
Reconstruction of Z0 → e+e-

in the ATLAS experiment
(and machine learning for 
electron identification)  

Andrew Oliver

1

Supervisor : Frédéric Derue
Laboratoire de Physique Nucléaire et de Hautes 
Energies (LPNHE), Paris

Mont Blanc, 4810 m

Genève

CMS ATLAS

CERN

LHCb

ALICE



Standard model of particle physics

• Combines multiple theories

• Matter is comprised of fermions (spin-1/2):
o Quarks feel all interactions
o Leptons don’t feel the strong force
o 3 generations 

• Spin-1 bosons mediate interactions:
o Gluons: strong
o Photon: EM
o W±, Z0: Weak

• Spin-0 Higgs explains the origins of particle 
masses

• Some limitations : Does not include 
gravitation, dark Matter and energy, 
asymmetry matter-antimatter, ...
→ need accelerators at order ~TeV
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Electroweak



LHC and ATLAS

• The Large Hadron Collider (LHC) is the largest particle accelerator 
(proton-proton and ions) :

o Situated near Geneva at CERN
o In a 27 km circumference ring 100 m below ground
o Energy of collisions : √s=7-8 TeV during Run 1 in 2011-2012, 

√s=13TeV during Run 2 in 2015-2018, 
and √s=13.6 TeV in the just starting Run 3

o Detectors are located at each interaction point

• This internship used data from the ATLAS experiment:
o General purpose experiment that studies pp collisions
o Multiple aims, such as studying the Higgs and testing the SM

• The ATLAS detector has a layered structure:
o Inner detector (ID) measures charged particle tracks 

and momenta
o Calorimeters measure particles (electrons, photons, jets) 

energies and positions
o Muon Spectrometer targets muons, which pass through 

the other sections
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Reconstruction of Z0 → e+e-
Selection of events and reconstruction of the Z0 boson
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• Z0 → e+e- is an excellent channel for calibration:
o Electrons and positrons have a clean signature in the detector
o LHC produces large quantities of Z0 bosons
o The Z0 is well known so can be 

used as a ‘standard candle’

• Data samples 
o Collision data 2015-2018 (Run 2) 

l contains ~10 million events, preselected 
to get at least one electron 

o Monte Carlo simulated sample 
l Z0 → e+e- events were generated
l They were fed into a simulation of the ATLAS 

detector to generate signals
l Use of a simulation allows access to the 

‘truth’ information about the particles
l Distributions for different particle types 

can be created
• Analysis framework

o ROOT (v6.20) program developed by CERN for 
data analysis, visualisation and storage

o It is used by members of the ATLAS team
o Code in C/C++



0 20 40 60 80 100 120 140
(e)[GeV]TP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

En
tri

es

Z-electrons

Non-iso electrons

Conversion electrons

Hadrons

Z-electrons

Non-iso electrons

Conversion electrons

Hadrons

Z-electrons

Non-iso electrons

Conversion electrons

Hadrons

Z-electrons

Non-iso electrons

Conversion electrons

Hadrons

Electron reconstruction
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p of electron 
candidates [GeV] 

Electrons are reconstructed by matching ID tracks 
to calorimeter clusters 
• Each electron candidate is described 

by different variables:
o Kinematic variables are related to physical 

quantities of the candidates
o Discriminating variables 

describe the passage of candidates 
through the detector and the formation 
of EM showers

• Electron candidates can be classified
using ‘truth’ information

o We are searching for prompt electrons from the decay of the Z0

o Non-isolated electrons appearing in jets can appear as a result 
of heavy quark decay

o Electrons can be produced by the conversion of photons
into e+e- pairs

o Other particles such as hadrons in light-flavour jets can mimic 
the signal of electrons



Electron identification
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Lateral development Rη of 
electron candidates 

Electrons are identified using the information of tracks, their thin EM shower 
development and the spatial & energy matching of ID/Calorimeter information

E/p of electron candidates 
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Selection efficiencies

