
MATLAB Compiler
The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide



Version 2

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Compiler User’s Guide
 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)

Contents
1
Introducing the MATLAB Compiler

Introduction .1-2
Before You Begin . 1-2
New Features . 1-3

Data Constructs . 1-3
Programming Tools . 1-4
Language Enhancements . 1-4
Improved Compiler Options . 1-5
Macro Options . 1-5
Error/Warning Messages . 1-5
Improved mex and mbuild Scripts . 1-5
Stand-Alone Compiler . 1-5

Compiler Licensing Changes . 1-6
Running MATLAB Not Required . 1-6
Dedicated Compiler License . 1-6

MATLAB Compiler 1.2 Users . 1-7
Differences Between Compiler 1.2 and 2.0 1-7
Optimization . 1-7

Overview .1-8
Creating MEX-Files . 1-8
Creating Stand-Alone Applications . 1-9

C Stand-Alone Applications . 1-9
C++ Stand-Alone Applications . 1-10
Developing a Stand-Alone Application 1-11

The MATLAB Compiler Family .1-13

Why Compile M-Files? .1-15
Faster Execution . 1-15

Cases When Performance Does Not Improve 1-15
Cases When Performance Does Improve 1-15
Compiler 1.2 Functionality . 1-15

Hiding Proprietary Algorithms . 1-16
Stand-Alone Applications and Libraries 1-16
i

ii Contents
Upgrading from Previous Versions .1-18
MATLAB Compiler 1.2 . 1-18

Compatibility . 1-18
Installation . 1-18

MATLAB Compiler 1.0/1.1 . 1-18
Changed Library Name . 1-18
Changed Data Type Names . 1-18

2
Installation and Configuration

Getting Started .2-2
Overview . 2-2

UNIX Workstations .2-5
System Requirements . 2-5

Supported ANSI C and C++ UNIX Compilers 2-6
Compiler Options Files . 2-6
Locating Options Files . 2-7

Installation . 2-7
MATLAB Compiler . 2-7
ANSI C or C++ Compiler . 2-7
Things to Be Aware of . 2-8

mex Verification . 2-8
Choosing a Compiler . 2-8
Changing Compilers . 2-9
Creating MEX-Files . 2-10

MATLAB Compiler Verification . 2-12
Verifying from MATLAB . 2-12
Verifying from UNIX Command Prompt 2-12

Microsoft Windows on PCs .2-14
System Requirements . 2-14

Supported ANSI C and C++ PC Compilers 2-15
Compiler Options Files . 2-16
Locating Options Files . 2-17

Installation . 2-17
MATLAB Compiler . 2-17
ANSI C or C++ Compiler . 2-18
Things to Be Aware of . 2-18

mex Verification . 2-19
Choosing a Compiler . 2-19
Changing Compilers . 2-20
Creating MEX-Files . 2-22

MATLAB Compiler Verification . 2-23
Verifying from MATLAB . 2-23
Verifying from DOS Command Prompt 2-24

Troubleshooting .2-25
mex Troubleshooting . 2-25

Cannot Locate Your Compiler (PC) 2-26
Internal Error When Using mex –setup (PC) 2-26
Verification of mex Fails . 2-26

Troubleshooting the Compiler . 2-27
Licensing Problem . 2-27
MATLAB Compiler Does Not Generate MEX-File 2-27

3
Getting Started with MEX-Files

A Simple Example .3-3
Sierpinski Gasket Example . 3-3

How the Function Works . 3-3
Invoking the M-File . 3-4
Compiling the M-File into a MEX-File . 3-5
Invoking the MEX-File . 3-6

Compiler Options .3-7
Macros . 3-7

Understanding a Macro Option . 3-8
Command Line Syntax . 3-9

Conflicting Options on Command Line 3-10
iii

iv Contents
Limitations and Restrictions .3-11
MATLAB Code . 3-11
Stand-Alone Applications . 3-12

Generating Simulink S-Functions .3-14
Simulink-Specific Options . 3-14

Using the -S Option . 3-14
Using the -u and -y Options . 3-15

Specifying S-Function Characteristics 3-15
Sample Time . 3-15
Data Type . 3-16

Converting Script M-Files to Function M-Files3-17

4
Stand-Alone Applications

Introduction .4-2
Differences Between MEX-Files
and Stand-Alone Applications . 4-2

Stand-Alone C Applications . 4-2
Stand-Alone C++ Applications . 4-3

Building Stand-Alone C/C++ Applications4-5
Overview . 4-5

Packaging Stand-Alone Applications 4-6
Getting Started . 4-7

Introducing mbuild . 4-7
Compiler Options Files . 4-7

Building Stand-Alone Applications on UNIX4-9
Configuring for C or C++ . 4-9

Locating Options Files . 4-9
Preparing to Compile . 4-10

Using the System Compiler . 4-10
Changing Compilers . 4-10

Verifying mbuild . 4-12
Locating Shared Libraries . 4-13
Running Your Application . 4-14

Verifying the MATLAB Compiler . 4-14
Distributing Stand-Alone UNIX Applications 4-14

Installing C++ and Fortran Support 4-15
About the mbuild Script . 4-15

Building Stand-Alone Applications on PCs4-19
Configuring for C or C++ . 4-19

Locating Options Files . 4-19
Preparing to Compile . 4-20

Choosing a Compiler . 4-20
Changing Compilers . 4-21

Verifying mbuild . 4-24
Shared Libraries . 4-25
Running Your Application . 4-25

Verifying the MATLAB Compiler . 4-25
About the mbuild Script . 4-26
Using an IDE . 4-28

Distributing Stand-Alone Windows Applications 4-28

Building Shared Libraries .4-29

Troubleshooting .4-30
Troubleshooting mbuild . 4-30

Options File Not Writeable . 4-30
Directory or File Not Writeable . 4-30
mbuild Generates Errors . 4-30
Compiler and/or Linker Not Found 4-30
mbuild Not a Recognized Command 4-30
mbuild Works from Shell
but Not from MATLAB (UNIX) . 4-30

Cannot Locate Your Compiler (PC) 4-31
Internal Error When Using mbuild –setup (PC) 4-31
Verification of mbuild Fails . 4-31

Troubleshooting the Compiler . 4-32
Licensing Problem . 4-32
MATLAB Compiler Does Not Generate Application 4-32
v

vi Contents
Coding with M-Files Only .4-33

Alternative Ways of Compiling M-Files4-37
Compiling MATLAB-Provided M-Files Separately 4-37
Compiling mrank.m and rank.m as Helper Functions 4-38

Mixing M-Files and C or C++ .4-39
Simple Example . 4-39

mrank.m . 4-39
The Build Process . 4-40
mrankp.c . 4-42
An Explanation of mrankp.c . 4-43

Advanced C Example . 4-44
An Explanation of This C Code . 4-46

Advanced C++ Example . 4-47
Algorithm for the Example . 4-48
M-Files for the Example . 4-48
Building the Example . 4-48
Running the Example . 4-49
Compiler-Generated C++ Files . 4-49
The Generated Main C++ Routine . 4-50
C++ Functions Generated from each M-file Function 4-51
The Generated Mf Implementation Function 4-51
The Generated F Interface Function 4-53
The Generated mlxF Interface Function 4-55

5
Controlling Code Generation

Introduction .5-2
Example M-Files . 5-3

Sierpinski Gasket M-File . 5-3
foo M-File . 5-3
fun M-File . 5-4
sample M-File . 5-4

Generated Code . 5-4

Compiling Private and Method Functions5-6

The Generated Header Files .5-8
C Header File . 5-8
C++ Header File . 5-9

The Generated C/C++ Code .5-10
C Code from gasket.m . 5-10
C Code from foo.m . 5-13
C++ Code from gasket.m . 5-16
C++ Code from foo.m . 5-19

Internal Interface Functions .5-22
C Interface Functions . 5-22

mlxF Interface Function . 5-22
mlfF Interface Function . 5-23
mlfNF Interface Function . 5-24
mlfVF Interface Function . 5-25

C++ Interface Functions . 5-26
mlxF Interface Function . 5-26
F Interface Function . 5-28
NF Interface Function . 5-28
VF Interface Function . 5-29

Supported Executable Types .5-31
Generating Files . 5-31
MEX-Files . 5-32
Main Files . 5-33

POSIX Main Wrapper . 5-33
C Main Wrapper Function . 5-35
C++ Wrapper Function . 5-36

Simulink S-Functions . 5-37
C Libraries . 5-42

sometimefun.c . 5-42
sometimefun.h . 5-44
sometimefun.exports . 5-46

C Shared Library . 5-46
C++ Libraries . 5-47

sometimefun.cpp . 5-47
sometimefun.hpp . 5-48
vii

viii Contents
Porting Generated Code to a Different Platform 5-50

Formatting Compiler-Generated Code5-51
Listing All Formatting Options . 5-51
Setting Page Width . 5-51

Default Width . 5-51
Page Width = 40 . 5-52

Setting Indentation Spacing . 5-54
Default Indentation . 5-54
Modified Indentation . 5-56

Including M-File Information in Compiler Output 5-57
Controlling Comments in Output Code 5-57

Comments Annotation . 5-57
All Annotation . 5-58
No Annotation . 5-59

Controlling #line Directives in Output Code 5-59
Include #line Directives . 5-59

Controlling Information in Run-Time Errors 5-60

Interfacing M-Code to C/C++ Code .5-63
C Example . 5-63
Using feval . 5-65

Print Handlers .5-67
Main Routine Written in C . 5-67

Registering a Print Handler . 5-68
Writing a Print Handler . 5-68

Main Routine Written in M-Code . 5-71
Example Files . 5-71
Writing the Print Handler in C/C++ 5-72
Registering the Print Handler . 5-72
Building the Executable . 5-74
Testing the Executable . 5-74

6
Reference

Pragmas .6-2
%#external . 6-3
%#function . 6-4

Functions .6-5
mbchar . 6-6
mbcharscalar . 6-7
mbcharvector . 6-8
mbint . 6-9
mbintscalar . 6-11
mbintvector . 6-12
mbreal . 6-13
mbrealscalar . 6-14
mbrealvector . 6-15
mbscalar . 6-16
mbvector . 6-17
reallog . 6-18
realpow . 6-19
realsqrt . 6-20

Command Line Tools .6-21
mbuild . 6-22
mcc (Compiler 2.0) . 6-25

Command Line Syntax . 6-25
Simplifying the Compilation Process 6-26
Differences Between Compiler 2.0
and Compiler 1.2 Options . 6-27

Setting Up Default Options . 6-28
Setting a MATLAB Path
in the Stand-Alone MATLAB Compiler 6-29

Conflicting Options on Command Line 6-29
Handling Full Pathnames . 6-30
Compiling Embedded M-Files . 6-31

MATLAB Compiler 2.0 Option Flags . 6-32
Macro Options . 6-32

-m (Stand-Alone C). 6-33
-p (Stand-Alone C++) . 6-33
ix

x Contents
-S (Simulink S-Function) . 6-33
-x (MEX-Function) . 6-34

Code Generation Options . 6-34
-A (Annotation Control for Output Source). 6-34
-F <option> (Formatting) . 6-36
-l (Line Numbers) . 6-36
-L <language> (Target Language). 6-37
-u (Number of Inputs) . 6-37
-W <type> (Function Wrapper) . 6-37
-y (Number of Outputs) . 6-38

Compiler and Environment Options 6-38
-B <filename> (Bundle of Compiler Settings). 6-38
-c (C Code Only) . 6-38
-d <directory> (Output Directory) 6-38
-h (Helper Functions) . 6-39
-I <directory> (Directory Path) . 6-39
-o <outputfile> . 6-39
-t (Translate M to C/C++). 6-39
-T <target> (Output Stage) . 6-40
-v (Verbose) . 6-40
-V1.2 (MATLAB Compiler 1.2) . 6-40
-V2.0 (MATLAB Compiler 2.0) . 6-41
-w (Warning) . 6-41
-Y <license.dat File>. 6-42

mbuild/mex Options . 6-42
-f <filename> (Specifying Options File). 6-42
-g (Debugging Information) . 6-42
-M "string" (Direct Pass Through) 6-42
-z <path> (Specifying Library Paths) 6-43

mcc (Compiler 1.2) . 6-45
Specifying Options . 6-45
Setting Up Default Options . 6-46
Building a MEX-File From Multiple M-Files 6-46
Calling feval . 6-47

MATLAB Compiler 1.2 Option Flags . 6-47
-B <filename> (Bundle of Compiler Settings) 6-47
-c (C/C++ Code Only) . 6-48
-e (Stand-Alone External C Code) . 6-48
-f <filename> (Specifying Options File) 6-48
-g (Debugging Information) . 6-48

-h (Helper Functions) . 6-49
-i (Inbounds Code) . 6-50
-l (Line Numbers) . 6-50
-m (main Routine) . 6-51
-M "string" (Direct Pass Through) . 6-52
-p (Stand-Alone External C++ Code) 6-52
-q (Quick Mode) . 6-52
-r (Real) . 6-52
-s (Static) . 6-53
-S (Simulink S-Function) . 6-54
-t (Tracing Statements) . 6-54
-u (Number of Inputs) . 6-54
-v (Verbose) . 6-55
-w (Warning) and -ww (Complete Warnings) 6-55
-y (Number of Outputs) . 6-55
-z <path> (Specifying Library Paths) 6-55

A
MATLAB Compiler Quick Reference

Common Uses of the Compiler .A-2
Create a MEX-File . A-2
Create a Simulink S-Function . A-2
Create a Stand-Alone C Application . A-2
Create a Stand-Alone C++ Application . A-2
Create a C Shared Library . A-2

mcc (Compiler 2.0) .A-3

mcc (Compiler 1.2) .A-6
xi

xii Contents
B
Error and Warning Messages

Introduction .B-2

Compile-Time Messages .B-3

Warning Messages .B-11

Run-Time Messages .B-18

C
Directory Organization

Directory Organization on UNIX .C-3
<matlab> . C-4
<matlab>/bin . C-4
<matlab>/bin/$ARCH . C-5
<matlab>/extern/lib/$ARCH . C-5
<matlab>/extern/include . C-6
<matlab>/extern/include/cpp . C-7
<matlab>/extern/src/tbxsrc . C-7
<matlab>/extern/examples/compiler . C-8
<matlab>/toolbox/compiler . C-10

Directory Organization on Microsoft Windows C-12
<matlab> . C-13
<matlab>\bin . C-13
<matlab>\extern\lib . C-14
<matlab>\extern\include . C-15
<matlab>\extern\include\cpp . C-17
<matlab>\extern\src\tbxsrc . C-17
<matlab>\extern\examples\compiler C-17
<matlab>\toolbox\compiler . C-19

D
Using Compiler 1.2

Introduction .D-2
Why Use Compiler 1.2? . D-2
About This Appendix . D-2

Limitations and Restrictions . D-2
Type Imputation . D-2
Optimization . D-2
The Generated Code . D-3

Limitations and Restrictions .D-4
MATLAB Compiler 1.2 . D-4

MATLAB Code . D-4
Differences Between the MATLAB Compiler 1.2
and Interpreter . D-6

Restrictions on Stand-Alone Applications D-6

Type Imputation .D-8
Type Imputation Across M-Files . D-8

Optimization Techniques .D-10
Optimizing with Compiler Option Flags D-10

An Unoptimized Program . D-11
Optimizing with the -r Option Flag D-13
Optimizing with the -i Option Flag D-15
Optimizing with a Combination of -r and -i Flags D-16

Optimizing Through Assertions . D-17
An Assertion Example . D-19

Optimizing with Pragmas . D-21
%#inbounds . D-21
%#ivdep . D-22
%#realonly . D-25

Optimizing by Avoiding Complex Calculations D-26
Effects of the Real-Only Functions . D-27
Automatic Generation of the Real-Only Functions D-27

Optimizing by Avoiding Callbacks to MATLAB D-27
Identifying Callbacks . D-28
Compiling Multiple M-Files into One MEX-File D-29
Compiling M-Files That Call feval . D-32
xiii

xiv Contents
Optimizing by Preallocating Matrices D-34
Optimizing by Vectorizing . D-35

The Generated Code .D-37
MEX-File Source Code Generated by mcc D-37

Header Files . D-38
MEX-File Gateway Function . D-38
Complex Argument Check . D-39
Computation Section — Complex Branch
and Real Branch . D-40

Stand-Alone C Source Code Generated by mcc -e D-45
Header Files . D-46
mlf Function Declaration . D-46
Name of Generated Function . D-46
The Body of the mlf Routine . D-48
Trigonometric Functions . D-49

Stand-Alone C++ Code Generated by mcc -p D-50
Header Files . D-51
Constants and Static Variables . D-51
Function Declaration . D-51
Function Body . D-54

Before You Begin 1-2
New Features . 1-3
Compiler Licensing Changes 1-6
MATLAB Compiler 1.2 Users 1-7

Overview . 1-8
Creating MEX-Files 1-8
Creating Stand-Alone Applications 1-9

The MATLAB Compiler Family 1-13

Why Compile M-Files? 1-15
Faster Execution 1-15
Hiding Proprietary Algorithms 1-16
Stand-Alone Applications and Libraries 1-16

Upgrading from Previous Versions 1-18
MATLAB Compiler 1.2 1-18
MATLAB Compiler 1.0/1.1 1-18
1

Introducing the
MATLAB Compiler

Introduction . 1-2

1 Introducing the MATLAB Compiler

1-2
Introduction
This book describes version 2.0 of the MATLAB® Compiler. The MATLAB
Compiler takes M-files as input and generates C or C++ source code as output.
The MATLAB Compiler can generate these kinds of source code:

• C source code for building MEX-files.

• C or C++ source code for combining with other modules to form stand-alone
applications. Stand-alone applications do not require MATLAB at runtime;
they can run even if MATLAB is not installed on the system. The MATLAB
Compiler does require the MATLAB C/C++ Math Library to create
stand-alone applications that rely on the core math and data analysis
capabilities of MATLAB. The MATLAB Compiler also requires the MATLAB
C/C++ Graphics Library in order to create stand-alone applications that
make use of Handle Graphics® functions.

• C code S-functions for use with Simulink®.

• C shared libraries (dynamically linked libraries, or DLLs, on Microsoft
Windows NT) and C++ static libraries. These can be used without MATLAB
on the system, but they do require the MATLAB C/C++ Math Library.

Note Version 2.0 of the MATLAB Compiler provides support for many of the
MATLAB 5 features. Compiler 2.0 does not support eval, input, objects, C++
MEX-files, or numeric, nondouble data types such as uint8.

This chapter takes a closer look at these categories of C and C++ source code
and explains the value of compiled code.

Before You Begin
Before reading this book, you should already be comfortable writing M-files. If
you are not, see Using MATLAB.

Note The phrase MATLAB interpreter refers to the application that accepts
MATLAB commands, executes M-files and MEX-files, and behaves as
described in Using MATLAB. When you use MATLAB, you are using the
MATLAB interpreter. The phrase MATLAB Compiler refers to this product

Introduction
that translates M-files into C or C++ source code. This book distinguishes
references to the MATLAB Compiler by using the word ‘Compiler’ with a
capital C. References to ‘compiler’ with a lowercase c refer to your C or C++
compiler.

New Features
MATLAB Compiler 2.0 supports much of the functionality of MATLAB 5. The
new features of the Compiler are:

• Data Constructs

- Multidimensional arrays

- Cell arrays

- Structure arrays

- Sparse arrays

• Programming Tools

- Variable input and output argument lists (varargin/varargout)
- try … catch … end

- switch … end

• Language Enhancements

- Persistent variables

- load and save commands

• Improved Compiler Options

• Macro Options

• Error/Warning Messages

• Improved mex and mbuild Scripts

• Stand-Alone Compiler

Data Constructs

Multidimensional Arrays. Multidimensional arrays in MATLAB are an extension
of the two-dimensional matrix. You access a two-dimensional matrix element
with two subscripts: the first represents the row index and the second
represents the column index. In multidimensional arrays, use additional
1-3

1 Introducing the MATLAB Compiler

1-4
subscripts for indexing. For example, a three-dimensional array has three
subscripts and a four-dimensional array has four subscripts.

Cell Arrays. Cell arrays are a special class of MATLAB arrays where elements,
or cells, contain MATLAB arrays. Cell arrays allow you to store dissimilar
classes of arrays in the same array.

Structure Arrays. Structures are a class of MATLAB arrays that can store
dissimilar arrays together. Structures differ from cell arrays in that you
reference them by named fields.

Sparse Arrays. Sparse arrays provide an efficient representation of arrays that
contain a significant number of zero-valued elements.

Programming Tools

Variable Input Arguments. The special argument varargin can be used to pass any
number of input arguments to a function.

Variable Output Arguments. The special argument varargout can be used to
return any number of output arguments from a function.

try … catch … end. Execution of the try…catch construct begins by executing
the statements between try and catch. If this completes without an error,
execution is complete: the statements between catch and end are not executed.
If an error does occur, execution resumes with the statements between catch
and end.

switch … end. The switch statement lets you conditionally execute code
depending on the value of a variable or expression.

Language Enhancements

Persistent Variables. Variables that are defined as persistent do not change value
from one call to another. Persistent variables can be used within a function
only and they remain in memory until the program is unloaded.

Introduction
load and save Commands. The support for load and save has been enhanced to
include loading into a structure.

Note For more information about these features and MATLAB 5 in general,
see Using MATLAB.

Improved Compiler Options
The collection of new and improved options provides you with greater flexibility
to control Compiler 2.0. You also have full access to Compiler 1.2 and its set of
existing options. For more information, see the “mcc (Compiler 2.0)” and “mcc
(Compiler 1.2)” reference pages in Chapter 6.

Macro Options
These options (–m, –p, –x, and –S) let you quickly and easily generate C and C++
stand-alone applications, and MATLAB and Simulink C MEX-files,
respectively. Each macro replaces a sequence of several Compiler options
making it much easier to generate your output.

Error/Warning Messages
The MATLAB Compiler 2.0 contains a comprehensive set of error and warning
messages that help you isolate problems with your code. For more information,
see Appendix B, “Error and Warning Messages.”

Improved mex and mbuild Scripts
The mex script, which allows you to compile MEX-functions, and the mbuild
script, which allows you to customize the building and linking of your code,
have been enhanced to automatically search your system for supported
third-party compilers.

Stand-Alone Compiler
You can run the MATLAB Compiler 2.0 from the DOS or UNIX command line,
making it unnecessary to have MATLAB running on your system. You can call
the Compiler directly from a makefile. This stand-alone MATLAB Compiler is
faster than previous versions of the Compiler because it does not have to start
MATLAB each time you invoke a compilation.
1-5

1 Introducing the MATLAB Compiler

1-6
Compiler Licensing Changes
Starting with Compiler 1.2.1, a new licensing scheme has been employed that
enables the product to be simpler and more user friendly.

The new licensing model:

• Does not require MATLAB to be running on the system where the Compiler
is running

• Gives the user a dedicated 30 minute time allotment during which the user
has complete ownership over a license to the Compiler

Running MATLAB Not Required
In versions prior to 1.2.1, you could not run the MATLAB Compiler unless you
were running MATLAB. On networked systems, this meant that one user
would be holding the license for one copy of MATLAB and the Compiler,
simultaneously. In effect, one user required both products and tied up both
licenses until the user exited MATLAB. Although you can still run the
Compiler from within MATLAB, it is not required. One user could be running
the Compiler while another user could be using MATLAB.

Dedicated Compiler License
Each time a user requests the Compiler, the user begins a 30 minute time
period as the sole owner of the Compiler license. Anytime during the 30 minute
segment, if the same user requests the Compiler, the user gets a new 30 minute
allotment. When the 30-minute time interval has elapsed, if a different user
requests the Compiler, the new user gets the next 30 minute interval.

When a user requests the Compiler and a license is not available, the user
receives the message:

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best way
to guarantee that all MATLAB Compiler users have constant access to the
Compiler is to have an adequate supply of licenses for your users.

Introduction
MATLAB Compiler 1.2 Users

Differences Between Compiler 1.2 and 2.0
The earlier section, “New Features,” provides a comprehensive list of the
features included in Compiler 2.0 that were not in Compiler 1.2.

Optimization
If you require optimized code, use the –V1.2 option, which uses Compiler 1.2,
along with the appropriate Compiler 1.2 options. See Appendix D, “Using
Compiler 1.2,” for complete information on how to improve the performance of
code generated by the MATLAB Compiler.
1-7

1 Introducing the MATLAB Compiler

1-8
Overview
The MATLAB Compiler (mcc) can translate M-files into C files. The resultant
C files can be used in any of the supported executable types including MEX,
executable, or library by generating an appropriate wrapper file. A wrapper file
contains the required interface between the Compiler-generated code and a
supported executable type. For example, a MEX wrapper contains the MEX
gateway routine that sets up the left- and right-hand arguments for invoking
the Compiler-generated code.

The code produced by the MATLAB Compiler is independent of the final target
type — MEX, executable, or library. The wrapper file provides the necessary
interface to the target type.

Note MEX-files generated by the MATLAB Compiler 2.0 are not backward
compatible. They require MATLAB 5.3/Release 11 or greater.

Creating MEX-Files
The MATLAB Compiler, when invoked with the –x macro option, produces a
MEX-file from M-files. The Compiler:

1 Translates your M code to C code.

2 Generates a MEX wrapper.

3 Invokes the mex utility which builds the C MEX-file source into a MEX-file
by linking the MEX-file with the MEX version of the math libraries
(libmatlbmx).

Figure 1-1 illustrates the process of producing a MEX-file. The MATLAB
interpreter dynamically loads MEX-files as they are needed. Some MEX-files
run significantly faster than their M-file equivalents; in the end of this chapter
we explain why this is so.

MATLAB users who do not have the MATLAB Compiler must write the source
code for MEX-files in either Fortran or C. The Application Program Interface
Guide explains the fundamentals of this process. To write MEX-files, you have

Overview
to know how MATLAB represents its supported data types and the MATLAB
external interface (i.e., the application program interface, or API.)

If you are comfortable writing M-files and have the MATLAB Compiler, then
you do not have to learn all the details involved in writing MEX-file source
code.

Figure 1-1: Developing MEX-Files

Creating Stand-Alone Applications

C Stand-Alone Applications
The MATLAB Compiler, when invoked with the appropriate option flag (–m),
translates input M-files into C source code that is usable in any of the

M-File

mcc –x

mex

C version of
M code

MEX Math Library
(libmatlbmx)

C MEX-File
Wrapper

MEX-File

• Shaded block is user-generated code.

• Shadowed blocks are MathWorks
tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted block is C/C++
compiler-generated executable.
1-9

1 Introducing the MATLAB Compiler

1-1
supported executable types. The Compiler also produces the required wrapper
file suitable for a stand-alone application. Then, your ANSI C compiler
compiles these C source code files and the resulting object files are linked with
the following libraries:

• The MATLAB M-File Math Library (libmmfile), which contains compiled
versions of most MATLAB M-file math routines.

• The MATLAB Math Built-In Library (libmatlb), which contains compiled
versions of most MATLAB built-in math routines.

• The MATLAB Array Access and Creation Library (libmx), which contains
the array access routines.

• The MATLAB Utility Library (libut), which contains the utility routines
used by various components in the background.

• The ANSI C Math Library.

• The MATLAB C/C++ Graphics Library (libsgl), if applicable.

The first two libraries (libmmfile and libmatlb) come with the MATLAB
C/C++ Math Library product, the next two (libmx and libut) come with
MATLAB. The ANSI C Math Library comes with your ANSI C compiler. The
MATLAB C/C++ Graphics Library (libsgl) is available as a separate product
from The MathWorks, Inc.

Note If you do not have the MATLAB C/C++ Graphics Library (libsgl), and
your application calls a Handle Graphics function, a run-time error occurs.

To create C or C++ stand-alone applications, you must have the MATLAB
C/C++ Math Library.

C++ Stand-Alone Applications
The MATLAB Compiler, when invoked with the appropriate option flag (–p),
translates input M-files into C++ source code that is usable in any of the
supported executable types. The Compiler also produces the required wrapper
file suitable for a stand-alone application. Then, your C++ compiler compiles
this C++ source code and the resulting object files are linked with the six C
0

Overview
object libraries listed above, as well as the MATLAB C++ Math Library, which
contains C++ versions of MATLAB functions.

Note The MATLAB C++ Math Library must be linked first, then link the C
object libraries listed above.

Developing a Stand-Alone Application
Suppose you want to create an application that calculates the rank of a large
magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines.

An easier way to create this application is to write it as one or more M-files.
Figure 1-2 outlines this development process.

See Chapter 4 for complete details regarding stand-alone applications.

Figure 1-2 illustrates the process of developing a typical stand-alone C
application. Use the same basic process for developing stand-alone C++
applications, but use the –p option instead of the –m option with the MATLAB
Compiler, a C++ compiler instead of a C compiler, and the MATLAB C/C++
Math Library.

Note The MATLAB Compiler contains a tool, mbuild, which simplifies much
of this process. Chapter 4, “Stand-Alone Applications,” describes the mbuild
tool.

–p and –m are examples of options that you use to control how the Compiler
works. Chapter 6 includes a complete description of the Compiler 2.0 options
in the section, “mcc (Compiler 2.0).” Throughout this book you will see
numerous examples of how these options are used with the Compiler to
perform various tasks.
1-11

1 Introducing the MATLAB Compiler

1-1
Figure 1-2: Developing a Typical Stand-Alone C Application

M-File function to find the
rank of a magic square

mcc –m

C version of
M code

C Compiler

Object Files

Linker

Stand-Alone
C Application

C File
Wrapper

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded block is user-generated code.

• Shadowed blocks are MathWorks
tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted blocks are C/C++
compiler-generated executables.

mbuild does
this part
2

The MATLAB Compiler Family
The MATLAB Compiler Family
Figure 1-3 illustrates the various ways you can use the MATLAB Compiler.
The shaded blocks represent user-generated code; the unshaded blocks
represent Compiler-generated code; the remaining blocks (drop shadow)
represent MathWorks or other vendor tools.

Figure 1-3: MATLAB Compiler Uses

M-File(s)

MATLAB Compiler

Simulink
C-MEX File

C Code

C/C++ Compiler

Library

C++ Code

Generated Code Types

G
en

er
a

te
d

 W
ra

p
p

er
 T

yp
es

MAIN

MEX

LIB

Simulink

1

2

3

4

3

Stand-Alone
C/C++ Program

MATLAB
C MEX-File

1 2 3 4

User C/C++ Code
MATLAB C/C++

Math Library

Target Types

1

1-13

1 Introducing the MATLAB Compiler

1-1
The Compiler takes your M-file(s) and can generate C or C++ code. It can also
generate one of four wrapper files depending on your specified target. This
table shows the wrapper files the Compiler can generate, their associated
targets, and the corresponding –W option (wrapper).

