
I-25

Index

I-26
Default values 5-4, 6-93
Difference with de-noising 6-90
Procedure 5-5, 6-90

Continuous Wavelet Transform
See Analysis, Transform

CWT
See Transform

D
Daubechies wavelets 1-31, 6-63
Decomposition 1-19, 1-25, 2-24, 2-27, 6-25-6-27,

6-34, 6-41-6-42
Best 6-112
Best-level 6-112
Entropy-based criteria 6-105-6-110
Hierarchical organization 6-11
Multi-step 1-25
Optical comparison 6-5
Optimal 6-105-6-112
Save 2-61, 5-28
Structure 2-64, 5-27-??, 6-34, 6-111, 6-113
Wavelet Packet 6-111
See also Tree

Default values
See De-noising, Compression

De-noising 2-14, 2-19-2-21, 2-30-2-33, 3-18-3-20,
6-113

Basic model 6-80, 6-88
Default values 5-4, 6-93
Fixed form threshold 6-82
Geometrical images 6-88
Image 6-88
Minimax performance 6-82
Noise size estimate 6-84
Non-white noise 6-84
Procedure 5-5, 6-80
SURE estimate 6-82
White noise 6-79

Detail 1-16-1-18, 6-5, 6-18-6-20
Coefficients 2-17, 2-47, 6-24-6-25
Decomposition 6-95-6-96
Definition 6-3, 6-19
Orientation 6-27
Reconstruction 1-21-1-22, 2-17

Dilation 1-9, 6-21
Discontinuity 1-5, 3-3-3-6, 4-10, 4-20, 4-22, 6-49

See also breakdown
Discrete Wavelet Transform

See Analysis, Transform
Downsampling 1-17, 6-25, 6-27
DWT

See Transform

E
Edge effects

See Border distortion
Entropy 1-28, 6-106-6-110
Exporting from the GUI

Continuous Wavelet 2-11
Discrete Wavelet 2-59

F
Fast multiplication of large matrices 4-48
Fast Wavelet Transform (FWT)

See Transform
Filter

Banks 1-16
Decomposition 6-25
FIR 6-21, 6-60, 6-68, 6-73, 7-5
High-pass 6-24
Low-pass 6-24

Index
Minimum phase 6-65
Quadrature mirror 1-21, 1-25, 6-23
Reconstruction 1-21, 6-25
Scaling 6-21

Fingerprint 3-21-3-22
Fourier 1-3, 1-8

Analysis 4-9, 4-11, 6-17, 6-60
Short-time analysis (STFT) 1-4-1-5
Windowed analysis 4-11

Fractal 3-11, 6-16
Frequency 1-4-1-5, 1-13, 1-16, 2-19, 3-12

Parameter 6-102
See also Fourier

FWT
See Transform

G
GUI 2-2, 5-2, 8-149, A-2-A-23

Coloration mode 2-11, A-3, A-6, A-8
Continuous wavelet 2-7

Scale mode A-14
Customizing graphical objects A-8
Full window resolution A-17
Using menus A-11
Using the mouse A-4
Wavelet Display A-22
Wavelet one-dimensional 2-22

Full decomposition mode 2-28
More display options 2-30, A-15
Separate mode 2-28
Show and scroll mode 2-29
Superimpose mode 2-28
Tree mode 2-28, A-15

Wavelet Packet 5-6
Coefficients coloration A-18
Node action A-18-??
Node label A-18