• Rectangular cuts were performed on 6 variables:
o Trivial cut performed so that pT ≥ 25 GeV
o Other cuts applied to 5 discriminating variables

• Success of the selections is determined using the following quantities:
o Electron identification efficiency:

o Hadron rejection factor:

o Electron purity:

7

Definition of efficiencies as used 
with MC simulated samples* 

* It is also possible to use the tag-and-probe 
method on real data (see backup)



Evaluation of selections
• The rectangular cut based selection was applied to the simulated events

• Also included are reference selections provided by ATLAS:
o Loose selections target high efficiency at the cost of a lower rejection factor
o Tight selections aim to reject as many hadrons as possible, but have a lower identification efficiency
o LHTight is a likelihood based selection that follows the Tight criteria but has a higher efficiency
o The cuts based selection from this analysis seems to roughly correspond to a Loose ATLAS selection

• All uncertainties are purely statistical
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Z0 reconstruction
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Selection of two electrons passing identification, with opposite charge signs, 
reconstruction of their invariant mass

• Clean sample of Z0 events with low background contamination can be obtained ‘easily’
• Such a sample can be used to study the reconstruction of the detector, like the electron energy 

calibration or to measure the electron identification efficiency



Electron identification 
with MVA methods

… or how to use shape of distributions and correlations between 
all discriminating variables

10

• It has become increasingly common to use Machine learning methods in HEP

• This analysis is an example of a classification problem, 
which is a form of supervised learning

• A typical analysis consists of two main steps: training and application.

• The training phase consists of using samples with known background and signal 
composition (e.g. a MC simulation with truth values) to train and test classifiers.
Ø The chosen classifier is optimised to maximize 

Signal-Background separation. 
• The application phase involves using the identified classifier to classify

unknown samples.



Frameworks
• TMVA:

o Uses ROOT code

o Highly used in the HEP community for many years

o Was used first in this internship- the methods used are based 
on those provided in this package

• Scikit-Learn:
o Python libraries for Machine Learning (numpy) and many others

o Used in code written as a Python notebook (.ipynb) in a Jupyter notebook

• Jupyter notebook:
o Web-based interactive computing platform

o Can be deployed on laptop, server or cloud sites (LPNHE, CC-IN2P3, CERN),

o The notebook combines live code, equations, narrative text, visualisations

o Used for MVA analysis but also as an end-user analysis Python alternative to ROOT
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Two different frameworks : TVMA and Scikit-Learn



MVA Methods
• Likelihood:

o Uses likelihood ratio between signal and background event PDFs

o Equivalent to a Naïve Bayes estimator since correlations 
are ignored

• Fisher’s Linear Discriminant (LDA):
o Introduces a projection of the variables that aims to maximise the ratio 

between class separation over in class variance
o A form of linear discriminant analysis

• Artificial Neural Network (ANN / MLP):
o Based upon biological neurons in the brain

o Artificial neurons receive input signals that are weighted 
to determine its output

o Trained through backpropagation 

• Boosted Decision Tree (BDT):
o Uses many individual decision trees
o The trees are combined (boosted) so that an objective 

function is minimised
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Only a small amount of MVA methods were chosen

Algorithms implementations can be different 
in the two frameworks, e.g for BDT AdaBoost 
for TMVA, XGBoost in the Jupyter notebook



MVA method outputs

• TMVA produces outputs multiple graphs:
o Input variables are shown, as well as their correlation functions
o Outputs (above, left) and other plots like probability are rarity distributions are created for each classifier

• These are not so readily available in Python, but some Scikit-Learn classifiers have a 
‘decision function’ attribute that produces a similar output (above, right)
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Evaluation of methods
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• Methods are evaluated by using Receiver Operating 
Characteristic (ROC) curve:
o Plots signal efficiency vs background rejection
o A better method will have a curve that is closer to (1,1)
o This can be examined by looking at the area under the curve (AUC): 

higher is better, max is 1
• ROC curves were plotted and AUC calculated

o Similar results obtained with both frameworks

• Scikit-Learn plot shows the previous methods (Personal + 
ATLAS Loose/Tight) added for reference