Each numbered node in Figure 1-3 indicates a combination of C/C++ code and
a wrapper that generates a specific target type. The file(s) formed by combining
the C/C++ code (denoted by User C/C++ Code) and the wrapper are then passed
to the C/C++ compiler, which combines them with any user-defined C/C++
programs, and eventually links them against the appropriate libraries. The
end result of this sequence is the target as described in Table 1-1.

Table 1-1: Compiler 2.0 Wrappers and Targets

Wrapper File Target –W Setting

Main Stand-alone C or C++ program –W main

MEX MATLAB C MEX-file –W mex

Library C shared library or
C++ static library

–W lib:filename

Simulink
S-function

Simulink C MEX-file –W simulink
4

Why Compile M-Files?
Why Compile M-Files?
There are three main reasons to compile M-files:

• To speed them up

• To hide proprietary algorithms

• To create stand-alone applications or C shared libraries (DLLs on Windows)
or C++ static libraries

Faster Execution
Compiled C or C++ code typically runs faster than its M-file equivalents
because:

• Compiled code usually runs faster than interpreted code.

• C or C++ can avoid unnecessary memory allocation overhead that the
MATLAB interpreter performs.

Cases When Performance Does Not Improve
Compilation is not likely to speed up M-file functions that:

• Are heavily vectorized

• Spend most of their time in MATLAB’s built-in indexing, math, or graphics
functions

Cases When Performance Does Improve
Compilation is most likely to speed up M-file functions that contain loops.

Compiler 1.2 Functionality
The previous release of the MATLAB Compiler, Version 1.2, incorporated
several techniques that optimized the performance of the generated code.
These optimizations are type imputation (–r and –q) and array boundary
checking (–i).

• C or C++ code can contain simpler data types than M-files. The MATLAB
interpreter assumes that all variables in M-files are matrices. By contrast,
the MATLAB Compiler declares some C or C++ variables as simpler data
types, such as scalar integers; a C or C++ compiler can take advantage of
these simpler data types to produce faster code. For instance, the code to add
1-15

1 Introducing the MATLAB Compiler

1-1
two scalar integers executes much faster than the code to add two matrices.
The process that the Compiler uses to determine which variables can be
declared as simpler data types is called type imputation.

M-files are likely to speed up after compilation if they include variables that
the MATLAB Compiler views as integer or real scalars, or the files operate
on real data only.

• C can avoid unnecessary array boundary checking. The MATLAB
interpreter always checks array boundaries whenever an M-file assigns a
new value to an array. By contrast, you can tell the MATLAB Compiler not
to generate this array-boundary checking code in the C code. (Note that the
–i option, which controls this, is not available in C++.)

Note Neither of these optimization schemes is available in the current
release, 2.0, of the MATLAB Compiler. Subsequent releases of the Compiler
will have increasing optimization capability, soon matching and ultimately
surpassing that of Compiler 1.2. You can still use these optimizations if you
use the –V1.2 option. Appendix D, “Using Compiler 1.2,” contains complete
information about these optimizations.

Hiding Proprietary Algorithms
MATLAB M-files are ASCII text files that anyone can view and modify.
MEX-files are binary files. Shipping MEX-files or stand-alone applications
instead of M-files hides proprietary algorithms and prevents modification of
your M-files.

Stand-Alone Applications and Libraries
You can create MATLAB applications that take advantage of the mathematical
functions of MATLAB, yet do not require that the user owns MATLAB.
Stand-alone applications are a convenient way to package the power of
MATLAB and to distribute a customized application to your users.

You can develop an algorithm in MATLAB to perform specialized calculations
and use the Compiler to create a C shared library (DLL on Windows) or a C++
static library. You can then integrate the algorithm into a C/C++ application.
6

Why Compile M-Files?
After you compile the C/C++ application, you can use the MATLAB algorithm
to perform specialized calculations from your program.
1-17

1 Introducing the MATLAB Compiler

1-1
Upgrading from Previous Versions

MATLAB Compiler 1.2

Compatibility
The MATLAB Compiler 2.0 is fully compatible with previous releases of the
Compiler. If you have M-files that were compiled with a previous version of the
Compiler and compile them with the new version, you will get the same results.

Installation
The MATLAB 5.3 (Release 11) installer automatically installs Compiler 2.0.
Once you install and configure Compiler 2.0, you can compile your M-files from
either the MATLAB prompt or the DOS or UNIX command line.

Note If you require Compiler 1.2 functionality, you must use the –V1.2
option. If you use the –V1.2 option, you can not run the Compiler from the
DOS or UNIX command line.

MATLAB Compiler 1.0/1.1
In many cases, M-code that was written and compiled in MATLAB 4.2 will
work as is in the MATLAB 5 series (5.0, 5.1, and so on). There are, however,
certain changes that could impact your work, especially if you integrated
Compiler-generated code into a larger application.

Changed Library Name
Beginning with MATLAB 5.0, the name of the shared library that contains
compiled versions of most MATLAB M-file math routines, libtbx, has
changed. The new library is now called libmmfile.

Changed Data Type Names
In C, beginning with MATLAB 5.0 the name of the basic MATLAB data type,
Matrix, has changed. The new name for the data type is mxArray.
8

Upgrading from Previous Versions
In C++, beginning with MATLAB 5.0 the name of the basic MATLAB data type,
mwMatrix, has changed. The new name for the data type is mwArray.

Note To learn more about the language changes that occurred between
MATLAB 4.2 and MATLAB 5, see the online document, Upgrading from
MATLAB 4 to MATLAB 5.0, available from the Help Desk.
1-19

1 Introducing the MATLAB Compiler

1-2
0

Overview . 2-2

UNIX Workstations 2-5
System Requirements 2-5
Installation . 2-7
mex Verification 2-8
MATLAB Compiler Verification 2-12

Microsoft Windows on PCs 2-14
System Requirements 2-14
Installation . 2-17
mex Verification 2-19
MATLAB Compiler Verification 2-23

Troubleshooting 2-25
mex Troubleshooting 2-25
Troubleshooting the Compiler 2-27
2

Installation and
Configuration

Getting Started 2-2

2 Installation and Configuration

2-2
Getting Started
This chapter explains:

• The system requirements you need to use the MATLAB Compiler

• How to install the MATLAB Compiler

• How to configure the MATLAB Compiler after you have installed it

This chapter includes information for both MATLAB Compiler platforms —
UNIX and Microsoft Windows.

For information about the MATLAB Compiler not available at print time, see
the Known Software and Documentation Problems book.

When you install your ANSI C or C++ compiler, you may be required to provide
specific configuration details regarding your system. This chapter contains
information for each platform that can help you during this phase of the
installation process. The sections, “Things to Be Aware of,” provide this
information for each platform.

Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult the documentation or customer support
organization of your C or C++ compiler vendor.

Overview
This section outlines the steps necessary to configure your system to create
MEX-files.

Note You must configure your system to create MEX-files even if you only
want to create stand-alone applications or libraries.

Getting Started
The sequence of steps to install and configure the MATLAB Compiler so that it
can generate MEX-files is:

1 Install the MATLAB Compiler.

2 Install an ANSI C or C++ compiler, if you don’t already have one installed.

3 Verify that mex can generate MEX-files.

4 Verify that the MATLAB Compiler can generate MEX-files from the
MATLAB command line and from the UNIX or DOS command line.

Figure 2-1 shows the sequence on both platforms. The sections following the
flowchart provide more specific details for the individual platforms. Additional
steps may be necessary if you plan to create stand-alone applications or
libraries, however, you still must perform the steps given in this chapter first.
Chapter 4, “Stand-Alone Applications,” provides the details about the
additional installation and configuration steps necessary for creating
stand-alone applications and libraries.

Note This flowchart assumes that MATLAB is properly installed on your
system.
2-3

2 Installation and Configuration

2-4
Figure 2-1: MATLAB Compiler Installation Sequence for Creating MEX-Files

Start

Is ANSI C or C++
compiler installed

Follow vendor’s instructions
to install and test
ANSI C or C++ compiler.

Test your

mex configuration.

Does the MATLAB command
mex yprime.c
generate proper MEX-file

See “mex
Troubleshooting.”

Test your
MATLAB Compiler
installation/configuration.

Does the MATLAB command
mcc invhilb.m
generate invhilb.mex

Stop

1

1

No

Yes

No

Yes

Yes

Use MATLAB installer to
install component (MATLAB
Compiler).

?

?

?

2

No

See “Compiler
Troubleshooting.”

2

Install MATLAB
Compiler

Install ANSI C
C++ Compiler

Verify
mex

Verify MATLAB
Compiler can
generate
MEX-files from
MATLAB/DOS/
UNIX command
line

UNIX Workstations
UNIX Workstations
This section examines the system requirements, installation procedures, and
configuration procedures for the MATLAB Compiler on UNIX systems.

System Requirements
You cannot install the MATLAB Compiler unless MATLAB 5.3/Release 11 or a
later version is already installed on the system. The MATLAB Compiler
imposes no operating system or memory requirements beyond those that are
necessary to run MATLAB. The MATLAB Compiler consumes a small amount
of disk space.

Table 2-1 shows the requirements for creating UNIX applications with the
MATLAB Compiler.

The MATLAB C/C++ Math Library is a separately sold product.

Note Although the MATLAB Compiler supports the creation of stand-alone
C++ applications, it does not support the creation of C++ MEX-files.

Table 2-1: Requirements for Creating UNIX Applications

To create... You need...

MEX-files ANSI C compiler
MATLAB Compiler

Stand-alone C applications ANSI C compiler
MATLAB Compiler
MATLAB C/C++ Math Library

Stand-alone C++ applications C++ compiler
MATLAB Compiler
MATLAB C/C++ Math Library
2-5

2 Installation and Configuration

2-6
Supported ANSI C and C++ UNIX Compilers
The MATLAB Compiler supports the GNU C compiler, gcc, (except on HP and
SGI64), the system’s native ANSI C compiler on all UNIX platforms, the
system’s native C++ compiler on all UNIX platforms (except Linux), and the
GNU C++ compiler, g++, on Linux.

Note For a list of all the compilers supported by MATLAB, see the
MathWorks Technical Support Department’s Technical Notes at:

http://www.mathworks.com/support/tech-notes/v5/1600/1601.shtml

Known Compiler Limitations. There are several known restrictions regarding the
use of supported compilers.

• The SGI C compiler does not handle denormalized floating-point values
correctly. Denormalized floating-point numbers are numbers that are less
than the value of DBL_MIN in the compiler’s float.h file.

• Due to a limitation of the GNU C++ compiler (g++) on Linux, try…catch…end
blocks do not work.

• The –A debugline:on option does not work on the GNU C++ compiler (g++)
on Linux because it uses try…catch…end.

Compiler Options Files
The MathWorks provides options files for every supported C or C++ compiler.
These files contain the necessary flags and settings for the compiler. This table
shows the preconfigured options files that are included with MATLAB for
UNIX.

Compiler Options File

System native ANSI compiler mexopts.sh

gcc (GNU C compiler) gccopts.sh

UNIX Workstations
We provide information on the options files for those users who may need to
modify them to suit their own needs. Many users never have to be concerned
with the inner workings of the options files.

Locating Options Files
To locate your options file, the mex script searches the following:

• The current directory
• $HOME/matlab

• <matlab>/bin

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message.

Installation

MATLAB Compiler
To install the MATLAB Compiler on UNIX systems, follow the instructions in
the MATLAB Installation Guide for UNIX. If you have a license to install the
MATLAB Compiler, it will appear as one of the installation choices that you
can select as you proceed through the installation process. If the MATLAB
Compiler does not appear as one of the installation choices, contact The
MathWorks to get an updated license file (license.dat):

• Via the Web at www.mathworks.com. On the MathWorks home page, click on
the MATLAB Access option, log in to the Access home page, and follow the
instructions. MATLAB Access membership is free of charge and available to
all customers.

• Via e-mail at service@mathworks.com

• Via telephone at 508-647-7000; ask for Customer Service

• Via fax at 508-647-7001

ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your C or C++ compiler. Be sure to test the C or C++ compiler to
make sure it is installed and configured properly. Typically, the compiler
vendor provides some test procedures. The following section, “Things to Be
2-7

2 Installation and Configuration

2-8
Aware of,” contains several UNIX-specific details regarding the installation
and configuration of your ANSI C or C++ compiler.

Note On some UNIX platforms, a C or C++ compiler may already be
installed. Check with your system administrator for more information.

Things to Be Aware of
This table provides information regarding the installation and configuration of
a C or C++ compiler on your system.

mex Verification

Choosing a Compiler

Using the System Compiler. If the MATLAB Compiler and your supported C or C++
compiler are installed on your system, you are ready to create C MEX-files. To
create a MEX-file, you can simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users. It
uses the system’s compiler as your default compiler for creating C MEX-files.

If you do not need to change C or C++ compilers, or you do not need to modify
your compiler options files, you can skip ahead in this section to “Creating
MEX-Files.” If you need to know how to change the options file, continue with
this section.

Description Comment

Determine which C or C++ compiler
is installed on your system.

See your system administrator.

Determine the path to your C or
C++ compiler.

See your system administrator.

UNIX Workstations
Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at anytime by using the command

mex –setup

Using the 'mex –setup' command selects an options file that is
placed in ~/matlab and used by default for 'mex'. An options
file in the current working directory or specified on the
command line overrides the default options file in ~/matlab.

 Options files control which compiler to use, the compiler and
 link command options, and the runtime libraries to link
 against.

 To override the default options file, use the 'mex –f' command
 (see 'mex –help' for more information).

The options files available for mex are:

1: <matlab>/bin/gccopts.sh :

 Template Options file for building gcc MEX-files
 2: <matlab>/bin/mexopts.sh :
 Template Options file for building MEX-files using the
 system ANSI compiler

Enter the number of the options file to use as your default options
file:

Select the proper options file for your system by entering its number and
pressing Return. If an options file doesn’t exist in your MATLAB directory, the
system displays a message stating that the options file is being copied to your
2-9

2 Installation and Configuration

2-1
user-specific matlab directory. If an options file already exists in your matlab
directory, the system prompts you to overwrite it.

Note The setup option creates a user-specific, matlab directory in your
individual home directory and copies the appropriate options file to the
directory. (If the directory already exists, a new one is not created.) This
matlab directory is used for your individual options files only; each user can
have his or her own default options files (other MATLAB products may place
options files in this directory). Do not confuse these user-specific matlab
directories with the system matlab directory, where MATLAB is installed.

Using the setup option resets your default compiler so that the new compiler
is used every time you use the mex script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

As the previous note says, setup copies the appropriate options file to your
individual directory. To make your user-specific changes to the options file, you
then edit your copy of the options file to correspond to your specific needs and
save the modified file. This sets your default compiler’s options file to your
specific version.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the –f option, as in

mex –f <file> …

The –f option tells the mex script to use the options file, <file>. If <file> is not
in the current directory, then <file> must be the full pathname to the desired
options file. Using the –f option tells the mex script to use the specified options
file for the current execution of mex only; it does not reset the default compiler.

Creating MEX-Files
To create MEX-files on UNIX, first copy the source file(s) to a local directory,
and then change directory (cd) to that local directory.
0

UNIX Workstations
On UNIX, MEX-files are created with platform-specific extensions, as shown in
Table 2-2.

The <matlab>/extern/examples/mex directory contains C source code for the
example yprime.c. After you copy the source file (yprime.c) to a local directory
and cd to that directory, enter at the MATLAB prompt:

mex yprime.c

This should create the MEX-file called yprime with the appropriate extension
corresponding to your UNIX platform. For example, if you create the MEX-file
on Solaris, its name is yprime.mexsol.

You can now call yprime as if it were an M-function. For example,

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 –1.0947

If you encounter problems generating the MEX-file or getting the correct
results, refer to the Application Program Interface Guide for additional
information about MEX-files.

Table 2-2: MEX-File Extensions for UNIX

Platform MEX-File Extension

DEC Alpha mexaxp

HP 9000 PA-RISC mexhp7

IBM RS/6000 mexrs6

Linux mexlx

SGI mexsg

SGI 64 mexsg64

Solaris mexsol
2-11

2 Installation and Configuration

2-1
MATLAB Compiler Verification

Verifying from MATLAB
Once you have verified that you can generate MEX-files on your system, you
are ready to verify that the MATLAB Compiler is correctly installed. Type the
following at the MATLAB prompt:

mcc –x invhilb

After a short delay, this command should complete and display the MATLAB
prompt. Next, at the MATLAB prompt, type:

which invhilb

The which command should indicate that invhilb is now a MEX-file by listing
the filename followed by the appropriate UNIX MEX-file extension. For
example, if you run the Compiler on Solaris, the Compiler creates the file
invhilb.mexsol. Finally, at the MATLAB prompt, type:

invhilb(10)

Note that this tests only the compiler’s ability to make MEX-files. If you want
to create stand-alone applications, refer to Chapter 4, “Stand-Alone
Applications,” for additional details.

Verifying from UNIX Command Prompt
To verify that the Compiler can generate MEX-files from the UNIX command
prompt, you follow a similar procedure as that used in the previous section.

Note Before you test to see if the Compiler can generate MEX-files from the
UNIX command prompt, you may want to delete the MEX-file you created in
the previous section, invhilb.mexsol, or whatever the extension is on your
system. That way, you can be sure your newly generated MEX-file is the result
of using the Compiler from the UNIX prompt.

Copy invhilb.m from the <matlab>/toolbox/matlab/elmat directory to a local
directory and then type the following at the UNIX prompt:

mcc –x invhilb
2

UNIX Workstations
Next, verify that invhilb is now a MEX-file by listing the invhilb files:

ls invhilb.*

You will see a list similar to this:

invhilb.c invhilb.m invhilb_mex.c
invhilb.h invhilb.mexsol*

These are the various files that the Compiler generates from the M-file. The
Compiler-generated MEX-file appears in the list as the filename followed by
the appropriate UNIX MEX-file extension. In this example, the Compiler was
executed on Solaris, so the Compiler creates the file invhilb.mexsol. For more
information on which files the Compiler creates for a compilation, see Chapter
5, “ Controlling Code Generation.”

To test the newly created MEX-file, start MATLAB and, at the MATLAB
prompt, type:

invhilb(10)
2-13

2 Installation and Configuration

2-1
Microsoft Windows on PCs
This section examines the system requirements, installation procedures, and
configuration procedures for the MATLAB Compiler on PCs running Windows
95/98 or Windows NT.

System Requirements
You cannot install the MATLAB Compiler unless MATLAB 5.3/Release 11 or a
later version is already installed on the system. The MATLAB Compiler
imposes no operating system or memory requirements beyond what is
necessary to run MATLAB. The MATLAB Compiler consumes a small amount
of disk space.

Table 2-3 shows the requirements for creating PC applications with the
MATLAB Compiler.

The MATLAB C/C++ Math Library is a separately sold product.

Note Although the MATLAB Compiler supports the creation of stand-alone
C++ applications, it does not support the creation of C++ MEX-files.

Table 2-3: Requirements for Creating PC Applications

To create... You need...

MEX-files ANSI C compiler
MATLAB Compiler

Stand-alone C applications ANSI C compiler
MATLAB Compiler
MATLAB C/C++ Math Library

Stand-alone C++ applications C++ compiler
MATLAB Compiler
MATLAB C/C++ Math Library
4

Microsoft Windows on PCs
Supported ANSI C and C++ PC Compilers
To create C MEX-files, stand-alone C/C++ applications, or dynamically linked
libraries (DLLs) with the MATLAB Compiler, you must install and configure a
supported C/C++ compiler. Use one of the following 32-bit C/C++ compilers
that create 32-bit Windows dynamically linked libraries (DLLs) or Windows
NT applications:

• Watcom C/C++ versions 10.6 & 11.0

• Borland C++ versions 5.0, 5.2, & 5.3

• Microsoft Visual C++ (MSVC) versions 4.2, 5.0, & 6.0

Note For a list of all the compilers supported by MATLAB, see the
MathWorks Technical Support Department’s Technical Notes at:

http://www.mathworks.com/support/tech-notes/v5/1600/1601.shtml

To create stand-alone applications or DLLs, you also need the MATLAB C/C++
Math Library, which is sold separately. Also, if your applications use Handle
Graphics, you will need the MATLAB C/C++ Graphics Library, which is sold
separately.

Applications generated by the MATLAB Compiler are 32-bit applications and
only run on Windows 95/98 and Windows NT systems.

Known Compiler Limitations. There are several known restrictions regarding the
use of supported compilers.

• Some compilers, e.g., Watcom, do not handle denormalized floating-point
values correctly. Denormalized floating-point numbers are numbers that are
less than the value of DBL_MIN in your compiler’s float.h file.

• The MATLAB Compiler 2.0 sometimes will generate goto statements for
complicated if conditions. The Borland C++ Compiler prohibits the goto
statement within a try…catch block. This error can occur if you use the
–A debugline:on option, because its implementation uses try…catch. To
work around this limitation, simplify the if conditions.

• There is a limitation with the Borland C++ Compiler. In your M-code, if you
use a constant number that includes a leading zero and contains the digit ‘8’
2-15

2 Installation and Configuration

2-1
or ‘9’ before the decimal point, the Borland compiler will display the error
message:

Error <file>.c <line>: Illegal octal digit in function
<functionname>

For example, the Borland compiler considers this an illegal octal integer
009.0

as opposed to a legal floating-point constant, which is how it is defined in the
ANSI C standard.

As an aside, if all the digits are in the legal range for octal numbers (0-7),
then the compiler will incorrectly treat the number as a floating-point value.
So, if you have code such as
x = [008 09 10];

and want to use the Borland compiler, you should edit the M-code to remove
the leading zeros and write it as
x = [8 9 10];

Compiler Options Files
The MathWorks provides options files for every supported C or C++ compiler.
These files contain the necessary flags and settings for the compiler. This table
shows the preconfigured PC options files that are included with MATLAB.

Compiler Options File

Microsoft C/C++, Version 4.2
Microsoft C/C++, Version 5.0
Microsoft C/C++, Version 6.0

msvcopts.bat
msvc50opts.bat
msvc60opts.bat

Watcom C/C++, Version 10.6
Watcom C/C++, Version 11.0

watcopts.bat
wat11copts.bat

Borland C++, Version 5.0
Borland C++, Version 5.2
Borland C++, Version 5.3

bccopts.bat
bccopts.bat
bcc53opts.bat
6

Microsoft Windows on PCs
Note We provide information on the options files for those users who may
need to modify them to suit their own needs. Many users never have to be
concerned with the inner workings of the options files.

Locating Options Files
To locate your options file, the mex script searches the following:

• The current directory
• The user profile directory (see the following section, “The User Profile

Directory Under Windows,” for more information about this directory)
• <matlab>\bin

mex uses the first occurrence of the options file it finds. If no options file is
found, mex searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

The User Profile Directory Under Windows. The Windows user profile directory is
a directory that contains user-specific information such as desktop appearance,
recently used files, and Start menu items. The mex and mbuild utilities store
their respective options files, mexopts.bat and compopts.bat, which are
created during the –setup process, in a subdirectory of your user profile
directory, named Application Data\MathWorks\MATLAB. Under Windows NT
and Windows 95/98 with user profiles enabled, your user profile directory is
%windir%\Profiles\username. Under Windows 95/98 with user profiles
disabled, your user profile directory is %windir%. Under Windows 95/98, you
can determine whether or not user profiles are enabled by using the
Passwords control panel.

Installation

MATLAB Compiler
To install the MATLAB Compiler on a PC, follow the instructions in the
MATLAB Installation Guide for PC. If you have a license to install the
MATLAB Compiler, it will appear as one of the installation choices that you
can select as you proceed through the installation process.
2-17

2 Installation and Configuration

2-1
If the Compiler does not appear in your list of choices, contact The MathWorks
to obtain an updated License File (license.dat) for multiuser network
installations, or an updated Personal License Password (PLP) for single-user,
standard installations:

• Via the Web at www.mathworks.com. On the MathWorks home page, click on
the MATLAB Access option, log in to the Access home page, and follow the
instructions. MATLAB Access membership is free of charge and available to
all customers.

• Via e-mail at service@mathworks.com

• Via telephone at 508-647-7000, ask for Customer Service

• Via fax at 508-647-7001

ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your compiler. Be sure to test the C/C++ compiler to make sure it
is installed and configured properly. The following section, “Things to Be
Aware of,” contains some Windows-specific details regarding the installation
and configuration of your C/C++ compiler.

Things to Be Aware of
This table provides information regarding the installation and configuration of
a C/C++ compiler on your system.

Description Comment

Installation options We recommend that you do a full installation of
your compiler. If you do a partial installation,
you may omit a component that the MATLAB
Compiler relies on.

Installing debugger files For the purposes of the MATLAB Compiler, it
is not necessary to install debugger (DBG) files.
However, you may need them for other
purposes.

Microsoft Foundation
Classes

Microsoft Foundation Classes (MFC) are not
required.
8

Microsoft Windows on PCs
mex Verification

Choosing a Compiler

Systems with Exactly One C/C++ Compiler. If you have properly installed the
MATLAB Compiler and your supported C or C++ compiler, you can now create
C MEX-files. On systems where there is exactly one C or C++ compiler
available to you, the mex utility automatically configures itself for the
appropriate compiler. So, for many users, to create a C MEX-file, you can
simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users. It
uses your installed C or C++ compiler as your default compiler for creating your
MEX-files.

If you are a user who does not need to change compilers, or you do not need to
modify your compiler options files, you can skip ahead in this section to
“Creating MEX-Files.”

Systems with More than One C/++ Compiler. On systems where there is more than
one C or C++ compiler, the mex utility lets you select which of the compilers you

16-bit DLL/executables This is not required.

ActiveX This is not required.

Running from the
command line

Make sure you select all relevant options for
running your compiler from the command line.

Updating the registry If your installer gives you the option of
updating the registry, you should do it.

Installing Microsoft
Visual C++ Version 6.0

If you need to change the location where this
compiler is installed, you must change the
location of the Common directory. Do not change
the location of the VC98 directory from its
default setting.

Description Comment
2-19

2 Installation and Configuration

2-2
want to use. Once you choose your C or C++ compiler, that compiler becomes
your default compiler and you no longer have to select one when you compile
MEX-files.

For example, if your system has both the Borland and Watcom compilers, when
you enter for the first time

mex filename.c

you are asked to select which compiler to use.

mex has detected the following compilers on your machine:

[1] : Borland compiler in T:\Borland\BC.500
[2] : WATCOM compiler in T:\watcom\c.106

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify the information.

Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at any time by using the
mex –setup option.
0

Microsoft Windows on PCs
This example shows the process of changing your default compiler to the
Microsoft Visual C++ Version 6.0 compiler.

mex –setup

Please choose your compiler for building external interface (MEX)
files.

Would you like mex to locate installed compilers [y]/n? n

Choose your C compiler:
[1] Borland C (version 5.0, 5.2, or 5.3)
[2] Microsoft Visual C (version 4.2, 5.0, or 6.0)
[3] Watcom C (version 10.6 or 11)

Or choose a Fortran compiler:
[4] DIGITAL Visual Fortran (version 5.0)

[0] None

Compiler: 2

Choose the version of your C compiler:
[1] Microsoft Visual C 4.2
[2] Microsoft Visual C 5.0
[3] Microsoft Visual C 6.0

version: 3

Your machine has a Microsoft Visual C compiler located at
D:\DevStudio6.
Do you want to use this compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C 6.0
Location: D:\DevStudio6

Are these correct?([y]/n): y
2-21

2 Installation and Configuration

2-2
The default options file:
"C:\WINNT\Profiles\username
\Application Data\MathWorks\MATLAB\mexopts.bat" is being
updated...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mex script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

The setup option copies the appropriate options file to your user profile
directory. To make your user-specific changes to the options file, you edit your
copy of the options file in your user profile directory to correspond to your
specific needs and save the modified file. After completing this process, the mex
script will use the new options file everytime with your modified settings.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the –f option, as in

mex –f <file> …

The –f option tells the mex script to use the options file, <file>. If <file> is not
in the current directory, then <file> must be the full pathname to the desired
options file. Using the –f option tells the mex script to use the specified options
file for the current execution of mex only; it does not reset the default compiler.

Creating MEX-Files
The <matlab>\extern\examples\mex directory contains C source code for the
example yprime.c. To verify that your system can create MEX-files, enter at
the MATLAB prompt:

cd([matlabroot '\extern\examples\mex'])
mex yprime.c
2

Microsoft Windows on PCs
This should create the yprime.dll MEX-file. MEX-files created on Windows
95/98 or NT always have the extension dll.

You can now call yprime as if it were an M-function. For example,

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 –1.0947

If you encounter problems generating the MEX-file or getting the correct
results, refer to the Application Program Interface Guide for additional
information about MEX-files.

MATLAB Compiler Verification

Verifying from MATLAB
Once you have verified that you can generate MEX-files on your system, you
are ready to verify that the MATLAB Compiler is correctly installed. Type the
following at the MATLAB prompt:

mcc –x invhilb

After a short delay, this command should complete and display the MATLAB
prompt. Next, at the MATLAB prompt, type:

which invhilb

The which command should indicate that invhilb is now a MEX-file; it should
have created the file invhilb.dll. Finally, at the MATLAB prompt, type:

invhilb(10)

Note that this tests only the compiler’s ability to make MEX-files. If you want
to create stand-alone applications or DLLs, refer to Chapter 4, “Stand-Alone
Applications,” for additional details.
2-23

2 Installation and Configuration

2-2
Verifying from DOS Command Prompt
To verify that the Compiler can generate C MEX-files from the DOS command
prompt, you follow a similar procedure as that used in the previous section.

Note Before you test to see if the Compiler can generate MEX-files from the
DOS command prompt, you may want to delete the MEX-file you created in
the previous section, invhilb.dll. That way, you can be sure your newly
generated MEX-file is the result of using the Compiler from the DOS prompt.
To delete this file, you must clear the MEX-file or quit MATLAB; otherwise
the deletion will fail.

