

Etude de la fragmentation des quarks b avec des mésons charmés dans des événements $t\bar{t}$ avec le détecteur ATLAS

Jad Zahreddine

Stage fait au Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris du 20 Mars 2017 au 13 Juillet 2017

> sous la direction de: Tristan Beau et Frédéric Derue

Soutenance M2 NPAC, 26 Juin 2017

Introduction

Le Modèle Standard de la physique des particules

Le Modèle Standard

Né dans les années 70, il décrit de manière cohérente :

- toutes les particules élémentaires : quarks et leptons
- 3 interactions : éléctromagnétique, faible et forte
- Boson de Higgs découvert en 2012

Le quark top

- La particule élémentaire la plus massive ightarrow fort couplage au boson de Higgs
- Temps de vie très court ($\tau\sim5\times10^{-25}~s)$ \rightarrow se désintègre avant l'hadronisation ($\sim2\times10^{-24}~s)$: possibilité d'étudier ce quark nu
- 2 modes de production : en paires $t\bar{t}$ (\sim 75 %), en top célibataire (\sim 25 %)
- t \rightarrow Wb à \sim 100%, canaux de désintégration : hadronique (46%), lepton + jets (44%), dilepton (10%)

La mesure de la masse du quark top

La masse du quark top est un paramètre fondamental du modèle standard

Mesures expérimentales

- $m_t~=~173.34~\pm~0.36$ (stat.) $\pm~0.67$ (syst.) GeV (World Comb. 2014)
- Mesure indirecte via : $m_{lb} = \frac{m_t^2 m_W^2}{2} (1 \cos \theta_{lb})$
- σ(syst.) limitée par notre connaissance de l'échelle d'énergie des jets (JES)
- Solution : Utilisation de mésons charmés avec des leptons et/ou de traces dans l'état final → pas de sensibilité à la JES, mais la sensibilité à la modélisation de la désintégration du quark b

ATLAS au LHC

Le LARGE HADRON COLLIDER (LHC) est un collisionneur de particules avec une énergie dans le centre de masse de $\sqrt{s} = 13$ TeV. Ces collisions se produisent toutes les 25 ns.

A TOROIDAL LHC APPARATUS (ATLAS)

- Regroupe 5000 personnes venant de 180 instituts dont 7 français de 38 pays
- Détecteur à symétrie cylindrique de 44 m de longueur et 25 m de diamètre, est formé : d'un trajectographe interne, de calorimètres électromagnétique et hadronique, et un spectromètre à muons

Introduction

Un événement $t\bar{t}$ avec un J/ψ dans l'état final

ATLAS-CONF-2015-040

Introduction

Mésons charmés

On recherche des événements tī avec des mésons charmés dans l'état final :

Analyse J/ψ déjà existante à 8 TeV (<u>ATLAS-CONF-2015-040</u>, <u>CMS-PAS-TOP-13-007</u>). Analyses D dévéloppées durant le stage (<u>CMS-TOP-12-030</u>, Phys. Rev. D85 (2012) 052005, Nucl. Phys. B864 (2012) 341-381)

J. Zahreddine LPNHE Paris

Présélection et première sélection

On sélectionne des événements "lepton+jets" dans les données et des simulations Monte Carlo ($t\bar{t}$, top célibataire, et autres bruits de fond Z/W, etc.)

- p_{T,lepton isole} > 25 GeV
- Un lepton et \geq 4 jets : $p_T > 25$ GeV et $|\eta| < 2, 5$.
- $p_T(\mu) > 4 \text{ GeV}$

- Dans un jet : $(\Delta R(\mu,jet) < 0,5)$ - Pour chaque muon mou, on prend toutes les traces dans le jet le contenant

 $p_T = p \sin \theta$ étant l'impulsion transverse, $\eta = -\ln \tan \frac{\theta}{2}$ la pseudorapidité, ϕ étant l'angle azimutal La distance Δ R est definie dans le plan (η, ϕ) comme Δ R = $\sqrt{\Delta \eta^2 + \Delta \phi^2}$

Reconstruction des mésons charmés

Dans chaque jet, on recherche les mésons charmés :

