Sélection d'événements top-antitop avec le détecteur ATLAS au LHC

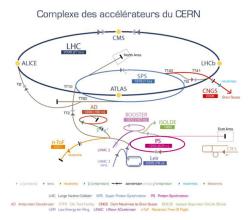
Guillaume Lefebvre

Superviseurs

Mélissa Ridel / Sophie Trincaz-Duvoid

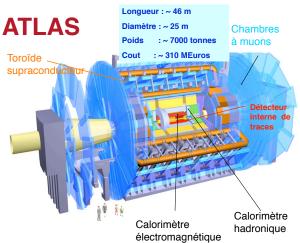
Université Pierre et Marie Curie

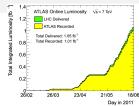
20 juin 2011



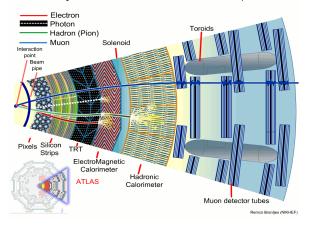
Plan

- 1 LHC et ATLAS
- 2 Echelle d'énergie des jets de b
- Sélection
- 4 Conclusion et perspectives


Le Large Hadron Collider



- Collisioneur proton-proton
- CERN Genève
- $\sqrt{s} = 7 \text{ TeV}$
- 4 grandes expériences
- ATLAS : détecteur généraliste
- Conçu pour :
 - Recherche du Higgs
 - Recherche de nouvelle physique (SUSY, résonances W' Z'...)
 - Mesure de précision et tests du MS (dont analyses top)


Le détecteur

• Luminosité intégrée de 1 fb⁻¹ récemment atteinte

Détection d'objets stables aux échelles de temps du détecteur

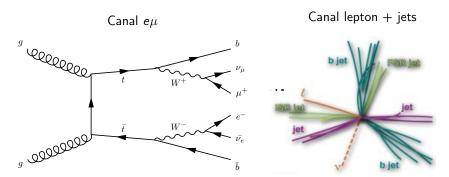
- Jets de particules → quark ou gluon initial (complexe)
- Energie manquante → neutrinos (interagit faiblement)

La collaboration et l'équipe au LPNHE

Collaboration ATLAS:

- 3000 chercheurs
- 174 laboratoires dans 38 pays dans le monde entier

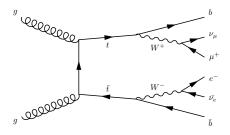
Au LPNHE:


- 30 chercheurs
- 3 sous-équipes : Higgs, Top, sLHC

Travail de l'équipe top :

- Propriétés (masse et section efficace)
- Performances en lien avec les analyses top
 - ex : b-Jet Energy Scale

Désintégration du top

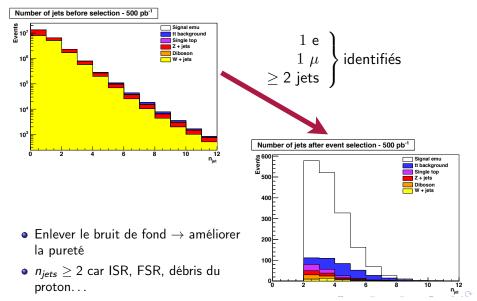

- LHC : produit par fusion de gluons
- $t \rightarrow Wb$ ($\sim 100\%$)
- 3 canaux de désintégration $t\bar{t}$:
 - Dilepton ($\sim 10\%$)
 - Lepton + jets ($\sim 44\%$)
 - Full-hadronique ($\sim 46\%$)

b-Jet Energy Scale

- Energie d'un jet \neq énergie du parton initial
- Jet Energy Scale corrige l'énergie des jets reconstruits
- ullet Importante source d'erreur systématique o détermination précise

Pour étudier les jets de b, nécessité d'un échantillon pur \to événements $t \bar t$ en dileptons

- Canal le plus propre
- Uniquement des jets de b



Sélection

- ullet Objectif : création d'un échantillon $tar{t}$ avec haute pureté en b-jets
- Travail sur données simulées
- Signal : $t\bar{t} \to b\bar{b} \ e \ \mu \ \nu_e \ \nu_{\mu}$
- Identification des bruits de fond :
 - $t\bar{t}$: lepton+jets, $e\tau$, $\mu\tau$, $\tau\tau$...
 - Single top
 - Z + jets
 - W + jets
 - Diboson : WW, ZZ, WZ...
- Sélection sur 90 échantillons Monte Carlo générés avec MC@NLO/Alpgen et passées dans GEANT4
 - Différents samples pour un bruit de fond. ex : Zee + 0,1,2,3. . . jets
 - Eviter le double comptage
 - Normalisation des samples pour avoir la même luminosité

Effet de la sélection

Efficacité - Pureté

Efficacité

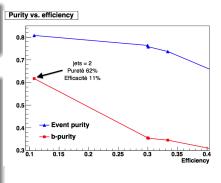
$$\epsilon = \frac{n_{cut}^{tt}}{n_{tot}^{t\bar{t}}}$$

 n_{cut}^{tt} : nombre d'événements de signal après sélection

 $n_{tot}^{t\bar{t}}$: nombre d'événements de signal initial

Pureté (événements)

$$P_{E} = \frac{n_{s}}{n_{s} + n_{b}}$$


Pureté (b-jets)

$$P_b = \sum_{ev} \frac{n_b}{n_{jets}}$$

n_b: nombre de jets appariés avec un quark b

n_{iets}: nombre de jets

total

Conclusion

- Sélection d'événements simulés $t\bar{t}$ avec haute pureté en jets de b
- Lot d'événements réaliste (bruit de fond bien pris en compte)
- Sélection optimisée : pureté en jets de b de 62% atteinte
- Prochaines étapes :
 - Mesure de la b-Jet Energy Scale sur l'échantillon
 - Application aux vraies données

• Utilisation de l'échelle en énergie des b dans la mesure de la section efficace $t\bar{t}$ dans le canal full-hadronique \to thèse