Copy invhilb.m from the <matlab>\toolbox\matlab\elmat directory to a local
directory and then type the following at the DOS prompt:

mcc –x invhilb

Next, verify that invhilb is now a MEX-file by listing the invhilb files:

dir invhilb*

You will see a list containing:

invhilb.c
invhilb.dll
invhilb.h
invhilb.m
invhilb_mex.c

These are the files that the Compiler generates from the M-file, in addition to
the original M-file, invhilb.m. The Compiler-generated MEX-file appears in
the list as the filename followed by the extension, dll. In this example, the
Compiler creates the file invhilb.dll. For more information on which files the
Compiler creates for a compilation, see Chapter 5, “ Controlling Code
Generation.”

To test the newly created MEX-file, you would start MATLAB and, at the
MATLAB prompt, you could type:

invhilb(10)
4

Troubleshooting
Troubleshooting
This section identifies some of the more common problems that can occur when
installing and configuring the MATLAB Compiler.

mex Troubleshooting

Non-ANSI C Compiler on UNIX
A common configuration problem in creating C MEX-files on UNIX involves
using a non-ANSI C compiler. You must use an ANSI C compiler.

DLLs Not on Path on Windows
MATLAB will fail to load MEX-files if it cannot find all DLLs referenced by the
MEX-file; the DLLs must be on the DOS path or in the same directory as the
MEX-file. This is also true for third-party DLLs.

Segmentation Violation or Bus Error
If your MEX-file causes a segmentation violation or bus error, there is most
likely a problem with the MATLAB Compiler. Contact Technical Support at
The MathWorks.

Generates Wrong Answers
If your program generates the wrong answer(s), there are several possible
causes. There could be an error in the computational logic or there may be a
defect in the MATLAB Compiler. Run your original M-file with a set of sample
data and record the results. Then run the associated MEX-file with the sample
data and compare the results with those from the original M-file. If the results
are the same, there may be a logic problem in your original M-file. If the results
differ, there may be a defect in the MATLAB Compiler. In this case, send the
pertinent information via e-mail to support@mathworks.com.

mex Works from Shell But Not from MATLAB (UNIX)
If the command

mex –x yprime.c

works from the UNIX shell prompt but does not work from the MATLAB
prompt, you may have a problem with your .cshrc file. When MATLAB
2-25

2 Installation and Configuration

2-2
launches a new C shell to perform compilations, it executes the .cshrc script.
If this script causes unexpected changes to the PATH, an error may occur. You
can test whether this is true by performing a

set SHELL=/bin/sh

prior to launching MATLAB. If this works correctly, then you should check
your .cshrc file for problems setting the PATH.

Cannot Locate Your Compiler (PC)
If mex has difficulty locating your installed compilers, it is useful to know how
it goes about finding compilers. mex automatically detects your installed
compilers by first searching for locations specified in the following environment
variables:

• BORLAND for Borland C++ Compiler, Version 5.0, 5.2, or 5.3

• WATCOM for the Watcom C/C++ Compiler

• MSVCDIR for Microsoft Visual C/C++, Version 5.0 or 6.0

• MSDEVDIR for Microsoft Visual C/C++, Version 4.2

Next, mex searches the Windows Registry for compiler entries. Note that
Watcom does not add an entry to the registry. Digital Fortran does not use an
environment variable; mex only looks for it in the registry.

Internal Error When Using mex –setup (PC)
Some antivirus software packages such as Cheyenne AntiVirus and Dr.
Solomon may conflict with the mex –setup process. If you get an error message
during mex –setup of the following form:

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mex –setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mex Fails
If none of the previous solutions addresses your difficulty with mex, contact
Technical Support at The MathWorks at support@mathworks.com or
508 647-7000.
6

Troubleshooting
Troubleshooting the Compiler
One problem that might occur when you try to use the Compiler involves
licensing.

Licensing Problem
If you do not have a valid license for the MATLAB Compiler, you will get an
error message similar to the following when you try to access the Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this manual.

MATLAB Compiler Does Not Generate MEX-File
If you experience other problems with the MATLAB Compiler, contact
Technical Support at The MathWorks at support@mathworks.com or 508
647-7000.
2-27

2 Installation and Configuration

2-2
8

Sierpinski Gasket Example 3-3
Invoking the M-File 3-4
Compiling the M-File into a MEX-File 3-5
Invoking the MEX-File 3-6

Compiler Options 3-7
Macros . 3-7
Command Line Syntax 3-9

Limitations and Restrictions 3-11
MATLAB Code 3-11
Stand-Alone Applications 3-12

Generating Simulink S-Functions 3-14
Simulink-Specific Options 3-14
Specifying S-Function Characteristics 3-15

Converting Script M-Files to Function M-Files 3-17
3

Getting Started
with MEX-Files

A Simple Example 3-3

3 Getting Started with MEX-Files

3-2
This chapter gets you started compiling M-files with the MATLAB Compiler.
By the end of this chapter, you should know how to:

• Compile M-files into MEX-files

• Invoke MEX-files

• Generate Simulink S-functions

This chapter also lists the limitations and restrictions of the MATLAB
Compiler.

A Simple Example
A Simple Example

Sierpinski Gasket Example
Consider an M-file function called gasket.m.

function theImage = gasket(numPoints)
%GASKET An image of a Sierpinski Gasket.
% IM = GASKET(NUMPOINTS)
%
% Example:
% x = gasket(50000);
% imagesc(x);colormap([1 1 1;0 0 0]);
% axis equal tight

% Copyright (c) 1984-98 by The MathWorks, Inc
% $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $

theImage = zeros(1000,1000);

corners = [866 1;1 500;866 1000];
startPoint = [866 1];
theRand = rand(numPoints,1);
theRand = ceil(theRand*3);

for i=1:numPoints
 startPoint = floor((corners(theRand(i),:)+startPoint)/2);
 theImage(startPoint(1),startPoint(2)) = 1;
end

How the Function Works
This function determines the coordinates of a Sierpinski Gasket using an
Iterated Function System algorithm. The function starts with three points that
define a triangle, and starting at one of these points, chooses one of the
remaining points at random. A dot is placed at the midpoint of these two points.
From the new point, a dot is placed at the midpoint between the new point and
a point randomly selected from the original points. This process continues and
eventually leads to an approximation of a curve.
3-3

3 Getting Started with MEX-Files

3-4
The curve can be graphed in many ways. Sierpinski's method is:

• Start with a triangle and from it remove a triangle that is one-half the height
of the original and inverted. This leaves three triangles.

• From each of the remaining three triangles, remove a triangle that is
one-fourth the height of these new triangles and inverted. This leaves nine
triangles.

• The process continues and at infinity the surface area becomes zero and the
length of the curve is infinite.

gasket.m is a good candidate for compilation because it contains a loop. The
overhead of the for loop command is relatively high compared to the cost of the
loop body. M-file programmers usually try to avoid loops containing scalar
operations because loops run relatively slowly under the MATLAB interpreter.

To achieve a reasonable approximation of the Sierpinski Gasket, set the
number of points to 50,000. To compute the coordinates and time the
computation, you can use

tic; x = gasket(50000); toc

To display the figure, you can use

imagesc(x); colormap([1 1 1;0 0 0]);
axis equal tight

Invoking the M-File
To get a baseline reading, you can determine how long it takes the MATLAB
interpreter to run gasket.m. The built-in MATLAB functions tic and toc are
useful tools for measuring time.

tic; x = gasket(50000); toc
elapsed_time =
10.0740

On the Pentium Pro 200, the M-file took about 10 seconds of CPU time to
calculate the first 50,000 points on the Sierpinski Gasket.

A Simple Example
Note The timings listed in this book were recorded on a Pentium Pro 200
MHz PC running Microsoft Windows NT. In each case, the code was executed
two times and the results of the second execution were captured for this book.
All of the timings listed throughout this book are for reference purposes only.
They are not absolute; if you execute the same example under the same
conditions, your times will probably differ from these values. Use these values
as a frame of reference only.

Compiling the M-File into a MEX-File
To create a MEX-file from this M-file, enter the mcc command at the MATLAB
interpreter prompt:

mcc –x gasket

This mcc command generates:

• A file named gasket.c containing MEX-file C source code.

• A file named gasket.h containing the public information.

• A file named gasket_mex.c containing the MEX-function interface (MEX
wrapper).

• A MEX-file named gasket.mex. (The actual filename extension of the
executable MEX-file varies depending on your platform, e.g., on the PC the
file is named gasket.dll.)

mcc automatically invokes mex to create gasket.mex from gasket.c. The mex
utility encapsulates the appropriate C compiler and linker options for your
system.

This example uses the –x macro option to create the MEX-file. For more
information on this Compiler option as well as the other options, see “mcc
(Compiler 2.0)” in Chapter 6. For more information on the files that the
Compiler generates, see Chapter 5, “Controlling Code Generation.”
3-5

3 Getting Started with MEX-Files

3-6
Invoking the MEX-File
Invoke the MEX-file version of gasket from the MATLAB interpreter the same
way you invoke the M-file version.

tic; x = gasket(50000); toc

MATLAB runs the MEX-file version (gasket.mex) rather than the M-file
version (gasket.m). Given an M-file and a MEX-file with the same root name
(gasket) in the same directory, the MEX-file takes precedence.

This produces:

elapsed_time =
8.0410

The MEX-file runs about 20% faster than the M-file version. To display the
Sierpinski Gasket, use

imagesc(x); colormap([1 1 1;0 0 0]);
axis equal tight

Figure 3-1 shows the results.

Figure 3-1: The Sierpinski Gasket for 50,000 Points

Compiler Options
Compiler Options
The MATLAB Compiler uses a family of options, also called option flags, to
control the functionality of the Compiler. Chapter 6 includes a complete
description of the Compiler 2.0 options in the section, “mcc (Compiler 2.0).”
Throughout this book you will see how these options are used with the
Compiler to perform various tasks.

One particular set of Compiler options, macros, are particularly useful for
performing straightforward compilations.

Macros
Macro options provide a simplified approach to compilation. Instead of
manually grouping several options together to perform a particular type of
compilation, you can use one simple option to quickly accomplish basic
compilation tasks.

Note Macro options are intended to simplify the more common compilation
tasks. You can always use individual options to customize the compilation
process to satisfy your particular needs.

Table 3-1 shows the complete set of macro options available in Compiler 2.0.
3-7

3 Getting Started with MEX-Files

3-8
Understanding a Macro Option
The –m option tells the Compiler to produce a stand-alone C application. The
–m macro is equivalent to the series of options:

–t –W main –L C –T link:exe –h

Table 3-1: Macro Options

Macro Option Creates Option Equivalence

–m Stand-alone C application –t –W main –L C –T link:exe –h

–p Stand-alone C++ application –t –W main –L Cpp –T link:exe –h

–x MEX-function –t –W mex –L C –T link:mex

–S Simulink S-function –t –W simulink –L C –T link:mex

Tr
a
n
sl

a
te

 M
 t

o
 C

/C
+
+

Fu
n
ct

io
n
 W

ra
p
p
er

Ta
rg

et
 L

a
n
g
u
a

g
e

O
u
tp

u
t

St
a
g
e

H
el

p
er

 F
u
nc

ti
o
n
s

Compiler Options
Table 3-2 shows the five options that compose the –m macro and the
information that they provide to the Compiler.

Command Line Syntax
As you work with the Compiler, you will encounter situations where you must
provide the Compiler with several options. You may specify one or more option
flags to mcc at the command prompt.

Most option flags have a one-letter name. You can list options separately on the
command line, for example:

mcc –m –g myfun

You can group options that do not take arguments by preceding the list of
option flags with a single dash (–), for example:

mcc –mg myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

mcc –m –A full myfun % Options listed separately
mcc –mA full myfun % Options combined, A option last

This format is not valid:

mcc –Am full myfun % Options combined, A option not last

Table 3-2: The –m Macro

Option Function

–t Translate M code to C/C++ code.

–W main Produce a wrapper file suitable for a stand-alone
application.

–L C Generate C code as the target language.

–T link:exe Create an executable as the output.

–h Automatically, find and compile helper functions
included in the source M-file.
3-9

3 Getting Started with MEX-Files

3-1
In cases where you have more than one option that take arguments, you can
include only one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

Note The –V1.2 option cannot be combined with other options; it must stand
by itself. For example, you cannot use

mcc –V1.2ir myfun

You would use

mcc –V1.2 –ir myfun

Conflicting Options on Command Line
If you use conflicting options, the Compiler resolves them from left to right,
with the rightmost option taking precedence. For example,

mcc –m –W none test.m

is equivalent to

mcc –t –W main –L C –T link:exe –h –W none test.m

In the second case, there are two conflicting –W options. After working from left
to right, the Compiler determines that the rightmost option takes precedence,
namely, –W none, and the Compiler does not generate a wrapper.

Note If you combine options on the command line (e.g., macros and regular
options), they can both affect the same settings and can therefore override
each other depending on their order in the command line. In these cases, the
options are resolved from left to right as discussed in this section.
0

Limitations and Restrictions
Limitations and Restrictions

MATLAB Code
This version of the MATLAB Compiler supports almost all of the functionality
of MATLAB. However, there are some limitations and restrictions that you
should be aware of. Although this version of the MATLAB Compiler cannot
compile the following, a future version will be able to compile them.

• Script M-files (See page 3-17 for further details.)

• Functions that are only MEX functions

• M-files that use objects

The Compiler cannot compile:

• M-files containing eval or input. These functions create and use internal
variables that only the MATLAB interpreter can handle.

• Inline functions because they are implemented using eval.

• Built-in MATLAB functions (functions such as eig have no M-file, so they
can’t be compiled). Note, however, that most of these functions are available
to you because they are in the MATLAB Math Built-in Library (libmatlb).

• Calls to load or save that do not specify the names of the variables to load or
save and do not specify a result variable for load. The load and save
functions are supported in compiled code for lists of variables only. For
example, this is acceptable:
load(filename, 'a', 'b', 'c'); % This is OK and loads the

% values of a, b, and c from
% the file.

x = load(filename);

However, this is not acceptable:
load(filename, var1, var2, var3); % This is not allowed.

There is no support for the load and save options –ascii and –mat, and the
variable wildcard (*).
3-11

3 Getting Started with MEX-Files

3-1
Stand-Alone Applications
The restrictions and limitations noted in the previous section also apply to
stand-alone applications. The functions in Table 3-3 are supported in
MEX-mode, but are not supported in stand-alone mode.

Note You cannot call any Handle Graphics functions unless you have the
optional Graphics Library installed.

In addition, stand-alone applications cannot access:

• Calls to MEX-file functions because the MEX-file functions require MATLAB
to be running, which is not the case with stand-alone applications

• Simulink functions

Although the MATLAB Compiler can compile M-files that call these functions,
the MATLAB C/C++ Math library does not support them. Therefore, unless you

Table 3-3: Unsupported Functions in Stand-Alone Mode

add_block add_line cd cholinc

clc close_system dbclear dbdown

dbquit dbstack dbstatus dbstep

dbstop dbtype dbup delete_block

delete_line dir echo exist

get_param inferiorto inmem int8

int16 int32 luinc mfile2struct

new_system open_system pause set_param

sim simget simset single

sldebug superiorto system_dependent type

uint8 uint16 uint32 which
2

Limitations and Restrictions
write your own versions of the unsupported routines, when you run the
executable, you will get a run-time error.
3-13

3 Getting Started with MEX-Files

3-1
Generating Simulink S-Functions
You can use the MATLAB Compiler to generate Simulink C MEX S-functions.
This allows you to speed up Simulink models that contain MATLAB M-code
that is referenced from a MATLAB Fcn block.

For more information about Simulink in general, see the Using Simulink
manual. For more information about Simulink S-functions, see the Writing
S-Functions book.

Simulink-Specific Options
By using Simulink-specific options with the MATLAB Compiler, you can
generate a complete S-function that is compatible with the S-Function block.
The Simulink-specific options are –S, –u, and –y. Using any of these options
with the MATLAB Compiler causes it to generate code that is compatible with
Simulink.

Using the -S Option
The simplest S-function that the MATLAB Compiler can generate is one with
a dynamically sized number of inputs and outputs. That is, you can pass any
number of inputs and outputs in or out of the S-function. Both the MATLAB
Fcn block and the S-Function block are single-input, single-output blocks. Only
one line can be connected to the input or output of these blocks. However, each
line may be a vector signal, essentially giving these blocks multi-input,
multi-output capability. To generate a C language S-function of this type from
an M-file, use the –S option:

mcc –S mfilename

Note The MATLAB Compiler option that generates a C language S-function
is a capital S (–S).
4

Generating Simulink S-Functions
The result is an S-function described in the following files:

mfilename.c
mfilename.h
mfilename_simulink.c
mfilename.ext (where ext is the MEX-file extension for your

platform, e.g., dll for Windows)

Using the -u and -y Options
Using the –S option by itself will generate code suitable for most general
applications. However, if you would like to exert more control over the number
of valid inputs or outputs for your function, you should use the –u and/or –y
options. These options specifically set the number of inputs (u) and the number
of outputs (y) for your function. If either –u or –y is omitted, the respective
input or output will be dynamically sized.

mcc –S –u 1 –y 2 mfilename

In the above line, the S-function will be generated with an input vector whose
width is 1 and an output vector whose with is 2. If you were to connect the
referencing S-function block to signals that do not correspond to the correct
number of inputs or outputs, Simulink will generate an error when the
simulation starts.

Specifying S-Function Characteristics

Sample Time
Similar to the MATLAB Fcn block, the automatically generated S-function has
an inherited sample time.
3-15

3 Getting Started with MEX-Files

3-1
Data Type
The input and output vectors for the Simulink S-function must be
double-precision vectors or scalars. You must ensure that the variables you use
in the M-code for input and output are also double-precision values.

Note Simulink S-functions that are generated via the –S option of the
Compiler are not currently compatible with Real-Time Workshop®. They can,
however, be used to rapidly prototype code in Simulink.
6

Converting Script M-Files to Function M-Files
Converting Script M-Files to Function M-Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function M-files

• Script M-files

These two categories of M-files differ in two important respects:

• You can pass arguments to function M-files but not to script M-files.

• Variables used inside function M-files are local to that function; you cannot
access these variables from the MATLAB interpreter’s workspace. By
contrast, variables used inside script M-files are shared with the caller’s
workspace; you can access these variables from the MATLAB interpreter
command line.

The MATLAB Compiler cannot compile script M-files nor can it compile a
function M-file that calls a script.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the M-file.

For example, consider the script M-file houdini.m:

m = magic(4); % Assign 4x4 matrix to m.
t = m .^ 3; % Cube each element of m.
disp(t); % Display the value of t.

Running this script M-file from a MATLAB session creates variables m and t in
your MATLAB workspace.

The MATLAB Compiler cannot compile houdini.m because houdini.m is a
script. Convert this script M-file into a function M-file by simply adding a
function header line:

function t = houdini
m = magic(4); % Assign 4x4 matrix to m.
t = m .^ 3; % Cube each element of m.
disp(t); % Display the value of t.

The MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running houdini.mex no longer creates variable m
3-17

3 Getting Started with MEX-Files

3-1
in the MATLAB workspace. If it is important to have m accessible from the
MATLAB workspace, you can change the beginning of the function to:

function [m,t] = houdini;
8

Building Stand-Alone C/C++ Applications 4-5

Building Stand-Alone Applications on UNIX 4-9

Building Stand-Alone Applications on PCs 4-19

Building Shared Libraries 4-29

Troubleshooting 4-30

Coding with M-Files Only 4-33

Alternative Ways of Compiling M-Files 4-37

Mixing M-Files and C or C++ 4-39
4

Stand-Alone
Applications

Introduction . 4-2

4 Stand-Alone Applications

4-2
Introduction

Note You must have the optional MATLAB C/C++ Math Library installed on
your system if you want to create stand-alone applications.

This chapter explains how to use the MATLAB Compiler to code and build
stand-alone applications. The first part of the chapter concentrates on using
the mbuild script to build stand-alone applications and the second part
concentrates on the coding of the applications. Stand-alone applications run
without the help of the MATLAB interpreter. In fact, stand-alone applications
run even if MATLAB is not installed on the system. However, stand-alone
applications do require the run-time shared libraries. The specific shared
libraries required for each platform are listed within the following sections.

Differences Between MEX-Files and Stand-Alone
Applications
MEX-files and stand-alone applications differ in these respects:

• MEX-files run in the same process space as the MATLAB interpreter. When
you invoke a MEX-file, the MATLAB interpreter dynamically links in the
MEX-file.

• Stand-alone C or C++ applications run independently of MATLAB.

Stand-Alone C Applications
To build stand-alone C applications as described in this chapter, MATLAB, the
MATLAB Compiler, a C compiler, and the MATLAB C/C++ Math Library must
be installed on your system.

Note The MATLAB Compiler will compile calls to MEX-files in stand-alone
mode, but you must provide suitable definitions for these functions so that the
application can link properly.

Introduction
The source code for a stand-alone C application consists either entirely of
M-files or some combination of M-files and C or C++ source code files.

The MATLAB Compiler translates input M-files into C source code suitable for
your own stand-alone applications. After compiling this C source code, the
resulting object file is linked with the object libraries:

• The MATLAB M-File Math Library (libmmfile), which contains compiled
versions of most MATLAB M-file math routines.

• The MATLAB Math Built-In Library (libmatlb), which contains compiled
versions of most MATLAB built-in math routines.

• The MATLAB Array Access and Creation Library (libmx), which contains
the array access routines.

• The MATLAB Utilities Library (libut), which contains the utility routines
used by various components in the background.

• The MATLAB Graphics Library (libsgl), if applicable.

• The ANSI C Math Library.

The libmmfile and libmatlb libraries come with the MATLAB C/C++ Math
Library product, the libmx and libut libraries come with MATLAB, and the
libsgl library comes with the MATLAB C/C++ Graphics Library product. The
last library comes with your ANSI C compiler.

Note If you attempt to compile .m files to produce stand-alone applications
and you do not have the MATLAB C/C++ Math Library installed, the system
will not be able to find the appropriate libraries and the linking will fail. Also,
if you do not have the MATLAB C/C++ Graphics Library installed, the
MATLAB Compiler will generate run-time errors if the graphics functions are
called.

Stand-Alone C++ Applications
To build stand-alone C++ applications, MATLAB, the MATLAB Compiler, a
C++ compiler, and the MATLAB C/C++ Math Library must be installed on your
system.

The source code for a stand-alone C++ application consists either entirely of
M-files or some combination of M-files and C or C++ source code files.
4-3

4 Stand-Alone Applications

4-4
The MATLAB Compiler, when invoked with the appropriate option flag (–p or
–L Cpp), translates input M-files into C++ source code suitable for your own
stand-alone applications. After compiling this C++ source code, the resulting
object file is linked with the above C object libraries and the MATLAB C++
Math Library (libmatpp), which contains C++ versions of MATLAB functions.
The mbuild script links the MATLAB C++ Math Library first, then the C object
libraries listed above.

Note On the PC, the MATLAB C++ Math Library is static because the
different PC compiler vendors use different C++ name mangling algorithms.

Building Stand-Alone C/C++ Applications
Building Stand-Alone C/C++ Applications
This section explains how to build stand-alone C and C++ applications on
UNIX systems and PCs running Microsoft Windows.

This section begins with a summary of the steps involved in building
stand-alone C/C++ applications, including the mbuild script, which helps
automate the build process, and then describes platform-specific issues for both
supported platforms.

Note This chapter assumes that you have installed and configured the
MATLAB Compiler.

Overview
On both operating systems, the steps you use to build stand-alone C and C++
applications are:

1 Verify that mbuild can create stand-alone applications.

2 Verify that the MATLAB Compiler can link object files with the proper
libraries to form a stand-alone application.

Figure 4-1 shows the sequence on both platforms. The sections following the
flowchart provide more specific details for the individual platforms.
4-5

4 Stand-Alone Applications

4-6
Figure 4-1: Sequence for Creating Stand-Alone C/C++ Applications

Packaging Stand-Alone Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries with which the application was
linked. The necessary shared libraries vary by platform and are listed within
the individual UNIX and Windows sections that follow.

Start

Test your

mbuild configuration.

Does the command
mbuild ex1.c
generate proper application

See “Troubleshooting
mbuild.”

Test your
MATLAB Compiler
configuration.

Does the command
mcc –m hello
generate the hello application

Stop

1

1

No

Yes

Yes

?

?

2

No

See “Troubleshooting
Compiler.”

2

Verify
mbuild

Verify MATLAB
Compiler can
generate
application

Building Stand-Alone C/C++ Applications
Getting Started

Introducing mbuild
The MathWorks utility, mbuild, lets you customize the configuration and build
process. The mbuild script provides an easy way for you to specify an options
file that lets you:

• Set your compiler and linker settings

• Change compilers or compiler settings

• Switch between C and C++ development

• Build your application

The MATLAB Compiler (mcc) automatically invokes mbuild under certain
conditions. In particular, mcc –m or mcc –p invokes mbuild to perform
compilation and linking. See the section, “ mcc (Compiler 2.0),” in Chapter 6 for
complete details on which Compiler options you should use in order to use the
mbuild script.

If you do not want mcc to invoke mbuild automatically, you can use the –c
option. For example, mcc –mc filename.

Compiler Options Files
Options files contain the required compiler and linker settings for your
particular C or C++ compiler. The MathWorks provides options files for every
supported C or C++ compiler. The options file for UNIX is mbuildopts.sh;
Table 4-4 contains the options files for the PC.

Much of the information on options files in this chapter is provided for those
users who may need to modify an options file to suit their specific needs. Many
users never have to be concerned with how the options files work.
4-7

4 Stand-Alone Applications

4-8
Note Before you can create stand-alone C or C++ applications, you must
install the MATLAB C/C++ Math Library on your system. The MATLAB
C/C++ Math Library is a separately sold product available from The
MathWorks, Inc.

If you are developing C++ applications, make sure your C++ compiler supports
the templates features of the C++ language. If it does not, you may be unable
to use the MATLAB C/C++ Math Library.

Building Stand-Alone Applications on UNIX
Building Stand-Alone Applications on UNIX
This section explains how to compile and link C or C++ source code into a
stand-alone UNIX application.

Configuring for C or C++
mbuild deduces the type of files you are compiling by the file extension. If you
include both C and C++ files, mbuild uses the C++ compiler and the MATLAB
C++ Math Library. If mbuild cannot deduce from the file extensions whether
to compile C or C++, mbuild invokes the C compiler. The MATLAB Compiler
generates only .c and .cpp files. Table 4-1 shows the supported file extensions.

Note You can override the language choice that is determined from the
extension by using the –lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see the mbuild reference
page in Chapter 6.

Locating Options Files
mbuild locates your options file by searching the following:

• The current directory
• $HOME/matlab

• <matlab>/bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Table 4-1: UNIX File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.C
.cxx
.cc
4-9

4 Stand-Alone Applications

4-1
Preparing to Compile

Note Refer to “Supported ANSI C and C++ UNIX Compilers” in Chapter 2 for
information about supported compilers and important limitations.

Using the System Compiler
If the MATLAB Compiler and your supported C or C++ compiler are installed
on your system, you are ready to create C or C++ stand-alone applications. To
create a stand-alone C application, you can simply enter

mbuild filename.c

This simple method works for the majority of users. Assuming filename.c
contains a main function, this example uses the system’s compiler as your
default compiler for creating your stand-alone application. If you are a user
who does not need to change C or C++ compilers, or you do not need to modify
your compiler options files, you can skip ahead in this section to “Verifying
mbuild.” If you need to know how to change the options file or select a different
compiler, continue with this section.

Changing Compilers

Changing the Default Compiler. You need to use the setup option if you want to
change any options or link against different libraries. At the UNIX prompt
type:

mbuild –setup

The setup option creates a user-specific options file for your ANSI C or C++
compiler. Executing mbuild –setup presents a list of options files currently
included in the bin subdirectory of MATLAB.

mbuild –setup

Using the 'mbuild –setup' command selects an options file that is
placed in ~/matlab and used by default for 'mbuild'. An options
file in the current working directory or specified on the command
line overrides the default options file in ~/matlab.
0

Building Stand-Alone Applications on UNIX
Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the 'mbuild –f' command
(see 'mbuild –help' for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :
 Build and link with MATLAB C/C++ Math Library

If there is more than one options file, you can select the one you want by
entering its number and pressing Return. If there is only one options file
available, it is automatically copied to your MATLAB directory if you do not
already have an mbuild options file. If you already have an mbuild options file,
you are prompted to overwrite the existing one.

Note The options file is stored in the MATLAB subdirectory of your home
directory. This allows each user to have a separate mbuild configuration.

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mbuild script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

If you need to change the options that mbuild passes to your compiler or linker,
you must first run

mbuild –setup

which copies a master options file to your local MATLAB directory, typically
$HOME/matlab/mbuildopts.sh.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, –v, as in

mbuild –v filename1 [filename2 …]
4-11

4 Stand-Alone Applications

4-1
to generate a list of all the current compiler settings. To change the options, use
an editor to make changes to your options file, which is in your local matlab
directory. Your local matlab directory is a user-specific, MATLAB directory in
your individual home directory that is used specifically for your individual
options files. You can also embed the settings obtained from the verbose option
of mbuild into an integrated development environment (IDE) or makefile that
you need to maintain outside of MATLAB. Often, however, it is easier to call
mbuild from your makefile. See your system documentation for information on
writing makefiles.

Note Any changes made to the local options file will be overwritten if you
execute mbuild –setup. To make the changes persist through repeated uses of
mbuild –setup, you must edit the master file itself,
<matlab>/bin/mbuildopts.sh.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the –f option, as in

mbuild –f <file> …

The –f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the –f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Verifying mbuild
There is C source code for an example ex1.c included in the
<matlab>/extern/examples/cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, copy ex1.c to your local directory and type cd to change to that
directory. Then, at the MATLAB prompt, enter:

mbuild ex1.c

This should create the file called ex1. Stand-alone applications created on
UNIX systems do not have any extensions.
2

Building Stand-Alone Applications on UNIX
Locating Shared Libraries
Before you can run your stand-alone application, you must tell the system
where the API and C shared libraries reside. This table provides the necessary
UNIX commands depending on your system’s architecture.

It is convenient to place this command in a startup script such as
~/.cshrc. Then the system will be able to locate these shared libraries
automatically, and you will not have to re-issue the command at the start of
each login session.