Ø BDT and Neural Networks perform better
Ø XGBoost BDT is much faster than the others! 
Ø ATLAS official results perform better has trained on better 

background samples than what used for this internship
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Conclusions
• The work completed on this internship has been generally successful 
• Electrons were selected using rectangular cuts in a ROOT program and Z0→e+e- was reconstructed :

o This selection produced similar results to the Loose reference criterion provided by ATLAS
o Having never used ROOT before, this was a valuable learning experience

• Two MVA frameworks were evaluated:
o TMVA is strongly linked to ROOT, has been used for years in HEP and has mature tools that quickly get results

o Scikit-Learn is more recent, based on Python and can be used in a Jupyter notebook. 
• Analysis framework based on Jupyter notebook was developed during this internship

o Using python – it is more suitable for future internships 
since it is known by more L3 and M1 students

o Can incorporate figures, comments, hyperlinks : easier to start with

• MVA methods were used to identify electrons in Z events:
o The methods were evaluated, with the best method found to be the XGBoost BDT in the Python based environment
o There is more that can be done with these methods, optimisation in particular, but this needs time 

and larger background samples

• The remaining time in the internship will be spent trying to apply the MVA methods to top quark events : the 
standard selection of events in the Jupyter notebook is already done

• This internship has been an excellent opportunity to understand the life of a researcher and practice skills 
that are relevant in multiple environments 
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Thank you for listening
Time for questions
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Particle identification
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Tag and probe efficiency
• The other methods for evaluation can only be performed on the simulated data since truth 

information is required

• An alternative is to use tagged and probed electrons:
o Electron pairs are evaluated and electrons satisfying the ATLAS Tight criteria are ‘tagged’

o If the pair has an invariant mass that corresponds to the Z0 mass, 
the other electron is ‘probed’

o The probe electrons are treated as true prompt electrons to calculate 
the tag and probe efficiency
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Definition of efficiencies as used with real data



Efficiencies (personal)
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Studies of top quarks
Development of an analysis framework with Jupyter notebook
Application of MVA methods from Scikit-Learn to another area

I took part in the Top LHC France meeting (2 days) in May 2022. Here, French theoreticians and members of ATLAS and CMS and gave talks 
which included some on MVA applications to top quark studies
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Context
• Top is heaviest particle in SM: 

o Strong Higgs coupling → role in spontaneous EW symmetry 
breaking ?

o Standard decay is t→Wb

• The semileptonic decay channel:
o Top- antitop pair each decay to W and b
o One W decays to a quark pair, the other to a charged lepton and 

neutrino
o Signal in the detector is four jets and one charged lepton, with 

missing transverse energy from the neutrino

• My supervisor is working on measuring the top mass 
using semileptonic channel where one of the b jets 
produces a J/ψ→μμ :
o The J/ψ is studied by observing its decay into two muons
o The top is not directly reconstructed, instead a ‘proxy’ is used : 

the invariant mass made from the  lepton from the W and the two 
muons from the J/ψ

24

Invariant mass of muon pairs [GeV]

Invariant mass of lepton+muon pairs 
[GeV]

The final selections and plots can now be done 
using the Jupyter notebook



Optimization of the selection
• The samples used are from my supervisor:

o Using both MC simulation and real data

o The simulation has to be normalised to the luminosity of the 
data so that the contributions can be compared

• Plot of the angular separation has a shape that 
indicates that the lepton and and J/ψ are emitted 
back to back:
o This is due to a ‘bad’ pairing where the lepton and J/ψ are 

from different top quarks

• Bad pairings produce a less Gaussian mass peak so 
introduce more uncertainty on the top mass

• We want to select only events with good pairing:
o Low number of available events (~10k) mean that cuts on 

distance between lepton and the two muons is not suitable

o Need to use more sophisticated methods and more variables
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MVA methods to be tested within this new 
framework … that will be for the very end of the 
internship