Wavelet Packet Display A-23
Wavelet two-dimensional 2-52

Square mode 2-55
Tree mode 2-56

H
Haar wavelet 1-31, 6-64
Heisenberg uncertainty principle 6-17
History 1-29

I
IDWT

See Transform
Image 2-62
image types

indexed 2-66
Importing in the GUI

Continuous Wavelet 2-11
Discrete Wavelet 2-38, 2-59
Wavelet Packet 5-26

indexed image 2-66
matrix indices, shifting 2-67

L
Level 1-19, 1-22, 1-27, 2-16, 2-24, 2-27, 2-54,

6-2-6-3, 6-5
See also Multi-level
See also Wavelet Packet, Best level

Load
Coefficients 2-41, 2-64, 5-30
I-27

Index

I-28
Image 2-62
Signal 2-11, 2-40, 5-29

Local
See Analysis

Long-term evolution 3-8, 4-9, 4-11, 4-25, 4-27,
4-31, 4-35

M
Mathematical conventions 6-2
Merge

See Wavelet Packet
Mexican hat 1-34, 6-71
Meyer wavelets 1-35, 6-69
Minimax 6-82
Missing data 4-47
Morlet wavelet 1-34, 6-72
Multi-level 2-16, 2-18, 2-27, 2-47-2-50
Multiresolution 6-21, 6-29-6-31
Multi-step 1-25

N
Noise 2-30, 4-24-4-29, 4-32, 4-43

ARMA 4-15
Colored 4-26
Gaussian 6-77, 6-80
Processing 4-13, 4-15, 4-25, 4-27, 4-29, 6-77
Suppressing 3-15-3-17

See also De-noising
Unscaled 6-84
White 4-12, 4-16, 4-24, 4-28, 6-79

O
Outliers 4-46
P
Packet

See Wavelet Packet
Padding

See Border distortion
Periodized Wavelet Transform

See Border distortion
Positions 1-16

Q
Quadrature mirror filters (QMF) 1-21, 1-25, 6-23

R
Reconstruction 1-20-1-23, 1-25, 6-26, 6-29, 6-34

Approximation 1-21
Detail 1-21
Filters 1-21
Multi-step 1-25

Redundancy 6-56
Regularity 6-73

Definition 6-57
Resemblance index 3-10

S
Save

Coefficients 2-12, 2-39, 2-60, 5-27-5-28
Decomposition 2-61, 5-28
Synthesized image 2-60, 5-27
Synthesized signal 2-38, 5-26

Scale 1-9, 1-14
And frequency 1-13
Choosing 2-6
Dyadic 1-16, 6-2, 6-4

Scaling filter 6-4, 6-21

Index
Scaling function 1-25, 6-3, 6-6, 6-8
Self-similarity 1-6, 3-10
Shift 1-9-1-10

See also Translation
Shrink

See Thresholding
Signal-end effects

See Border distortion
Spline 6-29, 6-63, 6-70
Split

See Wavelet Packet
STFT

See Fourier
Support

See Wavelet Families
Symlets 1-33, 6-65
Symmetry

See Wavelet Families
Synthesis 1-20, 6-17

T
Thresholding 2-20

Hard 6-81-6-82
Rules 6-82-6-83
Soft 6-81
See also De-noising

Time-scale
See Analysis

Transform
Continuous versus discrete 6-16
Continuous Wavelet (CWT) 1-8, 1-10-1-12, 1-15,
6-73
Discrete Wavelet (DWT) 1-16, 6-24-6-25, 6-27,
6-73
Fast Wavelet (FWT) 6-21
Inverse (IDWT) 1-20, 6-17, 6-26, 6-29

Periodized 6-55
Transient 1-3

See also Breakdown
Translation 6-10-6-11, A-5

Dyadic 6-2
See also Shift

Tree
Best 5-10
Best-level 6-112
Decomposition 1-27-1-28
Mode 2-28, 2-56, A-15
Wavelet 1-19, 1-27, 6-29
Wavelet Packet 1-27, 6-95, 6-104, 6-111

Trend 1-3
See Long-term evolution

Twin-scale relation 6-21, 6-31, 6-32, 6-59

U
Upsampling 1-20, 6-26, 6-29

V
Vanishing moments 3-17, 6-57, 6-73

W
Wavelet 6-3, 6-6, 6-8

Add new 7-2-7-16
Applications 3-1-3-22
Associated family 6-4, 6-8-6-13
Battle-Lemarie 6-70
Biorthogonal 1-32, 6-67
Candidate to be a 6-59
Coefficients 1-8
Coiflets 1-33, 6-66
Daubechies 1-31, 6-63
I-29