Reconstruction des mésons charmés

On ne garde que les événements qui n'ont qu'un candidat et autour de la valeur PDG :

Reconstruction des mésons charmés

Fonction d'ajustement : gaussienne pour le signal, exponentielle décroissante pour le bruit de fond

Les valeurs de masse mesurées sont proches de celles du PDG à < 0.3 % près, les traces/muons sont bien étalonnés en énergie

Etude de la fragmentation des quarks b

- La variable p_T (méson)/p_T (jet) permet d'étudier la sensibilité au modèle de fragmentation
- Comparaison entre les modèles de fragmentation : PYTHIA8 (défaut) et HERWIG7

- Les données semblent préférer HERWIG.
- Besoin d'enlever le bruit de fond pour les mésons D pour aller plus loin

Perspectives

Perspectives

- On a dévéloppé dans ce stage un code d'analyse qui permet de reconstruire, à partir d'événements tt, les mésons J/ψ, D⁰, D[±] (et D*(2010)⁺ → D⁰π⁺)
- Il permet d'étudier les modèles de fragmentation du quark b (PYTHIA8 et HERWIG7).
- Etude déjà en cours à 13 TeV pour le J/ ψ
- La masse du système lepton isolé+J/ψ est sensible à la masse du quark top
- Construire des patrons avec des lots ayant des masses du quark top différentes
- Ajuster ces lots sur les différentes masses

Dernières mesures de masse

ATLAS+CMS Preliminary LHCtop WG	m _{top} summary, √s = 7-8 TeV	May 2017
World Comb. Mar 2014, [7] stat total uncertainty	total stat	
$m_{top} = 173.34 \pm 0.76 \ (0.36 \pm 0.67) \ GeV$	m _{top} ± total (stat ± syst)	√ s Ref.
ATLAS, I+jets (*)	172.31 ± 1.55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	$173.49 \pm 1.41 \ (0.69 \pm 1.23)$	7 TeV [5]
LHC comb. (Sep 2013)	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets	→ 175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]
ATLAS, single top	$172.2 \pm 2.1 \ (0.7 \pm 2.0)$	8 TeV [10]
ATLAS, dilepton	$172.99 \pm 0.85 (0.41 \pm 0.74)$	8 TeV [11]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (June 2016) HTTH	172.84 \pm 0.70 (0.34 \pm 0.61)	7+8 TeV [11]
CMS, I+jets	$172.35 \pm 0.51 \ (0.16 \pm 0.48)$	8 TeV [13]
CMS, dilepton	$172.82 \pm 1.23 \ (0.19 \pm 1.22)$	8 TeV [13]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]
(*) Superseded by results (2) ATLA shown below the line (4) Gur (4) Gu	S-CONF-2013-046 [6] ATLAS-CONF-2013-102 [7] S-CONF-2013-077 [7] arXiv:1403.4427 [7] Tz (2012) [10] [10] [10] JT 2 (2012) [10] [10] [10] [10] JT 2 (2012) [10] [10] [10] [11] [11] Jys_J C 72 (2013) [20] [10] [10] [10] [10] [10] Jys_J C 72 (2013) [20] [10] </td <td>11] Phys.Lett.B761 (2016) 350 12] arXiv:1702.07546 13] Phys.Rev.D93 (2016) 072004 14] arXiv:1703.02530</td>	11] Phys.Lett.B761 (2016) 350 12] arXiv:1702.07546 13] Phys.Rev.D93 (2016) 072004 14] arXiv:1703.02530
165 170 175	5 180	185
m _{top} [GeV]		

Stabilité du potentiel de Higgs

Fragmentation en cordes

- Appelle aussi modele de Lund, ce modele est implemente dans Pythia
- Les partons sont connectes par des tubes de couleurs

Fragmentation en amas

- Ce modele est implemente dans Herwig
- Les partons presents a la fin de la gerbe forment de petits amas qui se scindent en des paires de quarks-antiquarks.
- Selon la masse de l'amas, ce dernier va donner : soit des hadrons soit des amas plus legers

Simulation des événements

La génération des événements se fait en plusieurs étapes :