Note On all UNIX platforms, the Compiler library is shipped as a shared
object (.so) file or shared library (.sl). Any Compiler-generated, stand-alone
application must be able to locate the C/C++ libraries along the library path
environment variable (SHLIB_PATH, LIBPATH, or LD_LIBRARY_PATH) in order to
be found and loaded. Consequently, to share a Compiler-generated,
stand-alone application with another user, you must provide all of the
required shared libraries. For more information about the required shared
libraries for UNIX, see “Distributing Stand-Alone UNIX Applications.”

Architecture Command

HP700 setenv SHLIB_PATH <matlab>/extern/lib/hp700:$SHLIB_PATH

IBM RS/6000 setenv LIBPATH <matlab>/extern/lib/ibm_rs:$LIBPATH

All others setenv LD_LIBRARY_PATH <matlab>/extern/lib/<arch>:$LD_LIBRARY_PATH

where:
<matlab> is the MATLAB root directory
<arch> is your architecture (i.e., alpha, lnx86, sgi, sgi64, or sol2)
4-13

4 Stand-Alone Applications

4-1
Running Your Application
To launch your application, enter its name on the command line. For example,

ex1
ans =

 1 3 5
 2 4 6

ans =

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

Verifying the MATLAB Compiler
There is MATLAB code for an example, hello.m, included in the
<matlab>/extern/examples/compiler directory. To verify that the MATLAB
Compiler can generate stand-alone applications on your system, type the
following at the MATLAB prompt:

mcc –m hello.m

This command should complete without errors. To run the stand-alone
application, hello, invoke it as you would any other UNIX application,
typically by typing its name at the UNIX prompt. The application should run
and display the message

Hello, World

When you execute the mcc command to link files and libraries, mcc actually
calls the mbuild script to perform the functions.

Distributing Stand-Alone UNIX Applications
To distribute a stand-alone application, you must include the application’s
executable and the shared libraries against which the application was linked.
This package of files includes:
4

Building Stand-Alone Applications on UNIX
• Application (executable)
• libmmfile.ext

• libmatlb.ext

• libmat.ext

• libmx.ext

• libut.ext

• libsgl.ext (if applicable)
• libmatpp.ext (This is necessary only if you are using

the C++ Math Library.)

where .ext is

.a on IBM RS/6000; .so on Solaris, Alpha, Linux, and SGI; and .sl on HP 700.

For example, to distribute the ex1 example for Solaris, you need to include ex1,
libmmfile.so, libmatlb.so, libmat.so, libmx.so, libut.so, libsgl.so (if
applicable), and libmatpp.so. Remember to locate the shared libraries along
the LD_LIBRARY_PATH environment variable so that they can be found and
loaded.

Installing C++ and Fortran Support
MATLAB users require access to both the C++ and Fortran run-time shared
libraries. These are usually provided as part of the operating system
installation. For Digital UNIX, however, the C++ shared libraries are part of
the base installation package, but the Fortran shared libraries are on a
separate disk called the “Associated Products CD.” MATLAB users running
under Digital UNIX should install both the C++ and Fortran run-time shared
libraries.

Note If you distribute an application created with the Math Libraries on
Digital UNIX, your users must have both the C++ and Fortran run-time
shared libraries installed on their systems.

About the mbuild Script
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
4-15

4 Stand-Alone Applications

4-1
additional details of the mbuild script; they use it in its simplest form. The
information in Table 4-2 is provided for those users who require more flexibility
with the tool. The mbuild syntax and options are:

mbuild [–options] filename1 [filename2 …]

Table 4-2: mbuild Options on UNIX

Option Description

–c Compile only; do not link.

–D<name>[=<def>] Define C preprocessor macro <name>
[as having value <def>.]

–f <file> Use <file> to override the default
options file; <file> is a full pathname if
the options file is not in current directory.

–g Build an executable with debugging
symbols included.

–h[elp] Help; prints a description of mbuild and
the list of options.

–I<pathname> Add <pathname> to the Compiler include
search path.

–l<file> Link against library lib<file>.

–L<pathname> Include <pathname> in the list of
directories to search for libraries.

–lang <language> Override language choice implied by file
extension.
<language> = c for C (default)

cpp for C++
This option is necessary when you use an
unsupported file extension, or when you
pass in all .o files and libraries.
6

Building Stand-Alone Applications on UNIX
–link <target> Specify output type.
<target> = exe for an executable

(default)
shared for shared library

(See “Building Shared Libraries” later in
this chapter.)

<name>=<def> Override options file setting for variable
<name>. If <def> contains spaces,
enclose it in single quotes, e.g.,
CFLAGS='opt1 opt2'. The definition,
<def>, can reference other variables
defined in the options file. To reference a
variable in the options file, prepend the
variable name with a $, e.g.,
CFLAGS='$CFLAGS opt2'.

–n No execute flag. This option causes the
commands used to compile and link the
target to display without executing
them.

–outdir <dirname> Place any generated object, resource, or
executable files in the directory
<dirname>. Do not combine this option
with –output if the –output option gives
a full pathname.

–output <name> Create an executable named <name>.
(An appropriate executable extension is
automatically appended.)

–O Build an optimized executable.

–setup Set up default options file. This option
should be the only argument passed.

Table 4-2: mbuild Options on UNIX (Continued)

Option Description
4-17

4 Stand-Alone Applications

4-1
Note Some of these options (–f, –g, and –v) are available on the mcc command
line and are passed along to mbuild. Others can be passed along using the –M
option to mcc. For details on the –M option, see “mcc (Compiler 2.0)” in Chapter
6.

–U<name> Undefine C preprocessor macro <name>.

–v Verbose; print all compiler and linker
settings.

Table 4-2: mbuild Options on UNIX (Continued)

Option Description
8

Building Stand-Alone Applications on PCs
Building Stand-Alone Applications on PCs
This section explains how to compile and link the C/C++ code generated from
the MATLAB Compiler into a stand-alone Windows application.

Configuring for C or C++
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 4-3 shows the file extensions that mbuild
interprets as indicating C or C++ files.

• If you include both C and C++ files, mbuild uses the C++ compiler and the
MATLAB C++ Math Library.

• If mbuild cannot deduce from the file extensions whether to compile in C or
C++, mbuild invokes the C compiler.

Note You can override the language choice that is determined from the
extension by using the –lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see Table 4-5.

Locating Options Files
To locate your options file, the mbuild script searches the following:

• The current directory
• The user profile directory (For more information about this directory, see

the section, “The User Profile Directory Under Windows,” in Chapter 2.)
• <matlab>\bin

Table 4-3: Windows File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.cxx
.cc
4-19

4 Stand-Alone Applications

4-2
mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

Preparing to Compile

Note Refer to “Supported ANSI C and C++ PC Compilers” in Chapter 2 for
information about supported compilers and important limitations.

Choosing a Compiler

Systems with Exactly One C/C++ Compiler. If the MATLAB Compiler and your
supported C or C++ compiler are installed on your system, you are ready to
create C or C++ stand-alone applications. On systems where there is exactly
one C or C++ compiler available to you, the mbuild utility automatically
configures itself for the appropriate compiler. So, for many users, to create a C
or C++ stand-alone applications, you can simply enter

mbuild filename.c

This simple method works for the majority of users. Assuming filename.c
contains a main function, this example uses your installed C or C++ compiler
as your default compiler for creating your stand-alone application. If you are a
user who does not need to change compilers, or you do not need to modify your
compiler options files, you can skip ahead in this section to “Verifying mbuild.”
If you need to know how to change the options file or select a different compiler,
continue with this section.

Systems with More than One C/C++ Compiler. On systems where there is more than
one C or C++ compiler, the mbuild utility lets you select which of the compilers
you want to use. Once you choose your C or C++ compiler, that compiler
becomes your default compiler and you no longer have to select one when you
compile your stand-alone applications.

For example, if your system has both the Borland and Watcom compilers, when
you enter for the first time

mbuild filename.c
0

Building Stand-Alone Applications on PCs
you are asked to select which compiler to use.

mbuild has detected the following compilers on your machine:

[1] : Borland compiler in T:\Borland\BC.500
[2] : WATCOM compiler in T:\watcom\c.106

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify your information.

Changing Compilers

Changing the Default Compiler. To change your default C or C++ compiler, you
select a different options file. You can do this at anytime by using the setup
command.

This example shows the process of changing your default compiler to the
Microsoft Visual C/C++ Version 6.0 compiler.

mbuild –setup

Please choose your compiler for building stand-alone MATLAB
applications.

Would you like mbuild to locate installed compilers [y]/n? n

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0, 5.2, or 5.3)
[2] Microsoft Visual C/C++ (version 4.2, 5.0, or 6.0)
[3] Watcom C/C++ (version 10.6 or 11)

[0] None

Compiler: 2
4-21

4 Stand-Alone Applications

4-2
Choose the version of your C/C++ compiler:
[1] Microsoft Visual C/C++ 4.2
[2] Microsoft Visual C/C++ 5.0
[3] Microsoft Visual C/C++ 6.0

version: 3

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Program Files\DevStudio6.
Do you want to use this compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Program Files\DevStudio6

Are these correct?([y]/n): y

The default options file:
"C:\WINNT\Profiles\username
\Application Data\MathWorks\MATLAB\compopts.bat" is being
updated...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used everytime you use the mbuild script.

Modifying the Options File. Another use of the setup option is if you want to
change your options file settings. For example, if you want to make a change to
the current linker settings, or you want to disable a particular set of warnings,
you should use the setup option.

The setup option copies the appropriate options file to your user profile
directory. To make your user-specific changes to the options file, you edit your
copy of the options file in your user profile directory to correspond to your
specific needs and save the modified file. This sets your default compiler’s
2

Building Stand-Alone Applications on PCs
options file to your specific version. Table 4-4 lists the names of the PC options
files included in this release of MATLAB.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, –v, as in

mbuild –v filename1 [filename2 …]

to generate a list of all the current compiler settings used by mbuild. To change
the options, use an editor to make changes to your options file that corresponds
to your compiler. You can also embed the settings obtained from the verbose
option into an integrated development environment (IDE) or makefile that you
need to maintain outside of MATLAB. Often, however, it is easier to call mbuild
from your makefile. See your system documentation for information on writing
makefiles.

Note Any changes that you make to the local options file compopts.bat will
be overwritten the next time you run mbuild –setup. If you want to make
your edits persist through repeated uses of mbuild –setup, you must edit the
master file itself. The master options files are also located in <matlab>\bin.

Table 4-4: Compiler Options Files on the PC

Compiler Master Options File

Borland C/C++, Version 5.0 bcccompp.bat

Borland C/C++, Version 5.2 bcc52compp.bat

Borland C/C++, Version 5.3 bcc53compp.bat

Microsoft Visual C/C++, Version 4.2 msvccompp.bat

Microsoft Visual C/C++, Version 5.0 msvc50compp.bat

Microsoft Visual C/C++, Version 6.0 msvc60compp.bat

Watcom C/C++, Version 10.6 watccompp.bat

Watcom C/C++, Version 11 wat11ccompp.bat
4-23

4 Stand-Alone Applications

4-2
Combining Customized C and C++ Options Files. The options files for mbuild have
changed as of MATLAB 5.3 (Release 11) so that the same options file can be
used to create both C and C++ stand-alone applications. If you have modified
your own separate options files to create C and C++ applications, you can
combine them into one options file.

To combine your existing options files into one universal C and C++ options file:

1 Copy from the C++ options file to the C options file all lines that set the
variables COMPFLAGS, OPTIMFLAGS, DEBUGFLAGS, and LINKFLAGS.

2 In the C options file, within just those copied lines from step 1, replace all
occurrences of COMPFLAGS with CPPCOMPFLAGS, OPTIMFLAGS with
CPPOPTIMFLAGS, DEBUGFLAGS with CPPDEBUGFLAGS, and LINKFLAGS with
CPPLINKFLAGS.

This process modifies your C options file to be a universal C/C++ options file.

Temporarily Changing the Compiler. To temporarily change your C or C++ compiler,
use the –f option, as in

mbuild –f <file> …

The –f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the –f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Verifying mbuild
There is C source code for an example, ex1.c, included in the
<matlab>\extern\examples\cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, enter at the MATLAB prompt:

mbuild ex1.c

This should create the file called ex1.exe. Stand-alone applications created on
Windows 95/98 or Windows NT always have the extension exe. The created
application is a 32-bit MS-DOS console application.
4

Building Stand-Alone Applications on PCs
Shared Libraries
All the libraries (WIN32 Dynamic Link Libraries, or DLLs) for MATLAB, the
MATLAB Compiler, and the MATLAB Math Library are in the directory

<matlab>\bin

The .DEF files for the Microsoft and Borland compilers are in the
<matlab>\extern\include directory. All of the relevant libraries for building
stand-alone applications are WIN32 Dynamic Link Libraries. Before running
a stand-alone application, you must ensure that the directory containing the
DLLs is on your path. The directory must be on your operating system $PATH
environment variable. On Windows 95, set the value in your AUTOEXEC.BAT file;
on Windows NT, use the Control Panel to set it.

Running Your Application
You can now run your stand-alone application by launching it from the DOS
command line. For example,

ex1
ans =

 1 3 5
 2 4 6

ans =

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

Verifying the MATLAB Compiler
There is MATLAB code for an example, hello.m, included in the
<matlab>\extern\examples\compiler directory. To verify that the MATLAB
Compiler can generate stand-alone applications on your system, type the
following at the MATLAB prompt:

mcc –m hello.m
4-25

4 Stand-Alone Applications

4-2
This command should complete without errors. To run the stand-alone
application, hello, invoke it as you would any other Windows console
application, by typing its name on the MS-DOS command line. The application
should run and display the message Hello, World.

When you execute the mcc command to link files and libraries, mcc actually
calls the mbuild script to perform the functions.

About the mbuild Script
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
additional details of the mbuild script; they use it in its simplest form. The
information in Table 4-5 is provided for those users who require more flexibility
with the tool. The mbuild syntax and options are:

mbuild [–options] filename1 [filename2 …]

Table 4-5: mbuild Options on Windows

Option Description

@filename Replace @filename on the mbuild
command line with the contents of
filename. filename is a response file, i.e.,
a text file that contains additional
command line options to be processed.

–c Compile only; do not link.

–D<name> Define C preprocessor macro <name>.

–f <file> Use <file> as the options file; <file> is a
full pathname if the options file is not in
current directory.

–g Build an executable with debugging
symbols included.

–h[elp] Help; prints a description of mbuild and
the list of options.
6

Building Stand-Alone Applications on PCs
–I<pathname> Add <pathname> to the Compiler include
search path.

–lang <language> Override language choice implied by file
extension.
<language> = c for C (default)

cpp for C++
This option is necessary when you use an
unsupported file extension, or when you
pass in all .o files and libraries.

–link <target> Specify output type.
<target> = exe for an executable

(default)
shared for DLL

–outdir <dirname> Place any generated object, resource, or
executable files in the directory
<dirname>. Do not combine this option
with –output if the –output option gives
a full pathname.

–output <name> Create an executable named <name>.
(An appropriate executable extension is
automatically appended.)

–O Build an optimized executable.

–setup Set up default options file. This option
should be the only argument passed.

–U<name> Undefine C preprocessor macro <name>.

–v Verbose; print all compiler and linker
settings.

Table 4-5: mbuild Options on Windows (Continued)

Option Description
4-27

4 Stand-Alone Applications

4-2
Note Some of these options (–f, –g, and –v) are available on the mcc command
line and are passed along to mbuild. Others can be passed along using the –M
option to mcc. For details on the –M option, see “mcc (Compiler 2.0)” in Chapter
6.

Using an IDE
The MathWorks provides a special tool, VisualMATLAB, a Developer Studio
add-in that lets you easily work within the Microsoft Visual C++ environment.
For more information about VisualMATLAB, including how to download it
from The MathWorks, contact Technical Support.

Distributing Stand-Alone Windows Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries against which the application was
linked. This package of files includes:

• Application (executable)

• libmmfile.dll

• libmatlb.dll

• libmat.dll

• libmx.dll

• libut.dll

• libsgl.dll (if applicable)

For example, to distribute the Windows version of the ex1 example, you need
to include ex1.exe, libmmfile.dll, libmatlb.dll, libmat.dll, libmx.dll,
libut.dll, and libsgl.dll (if applicable). The DLLs must be on the system
path. You must either install them in a directory that is already on the path or
modify the PATH variable to include the new directory.
8

Building Shared Libraries
Building Shared Libraries
You can use mbuild to build C shared libraries on both UNIX and the PC. All
of the mbuild options that pertain to creating stand-alone applications also
pertain to creating C shared libraries. To create a C shared library, you use the
option

–link shared

and specify one or more files with the .exports extension. The .exports files
are text files that contain the names of the functions to export from the shared
library, one per line. You can include comments in your code by beginning a line
(first column) with # or a *. mbuild treats these lines as comments and ignores
them. mbuild merges multiple .exports files into one master exports list.

For example, given file2.exports as:

times2
times3

and file1.c as:

int times2(int x)
{

return 2 * x;
}

int times3(int x)
{

return 3 * x;
}

The command

mbuild –link shared file1.c file2.exports

creates a shared library named file1.ext, where ext is the
platform-dependent shared library extension. For example, on the PC, it would
be called file1.dll. The shared library exports the symbols times2 and
times3.
4-29

4 Stand-Alone Applications

4-3
Troubleshooting

Troubleshooting mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create stand-alone applications.

Options File Not Writeable
When you run mbuild –setup, mbuild makes a copy of the appropriate options
file and writes some information to it. If the options file is not writeable, you
are asked if you want to overwrite the existing options file. If you choose to do
so, the existing options file is copied to a new location and a new options file is
created.

Directory or File Not Writeable
If a destination directory or file is not writeable, ensure that the permissions
are properly set. In certain cases, make sure that the file is not in use.

mbuild Generates Errors
On UNIX, if you run mbuild filename and get errors, it may be because you
are not using the proper options file. Run mbuild –setup to ensure proper
compiler and linker settings.

Compiler and/or Linker Not Found
On PCs running Windows, if you get errors such as unrecognized command or
file not found, make sure the command line tools are installed and the path
and other environment variables are set correctly.

mbuild Not a Recognized Command
If mbuild is not recognized, verify that <MATLAB>\bin is on your path. On
UNIX, it may be necessary to rehash.

mbuild Works from Shell but Not from MATLAB (UNIX)
If the command

mbuild ex1.c

works from the UNIX command prompt but does not work from the MATLAB
prompt, you may have a problem with your .cshrc file. When MATLAB
0

Troubleshooting
launches a new C shell to perform compilations, it executes the .cshrc script.
If this script causes unexpected changes to the PATH environment variable, an
error may occur. You can test this by performing a

set SHELL=/bin/sh

prior to launching MATLAB. If this works correctly, then you should check
your .cshrc file for problems setting the PATH environment variable.

Cannot Locate Your Compiler (PC)
If mbuild has difficulty locating your installed compilers, it is useful to know
how it goes about finding compilers. mbuild automatically detects your
installed compilers by first searching for locations specified in the following
environment variables:

• BORLAND for Borland C/C++, Version 5.0, 5.2, or 5.3

• WATCOM for the Watcom C/C++ Compiler

• MSVCDIR for Microsoft Visual C/C++, Version 5.0 or 6.0

• MSDEVDIR for Microsoft Visual C/C++, Version 4.2

Next, mbuild searches the Windows registry for compiler entries. Note that
Watcom does not add an entry to the registry.

Internal Error When Using mbuild –setup (PC)
Some antivirus software packages such as Cheyenne AntiVirus and Dr.
Solomon may conflict with the mbuild –setup process. If you get an error
message during mbuild –setup of the following form:

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild –setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mbuild Fails
If none of the previous solutions addresses your difficulty with mbuild, contact
Technical Support at The MathWorks at support@mathworks.com or
508 647-7000.
4-31

4 Stand-Alone Applications

4-3
Troubleshooting the Compiler
Typically, problems that occur when building stand-alone C and C++
applications involve mbuild. However, it is possible that you may run into some
difficulty with the MATLAB Compiler. One problem that might occur when you
try to generate a stand-alone application involves licensing.

Licensing Problem
If you do not have a valid license for the MATLAB Compiler, you will get an
error message similar to the following when you try to access the Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this manual.

MATLAB Compiler Does Not Generate Application
If you experience other problems with the MATLAB Compiler, contact
Technical Support at The MathWorks at support@mathworks.com or 508
647-7000.
2

Coding with M-Files Only
Coding with M-Files Only
One way to create a stand-alone application is to write all the source code in
one or more M-files. Coding an application in M-files allows you to take
advantage of MATLAB’s interpretive development environment. Then, after
getting the M-file version of your program working properly, compile the code
and build it into a stand-alone application.

Note It is good practice to avoid manually modifying the C or C++ code that
the MATLAB Compiler generates. If the generated C or C++ code is not to
your liking, modify the M-file (and/or the compiler options) and then
recompile. If you do edit the generated C or C++ code, remember that your
changes will be erased the next time you recompile the M-file. For more
information, see “Compiling MATLAB-Provided M-Files Separately” in this
chapter and “Interfacing M-Code to C/C++ Code” in Chapter 5.

Consider a very simple application whose source code consists of two M-files,
mrank.m and main.m. This example involves C code; you use a similar process
(described below) for C++ code. In this example, the line r = zeros(n,1)
preallocates memory to help the performance of the Compiler.

mrank.m returns a vector of integers, r. Each element of r represents the rank
of a magic square. For example, after the function completes, r(3) contains the
rank of a 3-by-3 magic square.

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end
4-33

4 Stand-Alone Applications

4-3
main.m contains a “main routine” that calls mrank and then prints the results:

function main
r = mrank(5);
r

Note All stand-alone C programs require a main routine as their entry point.

To compile these into code that can be built into a stand-alone application,
invoke the MATLAB Compiler:

mcc –mc main mrank

The –m option flag causes the MATLAB Compiler to generate C source code
suitable for stand-alone applications. For example, the MATLAB Compiler
generates C source code files main.c, main_main.c, and mrank.c. main_main.c
contains a C function named main; main.c and mrank.c contain a C functions
named mlfMain and mlfMrank. (The –c option flag inhibits invocation of
mbuild.)

To build an executable application, you can use mbuild to compile and link
these files. Or, you can automate the entire build process (invoke the MATLAB
Compiler twice, use mbuild to compile the files with your ANSI C compiler, and
link the code) by using the command

mcc –m main mrank

Figure 4-2 illustrates the process of building a stand-alone C application from
two M-files. The commands to compile and link depend on the operating system
being used. See the “Building Stand-Alone C/C++ Applications” section for
details.
4

Coding with M-Files Only
Figure 4-2: Building Two M-Files into a Stand-Alone C Application

mrank.m

mcc –t mrank.m

mrank.c

C Compiler

Object File

C Compiler

Object File

Linker

Stand-Alone
C Application

main_main.c

mcc –W main –t main

main.m

main.c

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded blocks are user-generated
code.

• Shadowed blocks are MathWorks
tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted block s are C/C++
compiler-generated executable.

mbuild does
this part
4-35

4 Stand-Alone Applications

4-3
For C++ code, add –L cpp to the previous commands, use a C++ compiler
instead of a C compiler, and use the MATLAB C++ Math Library. See the
MATLAB C++ Math Library User’s Guide for details.
6

Alternative Ways of Compiling M-Files
Alternative Ways of Compiling M-Files
The previous section showed how to compile main.m and mrank.m separately.
This section explores two other ways of compiling M-files.

Note These two alternative ways of compiling M-files apply to C++ as well as
to C code; the only difference is that you add –L cpp for C++.

Compiling MATLAB-Provided M-Files Separately
The M-file mrank.m contains a call to rank. The MATLAB Compiler translates
the call to rank into a C call to mlfRank. The mlfRank routine is part of the
MATLAB M-File Math Library. The mlfRank routine behaves in stand-alone
applications exactly as the rank function behaves in the MATLAB interpreter.
However, if this default behavior is not desirable, you can create your own
version of rank or mlfRank.

One way to create a new version of rank is to copy MATLAB’s own source code
for rank and then to edit this copy. MATLAB implements rank as the M-file
rank.m rather than as a built-in command. To see MATLAB’s code for rank.m,
enter:

type rank

Copy this code into a file named rank.m located in the same directory as
mrank.m and main.m. Then, modify your version of rank.m. After completing the
modifications, compile rank.m:

mcc –t rank

Compiling rank.m generates file rank.c, which contains a function named
mlfRank. Then, compile the other M-files composing the stand-alone
application:

mcc –t main.m (produces main.c)
mcc –t mrank.m (produces mrank.c)
mcc –W main main.m mrank.m rank.m (produces main_main.c)
4-37

4 Stand-Alone Applications

4-3
To compile and link all four C source code files (main.c, rank.c, mrank.c, and
main_main.c) into a stand-alone application, use:

mcc main_main.c main.c rank.c mrank.c

The resulting stand-alone application uses your customized version of mlfRank
rather than the default version of mlfRank stored in the MATLAB Toolbox
Library.

Note On PCs running Windows, as well as SGI, SGI64, and IBM, if a function
in the MATLAB Toolbox Library calls mlfRank, it will call the one found in the
Library and not your customized version. We recommend that you call your
version of rank something else, e.g., myrank.m.

Compiling mrank.m and rank.m as Helper
Functions
Another way of building the mrank stand-alone application is to compile rank.m
and mrank.m as helper functions to main.m. In other words, instead of invoking
the MATLAB Compiler three separate times, invoke the MATLAB Compiler
only once. For C:

mcc –m main rank

For C++:

mcc –p main rank

These commands create files containing the C or C++ source code. The macro
options –m and –p automatically compile all helper functions.

Note The functions contained in the Compiler libraries will not be compiled
when you use the –h option; they must be listed specifically on the command
line.
8

Mixing M-Files and C or C++
Mixing M-Files and C or C++
Another way to create a stand-alone application is to code some of it as one or
more function M-files and to code other parts directly in C or C++. To write a
stand-alone application this way, you must know how to

• Call the external C or C++ functions generated by the MATLAB Compiler.

• Handle the results these C or C++ functions return.

This section presents three examples. One is a simple C example, and the other
two are more sophisticated. All three examples illustrate how to mix M-files
and C or C++ source code files.

Note If you include compiled M code into a larger application, you must
produce a library wrapper file even if you do not actually create a separate
library. For more information on creating libraries, see the library sections in
“Supported Executable Types” in Chapter 5.

Simple Example
The example below and the advanced example that follows involve mixing
M-files and C code. See the “Advanced C++ Example” section for an example of
mixing M-files and C++ code.

Consider a simple application whose source code consists of mrank.m and
mrankp.c.

mrank.m
mrank.m contains a function that returns a vector of the ranks of the magic
squares from 1 to n:

function r = mrank(n)
r = zeros(n,1);
for k = 1:n
 r(k) = rank(magic(k));
end
4-39

4 Stand-Alone Applications

4-4
The Build Process
The steps needed to build this stand-alone application are:

1 Compile the M-code.

2 Generate the library wrapper file.

3 Insert the call to the init routine in main.

To perform these steps, use:

mcc –t –W lib:Pkg –T link:exe mrank mrankp.c

The MATLAB Compiler generates C source code files named mrank.c, Pkg.c,
and Pkg.h. This command invokes mbuild to compile the resulting
Compiler-generated source files (mrank.c, Pkg.c, Pkg.h) with the existing C
source file (mrankp.c) and links against the required libraries. For details, see
the “Building Stand-Alone C/C++ Applications” section in this chapter.

The MATLAB Compiler provides two different versions of mrankp.c in the
<matlab>/extern/examples/compiler directory:

• mrankp.c contains a POSIX-compliant main function. mrankp.c sends its
output to the standard output stream and gathers its input from the
standard input stream.

• mrankwin.c contains a Windows version of mrankp.c.
0

Mixing M-Files and C or C++
Figure 4-3: Mixing M-Files and C Code to Form a Stand-Alone Application

mrank.m

mcc –t –W lib:Pkg –T
link:exe mrank mrankp.c

mrank.c, Pkg.c, Pkg.h

C Compiler

Object File

C Compiler

Object File

Linker

Stand-Alone C
Application

mrankp.c

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB Utility Library

ANSI C Library MATLAB C/C++ Graphics Library

• Shaded blocks are user-generated
code.

• Shadowed blocks are MathWorks
tools.

• Unshaded blocks are MATLAB
Compiler-generated code.

• Dotted blocks are C/C++
compiler-generated code.

mbuild does
this part
4-41

4 Stand-Alone Applications

4-4
mrankp.c
The code in mrankp.c calls mrank and outputs the values that mrank returns:

#include <stdio.h>
#include <math.h>
#include "matlab.h"
#include "Pkg.h" /* Include the Compiler-generated header

file */
int main(int argc, char **argv)
{
 mxArray *N; /* Matrix containing n. */
 mxArray *R; /* Result matrix. */
 int n; /* Integer parameter from command line. */

PkgInitialize(); /* Call Pkg initialization */

 /* Get any command line parameter. */
 if (argc >= 2) {
 n = atoi(argv[1]);
 } else {
 n = 12;
 }

 /* Create a 1-by-1 matrix containing n. */
 N = mxCreateDoubleMatrix(1, 1, mxREAL);
 *mxGetPr(N) = n;

 /* Call mlfMrank, the compiled version of mrank.m. */
 R = mlfMrank(N);

 /* Print the results. */
 mlfPrintMatrix(R);

 /* Free the matrices allocated during this computation. */
 mxDestroyArray(N);
 mxDestroyArray(R);

PkgTerminate(); /* Call Pkg termination */

 return 0;
}

2

Mixing M-Files and C or C++
An Explanation of mrankp.c
The heart of mrankp.c is a call to the mlfMrank function. Most of what comes
before this call is code that creates an input argument to mlfMrank. Most of
what comes after this call is code that displays the vector that mlfMrank
returns. First, the code must call the Compiler-generated library initialization
function.