Index

I-30
Haar 1-31, 6-64
History of 1-29
Mexican hat 1-34, 6-71
Meyer 1-35, 6-69
Morlet 1-34, 6-72
One-dimensional capabilities 2-13, 6-34-6-39
Order 7-4
Organization 6-13
Relationship of filters to 1-23
Shapes 6-6
Symlets 1-33, 6-65
Translation 6-2, 6-10-6-11

See also Shift
Tree 1-19, 1-27, 2-28, 5-10, 6-29, 6-110
Two-dimensional 6-8
Two-dimensional capabilities 2-43, 6-40-6-45
Type 7-4
Vanishing moments 3-17, 6-57, 6-62, 6-73

Wavelet Families 1-30, 6-3, 6-62, 6-73
Add new 7-3
Full name 7-3
Properties 6-73
Regularity 6-57, 6-62
Short name 7-3
Support 6-62
Symmetry 6-62
Vanishing moments 6-62, 6-73, 6-74

Wavelet Packet 1-27, 5-1, 6-95-6-113
Atoms 6-101
Best level 1-28, 5-4, 6-112
Best tree 1-28, 5-4, 5-10, 5-17
Building 6-98
Compression 5-11, 6-113
Decomposition 6-111, 6-113
De-noising 5-14-??
Frequency order 6-102
From wavelets to 6-95
Merge 6-105
Natural order 6-102
Organization 6-104
Split 6-105
Tree 1-27, 6-95, 6-104, 6-111

Z
Zoom 2-9, 2-26, 2-57, 6-58

	Preface
	About the Authors
	Acknowledgments
	What is the Wavelet Toolbox?
	How to Use This Guide

	For More Background
	Installation
	System Recommendations
	Platform-Specific Details
	Windows Fonts
	Other Platforms Fonts
	Mouse Compatibility

	Typographical Conventions

	Wavelets: A New Tool for Signal Analysis
	Fourier Analysis
	Short-Time Fourier Analysis
	Wavelet Analysis
	What Can Wavelet Analysis Do?

	What is Wavelet Analysis?
	Number of Dimensions

	The Continuous Wavelet Transform
	Scaling
	Shifting
	Five Easy Steps to a Continuous Wavelet Transform
	Scale and Frequency
	The Scale of Nature
	What’s Continuous About the Continuous Wavelet Tra...

	The Discrete Wavelet Transform
	One-Stage Filtering: Approximations and Details
	Multiple-Level Decomposition
	Number of Levels

	Wavelet Reconstruction
	Reconstruction Filters
	Reconstructing Approximations and Details
	Relationship of Filters to Wavelet Shapes
	The Scaling Function

	Multistep Decomposition and Reconstruction

	Wavelet Packet Analysis
	History of Wavelets
	An Introduction to the Wavelet Families
	Haar
	Daubechies
	Biorthogonal
	Coiflets
	Symlets
	Morlet
	Mexican Hat
	Meyer

	Using Wavelets
	Continuous Wavelet Analysis (One-Dimensional)
	Continuous Analysis Using the Command Line
	Loading a Signal
	Performing a Continuous Wavelet Transform
	Plotting the Coefficients
	Choosing Scales for the Analysis

	Continuous Analysis Using the Graphical Interface
	Starting the Continuous Wavelet 1-D Tool
	Loading a Signal
	Performing a Continuous Wavelet Transform
	Zooming in on Detail
	Viewing Normal or Absolute Coefficients

	Importing and Exporting Information from the Graph...
	Loading Signals into the Continuous Wavelet 1-D To...
	Saving Wavelet Coefficients

	One-Dimensional Discrete Wavelet Analysis
	Analysis Decomposition Functions:
	Synthesis Reconstruction Functions:
	Decomposition Structure Utilities:Analysis Decompo...
	One-Dimensional Analysis Using the Command Line
	Loading a Signal
	Performing A One-Step Wavelet Decomposition of a S...
	Constructing Approximations and Details from the C...
	Displaying the Approximation and Detail
	Regenerating a Signal by Inverse Wavelet Transform...
	Performing a Multilevel Wavelet Decomposition of a...
	Extracting Approximation and Detail Coefficients
	Reconstructing the Level 3 Approximation
	Reconstructing the Level 1, 2, and 3 Details
	Displaying the Results of a Multilevel Decompositi...
	Reconstructing the Original Signal From the Level ...
	Crude De-noising of a Signal
	Removing Noise by Thresholding