Ces événements (*tī*, top célibataire et autres bruits de fond Z/W, etc.) passent ensuite sur une simulation détaillée du détecteur et peuvent être analysés comme données

Etude de la fragmentation des quarks b

- Comparaison entre les générateurs POWHEG et aMCNLO qui simulent les interactions dures

- On remarque qu'il n'existe pas une différence entre les deux

Etude de la fragmentation du quark b

- Comparaison entre les programmes Pythia8 et Herwig++

- Les données se rapprochent plus de Herwig++ que de Pythia8

Étude avec le méson D*(2010)+

- D*(2010)^+ $\to D^0 \pi^+,\,m({\rm D}^*(2010)^+)$ = 2010.26 \pm 0.05 MeV
- Vu la masse très rapproché du D*(2010)⁺ et du D⁰, il suffit donc de reconstruire le D⁰ et de détecter le π^+

Preselection of $t\bar{t} \rightarrow D^0$ events (pretag level)

Preselection of $t\bar{t} \rightarrow D^0$ events (\geq 1 b-jet 1/2)

Preselection of $t\bar{t} \rightarrow D^0$ events (\geq 1 b-jet 2/2)

J. Zahreddine LPNHE Paris

Preselection of $t\bar{t} \rightarrow D^0$ events (\geq 2 b-jet 1/2)

Preselection of $t\bar{t} \rightarrow D^0$ events (\geq 2 b-jet 2/2)

J. Zahreddine LPNHE Paris

Selection of soft muons at pretag level

Selection of tracks at pretag level

For each soft muon (see previous slide) select all tracks ($p_T > 0$ GeV) inside the jet containing the soft muon ($\Delta R < 0.4$)

Selection of soft muons for \geq 1 b-jet

Select events with at least one additional Tight muons ($p_T > 4 \text{ GeV}$) inside a jet ($\Delta R < 0.5$) : xx events in I+jets channel => xxxx soft muons

Selection of tracks for \geq 1 b-jet

For each soft muon (see previous slide) select all tracks ($p_T > 0$ GeV) inside the jet containing the soft muon ($\Delta R < 0.4$) : xx events in I+jets channel => xxxx soft muons ==> xxx tracks

Selection of soft muons for \geq 2 b-jet

Select events with at least one additional Tight muons ($p_T > 4$ GeV) inside a jet ($\Delta R < 0.5$) : xx events in I+jets channel => xxxx soft muons

Selection of tracks for \geq 2 b-jet

For each soft muon (see previous slide) select all tracks ($p_T > 0$ GeV) inside the jet containing the soft muon ($\Delta R < 0.4$) : xx events in I+jets channel => xxx soft muons ==> xxx tracks

D^0 -meson reconstruction (\geq 1 b-jet)

For each jet/soft muon keep the three tracks with highest p_T take opposite sign charge pairs to form a pion and a kaon The kaon should have same charge as the soft muon final : only one event with $\Delta R(D^0, jet) > 0.8$, $p_T(D^0) > 8$ GeV, $\tau(D^0) > 0$ ps final2 : as above + $p_T(trk) > 3$ GeV

D^0 -meson properties (\geq 1 b-jet)

before final selection

D^0 -meson reconstruction (\geq 2 b-jet)

For each jet/soft muon keep the three tracks with highest p_T take opposite sign charge pairs to form a pion and a kaon The kaon should have same charge as the soft muon final : only one event with $\Delta R(D^0, jet) > 0.8$, $p_T(D^0) > 8$ GeV, $\tau(D^0) > 0$ ps final2 : as above + $p_T(trk) > 3$ GeV

D^0 -meson properties (\geq 2 b-jet)

before final selection

D^0 -meson fit (\geq 1 b-jet)

Same selection but with at least 1 b-jet

 $N_{signal} = 2131.52 \pm 164.329$; $N_{bckg} = 17210.9 \pm 205.136$

D^0 -meson fit (\geq 2 b-jet)

Same selection but with at least 2 b-jets

 $N_{signal} = 1320.37 \pm 119.184$; $N_{bckg} = 10301.2 \pm 152.245$