PkgInitialize(); /* Call Pkg initialization */

To understand how to call mlfMrank, examine its C function header, which is:

mxArray *mlfMrank(mxArray *n_rhs_)

According to the function header, mlfMrank expects one input parameter and
returns one value. All input and output parameters are pointers to the mxArray
data type. (See the Application Program Interface Guide for details on the
mxArray data type.) To create and manipulate mxArray * variables in your C
code, you should call the mx routines described in the Application Program
Interface Guide. For example, to create a 1-by-1 mxArray * variable named N
with real data, mrankp calls mxCreateDoubleMatrix:

N = mxCreateDoubleMatrix(1, 1, mxREAL);

Then, mrankp initializes the pr field of N. The pr field holds the real data of
MATLAB mxArray variables. This code sets element 1,1 of N to whatever value
you pass in at runtime:

*mxGetPr(N) = n;

mrankp can now call mlfMrank, passing the initialized N as the sole input
argument:

R = mlfMrank(N);

mlfMrank returns a pointer to an mxArray * variable named R. The easiest way
to display the contents of R is to call the mlfPrintMatrix convenience function:

mlfPrintMatrix(R);

mlfPrintMatrix is one of the many routines in the MATLAB Math Built-In
Library, which is part of the MATLAB Math Library product.
4-43

4 Stand-Alone Applications

4-4
Finally, mrankp must free the heap memory allocated to hold matrices and call
the Compiler-generated termination function:

mxDestroyArray(N);
mxDestroyArray(R);
PkgTerminate(); /* Call Pkg termination */

Advanced C Example
This section illustrates an advanced example of how to write C code that calls
a compiled M-file. Consider a stand-alone application whose source code
consists of two files:

• multarg.m, which contains a function named multarg.

• multargp.c, which contains a C function named main.

multarg.m specifies two input parameters and returns two output parameters:

function [a,b] = multarg(x,y)
a = (x + y) * pi;
b = svd(svd(a));

The code in multargp.c calls mlfMultarg and then displays the two values that
mlfMultarg returns:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "matlab.h"
#include "multpkg.h"/* Include Compiler-generated header file */

static void PrintHandler(const char *text)
{
 printf(text);
}

int main() /* Programmer written coded to call mlfMultarg */
{
#define ROWS 3
#define COLS 3
4

Mixing M-Files and C or C++
 mxArray *a, *b, *x, *y;
 double x_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double x_pi[ROWS * COLS] = {9, 2, 3, 4, 5, 6, 7, 8, 1};
 double y_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 double y_pi[ROWS * COLS] = {2, 9, 3, 4, 5, 6, 7, 1, 8};
 double *a_pr, *a_pi, value_of_scalar_b;

multpkgInitialize(); /* Call multpkg initialization */

 /* Install a print handler to tell mlfPrintMatrix how to
 * display its output.
 */
 mlfSetPrintHandler(PrintHandler);

 /* Create input matrix "x" */
 x = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(x), x_pi, ROWS * COLS * sizeof(double));

 /* Create input matrix "y" */
 y = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
 memcpy(mxGetPr(y), y_pr, ROWS * COLS * sizeof(double));
 memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

 /* Call the mlfMultarg function. */
 a = (mxArray *)mlfMultarg(&b, x, y);

 /* Display the entire contents of output matrix "a". */
 mlfPrintMatrix(a);

 /* Display the entire contents of output scalar "b" */
 mlfPrintMatrix(b);

 /* Deallocate temporary matrices. */
 mxDestroyArray(a);
 mxDestroyArray(b);

multpkgTerminate(); /* Call multpkg termination */
return(0);

}

4-45

4 Stand-Alone Applications

4-4
You can build this program into a stand-alone application by using the
command:

mcc –t –W lib:multpkg –T link:exe multarg multargp.c

The program first displays the contents of a 3-by-3 matrix a and then displays
the contents of scalar b:

 6.2832 +34.5575i 25.1327 +25.1327i 43.9823 +43.9823i
 12.5664 +34.5575i 31.4159 +31.4159i 50.2655 +28.2743i
 18.8496 +18.8496i 37.6991 +37.6991i 56.5487 +28.2743i

 143.4164

An Explanation of This C Code
Invoking the MATLAB Compiler on multarg.m generates the C function
prototype:

extern mxArray * mlfMultarg(mxArray * * b, mxArray * x,
mxArray * y);

extern void mlxMultarg(int nlhs, mxArray * plhs[], int nrhs,
mxArray * prhs[]);

This C function header shows two input arguments (mxArray *x and
mxArray *y) and two output arguments (the return value and mxArray **b).

Use mxCreateDoubleMatrix to create the two input matrices (x and y). Both x
and y contain real and imaginary components. The memcpy function initializes
the components, for example:

x = mxCreateDoubleMatrix(ROWS, COLS, COMPLEX);
memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

The code in this example initializes variable x from two arrays (x_pr and x_pi)
of predefined constants. A more realistic example would read the array values
from a data file or a database.

After creating the input matrices, main calls mlfMultarg:

a = (mxArray *)mlfMultarg(&b, x, y);
6

Mixing M-Files and C or C++
The mlfMultarg function returns matrices a and b. a has both real and
imaginary components; b is a scalar having only a real component. The
program uses mlfPrintMatrix to output the matrices, for example:

mlfPrintMatrix(a);

Advanced C++ Example
This example demonstrates how to use the MATLAB Compiler to produce a
stand-alone C++ executable from a collection of M-files. You can also use these
techniques to incorporate MATLAB functions into a pre-existing C++ program.

Most of the functions in the MATLAB Toolboxes are not present in the
MATLAB C++ Math Library; however, the MATLAB Compiler makes them
available to C++ programs. For example, the Image Processing Toolbox
provides an edge-detection routine, edge(). This example uses edge() and
other routines from the Image Processing Toolbox to perform edge detection in
Microsoft Windows Bitmap files.

Note Version 4 of the MATLAB Image Processing Toolbox, not version 5, is
the source for the image processing routines used in this example. The code
included here is generated from MATLAB 4 code.

In this example, note the following:

• The MATLAB Compiler and the MATLAB C++ Math Library both use
default arguments for optional inputs to functions. mwArray::DIN is the
default input array used to initialize optional input arguments.

• For each accepted number of output arguments, the library provides an
overloaded version of a function; the MATLAB Compiler does not. Output
array pointers do not have a default value. However, you need to pass NULL
to indicate a missing output argument.

• To compile a call to a function, the MATLAB Compiler must be able to
determine the argument list for the function. If the function is built into the
library, it must be present in the Compiler’s internal table. If the function is
in an M-file, that M-file must be on the MATLAB path.

There are a number of built-in functions that, if called, will produce run-time
errors in stand-alone code. See Table 3-3.
4-47

4 Stand-Alone Applications

4-4
Algorithm for the Example
The example program consists of five steps:

1 Read a Microsoft Windows Bitmap file.

2 Convert the bitmap image into a grayscale image.

3 Perform edge-detection on the grayscale image.

4 Convert the resulting black-and-white Boolean mask into an image.

5 Write the image out to a new Microsoft Windows Bitmap file.

M-Files for the Example
These steps require direct calls to five Image Processing Toolbox routines:
bmpread(), ind2gray(), edge(), gray2ind(), and bmpwrite(). As a group,
these routines call five other Image Processing routines: bestblk(), gray(),
grayslice(), rgb2ntsc(), and fspecial(). These last five routines don’t call
any other M-files, though they do call routines built into the MATLAB C++
Math Library. Therefore, 10 M-files need to be compiled to build this example.

You can find these examples in the <matlab>\extern\examples\cppmath
directory of your MATLAB installation. Because the Image Processing Toolbox
version of these routines contains calls to unsupported Handle Graphics®
routines, the M-files used in this example have been modified so that they
compile successfully into stand-alone code.

Building the Example
You can generate this C++ example with the following command:

mcc –p ex9 gray

This command compiles the M-file ex9.m and all other M-files called by ex9,
searching for them on the MATLAB path, and creates multiple C++ output
files. The –p switch also instructs the MATLAB Compiler to generate a C++
8

Mixing M-Files and C or C++
main wrapper. The default output language (without the –p switch) is C. Note
that it is not necessary to specify the .m filename extensions.

Note Because the M-files in this example are modified versions of MATLAB
4.2 Image Processing Toolbox M-files, it is very important that you have the
examples\cppmath directory on your MATLABPATH when you compile ex9.m. If
you do not, the MATLAB Compiler may not find the required M-files, or find
versions of the M-files that do not work with this example.

Running the Example
Run the program by typing

ex9 trees.bmp edges.bmp

at your system prompt.

If no errors occur, the program runs without printing any output and creates a
file called edges.bmp in the current directory. This file contains the results of
performing Sobel edge detection on the standard MATLAB image called trees.

Verify that the program worked by viewing the image in edges.bmp; almost any
graphically-oriented Microsoft program (Paintbrush, MS Paint, etc.) will
display a Microsoft Windows Bitmap file. On UNIX systems use a program like
xv to view the image.

Compiler-Generated C++ Files
For each compiled M-file, the MATLAB Compiler creates two files:

• a corresponding .cpp file

• a corresponding .h file

The names of the output files derive from the name of the compiled M-file. For
example, ex9.m produces ex9.cpp and ex9.h.

The Compiler places the main routine in a file called

• <function>_main.cpp

where <function> is the name of the first M-file specified in the mcc command.
In this case, the file’s name is ex9_main.cpp.
4-49

4 Stand-Alone Applications

4-5
The Generated Main C++ Routine
The automatically-generated main routine creates MATLAB strings from any
arguments passed to the function on the command line, assembles those
strings into a variable length input argument list, and then uses feval() to
call the top-level M-file, ex9 in this example. The main routine wraps the
feval() call in a try-catch block, which ensures that exceptions are caught and
a corresponding error message printed.

int main(int argc, const char * * argv) {
try {

mwArray varargin(argc - 1, argv + 1);
feval(mwAnsVarargout(), mlxEx9,

mwVarargin(varargin.cell(colon())));
return 0;

} catch(mwException e) {
cout << e;
return 1;

}
}

Generated feval() Function Table. In addition to the main routine, ex9_main.cpp
contains the definition of the program’s local feval() function table. To enable
feval() to call any function, the MATLAB Compiler automatically places the
functions it compiles into this local “function table.” Initialization-time code
adds this local table to feval()’s main table.

There are 11 entries in this example’s function table.

static mlfFunctionTableEntry function_table[11] = {
 { "rgb2ntsc", mlxRgb2ntsc, 1, 1 },
 { "grayslice", mlxGrayslice, 2, 1 },
 /* More entries go here */
};

Each entry maps the name of an M-file function (the quoted string) to
information about the corresponding compiled mlxF, or feval, interface
function. The second field in each entry is a pointer to mlxF function, and the
third and fourth fields are the number of input and output arguments expected
by the function. See Chapter 5 for more information on interface functions.

See “The Generated mlxF Interface Function” in this chapter for information
on the mlxEx9 and mlxEdge functions from this example.
0

Mixing M-Files and C or C++
C++ Functions Generated from each M-file Function
The MATLAB Compiler generates three C++ functions from each M-file
function that it compiles.

• A static implementation function that contains the implementation of the
M-file function

• Two public interface functions that represent the two interfaces to the static
implementation function

For example, ex9.cpp contains the three functions generated from the M-file
ex9.m.

The static implementation function is called the Mf implementation function,
where f is replaced with the M-function name.

The first interface function is called the F interface function, or normal
interface function, where F is replaced with the M-function name. It is the
interface function that you would normally use to call the static
implementation function.

The second interface function is the mlxF interface function, or feval interface
function, where F is replaced with the M-function name. The MATLAB C++
Math Library function feval calls the mlxF interface function. The feval
interface requires two additional arrays, one each for your input and your
output arguments. While you can call the feval interface directly, it is easier
to call the normal interface instead.

The Generated Mf Implementation Function
The first function in ex9.cpp is the static Mf implementation function: Mex9.
This function contains the five step algorithm outlined at the beginning of this
section.

Though you can’t tell from the declaration of Mex9, the Mf implementation
functions do not follow the standard calling conventions of the MATLAB C++
Math Library. The section “F Interface Functions That Return a Value or Take
4-51

4 Stand-Alone Applications

4-5
Output Arguments” demonstrates a call to the Mf implementation function for
edge(), which illustrates the full calling conventions.

static void Mex9(mwArray infile, mwArray outfile) {
mwArray bw(mwArray::UNASSIGNED);

 mwArray inten(mwArray::UNASSIGNED);
 mwArray map(mwArray::UNASSIGNED);
 mwArray x(mwArray::UNASSIGNED);
 mwValidateInputs("ex9", 2, &infile, &outfile);

 mbcharvector(infile);
 mbcharvector(outfile);
 x = Nbmpread(2, &map, NULL, infile);
 inten = ind2gray(x, map);
 bw = edge(NULL, inten);
 x = gray2ind(&map, bw);
 bmpwrite(x, map, outfile);
}

1 Declare the implementation function Mex9(). This static function is called
by the F and mlxF interface functions. Mex9() takes two arguments, the
names of the input and output files.

2 Initialize the local variables. In MATLAB a variable is always in one of three
states: non-existent, unassigned, or initialized. The default C++ array
constructor creates an array initialized to an empty array, which is the most
appropriate default for writing code by hand. However, some M-file
functions rely on the distinction between unassigned and initialized arrays,
so variables in compiled functions must always be initialized to the
unassigned state mwArray::UNASSIGNED.

3 Assert that each argument to this function has a value. In MATLAB, if you
pass an unassigned variable to a function, you’ll get an error message.
mwValidateInputs() performs the same check in C++.

4 Assert that the input arguments are vectors of characters, or strings. The
“mb” prefix in mbcharvector stands for “must be.” In an M-file, these
functions behave like type declaration hints for the MATLAB Compiler. If
the argument to a “must be” function is not of the declared type, the function
throws an exception.

3

4

1
2

7
8

9

6
5

2

Mixing M-Files and C or C++
5 Read in the bitmap. Assume the first command line argument is the name
of an input file containing a Microsoft Windows Bitmap. Nbmpread()will fail
if this is not the case. Store the image data in x and the colormap in map.

Note that the MATLAB Compiler generated a call to the interface function
Nbmpread() rather than the normal F bmpread() interface function because
the M-function used the variable nargout. The nargout interface allows the
number of requested outputs to be specified via the nargout argument, as
opposed to the normal interface that dynamically calculates the number of
outputs based on the number of non-NULL inputs it receives.

6 Convert the bitmap to a grayscale intensity image. ind2gray() returns a
matrix the same size as the input image where all the pixel values range
from 0.0 (no intensity, or black) to 1.0 (full intensity, or white).

7 Perform Sobel edge detection on the image. The edge detection routine
supports four methods of edge detection: Sobel, Roberts, Prewitt, and
Marr-Hildreth. Sobel is the default because it gives consistently good
results; it finds edges where the first derivative of the image intensity is
maximal or minimal.

8 Convert the grayscale intensity image to a black-and-white indexed image.
The image returned by edge() contains only 1’s (edge) and 0’s (background).
gray2ind() converts this intensity image into an indexed image and
computes the associated colormap.

9 Write the image out to a bitmap file. Use the indexed image data and
colormap generated by gray2ind(). Assume that the second argument on
the command line (argv[2]) is the name of a file in which to write the output.
Destroy any data currently in this file; if the file does not exist, create it.

The Generated F Interface Function
The next function in ex9.cpp is the F interface function, or normal interface
function.

void ex9(mwArray infile, mwArray outfile) {
 Mex9(infile, outfile);
}

4-53

4 Stand-Alone Applications

4-5
The F interface function has the same name as the first function in the M-file
(ex9 in this case) and is a wrapper around the static implementation function
(Mex9() in this case).

The F interface function follows the usual calling conventions of the MATLAB
C++ Math Library and is the function you’d call if you were incorporating
ex9.cpp into a larger hand-written application.

The F interface function is responsible for converting from the standard
MATLAB C++ Math Library calling conventions, which are designed for
hand-written code, to the MATLAB Compiler’s C++ calling conventions, which
are designed for automatically generated code and are used by the static
implementation functions.

F Interface Functions That Return a Value or Take Output Arguments. It is instructive to
compare the F interface function for the edge() function:

mwArray edge(mwArray * tol, mwArray a, mwArray tol_,
 mwArray method, mwArray k)
{
 int nargout(1);
 mwArray e(mwArray::UNASSIGNED);
 mwArray tol__(mwArray::UNASSIGNED);
 if (tol == NULL) {
 tol = &tol__;
 } else {
 ++nargout;
 }
 e = Medge(tol, nargout, a, tol_, method, k);
 return e;
}

to the F interface function for ex9:

void ex9(mwArray infile, mwArray outfile) {
 Mex9(infile, outfile);
}

Notice that in the last two lines of edge(), the F interface function calls the
implementation function Medge() with an argument list that includes an
integer count of the number of output arguments and then returns the value
returned by Medge() as its return value.
4

Mixing M-Files and C or C++
Passing the number of output arguments to Medge() allows it to tell if it was
called with zero outputs. Many functions in MATLAB change their behavior
when called with zero outputs.

In the last line of ex9(), the F interface function calls the implementation
function Mex9() with two input arguments (no output arguments) and does not
return a value.

The Generated mlxF Interface Function
The last function in ex9.cpp is the most complicated: the mlxF, or feval,
interface function. The mlxF interface function is responsible for converting
from the feval calling conventions to the standard MATLAB C++ Math
Library calling conventions.

In MATLAB feval() can call any function. To maintain semantic consistency
with MATLAB, every M-file function compiled by the MATLAB Compiler must
therefore also have an feval interface function. At times the MATLAB
Compiler needs to use feval to perform argument matching even if the user
does not specifically call feval.

All functions callable by feval must have the same four parameter argument
list:

• number of output parameters

• array of output parameters

• number of input parameters

• array of input parameters
4-55

4 Stand-Alone Applications

4-5
Note The mlxF interface function has a C interface (uses mxArray * rather
than mwArray arguments and returns) in order to allow a uniform feval
interface between C and C++ in the MATLAB C/C++ Math Library.

void mlxEx9(int nlhs, mxArray * plhs[], int nrhs,
mxArray * prhs[]) {

 MW_BEGIN_MLX();
 {
 mwArray mprhs[2];
 int i;
 if (nlhs > 0) {
 error("Run-time Error: File: ex9 Line: 1 Column: 0

 The function \"ex9\" was called with more than
the declared number of outputs (0)");

 }
 if (nrhs > 2) {
 error("Run-time Error: File: ex9 Line: 1 Column: 0

The function \"ex9\" was called with more than
the declared number of inputs (2)");

 }
 for (i = 0; i < 2 && i < nrhs; ++i) {
 mprhs[i] = mwArray(prhs[i], 0);
 }
 for (; i < 2; ++i) {
 mprhs[i] = mwArray::DIN;
 }
 Mex9(mprhs[0], mprhs[1]);
 }
 MW_END_MLX();
}

1 Declare the mlxF interface function, mlxEx9(). The names of feval interface
functions always begin with the three letter prefix mlx.

2 Insert mlxF feval interface function initialization code. Every mlxF interface
function must invoke the macro MW_BEGIN_MLX() as the first statement in
the function.

3

4

1

2

7

8

9

6

5

6

Mixing M-Files and C or C++
3 Declare local variables. This function uses two local variables, an array of
mwArrays that will be the inputs to the Mf implementation function and an
integer for for-loops.

4 Verify that the number of output arguments is correct. The Mf
implementation function, Mex9(), does not take any output arguments. The
number of output arguments passed to the mlxF interface function must
therefore be zero as well. Issue an error message if the number of output
arguments exceeds zero.

5 Verify that the number of input arguments is correct. The Mf
implementation function Mex9() expects at most two input arguments, so
the number of input arguments passed to the mlxF interface function must
not exceed two.

6 Initialize input arguments. The inputs to the feval interface function are
pointers to mxArray structures, but the Mf implementation function expects
mwArray objects. Create mwArray objects from the mxArray inputs. This
process does not copy the data in the mxArray inputs, so making a copy is
relatively inexpensive in terms of memory resources.

7 Provide default values for optional input arguments. MATLAB allows you to
call a function with less than the maximum number of input arguments, but
the Mf implementation function requires that you pass it all arguments, both
required and optional. Any arguments that are not passed in by the user
must be given default values before being passed to the Mf implementation
function.

8 Call the Mf implementation function. Pass in the input arguments,
processed by the previous two steps. This particular Mf implementation
function has no return value or output arguments, so no post-processing is
necessary.

9 Insert mlxF feval interface function termination code. Every mlxF interface
function must invoke the MW_END_MLX() macro as the last statement in the
function.
4-57

4 Stand-Alone Applications

4-5
MlxF Interface Functions That Return a Value or Take Output Arguments. It is useful to
compare the last few lines of mlxEdge(), the mlxF feval interface function for
edge()

mplhs[0] = Medge(&mplhs[1], nlhs, mprhs[0], mprhs[1], mprhs[2],
mprhs[3]);

plhs[0] = mplhs[0].FreezeData();
for (i = 1; i < 2 && i < nlhs; ++i) {

plhs[i] = mplhs[i].FreezeData()

to the last few lines of mlxEx9(), ex9()’s mlxF feval interface function.

Mex9(mprhs[0], mprhs[1]);

The primary difference between the two is that mlxEdge() returns a value and
takes an output argument; mlxEx9() does not. Because the mlxF interface
functions use pointers to mxArrays rather than mwArray objects as arguments
and return values, the mwArray objects returned by the Mf implementation
function must be converted to mxArray pointers. Because each mwArray object
contains a pointer to an mxArray, the most efficient way to perform this
conversion is to extract the mxArray pointer from the mwArray object.

There is one problem, however: a local mwArray object destroys its mxArray
pointer when it goes out of scope when the mlxF interface function returns. The
function FreezeData() solves this problem by modifying the mwArray object to
prevent it from destroying its mxArray pointer and by returning the mxArray
pointer.

Calling FreezeData() introduces the potential for memory leaks because the
mxArray pointer is essentially released from the MATLAB C++ Math Library’s
automatic memory management. However, the mlxF feval interface function
returns these values to feval(), which in turn returns them to its caller, a C++
function where the return values from feval() will be used to construct
mwArray objects once more, thereby placing the memory under automatic
memory management again.
8

Compiling Private and Method Functions 5-6

The Generated Header Files 5-8

The Generated C/C++ Code 5-10

Internal Interface Functions 5-22

Supported Executable Types 5-31
Generating Files 5-31
MEX-Files . 5-32
Main Files . 5-33
Simulink S-Functions 5-37
C Libraries . 5-42
C Shared Library 5-46
C++ Libraries . 5-47
Porting Generated Code to a Different Platform 5-50

Formatting Compiler-Generated Code 5-51
Listing All Formatting Options 5-51
Setting Page Width 5-51
Setting Indentation Spacing 5-54

Including M-File Information in Compiler Output . . . 5-57
Controlling Comments in Output Code 5-57
Controlling #line Directives in Output Code 5-59
Controlling Information in Run-Time Errors 5-60

Interfacing M-Code to C/C++ Code 5-63

Print Handlers 5-67
5

Controlling
Code Generation

Introduction . 5-2

5 Controlling Code Generation

5-2
Introduction
This chapter describes the code generated by the MATLAB Compiler and the
options that you can use to control code generation. In particular, it discusses:

• Compiling private and method functions

• The generated header files

• The generated C or C++ code

• Internal interface functions

• Supported executable types

• Formatting Compiler-generated code

• Including M-file source in Compiler output

• Interfacing M-code to C/C++ code

To generate the various files created by the Compiler, this chapter uses several
different M-files — gasket.m, foo.m, fun.m, and sample.m.

Introduction
Example M-Files

Sierpinski Gasket M-File
function theImage = gasket(numPoints)
%GASKET An image of a Sierpinski Gasket.
% IM = GASKET(NUMPOINTS)
%
% Example:
% x = gasket(50000);
% imagesc(x);colormap([0 0 0;1 1 1]);
% axis equal tight

% Copyright (c) 1984-98 by The MathWorks, Inc
% $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $

theImage = zeros(1000,1000);

corners = [866 1;1 500;866 1000];
startPoint = [866 1];
theRand = rand(numPoints,1);
theRand = ceil(theRand*3);

for i=1:numPoints
startPoint = floor((corners(theRand(i),:)+startPoint)/2);
theImage(startPoint(1),startPoint(2)) = 1;

end

foo M-File
function [a, b] = foo(x, y)
if nargout == 0
elseif nargout == 1

a = x;
elseif nargout == 2

a = x;
b = y;

end
5-3

5 Controlling Code Generation

5-4
fun M-File
function a = fun(b)
a(1) = b(1) .* b(1);
a(2) = b(1) + b(2);
a(3) = b(2) / 4;

sample M-File
function y = sample(varargin)
varargin{:}
y = 0;

Generated Code
This chapter investigates the generated header files, main source files,
interface functions, and wrapper functions for the C MEX, stand-alone C and
C++ targets, and C and C++ libraries.

When you use the MATLAB Compiler to compile an M-file, it generates these
files:

• C or C++ code, depending on your target language (–L) specification

• Header file

• Wrapper file, depending on the –W option

The C or C++ code that is generated by the Compiler and the header file are
independent of the final target type — MEX, executable, or library. That is, the
C or C++ code and header file are identical no matter what the desired final
output. The wrapper file provides the code necessary to support the output
executable type. So, the wrapper file is different for each executable type.

Introduction
Table 5-1 shows the names of the files generated when you compile a generic
M-file (file.m) for the MEX and stand-alone targets. The table also shows the
files generated when you compile a set of files (filelist) for the library target.

Note Many of the code snippets generated by the MATLAB Compiler that are
used in this chapter use the –F page-width option to produce readable code
that fits nicely on the book’s printed page. For more information about the
page-width option, see “Formatting Compiler-Generated Code” later in this
chapter.

Table 5-1: Compiler-Generated Files

C C++

Header file.h file.hpp

Code file.c file.cpp

Main Wrapper
(–W main)

file_main.c file_main.cpp

MEX Wrapper
(–W mex)

file_mex.c N/A (C++ MEX-files
are not supported.)

Simulink Wrapper
(–W simulink)

file_simulink.c N/A (C++ MEX-files
are not supported.)

Library
(–W lib:filelist)

filelist.c
filelist.h
filelist.exports

filelist.cpp
filelist.hpp
5-5

5 Controlling Code Generation

5-6
Compiling Private and Method Functions
Private functions are functions that reside in subdirectories with the special
name private, and are visible only to functions in the parent directory. Since
private functions are invisible outside of the parent directory, they can use the
same names as functions in other directories. Because MATLAB looks for
private functions before standard M-file functions, it will find a private
function before a nonprivate one.

Method functions are implementations specific to a particular MATLAB type
or user-defined object. Method functions are only invoked when the argument
list contains an object of the correct class.

In order to compile a method function, you must specify the name of the method
along with the classname so that the Compiler can differentiate the method
function from a nonmethod (normal) function.

Note Although Compiler 2.0 can currently compile method functions, it does
not support overloading of methods as implemented in MATLAB. This feature
is provided in anticipation of support of overloaded methods being added.

Method directories can contain private directories. Private functions are found
only when executing a method from the parent method directory. Taking all of
this into account, the Compiler command line needs to be able to differentiate
between these various functions that have the same name. A file called foo.m
that contains a function called foo can appear in all of these locations at the
same time. The conventions used on the Compiler command line are as
documented in this table.

Name Description

foo.m Default version of foo.m

xxx/private/foo.m foo.m private to the xxx directory

@cell/foo.m foo.m method to operate on cell arrays

@cell/private/foo.m foo.m private to methods that operate on
cell arrays

Compiling Private and Method Functions
This table lists the functions you can specify on the command line and their
corresponding function and filenames.

For private functions, the name given in the table above may be ambiguous.
The MATLAB Compiler generates a warning when it cannot distinguish which
private function to use. For example, given these two foo.m private functions
and their locations

/Z/X/private/foo.m
/Y/X/private/foo.m

the Compiler searches up only one level and determines the path to the file as

X/private/foo.m

Since it is ambiguous which foo.m you are requesting, it generates the warning

Warning: The specified private directory is not unique. Both
/Z/X/private and /Y/X/private are found on the path for this
private directory.

Function C Function C++ Function Filename

foo mlfFoo

mlxFoo

mlNFoo

mlfNFoo

mlfVFoo

foo

Nfoo

Vfoo

mlxFoo

foo.c

foo.h

foo.cpp

foo.hpp

@cell/foo mlf_cell_foo

mlx_cell_foo

mlN_cell_foo

mlfN_cell_foo

mlfV_cell_foo

_cell_foo

N_cell_foo

V_cell_foo

mlx_cell_foo

_cell_foo.c

_cell_foo.h

_cell_foo.cpp

_cell_foo.hpp

xxx/private/foo mlfXXX_private_foo

mlxXXX_private_foo

mlNXXX_private_foo

mlfNXXX_private_foo

mlfVXXX_private_foo

XXX_private_foo

NXXX_private_foo

VXXX_private_foo

mlxXXX_private_foo

_XXX_private_foo.c

_XXX_private_foo.h

_XXX_private_foo.cpp

_XXX_private_foo.hpp

@cell/private/foo mlfcell_private_foo

mlxcell_private_Foo

mlNcell_private_Foo

mlfNcell_private_Foo

mlfVcell_private_Foo

_cell_private_foo

N_cell_private_foo

V_cell_private_foo

mlx_cell_private_foo

_cell_private_foo.c

_cell_private_foo.h

_cell_private_foo.cpp

_cell_private_foo.hpp
5-7

5 Controlling Code Generation

5-8
The Generated Header Files
This section highlights the two header files that the Compiler can generate for
the Sierpinski Gasket (gasket.m) example.

C Header File
If the target language is C, the Compiler generates the header file, gasket.h.
This example uses the Compiler command

mcc –t –L C –T codegen –F page–width:60 gasket

to generate the associated files. The C header file, gasket.h, is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 08:46:21 1998
 * Arguments: "–t" "–L" "C" "–T" "codegen" "–F"
 * "page-width:60" "gasket"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#ifndef __gasket_h
#define __gasket_h 1

#include "matlab.h"

extern mxArray * mlfGasket(mxArray * numPoints);
extern void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);

#endif

The Generated Header Files
C++ Header File
If the target language is C++, the Compiler generates the header file,
gasket.hpp. This example uses the Compiler command

mcc –t –L Cpp –T codegen –F page–width:60 gasket

to generate the associated files. The C++ header file, gasket.hpp, is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 08:48:50 1998
// Arguments: "–t" "–L" "Cpp" "–T" "codegen" "–F"
// "page-width:60" "gasket"
//
#ifndef __gasket_hpp
#define __gasket_hpp 1

#include "matlab.hpp"

extern mwArray gasket(mwArray numPoints = mwArray::DIN);
#ifdef __cplusplus
extern "C"
#endif
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);

#endif
5-9

5 Controlling Code Generation

5-1
The Generated C/C++ Code
This section focuses on the generated C and C++ code from the gasket.m and
foo.m examples. In each of these examples, the implementation function, Mf,
contains the code generated from the M source file. These implementation
functions are required to provide a uniform interface to other functions.