	One-Dimensional Analysis Using the Graphical Inter...
	Starting the 1-D Wavelet Analysis Tool
	Loading a Signal
	Performing A One-Step Wavelet Decomposition of a S...
	Zooming in On Relevant Detail
	Performing a Multi-Level Decomposition of a Signal...
	Selecting Different Views of the Decomposition
	Removing Noise From a Signal
	Refining an Analysis
	Compressing a Signal
	Showing Statistics

	Importing and Exporting Information from the Graph...
	Saving Information to the Disk
	Saving Synthesized Signals
	Saving Discrete Wavelet Transform Coefficients
	Saving Decompositions

	Loading Information into the Wavelet 1-D Tool
	Loading Signals
	Loading Discrete Wavelet Transform Coefficients
	Loading Decompositions

	Two-Dimensional Discrete Wavelet Analysis
	Analysis-Decomposition Functions:
	Synthesis-Reconstruction Functions:
	Decomposition Structure Utilities:
	De-noising and Compression:
	Two-Dimensional Analysis Using the Command Line
	Loading an Image
	Converting an Indexed Image to a Grayscale Image
	Performing A One-Step Wavelet Decomposition of an ...
	Constructing Approximations and Details from the C...
	Displaying the Approximation and Details
	Regenerating an Image by One-Step Inverse Wavelet ...
	Performing a Multi-Level Wavelet Decomposition of ...
	Extracting Approximation and Detail Coefficients
	Reconstructing the Level 2 Approximation
	Reconstructing the Level 1 and 2 Details
	Displaying the Results of a Multi-Level Decomposit...
	Reconstructing the Original Image from the Multile...
	Compressing an Image
	Displaying the Compressed Image

	Two-Dimensional Analysis Using the Graphical Inter...
	Starting the 2-D Wavelet Analysis Tool
	Loading an Image
	Analyzing an Image
	Using Square Mode Features
	Using Tree Mode Features
	Zooming in on Detail
	Compressing an Image

	Importing and Exporting Information from the Graph...
	Saving Information to the Disk
	Saving Synthesized Images
	Saving Discrete Wavelet Transform Coefficients
	Saving Decompositions

	Loading Information into the Wavelet 2-D Tool
	Loading Images
	Loading Discrete Wavelet Transform Coefficients
	Loading Decompositions

	Working with Indexed Images
	Understanding Images in MATLAB
	Indexed Images
	Wavelet Decomposition of Indexed Images
	How Decompositions Are Displayed

	Wavelet Applications
	Detecting Discontinuities and Breakdown Points I
	Discussion
	Guidelines for Detecting Discontinuities

	Detecting Discontinuities and Breakdown Points II
	Discussion

	Detecting Long-Term Evolution
	Discussion

	Detecting Self-Similarity
	Wavelet Coefficients and Self-Similarity
	Discussion

	Identifying Pure Frequencies
	Discussion

	Suppressing Signals
	Discussion
	Vanishing Moments

	De-Noising Signals
	Discussion

	Compressing Signals
	Discussion

	Wavelets in Action: Examples and Case Studies
	Illustrated Examples
	Advice to the Reader
	About Further Exploration
	Tip 1:
	Tip 2:
	Tip 3:
	Tip 4:

	Example #1: A Sum of Sines
	Example #2: A Frequency Breakdown
	Example #3: Uniform White Noise
	Example #4: Colored AR(3) Noise
	Example #5: Polynomial + White Noise
	Example #6: A Step Signal
	Example #7: Two Proximal Discontinuities
	Example #8: A Second-Derivative Discontinuity
	Example #9: A Ramp + White Noise
	Example #10: A Ramp + Colored Noise
	Example #11: A Sine + White Noise
	Example #12: A Triangle + A Sine
	Example #13: A Triangle + A Sine + Noise
	Example #14: A Real Electricity Consumption Signal...

