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Why a time measure?

Time To Digital Converters (TDC) are widely
used in many different fields
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Physics experiments Applied Electronics

* Time Of Flight - All digital frequency
Positron Emission synthesis
Tomography (PET) * GFSK transceivers
Laser applications (frequency

modulators)
On chip test structures



All Digital TDC

Many different schemes to implement a TDC
(both analogic and digital)

Digital Scheme

More performances on Avaliable Technologies
Easy to port design in different tech
Performances scale almost linearly with tech



How to design a TDC

To have a good resolution on a wide dynamic
range a synchronous counter and asynchronous
fine interpolator are realized
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The fine measure

There are many different schemes to design the
fine interpolator
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Vernier Based

The time interval is
compared to a fixed time
scale (like a caliper)
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Direct Measure

The time interval in
measured in terms of a
fixed quantity (like a

2 3 4 meter)
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Vernier Based design
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Direct Measure design
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Which inverter?

In a direct measure scheme the inverter design is the
key element to achieve a good resolution

CMOS inverter (static)
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Which inverter?

NORA inverter (dynamic)

N type Inverter

PRE N
]
OUTPUT N

INPUT N

The inverter needs a
precharge signal
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N type Inverter
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NORA Logic
pros & cons
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NORA vs. CMOS

To evaluate the performances a comparative
simulations was performed @ 180nm
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The TEMPO scheme
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The TEMPO scheme




ip @ 180nm (UMC)

A first ch

ion was realized
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A first chip @ 180nm
Experimental Results
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A first chip @ 180nm
Experimental Results
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number of hits

number of hits

A first chip @ 180nm
Experimental Results
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A first chip @ 180nm
Experimental Results
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NORA vs. CMOS @ 90nm
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The TEMPO Differential
scheme

The delay element compute two differential outputs.

Self-charging feedback bus
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A second chip @ 90nm (UMC)

In the second chip the differential scheme was
implemented

TDC1 measure the
time between START

D:Cl & Stop
LI
L TDC2 measure a
Full FUStom DICZ clock period
design for (calibration)
delay lines

Measured resolution 25 ps over 10.6 ps



DNL (LSB)

A second chip @ 90nm
Experimental Results
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Experimental Results
Summary

180nm 41ps 18us 0.09mm 25mW 0.77LSB 0.35LSB
90nm 25ps 10.6ps 0.1mm 19mW 0.65LSB 0.35LSB
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