C Code from gasket.m
If the target language is C, the Compiler generates the C source file, gasket.c.
This example uses the Compiler command

mcc –t –L C –T codegen –F page–width:60 gasket

to generate the associated files. Note that the interface functions have been
omitted for readability. Refer to the section, “ C Interface Functions” for more
information about these functions. If you want to modify the formatting and
content of the generated C code, use the –F and –A options of mcc. For more
information on these options, see the “Formatting Compiler-Generated Code”
and “Including M-File Information in Compiler Output” sections later in this
chapter.

The C source file, gasket.c, is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 08:55:55 1998
 * Arguments: "–t" "–L" "C" "–T" "codegen" "–F"
 * "page-width:60" "gasket"
 */
#include "gasket.h"

static double __Array0_r[6]
 = { 866.0, 1.0, 866.0, 1.0, 500.0, 1000.0 };

static double __Array1_r[2] = { 866.0, 1.0 };

/*
 * The function "Mgasket" is the implementation version of
 * the "gasket" M-function from file
 * "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
 * It contains the actual compiled code for that
0

The Generated C/C++ Code
 * M-function. It is a static function and must only be
 * called from one of the interface functions, appearing
 * below.
 */
/*
 * function theImage = gasket(numPoints)
 */
static mxArray * Mgasket(int nargout_,
 mxArray * numPoints) {
 mxArray * theImage = mclUnassigned();
 mxArray * corners = mclGetUninitializedArray();
 mxArray * i = mclGetUninitializedArray();
 mclForLoopIterator iterator_0;
 mxArray * startPoint = mclGetUninitializedArray();
 mxArray * theRand = mclGetUninitializedArray();
 mclValidateInputs("gasket", 1, &numPoints);
 /*
 * %GASKET An image of a Sierpinski Gasket.
 * % IM = GASKET(NUMPOINTS)
 * %
 * % Example:
 * % x = gasket(50000);
 * % imagesc(x);colormap([0 0 0;1 1 1]);
 * % axis equal tight
 *
 * % Copyright (c) 1984-98 by The MathWorks, Inc
 * % $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $
 *
 * theImage = zeros(1000,1000);
 */
 mlfAssign(
 &theImage,
 mlfZeros(mlfScalar(1000.0), mlfScalar(1000.0), NULL));
 /*
 *
 * corners = [866 1;1 500;866 1000];
 */
 mlfAssign(
 &corners, mlfDoubleMatrix(3, 2, __Array0_r, NULL));
 /*
5-11

5 Controlling Code Generation

5-1
 * startPoint = [866 1];
 */
 mlfAssign(
 &startPoint, mlfDoubleMatrix(1, 2, __Array1_r, NULL));
 /*
 * theRand = rand(numPoints,1);
 */
 mlfAssign(
 &theRand, mlfRand(numPoints, mlfScalar(1.0), NULL));
 /*
 * theRand = ceil(theRand*3);
 */
 mlfAssign(
 &theRand,
 mlfCeil(mlfMtimes(theRand, mlfScalar(3.0))));
 /*
 *
 * for i=1:numPoints
 */
 for (mclForStart(
 &iterator_0, mlfScalar(1.0), numPoints, NULL);
 mclForNext(&iterator_0, &i);
) {
 /*
 *startPoint= floor((corners(theRand(i),:)+startPoint)/2);
 */
 mlfAssign(
 &startPoint,
 mlfFloor(
 mlfMrdivide(
 mlfPlus(
 mlfIndexRef(
 corners,
 "(?,?)",
 mlfIndexRef(theRand, "(?)", i),
 mlfCreateColonIndex()),
 startPoint),
 mlfScalar(2.0))));
 /*
 * theImage(startPoint(1),startPoint(2)) = 1;
2

The Generated C/C++ Code
 */
 mlfIndexAssign(
 &theImage,
 "(?,?)",
 mlfIndexRef(startPoint, "(?)", mlfScalar(1.0)),
 mlfIndexRef(startPoint, "(?)", mlfScalar(2.0)),
 mlfScalar(1.0));
 /*
 * end
 */
 }
 mclValidateOutputs("gasket", 1, nargout_, &theImage);
 mxDestroyArray(corners);
 mxDestroyArray(i);
 mxDestroyArray(startPoint);
 mxDestroyArray(theRand);
 return theImage;
}

/*
 * "mlfGasket" interface function
*/

.

.

.

/*
 * "mlxGasket" interface function
*/

.

.

.

C Code from foo.m
If the target language is C, the Compiler generates the C source file, foo.c.
This example uses the Compiler command

mcc –t –L C –T codegen –F page–width:60 foo
5-13

5 Controlling Code Generation

5-1
to generate the associated files. Note that the interface functions have been
omitted for readability. Refer to the section, “ C Interface Functions” for more
information about these functions.

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 09:06:03 1998
 * Arguments: "–t" "–L" "C" "–T" "codegen" "–F"
 * "page-width:60" "foo"
 */
#include "foo.h"

/*
 * The function "Mfoo" is the implementation version of the
 * "foo" M-function from file
 * "<matlab>\examples\compiler\foo.m" (lines 1-10). It
 * contains the actual compiled code for that M-function.
 * It is a static function and must only be called from one
 * of the interface functions, appearing below.
 */
/*
 * function [a, b] = foo(x, y)
 */
static mxArray * Mfoo(mxArray * * b,
 int nargout_,
 mxArray * x,
 mxArray * y) {
 mxArray * a = mclUnassigned();
 mxArray * nargout = mclInitialize(mlfScalar(nargout_));
 mclValidateInputs("foo", 2, &x, &y);
 /*
 *
 * if nargout == 0
 */
 if (mlfTobool(mlfEq(nargout, mlfScalar(0.0)))) {
 /*
 * elseif nargout == 1
 */
 } else if (mlfTobool(mlfEq(nargout, mlfScalar(1.0)))) {
4

The Generated C/C++ Code
 /*
 * a = x;
 */
 mlfAssign(&a, x);
 /*
 * elseif nargout == 2
 */
 } else if (mlfTobool(mlfEq(nargout, mlfScalar(2.0)))) {
 /*
 * a = x;
 */
 mlfAssign(&a, x);
 /*
 * b = y;
 */
 mlfAssign(b, y);
 /*
 * end
 */
 }
 mclValidateOutputs("foo", 2, nargout_, &a, b);
 mxDestroyArray(nargout);
 return a;
}

/*
 * "mlfNFoo" interface function
*/

.

.

.

/*
 * "mlfFoo" interface function
*/

.

.

.

5-15

5 Controlling Code Generation

5-1
/*
 * "mlfVFoo" interface function
*/

.

.

.

/*
 * "mlxFoo" interface function
*/

.

.

.

C++ Code from gasket.m
If the target language is C++, the Compiler generates the C++ source file,
gasket.cpp. Note that the interface functions have been omitted for
readability. Refer to the section, “ C++ Interface Functions” for more
information about these functions. If you want to modify the formatting and
content of the generated C++ code, use the –F and –A options of mcc. For more
information on these options, see the “Formatting Compiler-Generated Code”
and “Including M-File Information in Compiler Output” sections later in this
chapter.

This example uses the Compiler command

mcc –t –L Cpp –T codegen –F page–width:60 gasket

to generate the associated files. The C++ source file, gasket.cpp, is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 09:11:47 1998
// Arguments: "–t" "–L" "Cpp" "–T" "codegen" "–F"
// "page-width:60" "gasket"
//
#include "gasket.hpp"

static double __Array0_r[6]
 = { 866.0, 1.0, 866.0, 1.0, 500.0, 1000.0 };
6

The Generated C/C++ Code
static double __Array1_r[2] = { 866.0, 1.0 };

//
// The function "Mgasket" is the implementation version of
// the "gasket" M-function from file
// "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
// It contains the actual compiled code for that
// M-function. It is a static function and must only be
// called from one of the interface functions, appearing
// below.
//
//
// function theImage = gasket(numPoints)
//
static mwArray Mgasket(int nargout_, mwArray numPoints) {
 mwArray theImage(mwArray::UNASSIGNED);
 mwArray corners(mclGetUninitializedArray());
 mwArray i(mclGetUninitializedArray());
 mwForLoopIterator iterator_0;
 mwArray startPoint(mclGetUninitializedArray());
 mwArray theRand(mclGetUninitializedArray());
 mwValidateInputs("gasket", 1, &numPoints);
 //
 // %GASKET An image of a Sierpinski Gasket.
 // % IM = GASKET(NUMPOINTS)
 // %
 // % Example:
 // % x = gasket(50000);
 // % imagesc(x);colormap([0 0 0;1 1 1]);
 // % axis equal tight
 //
 // % Copyright (c) 1984-98 by The MathWorks, Inc
 // % $Revision: 1.1 $ $Date: 1998/09/11 20:05:06 $
 //
 // theImage = zeros(1000,1000);
 //
 theImage = zeros(mwVarargin(1000.0, 1000.0));
 //
 //
 // corners = [866 1;1 500;866 1000];
5-17

5 Controlling Code Generation

5-1
 //
 corners = mwArray(3, 2, __Array0_r, NULL);
 //
 // startPoint = [866 1];
 //
 startPoint = mwArray(1, 2, __Array1_r, NULL);
 //
 // theRand = rand(numPoints,1);
 //
 theRand = rand_func(mwVarargin(numPoints, 1.0));
 //
 // theRand = ceil(theRand*3);
 //
 theRand = ceil(theRand * mwArray(3.0));
 //
 //
 // for i=1:numPoints
 //
 for (iterator_0.Start(1.0, numPoints, mwArray::DIN);
 iterator_0.Next(&i);
) {
 //
 //startPoint= floor((corners(theRand(i),:)+startPoint)/2);
 //
 startPoint
 = floor(
 (corners(theRand(i), colon()) + startPoint)
 / mwArray(2.0));
 //
 // theImage(startPoint(1),startPoint(2)) = 1;
 //
 theImage(startPoint(1.0), startPoint(2.0)) = 1.0;
 //
 // end
 //
 }
 mwValidateOutputs("gasket", 1, nargout_, &theImage);
 return theImage;
}

8

The Generated C/C++ Code
//
// "gasket" interface function
//

.

.

.

//
// "mlxGasket" interface function
//

.

.

.

C++ Code from foo.m
If the target language is C++, the Compiler generates the C++ source file,
foo.cpp. Note that the interface functions have been omitted for readability.
Refer to the section, “ C++ Interface Functions” for more information about
these functions.

This example uses the Compiler command

mcc –t –L Cpp –T codegen –F page–width:60 foo

to generate the associated files. The C++ source file, foo.cpp, is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 09:17:16 1998
// Arguments: "–t" "–L" "Cpp" "–T" "codegen" "–F"
// "page-width:60" "foo"
//
#include "foo.hpp"

//
// The function "Mfoo" is the implementation version of the
// "foo" M-function from file
// "<matlab>\extern\examples\compiler\foo.m" (lines 1-10). It
// contains the actual compiled code for that M-function.
// It is a static function and must only be called from one
// of the interface functions, appearing below.
5-19

5 Controlling Code Generation

5-2
//
//
// function [a, b] = foo(x, y)
//
static mwArray Mfoo(mwArray * b,
 int nargout_,
 mwArray x,
 mwArray y) {
 mwArray a(mwArray::UNASSIGNED);
 mwArray nargout(nargout_);
 mwValidateInputs("foo", 2, &x, &y);
 //
 //
 // if nargout == 0
 //
 if (tobool(nargout == mwArray(0.0))) {
 //
 // elseif nargout == 1
 //
 } else if (tobool(nargout == mwArray(1.0))) {
 //
 // a = x;
 //
 a = x;
 //
 // elseif nargout == 2
 //
 } else if (tobool(nargout == mwArray(2.0))) {
 //
 // a = x;
 //
 a = x;
 //
 // b = y;
 //
 *b = y;
 //
 // end
 //
 }
0

The Generated C/C++ Code
 mwValidateOutputs("foo", 2, nargout_, &a, b);
 return a;
}

//
// "Nfoo" interface function
//

.

.

.

//
// "foo" interface function
//

.

.

.

//
// "Vfoo" interface function
//

.

.

.

//
// "mlxFoo" interface function
//

.

.

.

5-21

5 Controlling Code Generation

5-2
Internal Interface Functions
This section uses the Sierpinski Gasket example (gasket.m) to show several of
the generated interface functions for the C and C++ cases. The remaining
interface functions are generated by the example foo.m. as described earlier in
this chapter.

Interface functions perform argument translation between the standard
calling conventions and the Compiler-generated code.

C Interface Functions
The C interface functions process any input arguments and pass them to the
implementation version of the function, Mf, as shown in the section, “C Code
from gasket.m.”

mlxF Interface Function
The Compiler always generates the mlxF interface function, which is used by
feval. At times, the Compiler needs to use feval to perform argument
matching even if the user does not specifically call feval. For example,

[x{:}] = gasket

would use the feval interface. The following C code is the corresponding feval
interface (mlxGasket) from the Sierpinski Gasket example. This function calls
the C Mgasket function shown in “C Code from gasket.m.”

/*
 * The function "mlxGasket" contains the feval interface
 * for the "gasket" M-function from file
 * "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
 * The feval function calls the implementation version of
 * gasket through this function. This function processes
 * any input arguments and passes them to the
 * implementation version of the function, appearing above.
 */
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]) {
 mxArray * mprhs[1];
2

Internal Interface Functions
 mxArray * mplhs[1];
 int i;
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "0 The function \"gasket\" was called with mor"
 "e than the declared number of outputs (1)"));
 }

 if (nrhs > 1) {
 mlfError(
 mxCreateString(

"Run-time Error: File: gasket Line: 1 Column: "
 "0 The function \"gasket\" was called with mor"
 "e than the declared number of inputs (1)"));
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }
 mlfEnterNewContext(0, 1, mprhs[0]);
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

mlfF Interface Function
The Compiler always generates the mlfF interface function, which contains the
“normal” C interface to the function. This code is the corresponding C interface

Input argument
processing

Output argument
processing

Call to C
implementation
function
5-23

5 Controlling Code Generation

5-2
function (mlfGasket) from the Sierpinski Gasket example. This function calls
the C mgasket function shown in “C Code from gasket.m.”

/*
 * The function "mlfGasket" contains the normal interface
 * for the "gasket" M-function from file
 * "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
 * This function processes any input arguments and passes
 * them to the implementation version of the function,
 * appearing above.
 */
mxArray * mlfGasket(mxArray * numPoints) {
 int nargout = 1;
mxArray * theImage = mclUnassigned();
mlfEnterNewContext(0, 1, numPoints);
theImage = Mgasket(nargout, numPoints);
mlfRestorePreviousContext(0, 1, numPoints);
mlfReturnValue(theImage);
return theImage;

}

mlfNF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout.The nargout interface allows you to specify the number
of requested outputs via the int nargout argument, as opposed to the normal
interface that dynamically calculates the number of outputs based on the
number of non-null inputs it receives.

This is the corresponding mlfNF interface function (mlfNFoo) for the foo.m
example described earlier in this chapter. This function calls the Mfoo function
that appears in foo.c.

/*
 * The function "mlfNFoo" contains the nargout interface
 * for the "foo" M-function from file
 * "<matlab>\extern\examples\compiler\foo.m" (lines 1-10).
 * This interface is only produced if the M-function uses
 * the special variable "nargout". The nargout interface
 * allows the number of requested outputs to be specified
 * via the nargout argument, as opposed to the normal
 * interface which dynamically calculates the number of

Input argument
processing

Output argument
processing

Call M-function
4

Internal Interface Functions
 * outputs based on the number of non-NULL inputs it
 * receives. This function processes any input arguments
 * and passes them to the implementation version of the
 * function, appearing above.
 */
mxArray * mlfNFoo(int nargout,

mxArray * * b,
mxArray * x,

 mxArray * y) {
 mxArray * a = mclUnassigned();
 mxArray * b__ = mclUnassigned();
 mlfEnterNewContext(1, 2, b, x, y);
 if (b == NULL) {
 b = &b__;
 }
 a = Mfoo(b, nargout, x, y);
 mlfRestorePreviousContext(1, 2, b, x, y);
 mxDestroyArray(b__);
 mlfReturnValue(a);
 return a;
}

mlfVF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout and has at least one output. This void interface function
specifies zero output arguments to the implementation version of the function,
and in the event that the implementation version still returns an output
(which, in MATLAB, would be assigned to the ans variable), it deallocates the
output.

This is the corresponding mlfVF interface function (mlfVFoo) for the foo.m
example described at the beginning of this section. This function calls the C
Mfoo implementation function that appears in foo.c.

/*
 * The function "mlfVFoo" contains the void interface for
 * the "foo" M-function from file
 * "<matlab>\extern\examples\compiler\foo.m" (lines 1-10). The
 * void interface is only produced if the M-function uses
 * the special variable "nargout", and has at least one

Input argument
processing

Output argument
processing

Call M-function
5-25

5 Controlling Code Generation

5-2
 * output. The void interface function specifies zero
 * output arguments to the implementation version of the
 * function, and in the event that the implementation
 * version still returns an output (which, in MATLAB, would
 * be assigned to the "ans" variable), it deallocates the
 * output. This function processes any input arguments and
 * passes them to the implementation version of the
 * function, appearing above.
 */
void mlfVFoo(mxArray * x, mxArray * y) {
 mxArray * a = mclUnassigned();
 mxArray * b = mclUnassigned();
 mlfEnterNewContext(0, 2, x, y);
 a = Mfoo(&b, 0, x, y);
 mlfRestorePreviousContext(0, 2, x, y);
 mxDestroyArray(a);
 mxDestroyArray(b);
}

C++ Interface Functions
The C++ interface functions process any input arguments and pass them to the
implementation version of the function as shown in the section, “C++ Code
from gasket.m.”

Note In C++, the mlxF interface functions are also C functions in order to
allow the feval interface to be uniform between C and C++.

mlxF Interface Function
The Compiler always generates the mlxF interface function, which is used by
feval. At times, the Compiler needs to use feval to perform argument
matching even if the user does not specifically call feval. For example,

[x{:}] = gasket

Input argument
processing

Output argument
processing

Call M-function
6

Internal Interface Functions
would use the feval interface. The following C++ code is the corresponding
feval interface (mlxGasket) from the Sierpinski Gasket example. This function
calls the C++ Mgasket function shown in “C++ Code from gasket.m.”

//
// The function "mlxGasket" contains the feval interface
// for the "gasket" M-function from file
// "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
// The feval function calls the implementation version of
// gasket through this function. This function processes
// any input arguments and passes them to the
// implementation version of the function, appearing above.
//
void mlxGasket(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]) {
 MW_BEGIN_MLX();
{

mwArray mprhs[1];
 mwArray mplhs[1];
 int i;
 if (nlhs > 1) {
 error(

"Run-time Error: File: gasket Line:"
 " 1 Column: 0 The function \"gasket"
 "\" was called with more than the d"
 "eclared number of outputs (1)");

}
 if (nrhs > 1) {
 error(

"Run-time Error: File: gasket Line: 1 Column:"
 " 0 The function \"gasket\" was called with m"
 "ore than the declared number of inputs (1)");
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = mwArray(prhs[i], 0);
 }
 for (; i < 1; ++i) {
 mprhs[i] = mwArray::DIN;

Input argument
processing
5-27

5 Controlling Code Generation

5-2
 }
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 plhs[0] = mplhs[0].FreezeData();
 }
 MW_END_MLX();
}

F Interface Function
The Compiler always generates the F interface function, which contains the
“normal” C++ interface to the function. This code is the corresponding C++
interface function (gasket) from the Sierpinski Gasket example. This function
calls the C++ code shown in “C++ Code from gasket.m.”

//
// The function "gasket" contains the normal interface for
// the "gasket" M-function from file
// "<matlab>\extern\examples\compiler\gasket.m" (lines 1-24).
// This function processes any input arguments and passes
// them to the implementation version of the function,
// appearing above.
//
mwArray gasket(mwArray numPoints) {
 int nargout(1);
 mwArray theImage(mwArray::UNASSIGNED);
 theImage = Mgasket(nargout, numPoints);
 return theImage;
}

NF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout. The nargout interface allows the number of requested
outputs to be specified via the nargout argument, as opposed to the normal
interface that dynamically calculates the number of outputs based on the
number of non-null inputs it receives.

This is the corresponding NF interface function (NFoo) for the foo.m example
described earlier in this chapter. This function calls the Mfoo function
appearing in foo.cpp.

//
// The function "Nfoo" contains the nargout interface for

Call M-function
Output argument
processing

Call M-function
Output argument
processing
8

Internal Interface Functions
// the "foo" M-function from file
// "<matlab>\extern\examples\compiler\foo.m" (lines 1-10).
// This interface is only produced if the M-function uses
// the special variable "nargout". The nargout interface
// allows the number of requested outputs to be specified
// via the nargout argument, as opposed to the normal
// interface which dynamically calculates the number of
// outputs based on the number of non-NULL inputs it
// receives. This function processes any input arguments
// and passes them to the implementation version of the
// function, appearing above.
//
mwArray Nfoo(int nargout,
 mwArray * b,
 mwArray x,
 mwArray y) {
 mwArray a(mwArray::UNASSIGNED);
 mwArray b__(mwArray::UNASSIGNED);
 if (b == NULL) {
 b = &b__;
 }
 a = Mfoo(b, nargout, x, y);
 return a;
}

VF Interface Function
The Compiler produces this interface function only when the M-function uses
the variable nargout and has at least one output. The void interface function
specifies zero output arguments to the implementation version of the function,
and in the event that the implementation version still returns an output
(which, in MATLAB, would be assigned to the ans variable), it deallocates the
output.

This is the corresponding VF interface function (VFoo) for the foo.m example
described earlier in this chapter. This function calls the Mfoo function
appearing in foo.cpp.

//
// The function "Nfoo" contains the nargout interface for
// the "foo" M-function from file

Input argument
processing

Call M-function

Output argument
processing
5-29

5 Controlling Code Generation

5-3
// "<matlab>\extern\examples\compiler\foo.m" (lines 1-10).
// This interface is only produced if the M-function uses
// the special variable "nargout". The nargout interface
// allows the number of requested outputs to be specified
// via the nargout argument, as opposed to the normal
// interface which dynamically calculates the number of
// outputs based on the number of non-NULL inputs it
// receives. This function processes any input arguments
// and passes them to the implementation version of the
// function, appearing above.
//
void Vfoo(mwArray x, mwArray y) {
 mwArray a(mwArray::UNASSIGNED);
 mwArray b(mwArray::UNASSIGNED);
 a = Mfoo(&b, 0, x, y);
}

Input argument
processing
Call M-function
0

Supported Executable Types
Supported Executable Types
Wrapper functions create a link between the Compiler-generated code and a
supported executable type by providing the required interface that allows the
code to operate in the desired execution environment.

The wrapper functions differ depending on the execution environment,
whereas the C and C++ header files and code that are generated by the
Compiler are the same for MEX-functions, stand-alone applications, and
libraries.

To provide the required interface, the wrapper:

• Defines persistent/global variables

• Initializes the feval function table for run-time feval support

• Performs wrapper-specific initialization and termination

This section discusses the various wrappers that can be generated using the
MATLAB Compiler.

Note When the Compiler generates a wrapper function, it must examine all of
the .m files that will be included into the executable. If you do not include all
the files, the Compiler may not define all of the global variables.

Generating Files
You can use the –t option of the Compiler to generate source files in addition
to wrapper files. For example

mcc –W main –h x.m

examines x.m and all M-files referenced by x.m, but generates only the
x_main.c wrapper file. However, including the –t option in

mcc –W main –h –t x.m

generates x_main.c, x.c, and all M-files referenced by x.m.
5-31

5 Controlling Code Generation

5-3
MEX-Files
The –W mex –L C options produce the MEX-file wrapper, which includes the
mexFunction interface that is standard to all MATLAB plug-ins. For more
information about the requirements of the mex interface, see the MATLAB
Application Program Interface Guide.

In addition to declaring globals and initializing the feval function table, the
MEX-file wrapper function includes interface and definition functions for all
M-files not included into the set of compiled files. These functions are
implemented as callbacks to MATLAB.

Note By default, the –x option does not include any functions that do not
appear on the command line. Functions that do not appear on the command
line would generate a callback to MATLAB. Specify –h if you want all
functions called to be compiled into your MEX-file.

This wrapper function uses the gasket.m file and is produced from the
command:

mcc –W mex –L C –T codegen –F page–width:55 gasket

The generated MEX wrapper function, gasket_mex.c is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 14:02:42 1998
 * Arguments: "–W" "mex" "–L" "C" "–T"
 * "codegen" "–F" "page-width:55" "gasket"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#include "matlab.h"
#include "gasket.h"

static mlfFunctionTableEntry function_table[1]
 = { { "gasket", mlxGasket, 1, 1 } };
2

Supported Executable Types
/*
 * The function "mexFunction" is a Compiler-generated
 * mex wrapper, suitable for building a MEX-function.
 * It initializes any persistent variables as well as
 * a function table for use by the feval function. It
 * then calls the function "mlxGasket". Finally, it
 * clears the feval table and exits.
 */
void mexFunction(int nlhs,
 mxArray * * plhs,
 int nrhs,
 mxArray * * prhs) {
 mlfTry {
 mlfFunctionTableSetup(1, function_table);
 mclImportGlobal(0, NULL);
 mlxGasket(nlhs, plhs, nrhs, prhs);
 mlfFunctionTableTakedown(1, function_table);
 } mlfCatch {
 mlfFunctionTableTakedown(1, function_table);
 mclMexError();
 } mlfEndCatch
}

Main Files
You can generate C or C++ application wrappers that are suitable for building
C or C++ stand-alone applications, respectively. These POSIX-compliant main
wrappers accept strings from the POSIX shell and return a status code. They
are meant to translate “command-like” M-files into POSIX main applications.

POSIX Main Wrapper
The POSIX main() function wrapper behaves exactly the same as the
command/function duality mode of MATLAB. That is, any command of the
form

command argument

can also be written in the functional form

command('argument')
5-33

5 Controlling Code Generation

5-3
If you write a function that accepts strings in MATLAB, that function will
compile to a POSIX main wrapper in such a way that it behaves the same from
the DOS/UNIX command line as it does from within MATLAB.

The Compiler processes the string arguments passed to the main() function
and sends them into the compiled M-function as strings.

For example, consider this M-file:

function y = sample(varargin)
varargin{:}
y = 0;

You can compile sample.m into a POSIX main application. If you call sample
from MATLAB, you get:

sample hello world

ans =
hello

ans =
world

ans =
0

If you compile sample.m and call it from the DOS shell, you get:

C:\> sample hello world

ans =
hello

ans =
world

C:\>

The difference between the MATLAB and DOS/UNIX environments is the
handling of the return value. In MATLAB, the return value is handled by
printing its value; in the DOS/UNIX shell, the return value is handled as the
return status code. When you compile a function into a POSIX main
4

Supported Executable Types
application, the first return value from the function is coerced to a scalar and
is returned to the POSIX shell.

C Main Wrapper Function
The –W main –L C options produce a C application wrapper. This example uses
the sample.m file and is produced from the command:

mcc –W main –L C –T codegen –F page–width:55 sample

The generated stand-alone C application wrapper function, sample_main.c is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 14:07:29 1998
 * Arguments: "–W" "main" "–L" "C" "–T"
 * "codegen" "–F" "page-width:55" "sample"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#include "matlab.h"
#include "sample.h"

static mlfFunctionTableEntry function_table[1]
 = { { "sample", mlxSample, –1, 1 } };

/*
 * The function "main" is a Compiler-generated main
 * wrapper, suitable for building a standalone
 * application. It initializes a function table for
 * use by the feval function, and then calls the
 * function "mlxSample". Finally, it clears the feval
 * table and exits.
 */
int main(int argc, const char * * argv) {
 int status = 0;
 mxArray * varargin = mclInitialize(NULL);
 mxArray * result = mclInitialize(NULL);
 mlfEnterNewContext(0, 0);
5-35

5 Controlling Code Generation

5-3
 mlfFunctionTableSetup(1, function_table);
 mlfAssign(
 &varargin,
 mclCreateCellFromStrings(argc – 1, argv + 1));
 mlfAssign(
 &result,
 mlfSample(
 mlfIndexRef(
 varargin, "{?}", mlfCreateColonIndex()),
 NULL));
 mxDestroyArray(varargin);
 if (mclIsInitialized(result)
 && ! mxIsEmpty(result)) {
 status = mclArrayToInt(result);
 }
 mxDestroyArray(result);
 mlfFunctionTableTakedown(1, function_table);
 mlfRestorePreviousContext(0, 0);
 return status;
}

C++ Wrapper Function
The –W main –L Cpp options produce a C++ application wrapper. This example
uses the sample.m file and is produced from the command:

mcc –W main –L Cpp –T codegen –F page–width:55 sample

The generated stand-alone C++ application wrapper function,
sample_main.cpp is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 14:10:39 1998
// Arguments: "–W" "main" "–L" "Cpp" "–T"
// "codegen" "–F" "page-width:55" "sample"
//
#include "matlab.hpp"
#include "sample.hpp"

static mlfFunctionTableEntry function_table[1]
 = { { "sample", mlxSample, –1, 1 } };
6

Supported Executable Types
static mwFunctionTableInit mcl_function_table_init(1,
 function_table);

//
// The function "main" is a Compiler-generated main
// wrapper, suitable for building a standalone
// application. It initializes a function table for
// use by the feval function, and then calls the
// function "mlxSample". Finally, it clears the feval
// table and exits.
//
int main(int argc, const char * * argv) {
 try {
 int status(0);
 mwArray varargin(argc – 1, argv + 1);
 mwArray result;
 result
 = sample(
 mwVarargin(varargin.cell(colon())));
 if (result.IsInitialized()
 && ! result.IsEmpty()) {
 status = int(result(1));
 }
 return status;
 } catch(mwException e) {
 cout << e;
 return 1;
 }
}

Simulink S-Functions
The –W simulink –L C options produce a Simulink S-function wrapper.
Simulink S-function wrappers conform to the Simulink C S-function
conventions. The wrappers initialize:

• The sizes structure

• The S-function’s sample times array

• The S-function’s states and work vectors
5-37

5 Controlling Code Generation

5-3
For more information about Simulink S-function requirements, see the Writing
S-Functions book.

Note By default, the –S command does not include any functions that do not
appear on the command line. Functions that do not appear on the command
line would generate a callback to MATLAB. Specify –h if you want all
functions called to be compiled into your MEX-file.