	A Case Study: An Electrical Signal
	Data and the External Information
	Analysis of the Midday Period
	Analysis of the End of the Night Period
	Suggestions for Further Analysis
	Identify the Sensor Failure
	Suppress the Noise
	Identify Patterns in the Details
	Locate and Suppress Outlying Values
	Study Missing Data

	Fast Multiplication of Large Matrices
	Example 1: Effective Fast Matrix Multiplication
	Example 2: Ineffective Fast Matrix Multiplication

	Using Wavelet Packets
	About Wavelet Packet Analysis
	Analysis-Decomposition Functions:
	Synthesis-Reconstruction Functions:
	Decomposition Structure Utilities:
	De-noising and Compression:

	One-Dimensional Wavelet Packet Analysis
	Starting the Wavelet Packet 1-D Tool
	Loading a Signal
	Analyzing a Signal
	Computing the Best Tree
	Selecting a Threshold for Compression
	Compressing a Signal
	De-Noising a Signal Using Wavelet Packet
	Starting the Wavelet Packet 1-D Tool
	Loading a Signal
	Analyzing a Signal
	Computing the Best Tree and Performing De-Noising

	Two-Dimensional Wavelet Packet Analysis
	Starting the Wavelet Packet 2-D Tool
	Loading an Image
	Analyzing an Image
	Compressing an image

	Importing and Exporting from Graphical Tools
	Saving Information to the Disk
	Saving Synthesized Signals
	Saving Synthesized Images
	Saving One-Dimensional Decomposition Structures
	Saving Two-Dimensional Decomposition Structures

	Loading Information into the Graphical Tools
	Loading Signals
	Loading Images
	Loading Wavelet Packet Decomposition Structures

	Advanced Concepts
	Mathematical Conventions
	General Concepts
	Wavelets: A New Tool for Signal Analysis
	Wavelet Decomposition: A Hierarchical Organization...
	Finer and Coarser Resolutions
	Wavelet Shapes
	Wavelets and Associated Families
	Wavelets on a Regular Discrete Grid
	Wavelet Transforms: Continuous and Discrete
	Local and Global Analysis
	Synthesis: An Inverse Transform
	Details and Approximations

	The Fast Wavelet Transform (FWT) Algorithm
	Filters Used to Calculate the DWT and IDWT
	Algorithms
	Why Does Such an Algorithm Exist?

	One-Dimensional Wavelet Capabilities
	Two-Dimensional Wavelet Capabilities
	Dealing with Border Distortion
	Signal Extensions: Zero-Padding, Symmetrization, a...
	Zero-Padding
	Symmetric Extension
	Smooth Padding
	Original Image
	Zero-Padding
	Symmetric Extension
	Smooth Padding

	Periodized Wavelet Transform

	Frequently Asked Questions
	Continuous or Discrete Analysis?
	Why Are Wavelets Useful for Space-Saving Coding?
	Why Do All Wavelets Have Zero Average and Sometime...
	What About the Regularity of a Wavelet y?
	Are Wavelets Useful in Fields Other Than Signal or...
	What Functions Are Candidates to Be a Wavelet?
	Is It Easy to Build a New Wavelet?
	What Is the Link Between Wavelet and Fourier Analy...

	Wavelet Families: Additional Discussion
	Daubechies Wavelets: dbN
	Haar
	dbN

	Symlet Wavelets: symN
	Coiflet Wavelets: coifN
	Biorthogonal Wavelet Pairs: biorNr.Nd
	Meyer Wavelet: meyr
	Battle-Lemarie Wavelets
	Mexican Hat Wavelet: mexh
	Morlet Wavelet: morl

	Summary of Wavelet Families and Associated Propert...
	Wavelet Applications: More Detail
	Suppressing Signals
	Splitting Signal Components
	Noise Processing
	De-Noising
	The Basic One-Dimensional Model
	De-Noising Procedure Principles
	Soft or Hard Thresholding?
	Threshold Selection Rules
	Dealing with Unscaled Noise and Non-White Noise
	De-Noising in Action
	Extension to Image De-Noising
	More About De-Noising

	Data Compression
	Default Values for De-Noising and Compression
	De-noising.
	Automatic mode.
	Manual mode.