This wrapper function uses the fun.m file and is produced from the command:

mcc –W simulink –L C –T codegen –F page–width:55 fun

Given the sample file, fun.m

function a = fun(b)
 a(1) = b(1) .* b(1);
 a(2) = b(1) + b(2);
 a(3) = b(2) / 4;

The generated Simulink S-function wrapper function, fun_simulink.c is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 14:26:41 1998
 * Arguments: "–W" "simulink" "–L" "C" "–T"
 * "codegen" "–F" "page-width:55" "fun"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#ifdef __cplusplus
extern "C" {
#endif

#define S_FUNCTION_NAME fun

#include "matlab.h"
#include "mccsimulink.h"
8

Supported Executable Types
#include "fun.h"

static mlfFunctionTableEntry function_table[1]
 = { { "fun", mlxFun, 1, 1 } };

/*
 * The function mdlInitializeSizes is a Compiler
 * generated Simulink S-function wrapper. Simulink
 * calls this function to initialize the S-function's
 * "sizes" structure. The arguments to the –u and –y
 * mcc options are used to initialize the number of
 * inputs and outputs the S-function accepts and
 * returns. If –u or –y was not specified, this
 * function uses the value –1, which is the same as
 * the DYNAMICALLY_SIZED macro.
 */
static void mdlInitializeSizes(SimStruct * S) {
 mclInitializeSizes(S, –1, –1);
}

/*
 * The function mdlInitializeSampleTimes is a Compiler
 * generated Simulink S-function wrapper. Simulink
 * calls this function to initialize the S-function's
 * sample times array. This function initializes the
 * S-function's sample time to be inherited from the
 * block driving it.
 */
static void mdlInitializeSampleTimes(SimStruct * S) {
 mclInitializeSampleTimes(S);
}

/*
 * The function mdlInitializeConditions is a Compiler
 * generated Simulink S-function wrapper. Simulink
 * calls this function to initialize the S-function's
 * states and work vectors. Since Compiler-generated
 * S-functions have no states and no work vectors,
 * this function is empty.
 */
5-39

5 Controlling Code Generation

5-4
static void mdlInitializeConditions(real_T * x0,
 SimStruct * S) {
}

/*
 * The function mdlOutputs is a Compiler-generated
 * Simulink S-function wrapper. Simulink calls this
 * function to compute the S-function's output vector.
 * This function initializes a table for use by the
 * feval function and initializes any persistent
 * variables. It then calls the function "mlxFun".
 * Finally it clears the feval table and exits.
 */
static void mdlOutputs(real_T * y,
 real_T const * x,
 real_T const * u,
 SimStruct * S,
 int_T tid) {
 mlfTry {
 mlfFunctionTableSetup(1, function_table);
 mclImportGlobal(0, NULL);
 mclOutputs(y, x, u, S, tid, mlxFun);
 mlfFunctionTableTakedown(1, function_table);
 } mlfCatch {
 mlfFunctionTableTakedown(1, function_table);
 mclMexError();
 } mlfEndCatch
}

/*
 * The function mdlUpdate is a Compiler-generated
 * Simulink S-function wrapper. Simulink calls this
 * function to perform major time step updates.
 * Simulink does not call this function if the
 * S-function has no discrete states and has direct
 * feedthrough. Since Compiler-generated S-functions
 * meet these criteria, this function is never called,
 * and is therefore left empty.
 */
0

Supported Executable Types
static void mdlUpdate(real_T * x,
 real_T const * u,
 SimStruct * S,
 int_T tid) {
}

/*
 * The function mdlDerivatives is a Compiler-generated
 * Simulink S-function wrapper. Simulink calls this
 * function to compute derivatives for continuous
 * states. Since Compiler-generated S-functions are
 * stateless, this function is left empty.
 */
static void mdlDerivatives(real_T * dx,
 real_T const * x,
 real_T const * u,
 SimStruct * S,
 int_T tid) {
}

/*
 * The function mdlTerminate is a Compiler-generated
 * Simulink S-function wrapper. Simulink calls this
 * function to clean up the S-function at the
 * termination of a simulation. Since Compiler
 * generated S-functions need no cleanup, this
 * function is left empty.
 */
static void mdlTerminate(SimStruct * S) {
}
#ifdef MATLAB_MEX_FILE /*Is this file being compiled as a

MEX-file? */
#include "simulink.c" /*MEX-file interface mechanism */
#else
#include "cg_sfun.h" /*Code generation registration

function */
#endif
5-41

5 Controlling Code Generation

5-4
#ifdef __cplusplus
}
#endif

C Libraries
The intent of the C library wrapper files is to allow the inclusion of an arbitrary
set of M-files into a library or shared library. The header file contains all of the
entry points for all of the compiled M functions. The export list contains the set
of symbols that should be exported from a C shared library.

Note Even if you are not producing a shared library, you must generate a
library wrapper file when including any Compiler-generated code into a larger
application.

This example uses several functions from the toolbox\matlab\timefun
directory (weekday, date, tic, calendar, toc) to create a library wrapper. The
–W lib:sometimefun –L C options produce the files shown in this table.

sometimefun.c
The C wrapper file (sometimefun.c) contains the initialization
(sometimefunInitialize) and termination (sometimefunTerminate) functions
for the library. You must call sometimefunInitialize before you call any
Compiler-generated code. This function initializes the state of
Compiler-generated functions so that those functions can be called from C code
not generated by the Compiler. You must also call sometimefunTerminate
before you unload the library.

The library files in this example are produced from the command:

mcc –W lib:sometimefun –L C –F page–width:50 weekday date tic calendar toc

File Description

sometimefun.c C wrapper file

sometimefun.h C header file

sometimefun.exports C export list
2

Supported Executable Types
The generated wrapper function, sometimefun.c is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 14:36:29 1998
 * Arguments: "–W" "lib:sometimefun" "–L"
 * "C" "–F" "page-width:50" "weekday" "date"
 * "tic" "calendar" "toc"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#include "matlab.h"
#include "toc.h"
#include "calendar.h"
#include "tic.h"
#include "date.h"
#include "weekday.h"

mxArray * TICTOC = NULL;

static mlfFunctionTableEntry function_table[5]
 = { { "toc", mlxToc, 0, 1 },
 { "calendar", mlxCalendar, 2, 1 },
 { "tic", mlxTic, 0, 0 },
 { "date", mlxDate, 0, 1 },
 { "weekday", mlxWeekday, 1, 2 } };

/*
 * The function "sometimefunInitialize" is a
 * Compiler-generated initialization wrapper. It
 * is used to initialize the state of
 * Compiler-generated functions so that those
 * functions can be called from code not
 * generated by the Compiler. The function(s)
 * initialized can be found in the function_table
 * variable, appearing above.
 */
5-43

5 Controlling Code Generation

5-4
void sometimefunInitialize(void) {
 mlfAssign(&TICTOC, mclCreateGlobal());
 mlfFunctionTableSetup(5, function_table);
}

/*
 * The function "sometimefunTerminate" is a
 * Compiler-generated termination wrapper. It is
 * used to clean up the state that was set up by
 * the initialization wrapper function, also
 * found in this file. Call this function after
 * having called the initialization wrapper
 * function and after having finished making all
 * calls to the Compiler-generated function(s)
 * found in the function_table variable,
 * appearing above.
 */
void sometimefunTerminate(void) {
 mlfFunctionTableTakedown(5, function_table);
 mxDestroyArray(TICTOC);
}

sometimefun.h
The library header file (sometimefun.h) for this example is:

/*
 * MATLAB Compiler: 2.0b1
 * Date: Mon Dec 14 14:36:29 1998
 * Arguments: "–W" "lib:sometimefun" "–L"
 * "C" "–F" "page-width:50" "weekday" "date"
 * "tic" "calendar" "toc"
 */

#ifndef MLF_V2
#define MLF_V2 1
#endif

#ifndef __sometimefun_h
#define __sometimefun_h 1
4

Supported Executable Types
#include "matlab.h"

extern mxArray * mlfWeekday(mxArray * * w,
 mxArray * t);
extern void mlxWeekday(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mxArray * mlfDate(void);
extern void mlxDate(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern void mlfTic(void);
extern void mlxTic(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mxArray * mlfNCalendar(int nargout,
 mxArray * c,
 mxArray * m);
extern mxArray * mlfCalendar(mxArray * c,
 mxArray * m);
extern void mlfVCalendar(mxArray * c,
 mxArray * m);
extern void mlxCalendar(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mxArray * mlfNToc(int nargout);
extern mxArray * mlfToc(void);
extern void mlfVToc(void);
extern void mlxToc(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern void sometimefunInitialize(void);
extern void sometimefunTerminate(void);

#endif
5-45

5 Controlling Code Generation

5-4
sometimefun.h includes definitions for all publicly available symbols from the
collection of M-files.

sometimefun.exports
The library export list file (sometimefun.exports) for this example is:

mlfWeekday
mlxWeekday
mlfDate
mlxDate
mlfTic
mlxTic
mlfNCalendar
mlfCalendar
mlfVCalendar
mlxCalendar
mlfNToc
mlfToc
mlfVToc
mlxToc
sometimefunInitialize
sometimefunTerminate

sometimefun.exports is a platform-independent list of symbols that is
appropriate for exporting from a shared library.

C Shared Library
The MATLAB Compiler allows you to build a shared library from the files
created in the previous section, “C Libraries.” To build the shared library,
sometimefun.ext, in one step, use

mcc –W lib:sometimefun –L C –t –T link:lib –h weekday date tic calendar toc

The –t option tells the Compiler to generate C code from each of the listed
M-files. The –T link:lib option tells the Compiler to compile and link a shared
library. The –h option tells the Compiler to include any other M-functions
called from those listed on the mcc command line, i.e., helper functions.
6

Supported Executable Types
C++ Libraries
The intent of the C++ library wrapper files is to allow the inclusion of an
arbitrary set of M-files into a library. The header file contains all of the entry
points for all of the compiled M functions.

Note Even if you are not producing a separate library, you must generate a
library wrapper file when including any Compiler-generated code into a larger
application.

This example uses several functions from the toolbox\matlab\timefun
directory (weekday, date, tic, calendar, toc) to create a C++ library called
sometimefun. The –W lib:sometimefun –L Cpp options produce the C++
library files shown in this table.

Note On some platforms, including Microsoft Windows NT, support for C++
shared libraries is limited and the C++ mangled function names must be
exported. Refer to your vendor-supplied documentation for details on creating
C++ shared libraries.

sometimefun.cpp
The C++ wrapper file (sometimefun.cpp) initializes the state of
Compiler-generated functions so that those functions can be called from C++
code not generated by the Compiler. These files are produced from the
command:

mcc –W lib:sometimefun –L Cpp –F page–width:55 weekday date tic calendar toc

File Description

sometimefun.cpp C++ wrapper file

sometimefun.hpp C++ header file
5-47

5 Controlling Code Generation

5-4
The generated wrapper function, sometimefun.cpp is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 14:43:48 1998
// Arguments: "–W" "lib:sometimefun" "–L"
// "Cpp" "–F" "page-width:55" "weekday" "date" "tic"
// "calendar" "toc"
//
#include "matlab.hpp"
#include "toc.hpp"
#include "calendar.hpp"
#include "tic.hpp"
#include "date.hpp"
#include "weekday.hpp"

mwArray TICTOC;

static mlfFunctionTableEntry function_table[5]
 = { { "toc", mlxToc, 0, 1 },
 { "calendar", mlxCalendar, 2, 1 },
 { "tic", mlxTic, 0, 0 },
 { "date", mlxDate, 0, 1 },
 { "weekday", mlxWeekday, 1, 2 } };

static mwFunctionTableInit mcl_function_table_init(5,
 function_table);

sometimefun.hpp
The library header file (sometimefun.hpp) for this example is:

//
// MATLAB Compiler: 2.0b1
// Date: Mon Dec 14 14:43:48 1998
// Arguments: "–W" "lib:sometimefun" "–L"
// "Cpp" "–F" "page-width:55" "weekday" "date" "tic"
// "calendar" "toc"
//
#ifndef __sometimefun_hpp
#define __sometimefun_hpp 1
8

Supported Executable Types
#include "matlab.hpp"

extern mwArray weekday(mwArray * w,
 mwArray t = mwArray::DIN);
#ifdef __cplusplus
extern "C"
#endif
void mlxWeekday(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mwArray date();
#ifdef __cplusplus
extern "C"
#endif
void mlxDate(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern void tic();
#ifdef __cplusplus
extern "C"
#endif
void mlxTic(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mwArray Ncalendar(int nargout,
 mwArray c = mwArray::DIN,
 mwArray m = mwArray::DIN);
extern mwArray calendar(mwArray c = mwArray::DIN,
 mwArray m = mwArray::DIN);
extern void Vcalendar(mwArray c = mwArray::DIN,
 mwArray m = mwArray::DIN);
#ifdef __cplusplus
extern "C"
#endif
5-49

5 Controlling Code Generation

5-5
void mlxCalendar(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);
extern mwArray Ntoc(int nargout);
extern mwArray toc();
extern void Vtoc();
#ifdef __cplusplus
extern "C"
#endif
void mlxToc(int nlhs,
 mxArray * plhs[],
 int nrhs,
 mxArray * prhs[]);

#endif

Porting Generated Code to a Different Platform
The code generated by the MATLAB Compiler is portable among platforms.
However, if you build an executable from foo.m on a PC running Windows, that
same file will not run on a UNIX system.

For example, you cannot simply copy foo.mex (where the mex extension varies
by platform) from a PC to a Sun system and expect the code to work, because
binary formats are different on different platforms (all supported executable
types are binary). However, you could copy either all of the generated C code or
foo.m from the PC to the Sun system. Then, on the Sun platform you could use
mex or mcc to produce a foo.mex that would work on the Sun system.

Note Stand-alone applications require that the MATLAB C/C++ Math
Library be purchased for each platform where the Compiler-generated code
will be executed. For more information, see the MATLAB C/C++ Math Library
documentation.
0

Formatting Compiler-Generated Code
Formatting Compiler-Generated Code
The formatting options allow you to control the look of the Compiler-generated
C or C++ code. These options let you set the width of the generated code and
the indentation levels for statements and expressions. To control code
formatting, use

–F <option>

The remaining sections focus on the different choices you can use.

Listing All Formatting Options
To view a list of all available formatting options, use

mcc –F list …

Setting Page Width
Use the page–width:n option to set the maximum width of the generated code
to n, an integer. The default is 80 columns wide, so not selecting any page width
formatting option will automatically limit your columns to 80 characters.

Note Setting the page width to a desired value does not guarantee that all
generated lines of code will not exceed that value. There are cases where, due
to indentation perhaps, a variable name may not fit within the width limit.
Since variable names cannot be split, they may extend beyond the set limit.
Also, to maintain the syntactic integrity of the original M source, annotations
included from the M source file are not wrapped.

Default Width
Not specifying a page width formatting option uses the default of 80. Using

mcc –x gasket
5-51

5 Controlling Code Generation

5-5
generates this code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

for (mclForStart(&iterator_0, mlfScalar(1.0), numPoints, NULL);
 mclForNext(&iterator_0, &i);
) {
 /*
 * startPoint = floor((corners(theRand(i),:)+startPoint)/2);
 */
 mlfAssign(
 &startPoint,
 mlfFloor(
 mlfMrdivide(
 mlfPlus(
 mlfIndexRef(
 corners,
 "(?,?)",
 mlfIndexRef(theRand, "(?)", i),
 mlfCreateColonIndex()),
 startPoint),
 mlfScalar(2.0))));

.

.

.

Page Width = 40
This example specifies a page width of 40.

mcc –x –F page–width:40 gasket
2

Formatting Compiler-Generated Code
The segment of generated code is:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

mlfAssign(
 &theImage,
 mlfZeros(
 mlfScalar(1000.0),
 mlfScalar(1000.0),
 NULL));
 /*
 *
 * corners = [866 1;1 500;866 1000];
 */
 mlfAssign(
 &corners,
 mlfDoubleMatrix(
 3, 2, __Array0_r, NULL));
 /*
 * startPoint = [866 1];
 */
 mlfAssign(
 &startPoint,
 mlfDoubleMatrix(
 1, 2, __Array1_r, NULL));
 /*
 * theRand = rand(numPoints,1);
 */
 mlfAssign(
 &theRand,
 mlfRand(
 numPoints,
 mlfScalar(1.0),
 NULL));
 /*
 * theRand = ceil(theRand*3);
 */
 mlfAssign(
 &theRand,
 mlfCeil(
 mlfMtimes(
 theRand, mlfScalar(3.0))));

.

.

.

5-53

5 Controlling Code Generation

5-5
Setting Indentation Spacing
Use the statement–indent:n option to set the indentation of all statements to
n, an integer. The default is 4 spaces of indentation. To set the indentation for
expressions, use expression–indent:n. This sets the number of spaces of
indentation to n, an integer, and defaults to 2 spaces of indentation.

Default Indentation
Not specifying indent formatting options uses the default of four spaces for
statements and two spaces for expressions. For example, using

mcc –x gasket
4

Formatting Compiler-Generated Code
generates the following code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

void mlxGasket(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
 mxArray * mprhs[1];
 mxArray * mplhs[1];
 int i;
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "0 The function \"gasket\" was called with mor"
 "e than the declared number of outputs (1)"));
 }
 if (nrhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: "
 "0 The function \"gasket\" was called with mor"
 "e than the declared number of inputs (1)"));
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }
 mlfEnterNewContext(0, 1, mprhs[0]);
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

5-55

5 Controlling Code Generation

5-5
Modified Indentation
This example shows the same segment of code using a statement indentation
of 2 and an expression indentation of 1.

mcc –F statement–indent:2 –F expression–indent:1 –x gasket

generates the following code segment:

0 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

void mlxGasket(int nlhs, mxArray * plhs[], int nrhs, mxArray * prhs[]) {
 mxArray * mprhs[1];
 mxArray * mplhs[1];
 int i;
 if (nlhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: 0 The function \"gaske"
 "t\" was called with more than the declared number of outputs (1)"));
 }
 if (nrhs > 1) {
 mlfError(
 mxCreateString(
 "Run-time Error: File: gasket Line: 1 Column: 0 The function \"gaske"
 "t\" was called with more than the declared number of inputs (1)"));
 }
 for (i = 0; i < 1; ++i) {
 mplhs[i] = NULL;
 }
 for (i = 0; i < 1 && i < nrhs; ++i) {
 mprhs[i] = prhs[i];
 }
 for (; i < 1; ++i) {
 mprhs[i] = NULL;
 }
 mlfEnterNewContext(0, 1, mprhs[0]);
 mplhs[0] = Mgasket(nlhs, mprhs[0]);
 mlfRestorePreviousContext(0, 1, mprhs[0]);
 plhs[0] = mplhs[0];
}

6

Including M-File Information in Compiler Output
Including M-File Information in Compiler Output
The annotation options allow you to control the type of annotation in the
Compiler-generated C or C++ code. These options let you include the comments
and/or source code from the initial M-file(s) as well as #line preprocessor
directives. You can also use an annotation option to generate source file and
line number information when you receive run-time error messages. To control
code annotation, use:

–A <option>

You can combine annotation options, for example selecting both comments and
#line directives. The remaining sections focus on the different choices you can
use.

Controlling Comments in Output Code
Use the annotation:type option to include your initial M-file comments and
code in your generated C or C++ output. The possible values for type are:

• all

• comments

• none

Not specifying any annotation type uses the default of all, which includes the
complete source of the M-file (comments and code) interleaved with the
generated C/C++ source.

The following sections show segments of the generated code from this simple
Hello, World example.

function hello
% This is the hello, world function written in M code
% $Revision: 1.1 $
%
 fprintf(1,'Hello, World\n');

Comments Annotation
To include only comments from the source M-file in the generated output, use:

mcc –A annotation:comments …
5-57

5 Controlling Code Generation

5-5
This code snippet shows the generated code containing only the comments.

static void Mhello(void) {
 mxArray * ans = mclInitializeAns();
 /*
 * This is the hello, world function written in M code
 * $Revision: 1.1 $
 *
 */
 mclAssignAns(
 &ans,

mlfFprintf(mlfScalar(1.0), mxCreateString("Hello, World\\n"), NULL));
mxDestroyArray(ans);

}
.
.
.

All Annotation
To include both comments and source code from the source M-file in the
generated output, use:

mcc –A annotation:all …

or do not stipulate the annotation option, thus using the default of all.

The code snippet contains both comments and source code:

static void Mhello(void) {
 mxArray * ans = mclInitializeAns();
 /*
 * % This is the hello, world function written in M code
 * % $Revision: 1.1 $
 * %
 * fprintf(1,'Hello, World\n');
 */
 mclAssignAns(
 &ans,

mlfFprintf(mlfScalar(1.0), mxCreateString("Hello, World\\n"), NULL));
 mxDestroyArray(ans);
/*
 *
 */
}

.

.

.

Comments

Comments

Code
8

Including M-File Information in Compiler Output
No Annotation
To include no source from the initial M-file in the generated output, use:

mcc –A annotation:none …

This code snippet shows the generated code without comments and source
code.

static void Mhello(void) {
 mxArray * ans = mclInitializeAns();
 mclAssignAns(
 &ans,
 mlfFprintf(mlfScalar(1.0), mxCreateString("Hello, World\\n"), NULL));
 mxDestroyArray(ans);
}

.

.

.

Controlling #line Directives in Output Code
#line preprocessing directives inform a C/C++ compiler that the C/C++ code
was generated by another tool (MATLAB Compiler) and they identify the
correspondence between the generated code and the original source code
(M-file). You can use the #line directives to help debug your M-file(s). Most C
language debuggers can display your M-file source code. These debuggers allow
you to set breakpoints, single step, and so on at the M-file code level when you
use the #line directives.

Use the line:setting option to include #line preprocessor directives in your
generated C or C++ output. The possible values for setting are:

• on

• off

Not specifying any line setting uses the default of off, which does not include
any #line preprocessor directives in the generated C/C++ source.

Include #line Directives
To include #line directives in your generated C or C++ code, use:

mcc –A line:on …
5-59

5 Controlling Code Generation

5-6
The Hello, World example produces the following code segment when this
option is selected.

#line 1 "<matlab>\\extern\\examples\\compiler\\hello.m"
static void Mhello(void) {
 #line 1 "<matlab>\\extern\\examples\\compiler\\hello.m"
 mxArray * ans = mclInitializeAns();
 /*
 * % This is the hello, world function written in M code
 * % $Revision: 1.1 $
 * %
 * fprintf(1,'Hello, World\n');
 */
 #line 5 "<matlab>\\extern\\examples\\compiler\\hello.m"
 mclAssignAns(
 #line 5 "<matlab>\\extern\\examples\\compiler\\hello.m"
 &ans,
 #line 5 "<matlab>\\extern\\examples\\compiler\\hello.m"
 mlfFprintf(mlfScalar(1.0), mxCreateString("Hello, World\\n"), NULL));
 #line 5 "<matlab>\\extern\\examples\\compiler\\hello.m"
 mxDestroyArray(ans);

.

.

.

In this example, Line 1 points to lines in the generated C code that were
produced by line 1 from the M-file, that is

function hello

Line 5 points to lines in the C code that were produced by line 5 of the M-file, or

fprintf(1,'Hello, World\n');

Controlling Information in Run-Time Errors
Use the debugline:setting option to include source filenames and line
numbers in run-time error messages. The possible values for setting are:

• on

• off

Not specifying any debugline setting uses the default of off, which does not
include filenames and line numbers in the generated run-time error messages.

Line 1

Line 1

Line 5

Line 5

Line 5

Line 5
0

Including M-File Information in Compiler Output
For example, given the M-file, tmmult.m, which in MATLAB would produce the
error message Inner matrix dimensions must agree

function tmmult
 a = ones(2,3);
 b = ones(4,5);

 y = mmult(a,b)

function y = mmult(a, b)
 y = a * b;

If you create a Compiler-generated MEX-file with the command

mcc –x tmmult

and run it, your results are:

tmmult
??? Inner matrix dimensions must agree.

Error in ==> <matlab>\toolbox\compiler\tmmult.dll

The information about where the error occurred is not available. However, if
you compile tmmult.m and use the –A debugline:on option as in

mcc –x –A debugline:on tmmult

your results are

tmmult
??? Inner matrix dimensions must agree.
Error in File: "<matlab>\extern\examples\compiler\tmmult.m",
Function: "tmmult", Line: 5.

Error in ==> <matlab>\extern\examples\compiler\tmmult.dll

File/line #
5-61

5 Controlling Code Generation

5-6
Note When using the –A debugline:on option, the lasterr function returns
a string that includes the line number information. If, in your M-code, you
compare against the string value of lasterr, you will get different behavior
when using this option.

Since try…catch…end is not available in g++, do not use the –A debugline:on
option.
2

Interfacing M-Code to C/C++ Code
Interfacing M-Code to C/C++ Code
The MATLAB Compiler 2.0 supports calling arbitrary C/C++ functions from
your M-code. You simply provide an M-function stub that determines how the
code will behave in M, and then provide an implementation of the body of the
function in C or C++.

C Example
Suppose you have a C function that reads data from a measurement device. In
M-code, you want to simulate the device by providing a sine wave output. In
production, you want to provide a function that returns the measurement
obtained from the device. You have a C function called
measure_from_device() that returns a double, which is the current
measurement.

collect.m contains the M-code for the simulation of your application.

function collect

y = zeros(1, 100); %Pre-allocate the matrix
for i = 1:100
 y(i) = collect_one;
end

function y = collect_one

persistent t;
if (isempty(t))

t = 0;
else

t = t + 0.05;
end
y = sin(t);

The next step is to replace the implementation of the collect_one function
with a C implementation that provides the correct value from the device each
time it is requested. This is accomplished by using the %#external pragma.

The %#external pragma informs the MATLAB Compiler that the
implementation version of the function (Mf) will be hand written and will not
be generated from the M-code. This pragma affects only the single function in
5-63

5 Controlling Code Generation

5-6
which it appears. Any M-function may contain this pragma (local, global,
private, or method). When using this pragma, the Compiler will generate an
additional header file called file_external.h or file_external.hpp, where
file is the name of the initial M-file containing the %#external pragma. This
header file will contain the extern declaration of the function that the user
must provide. This function must conform to the same interface as the
Compiler-generated code.

The Compiler will still generate a .c or .cpp file from the .m file in question.
The Compiler will generate the feval table, which includes the function and
all of the required interface functions for the M-function, but the body of
M-code from that function will be ignored. It will be replaced by the
hand-written code. The Compiler will generate the interface for any functions
that contain the %#external pragma into a separate file called
file_external.h or file_external.hpp. The Compiler-generated C or C++
file will include this header file to get the declaration of the function being
provided.

In this example, place the pragma in the collect_one local function.

function collect

y = zeros(1, 100); % pre-allocate the matrix
for i = 1:100

y(i) = collect_one;
end

function y = collect_one

%#external
persistent t;
if (isempty(t))

t = 0;
else

t = t + 0.05;
end
y = sin(t);
4

Interfacing M-Code to C/C++ Code
When this file is compiled, the Compiler creates the additional header file
collect_external.h, which contains the interface between the
Compiler-generated code and your code. In this example, it would contain

extern mxArray *Mcollect_collect_one(int nargout_);

We recommend that you include this header file when defining the function.
This function could be implemented in this C file, measure.c, using the
measure_from_device() function.

#include "matlab.h"
#include "collect_external.h"
#include <math.h>

extern double measure_from_device(void);

mxArray *Mcollect_collect_one(int nargout_)
{

return(mlfScalar(measure_from_device()));
}
double measure_from_device(void)
{

static double t = 0.0;
t = t + 0.05;
return sin(t);

}

In general, the Compiler will use the same interface for this function as it
would generate. To generate the C code and header file, use

mcc –c collect.m

By examining the Compiler-generated C code, you should easily be able to
determine how to implement this interface. To compile collect.m to a
MEX-file, use

mcc –x collect.m measure.c

Using feval
In stand-alone C and C++ modes, the pragma

%#function <function_name-list>
5-65

5 Controlling Code Generation

5-6
informs the MATLAB Compiler that the specified function(s) will be called
through an feval call or through a MATLAB function that accepts a function
to feval as an argument (e.g., fmin or the ode solvers). Without this pragma,
the –h option will not be able to locate and compile all M-files used in your
application.

If you are using the %#function pragma to define functions that are not
available in M-code, you must write a dummy M-function that identifies the
number of input and output parameters to the M-file function with the same
name used on the %#function line. For example:

%#function myfunctionwritteninc

This implies that myfunctionwritteninc is an M-function that will be called
using feval. The Compiler will look up this function to determine the correct
number of input and output variables. Therefore, you need to provide a dummy
M-function that contains a function line, such as:

function y = myfunctionwritteninc(a, b, c);

and includes the %#external pragma. This statement indicates that the
function takes three inputs (a, b, c) and returns a single output variable (y). No
other lines need to be present in the M-function.
6

Print Handlers
Print Handlers
A print handler is a routine that controls how your application displays the
output generated by calls to mlf routines.

The system provides a default print handler for your application. The default
print handler writes output to the standard output stream. If this print
handler is suitable for your application, you do not need to write and register
another print handler.

However, you can override the default behavior by writing and registering an
alternative print handler. In fact, if you are coding a stand-alone application
with a GUI, then you must register another print handler to display application
output inside a GUI mechanism, such as a Windows message box or a Motif
Label widget.

You write an alternative print handler routine in C or C++ and register its
name at the beginning of your stand-alone application.

The way you register a print handler depends on whether or not “the main
routine” (or first routine called) for your application is written in C or in M.

Note The print handlers and registration functions discussed in this section
are written for C applications. Although they will work in C++ applications,
we recommend that you use a C++ print handler and the C++ registration
routine mwSetPrintHandler() for C++ applications. See the MATLAB C++
Math Library User’s Guide for details about C++ print handlers.

Main Routine Written in C
If your main routine is coded in C (as opposed to being written as an M-file),
you must:

• Register a print handler in your main routine.

• Write the print handler.

This section references source code from a sample stand-alone application
written for Microsoft Windows. The main routine WinMain is written in C. The
source code illustrates how to register and write a print handler.
5-67

5 Controlling Code Generation

5-6
The application is built from two files:

• mrankwin.c, which contains WinMain, WinPrint (the print handler), and a
related function WinFlush

• The MATLAB Compiler C translation of mrank.m

Both mrankwin.c and mrank.m are located in the
<matlab>/extern/examples/compiler/ directory of your installation.