	Compression.
	Automatic mode.
	Manual mode.

	About the Birge-Massart Strategy

	Wavelet Packets
	From Wavelets to Wavelet Packets: Decomposing the ...
	Wavelet Packets in Action: An Introduction
	Example 1: Analyzing a Sine Function
	Example 2: Analyzing a Chirp Signal

	Building Wavelet Packets
	Wavelet Packet Atoms
	Organizing the Wavelet Packets
	Choosing the Optimal Decomposition
	Example 1: Compute Various Entropies
	Example 2: Minimum-Entropy Decomposition

	Wavelet Packets 1-D Decomposition Structure
	Wavelet Packets 2-D Decomposition Structure
	Wavelet Packets for Compression and De-Noising

	References

	Adding Your Own Wavelets
	Preparing to Add a New Wavelet Family
	Choose the Wavelet Family Full Name
	Choose the Wavelet Family Short Name
	Determine the Wavelet Type
	Define the Orders of Wavelets Within the Given Fam...
	Build a MAT-File or M-File
	Type 1 (Orthogonal with FIR Filter)
	Type 2 (Biorthogonal with FIR Filter)
	Type 3 (Orthogonal with Scale Function)
	Type 4 (No FIR Filter; No Scale Function)

	Define the Effective Support

	How to Add a New Wavelet Family
	Example 1
	Example 2

	After Adding a New Wavelet Family

	Reference
	Commands Grouped by Function
	allnodes
	appcoef
	appcoef2
	bestlevt
	besttree
	biorfilt
	biorwavf
	coifwavf
	cwt
	dbaux
	dbwavf
	ddencmp
	deblankl
	depo2ind
	detcoef
	detcoef2
	dwt
	dwt2
	dwtmode
	dwtper
	dwtper2
	dyaddown
	dyadup
	entrupd
	errargn
	errargt
	idwt
	idwt2
	idwtper
	idwtper2
	ind2depo
	instdfft
	intwave
	isnode
	istnode
	maketree
	mexihat
	meyer
	meyeraux
	morlet
	nodeasc
	nodedesc
	nodejoin
	nodepar
	nodesplt
	nstdfft
	ntnode
	num2mstr
	orthfilt
	plottree
	qmf
	symwavf
	thselect
	tnodes
	treedpth
	treeord
	upcoef
	upcoef2
	upwlev
	upwlev2
	wavedec
	wavedec2
	wavedemo
	wavefun
	waveinfo
	wavemenu
	wavemngr
	waverec
	waverec2
	wcodemat
	wcommon
	wdatamgr
	wden
	wdencmp
	wentropy
	wfilters
	wkeep
	wmaxlev
	wnoise
	wnoisest
	wp2wtree
	wpcoef
	wpcutree
	wpdec
	wpdec2
	wpdencmp
	wpfun
	wpjoin
	wprcoef
	wprec
	wprec2
	wpsplt
	wpthcoef
	wrcoef
	wrcoef2
	wrev
	wthcoef
	wthcoef2
	wthresh
	wtreemgr

	GUI Reference
	General Features
	Color Coding
	Connectedness of Plots
	Using the Mouse
	Making Selections and Activating Controls
	Translating Plots
	Displaying Position-Dependent Information

	Controlling the Colormap
	Controlling the Number of Colors
	Controlling the Coloration Mode
	Customizing Graphical Objects
	Customizing Print Settings
	Using Menus

	Continuous Wavelet Tool Features
	Wavelet 1-D Tool Features
	Tree Mode
	More Display Options

	Wavelet 2-D Tool Features
	Wavelet Packet Tool Features (1-D and 2-D)
	Node Action Functionality

	Wavelet Display Tool
	Wavelet Packet Display Tool