The WinMain routine in mrankwin.c is straightforward.

• It registers a print handler.

• It assigns an integer input from the command line to a scalar array, or
defaults the contents of the array to 12.

• It passes that array to mlfMrank, which determines the rank of the magic
squares from 1 to n.

• It prints the array returned by mlfMrank.

The first and last items in this list refer to print handlers.

Registering a Print Handler
To register a print handler routine, call the MATLAB C Math Library routine
mlfSetPrintHandler as the first executable line in WinMain (or main).
mlfSetPrintHander takes a single argument, a pointer to a print handler
function.

For example, the first line of WinMain in mrankwin.c registers the print handler
routine named WinPrint by calling mlfSetPrintHandler:

mlfSetPrintHandler(WinPrint);

Writing a Print Handler
Whenever an mlf function within a stand-alone application makes a request to
write data, the application automatically intercepts the request and calls the
registered print handler, passing the text to be displayed. In fact, the
application calls the print handler once for every line of data to be output.
8

Print Handlers
The print handler that you write must:

• Take a single argument of type const char * that points to the text to be
displayed.

• Return void.

The print handler routine WinPrint in the example program illustrates one
possible approach to writing a print handler for a Windows program.

When the example WinMain routine prints the array returned by mlfMrank,

mlfPrintMatrix(R);

the registered print handler, WinPrint, is called. If array R contains a 12-row
result from the call to mlfMrank, the application calls WinPrint 12 times, each
time passing the next line of data. The print handler WinPrint dynamically
allocates a buffer to hold the printable contents of array R and appends each
text string passed to it to the buffer.

In this design, the print handler prints to a buffer rather than the screen. A
companion function WinFlush actually displays the 12 lines of data in a
Windows message box.

In the example, WinMain calls WinFlush immediately following the call to
mlfPrintMatrix.

mlfPrintMatrix(R);
WinFlush();

Though WinFlush is not part of the print handler, this implementation of a
print handler requires that you call WinFlush after any mlf function that
causes a series of calls to the print handler. For this short program, this design
is appropriate.

Here is the source code from mrankwin.c for WinPrint and WinFlush. It
includes:

• The static, global variables used by the two routines
static int totalcnt = 0;
static int upperlim = 0;
static int firsttime = 1;
char *OutputBuffer;
5-69

5 Controlling Code Generation

5-7
• The print handler routine itself that deposits the text passed to it in an
output buffer
void WinPrint(char *text)
{
 int cnt;

 /* Allocate a buffer for the output */
 if (firsttime) {
 OutputBuffer = (char *)mxCalloc(1028, 1);
 upperlim += 1028;
 firsttime = 0;
 }

 /* Make sure there’s enough room in the buffer */
 cnt = strlen(text);
 while (totalcnt + cnt >= upperlim) {
 char *TmpOut;
 upperlim += 1028;
 TmpOut = (char *)mxRealloc(OutputBuffer, upperlim);
 if (TmpOut != NULL)
 OutputBuffer = TmpOut;
 }

 /* Concatenate the next line of text */
 strncat(OutputBuffer, text, cnt);

 /* Update the number of characters stored in the buffer */
 totalcnt += cnt;
}

• The related function WinFlush that actually displays the text from the
output buffer in a Windows message box.
void WinFlush(void)
{
 MessageBox(NULL, OutputBuffer, "MRANK", MB_OK);
 mxFree(OutputBuffer);
}

For more details on mlfPrintMatrix, see the MATLAB C Math Library User’s
Guide.
0

Print Handlers
Main Routine Written in M-Code
If your main routine is an M-file, you must:

• Write a print handler in C.

• Register the print handler in your main M-file.

Registering the print handler requires several steps, some performed in C and
some in M-code. To register a print handler from your main M-file, you call a
dummy print handler initialization function written in M-code. The MATLAB
Compiler translates that call into a call to the actual print handler
initialization function written in C or C++.

To set up for this translation, you must write two print handler initialization
functions:

• A print handler initialization function in C or C++ that registers the print
handler

• A dummy print handler initialization routine in M-code that does nothing
(the body of the function is empty) except enable the MATLAB Compiler to
make the proper translation

You call the dummy print handler initialization function from your main
M-file. The MATLAB Compiler translates that call into a call to your print
handler initialization function written in C or C++.

Example Files
In this example, two M-files and one C file are built into a stand-alone
application. The main routine is mr.m.

• mr.m contains the main M routine.
function mr(m)
initprnt
m=str2num(m);
r=mrank(m);
r

function initprnt
%#external
5-71

5 Controlling Code Generation

5-7
• mrank.m determines the rank of the magic squares from 1 to n.
function r = mrank(n)
r = zeros(n, 1);
for k = 1:n
 r(k) = rank(magic(k));
end

• myph.c contains the print handler and the print handler initialization
routine, in that order. In the example, this C file gets created.

#include "matlab.h"
#include “mr_external.h”
static void myPrintHandler(const char *s)
{
 printf("%s\n",s);
}

void Mmr_initprnt(void)
{
 mlfSetPrintHandler(myPrintHandler);
}

Writing the Print Handler in C/C++
First, write a print handler in C following the standard rules for a print
handler: it must take one argument of type const char *s and return void.

The print handler in this example is very simple.

static void myPrintHandler(const char *s)
{
 printf("%s\n",s);
}

The file myph.c contains this code.

Registering the Print Handler
Registering the print handler requires several steps, some performed in C and
some in M. Be careful to name your C and M print handler initialization
functions according to the rules presented below. Otherwise, the
correspondence between the two is missing.
2

Print Handlers
Naming the Print Handler Initialization Routine in C. When you write the print handler
initialization routine in C, you must follow the naming convention used by the
MATLAB C Math Library. This name will appear in a header file that is
generated by the MATLAB Compiler when it compiles the stub M-function,
initprnt in this example. See the earlier section, “Interfacing M-Code to C/
C++ Code,” for more information.

You should include this Compiler-generated header file when you define the C
function. For example, the print handler initialization routine developed here
is called MInitprnt and is found in mr_external.h.

Naming the Dummy Print Handler Initialization Routine in M-Code. When you name the
dummy print handler initialization routine in M-code, you must name it after
the base part of the actual print handler initialization routine (the one written
in C or C++).

For example, the dummy print handler initialization routine shown here is
called initprnt.

Writing the Initialization Routine in C. First, write the print handler initialization
routine in C. All print handler initialization functions register the name of the
print handler function by calling mlfSetPrintHandler, passing a pointer to the
print handler (the function name) as an argument.

Your initialization function must take no arguments and return void. For
example,

void Mmr_initprnt(void)
{
 mlfSetPrintHandler(myPrintHandler);
}

The file myph.c contains this code.

Writing a Dummy Initialization Function in M-Code. Next, write the dummy print
handler initialization routine in M-code. The body of this function is empty, but
without the function declaration, the MATLAB Compiler can’t successfully
translate the call to initprnt in M-code into a call to MInitprnt() in C.

The function can be placed in the same M-file that defines the main mr.m in this
example. It is declared as function initprnt and contains the %#external
pragma.
5-73

5 Controlling Code Generation

5-7
Initializing the Print Handler in Your Main M-File. Call the dummy print handler
initialization routine in the first executable line of your main M-file. For
example, in mr.m the call to initprnt immediately follows the function
declaration.

function mr(m)
initprnt; % Call print handler initialization routine

m=str2num(m);

r=mrank(m);
r

function initprnt
%#external

Building the Executable
You must compile myph.c with one of the supported C compilers, and you must
ensure that the resulting object file is linked into the stand-alone application.
To build the C stand-alone executable, at the MATLAB prompt type:

mcc –t –L C –W main –T link:exe mr.m mrank.m myph.c

Testing the Executable
Run the executable by typing at the MATLAB prompt:

!mr 5

The output displays as

r =

 1

 2

 3

 3

 5
4

%#external . 6-3
%#function . 6-4

Functions . 6-5
mbchar . 6-6
mbcharscalar . 6-7
mbcharvector . 6-8
mbint . 6-9
mbintscalar . 6-11
mbintvector . 6-12
mbreal . 6-13
mbrealscalar . 6-14
mbrealvector . 6-15
mbscalar . 6-16
mbvector . 6-17
reallog . 6-18
realpow . 6-19
realsqrt . 6-20

Command Line Tools 6-21
mbuild . 6-22
mcc (Compiler 2.0) 6-25
MATLAB Compiler 2.0 Option Flags 6-32
mcc (Compiler 1.2) 6-45
MATLAB Compiler 1.2 Option Flags 6-47
6

Reference

Pragmas . 6-2

Pragmas
Pragmas
Pragmas are compiler-specific commands that provide special information to
the compiler. This section contains the reference pages for the MATLAB
Compiler 2.0 pragmas, namely, %#external and %#function.

Note The Compiler 1.2 pragmas documented in Appendix D, “Using Compiler
1.2,” are recognized and ignored by Compiler 2.0.
6-2

%#external
6%#externalPurpose Pragma to call arbitrary C/C++ functions from your M-code.

Syntax %#external

Description The %#external pragma informs the Compiler that the implementation
version of the function (Mf) will be hand written and will not be generated from
the M-code. This pragma affects only the single function in which it appears,
and any M-function may contain this pragma (local, global, private, or method).

When using this pragma, the Compiler will generate an additional header file
called file_external.h or file_external.hpp, where file is the name of the
initial M-file containing the %#external pragma. This header file will contain
the extern declaration of the function that the user must provide. This
function must conform to the same interface as the Compiler-generated code.
For more information on the %#external pragma, see “Interfacing M-Code to
C/C++ Code” in Chapter 5.
6-3

%#function
6%#functionPurpose feval pragma.

Syntax %#function <function_name-list>

Description This pragma informs the MATLAB Compiler that the specified function(s) will
be called through an feval call. You need to specify this pragma only to assist
the Compiler in locating and automatically compiling the set of functions when
using the –h option.

If you are using the %#function pragma to define functions that are not
available in M-code, you should use the %#external pragma to define the
function. For example:

%#function myfunctionwritteninc

This implies that myfunctionwritteninc is an M-function that will be called
using feval. The Compiler will look up this function to determine the correct
number of input and output variables. Therefore, you need to provide a dummy
M-function that contains a function line and a %#external pragma, such as:

function y = myfunctionwritteninc(a, b, c);
%#external

The function statement indicates that the function takes three inputs (a, b, c)
and returns a single output variable (y). No additional lines need to be present
in the M-file.
6-4

Functions
Functions
This section contains the reference pages for the Compiler 2.0 functions. Many
of these functions are included to maintain backward compatibility with
previous versions of the Compiler.

Note In Compiler 2.0, the functions mbchar, mbcharscalar, mbcharvector,
mbint, mbintscalar, mbintvector, mbreal, mbrealscalar, mbrealvector,
mbscalar, and mbvector are not used for type imputation, but rather to test if
values are a specific data type.
6-5

mbchar
6mbcharPurpose Assert variable is a MATLAB character string.

Syntax mbchar(x)

Description The statement

mbchar(x)

causes the MATLAB Compiler to impute that x is a char matrix. At runtime,
if mbchar determines that x does not hold a char matrix, mbchar issues an error
message and halts execution of the MEX-file.

mbchar tells the MATLAB interpreter to check whether x holds a char matrix.
If x does not, mbchar issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbchar to impute x.

Note that mbchar only tests x at the point in an M-file or MEX-file where an
mbchar call appears. In other words, an mbchar call tests the value of x only
once. If x becomes something other than a char matrix after the mbchar test,
mbchar cannot issue an error message.

A char matrix is any scalar, vector, or matrix that contains only the char data
type.

Example This code in MATLAB causes mbchar to generate an error message because n
does not contain a char matrix:

n = 17;
mbchar(n);
??? Error using ==> mbchar
Argument to mbchar must be of class 'char'.

See Also mbcharvector, mbcharscalar, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector
6-6

mbcharscalar
6mbcharscalarPurpose Assert variable is a character scalar.

Syntax mbcharscalar(x)

Description The statement

mbcharscalar(x)

causes the MATLAB Compiler to impute that x is a character scalar, i.e., an
unsigned short variable. At runtime, if mbcharscalar determines that x holds
a value other than a character scalar, mbcharscalar issues an error message
and halts execution of the MEX-file.

mbcharscalar tells the MATLAB interpreter to check whether x holds a
character scalar value. If x does not, mbcharscalar issues an error message
and halts execution of the M-file. The MATLAB interpreter does not use
mbcharscalar to impute x.

Note that mbcharscalar only tests x at the point in an M-file or MEX-file where
an mbcharscalar call appears. In other words, an mbcharscalar call tests the
value of x only once. If x becomes a vector after the mbcharscalar test,
mbcharscalar cannot issue an error message.

mbcharscalar defines a character scalar as any value that meets the criteria of
both mbchar and mbscalar.

Example This code in MATLAB generates an error message:

n = ['hello' 'world'];
mbcharscalar(n)
??? Error using ==> mbcharscalar
Argument of mbcharscalar must be scalar.

See Also mbchar, mbcharvector, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector
6-7

mbcharvector
6mbcharvectorPurpose Assert variable is a character vector, i.e., a MATLAB string.

Syntax mbcharvector(x)

Description The statement

mbcharvector(x)

causes the MATLAB Compiler to impute that x is a char vector. At runtime, if
mbcharvector determines that x holds a value other than a char vector,
mbcharvector issues an error message and halts execution of the MEX-file.

mbcharvector tells the MATLAB interpreter to check whether x holds a char
vector value. If x does not, mbcharvector issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbcharvector
to impute x.

Note that mbcharvector only tests x at the point in an M-file or MEX-file where
an mbcharvector call appears. In other words, an mbcharvector call tests the
value of x only once. If x becomes something other than a char vector after the
mbcharvector test, mbcharvector cannot issue an error message.

mbcharvector defines a char vector as any value that meets the criteria of both
mbchar and mbvector. Note that mbcharvector considers char scalars as char
vectors as well.

Example This code in MATLAB causes mbcharvector to generate an error message
because, although n is a vector, n contains one value that is not a char:

n = [1:5];
mbcharvector(n)
??? Error using ==> mbcharvector
Argument to mbcharvector must be of class 'char'.

See Also mbchar, mbcharscalar, mbreal, mbscalar, mbvector, mbintscalar,
mbintvector
6-8

mbint
6mbintPurpose Assert variable is integer.

Syntax mbint(n)

Description The statement

mbint(x)

causes the MATLAB Compiler to impute that x is an integer. At runtime, if
mbint determines that x holds a noninteger value, the generated code issues an
error message and halts execution of the MEX-file.

mbint tells the MATLAB interpreter to check whether x holds an integer value.
If x does not, mbint issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbint to impute a data type to x.

Note that mbint only tests x at the point in an M-file or MEX-file where an
mbint call appears. In other words, an mbint call tests the value of x only once.
If x becomes a noninteger after the mbint test, mbint cannot issue an error
message.

mbint defines an integer as any scalar, vector, or matrix that contains only
integer or string values. For example, mbint considers n to be an integer
because all elements in n are integers:

n = [5 7 9];

If even one element of n contains a fractional component, for example,

n = [5 7 9.2];

then mbint assumes that n is not an integer.

mbint considers all strings to be integers.

If n is a complex number, then mbint considers n to be an integer if both its real
and imaginary parts are integers. For example, mbint considers the value of n
an integer:

n = 4 + 7i
6-9

mbint
mbint does not consider the value of x an integer because one of the parts (the
imaginary) has a fractional component:

x = 4 + 7.5i;

Example This code in MATLAB causes mbint to generate an error message because n
does not hold an integer value:

n = 17.4;
mbint(n);
??? Error using ==> mbint
Argument to mbint must be integer.

See Also mbintscalar, mbintvector
6-10

mbintscalar
6mbintscalarPurpose Assert variable is integer scalar.

Syntax mbintscalar(n)

Description The statement

mbintscalar(x)

causes the MATLAB Compiler to impute that x is an integer scalar. At
runtime, if mbintscalar determines that x holds a value other than an integer
scalar, mbintscalar issues an error message and halts execution of the
MEX-file.

mbintscalar tells the MATLAB interpreter to check whether x holds an
integer scalar value. If x does not, mbintscalar issues an error message and
halts execution of the M-file. The MATLAB interpreter does not use
mbintscalar to impute x.

Note that mbintscalar only tests x at the point in an M-file or MEX-file where
an mbintscalar call appears. In other words, an mbintscalar call tests the
value of x only once. If x becomes a vector after the mbintscalar test,
mbintscalar cannot issue an error message.

mbintscalar defines an integer scalar as any value that meets the criteria of
both mbint and mbscalar.

Example This code in MATLAB causes mbintscalar to generate an error message
because, although n is a scalar, n does not hold an integer value:

n = 4.2;
mbintscalar(n)
??? Error using ==> mbintscalar
Argument to mbintscalar must be integer.

See Also mbint, mbscalar
6-11

mbintvector
6mbintvectorPurpose Assert variable is integer vector.

Syntax mbintvector(n)

Description The statement

mbintvector(x)

causes the MATLAB Compiler to impute that x is an integer vector. At
runtime, if mbintvector determines that x holds a value other than an integer
vector, mbintvector issues an error message and halts execution of the
MEX-file.

mbintvector tells the MATLAB interpreter to check whether x holds an
integer vector value. If x does not, mbintvector issues an error message and
halts execution of the M-file. The MATLAB interpreter does not use
mbintvector to impute x.

Note that mbintvector only tests x at the point in an M-file or MEX-file where
an mbintvector call appears. In other words, an mbintvector call tests the
value of x only once. If x becomes a two-dimensional matrix after the
mbintvector test, mbintvector cannot issue an error message.

mbintvector defines an integer vector as any value that meets the criteria of
both mbint and mbvector. Note that mbintvector considers integer scalars to
be integer vectors as well.

Example This code in MATLAB causes mbintvector to generate an error message
because, although all the values of n are integers, n is a matrix rather than a
vector:

n = magic(2)
n =
 1 3
 4 2
mbintvector(n)
??? Error using ==> mbintvector
Argument to mbintvect must be a vector.

See Also mbint, mbvector, mbintscalar
6-12

mbreal
6mbrealPurpose Assert variable is real.

Syntax mbreal(n)

Description The statement

mbreal(x)

causes the MATLAB Compiler to impute that x is real (not complex). At
runtime, if mbreal determines that x holds a complex value, mbreal issues an
error message and halts execution of the MEX-file.

mbreal tells the MATLAB interpreter to check whether x holds a real value. If
x does not, mbreal issues an error message and halts execution of the M-file.
The MATLAB interpreter does not use mbreal to impute x.

Note that mbreal only tests x at the point in an M-file or MEX-file where an
mbreal call appears. In other words, an mbreal call tests the value of x only
once. If x becomes complex after the mbreal test, mbreal cannot issue an error
message.

A real value is any scalar, vector, or matrix that contains no imaginary
components.

Example This code in MATLAB causes mbreal to generate an error message because n
contains an imaginary component:

n = 17 + 5i;
mbreal(n);
??? Error using ==> mbreal
Argument to mbreal must be real.

See Also mbrealscalar, mbrealvector
6-13

mbrealscalar
6mbrealscalarPurpose Assert variable is real scalar.

Syntax mbrealscalar(n)

Description The statement

mbrealscalar(x)

causes the MATLAB Compiler to impute that x is a real scalar. At runtime, if
mbrealscalar determines that x holds a value other than a real scalar,
mbrealscalar issues an error message and halts execution of the MEX-file.

mbrealscalar tells the MATLAB interpreter to check whether x holds a real
scalar value. If x does not, mbrealscalar issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbrealscalar
to impute x.

Note that mbrealscalar only tests x at the point in an M-file or MEX-file where
an mbrealscalar call appears. In other words, an mbrealscalar call tests the
value of x only once. If x becomes a vector after the mbrealscalar test,
mbrealscalar cannot issue an error message.

mbrealscalar defines a real scalar as any value that meets the criteria of both
mbreal and mbscalar.

Example This code in MATLAB causes mbrealscalar to generate an error message
because, although n contains only real numbers, n is not a scalar:

n = [17.2 15.3];
mbrealscalar(n)
??? Error using ==> mbrealscalar
Argument of mbrealscalar must be scalar.

See Also mbreal, mbscalar, mbrealvector
6-14

mbrealvector
6mbrealvectorPurpose Assert variable is a real vector.

Syntax mbrealvector(n)

Description The statement

mbrealvector(x)

causes the MATLAB Compiler to impute that x is a real vector. At runtime, if
mbrealvector determines that x holds a value other than a real vector,
mbrealvector issues an error message and halts execution of the MEX-file.

mbrealvector tells the MATLAB interpreter to check whether x holds a real
vector value. If x does not, mbrealvector issues an error message and halts
execution of the M-file. The MATLAB interpreter does not use mbrealvector
to impute x.

Note that mbrealvector only tests x at the point in an M-file or MEX-file where
an mbrealvector call appears. In other words, an mbrealvector call tests the
value of x only once. If x becomes complex after the mbrealvector test,
mbrealvector cannot issue an error message.

mbrealvector defines a real vector as any value that meets the criteria of both
mbreal and mbvector. Note that mbrealvector considers real scalars to be real
vectors as well.

Example This code in MATLAB causes mbrealvector to generate an error message
because, although n is a vector, n contains one imaginary number:

n = [5 2+3i];
mbrealvector(n)
??? Error using ==> mbrealvector
Argument to mbrealvector must be real.

See Also mbreal, mbrealscalar, mbvector
6-15

mbscalar
6mbscalarPurpose Assert variable is scalar.

Syntax mbscalar(n)

Description The statement

mbscalar(x)

causes the MATLAB Compiler to impute that x is a scalar. At runtime, if
mbscalar determines that x holds a nonscalar value, mbscalar issues an error
message and halts execution of the MEX-file.

mbscalar tells the MATLAB interpreter to check whether x holds a scalar
value. If x does not, mbscalar issues an error message and halts execution of
the M-file. The MATLAB interpreter does not use mbscalar to impute x.

Note that mbscalar only tests x at the point in an M-file or MEX-file where an
mbscalar call appears. In other words, an mbscalar call tests the value of x
only once. If x becomes nonscalar after the mbscalar test, mbscalar cannot
issue an error message.

mbscalar defines a scalar as a matrix whose dimensions are 1-by-1.

Example This code in MATLAB causes mbscalar to generate an error message because
n does not hold a scalar:

n = [1 2 3];
mbscalar(n);
??? Error using ==> mbscalar
Argument of mbscalar must be scalar.

See Also mbint, mbintscalar, mbintvector, mbreal, mbrealscalar, mbrealvector,
mbvector
6-16

mbvector
6mbvectorPurpose Assert variable is vector.

Syntax mbvector(n)

Description The statement

mbvector(x)

causes the MATLAB Compiler to impute that x is a vector. At runtime, if
mbvector determines that x holds a nonvector value, mbvector issues an error
message and halts execution of the MEX-file.

mbvector causes the MATLAB interpreter to check whether x holds a vector
value. If x does not, mbvector issues an error message and halts execution of
the M-file. The MATLAB interpreter does not use mbvector to impute x.

Note that mbvector only tests x at the point in an M-file or MEX-file where an
mbvector call appears. In other words, an mbvector call tests the value of x
only once. If x becomes a nonvector after the mbvector test, mbvector cannot
issue an error message.

mbvector defines a vector as any matrix whose dimensions are 1-by-n or
n-by-1. All scalars are also vectors (though most vectors are not scalars).

Example This code in MATLAB causes mbvector to generate an error message because
the dimensions of n are 2-by-2:

n = magic(2)
n =
 1 3
 4 2
mbvector(n)
??? Error using ==> mbvector
Argument to mbvector must be a vector.

See Also mbint, mbintscalar, mbintvector, mbreal, mbrealscalar, mbscalar,
mbrealvector
6-17

reallog
6reallogPurpose Natural logarithm for nonnegative real inputs.

Syntax Y = reallog(X)

Description reallog is an elementary function that operates element-wise on matrices.
reallog returns the natural logarithm of X. The domain of reallog is the set
of all nonnegative real numbers. If X is negative or complex, reallog issues an
error message.

reallog is similar to the MATLAB log function; however, the domain of log is
much broader than the domain of reallog. The domain of log includes all real
and all complex numbers. If Y is real, you should use reallog rather than log
for two reasons.

First, subsequent access of Ymay execute more efficiently if Y is calculated with
reallog rather than with log. Using reallog forces the MATLAB Compiler to
impute a real type to X and Y. Using log typically forces the MATLAB Compiler
to impute a complex type to Y.

Second, the compiled version of reallog may run somewhat faster than the
compiled version of log. (However, the interpreted version of reallog may run
somewhat slower than the interpreted version of log.)

See Also exp, log, log2, logm, log10, realsqrt
6-18

realpow
6realpowPurpose Array power function for real-only output.

Syntax Z = realpow(X,Y)

Description realpow returns X raised to the Y power. realpow operates element-wise on
matrices. The range of realpow is the set of all real numbers. In other words,
if X raised to the Y power yields a complex answer, then realpow does not return
an answer. Instead, realpow signals an error.

If X is negative and Y is not an integer, the resulting power is complex and
realpow signals an error.

realpow is similar to the array power operator (.^) of MATLAB. However, the
range of .^ is much broader than the range of realpow. (The range of .^
includes all real and all imaginary numbers.) If X raised to the Y power yields
a complex answer, then you must use .^ instead of realpow. However, if X
raised to the Y power yields a real answer, then you should use realpow for two
reasons.

First, subsequent access of Zmay execute more efficiently if Z is calculated with
realpow rather than .^. Using realpow forces the MATLAB Compiler to
impute that Z, X, and Y are real. Using .^ typically forces the MATLAB
Compiler to impute the complex type to Z.

Second, the compiled version of realpow may run somewhat faster than the
compiled version of .^. (However, the interpreted version of realpow may run
somewhat slower than the interpreted version of .^.)

See Also reallog, realsqrt
6-19

realsqrt
6realsqrtPurpose Square root for nonnegative real inputs.

Syntax Y = realsqrt(X)

Description realsqrt(X) returns the square root of the elements of X. The domain of
realsqrt is the set of all nonnegative real numbers. If X is negative or complex,
realsqrt issues an error message.

realsqrt is similar to sqrt; however, sqrt’s domain is much broader than
realsqrt’s. The domain of sqrt includes all real and all complex numbers.
Despite this larger domain, if Y is real, then you should use realsqrt rather
than sqrt for two reasons.

First, subsequent access of Ymay execute more efficiently if Y is calculated with
realsqrt rather than with sqrt. Using realsqrt forces the MATLAB
Compiler to impute a real type to X and Y. Using sqrt typically forces the
MATLAB Compiler to impute a complex type to Y.

Second, the compiled version of realsqrt may run somewhat faster than the
compiled version of sqrt. (However, the interpreted version of realsqrt may
run somewhat slower than the interpreted version of sqrt.)

See Also reallog, realpow
6-20

Command Line Tools
Command Line Tools
This section contains the reference pages for the Compiler 2.0 command line
tools, namely, mbuild and mcc. This section contains complete information
about how to use the Compiler (mcc); Appendix A contains a summary of the
options in a convenient table form.
6-21

mbuild
6mbuildPurpose Create an application using the MATLAB C/C++ Math Library.

Syntax mbuild [–options] [filename1 filename2 …]

Description mbuild is a script that supports various options that allow you to customize the
building and linking of your code. This table lists the mbuild options. If no
platform is listed, the option is available on both UNIX and Microsoft Windows.

Option Description

@filename (Windows) Replace @filename on the
mbuild command line with the contents of
filename.

–c Compile only; do not link.

–D<name>[=<def>] (UNIX) Define C preprocessor macro
<name> as having value <def>.

–D<name> (Windows) Define C preprocessor macro
<name>.

–f <file> (UNIX and Windows) Use <file> as the
options file; <file> is a full pathname if
the options file is not in current directory.
(Not necessary if you use the –setup
option.)

–g Build an executable with debugging
symbols included.

–h[elp] Help; prints a description of mbuild and
the list of options.

–I<pathname> Add <pathname> to the Compiler include
search path.

–l<file> (UNIX) Link against library lib<file>.

–L<pathname> (UNIX) Include <pathname> in the list of
directories to search for libraries.
6-22

mbuild
–lang <language> Override language choice implied by file
extension.
<language> = c for C (default)

cpp for C++
This option is necessary when you use an
unsupported file extension, or when you
pass in all .o files and libraries.

–link <target> Specify the type of output file.
<target> = exe for executable file

(default)
shared for shared library

<name>=<def> (UNIX) Override options file setting for
variable <name>. If <def> contains spaces,
enclose it in single quotes, e.g.,
CFLAGS='opt1 opt2'. The definition,
<def>, can reference other variables
defined in the options file. To reference a
variable in the options file, prepend the
variable name with a $, e.g.,
CFLAGS='$CFLAGS opt2'.

–n (UNIX) No execute flag. Using this option
causes the commands used to compile and
link the target to be displayed without
executing them.

–outdir <dirname> Place any generated object, resource, or
executable files in the directory
<dirname>. Do not combine this option
with –output if the –output option gives
a full pathname.

–output <name> Create an executable named <name>. (An
appropriate executable extension is
automatically appended.)

Option Description
6-23

mbuild
–O Build an optimized executable.

–setup Set up default options file. This option
should be the only argument passed.

–U<name> Undefine C preprocessor macro <name>.

–v Verbose; print all compiler and linker
settings.

Option Description
6-24

mcc (Compiler 2.0)
6mcc (Compiler 2.0)Purpose Invoke MATLAB Compiler 2.0.

Syntax mcc [–options] mfile1 [mfile2 ... mfileN]
[C/C++file1 ... C/C++fileN]

Description mcc is the MATLAB command that invokes the MATLAB Compiler. You can
issue the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (stand-alone mode).

Note Compiler 2.0 is the default compiler. If you want to use Compiler 1.2,
you must include the –V1.2 option on the mcc command line. See “mcc
(Compiler 1.2)” for the mcc reference page for Compiler 1.2.

Command Line Syntax
You may specify one or more MATLAB Compiler option flags to mcc. (The
complete list of option flags appears later in this reference page.) Most option
flags have a one-letter name. You can list options separately on the command
line, for example:

mcc –m –g myfun

You can group options that do not take arguments by preceding the list of
option flags with a single dash (–), for example:

mcc –mg myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

mcc –m –A full myfun % Options listed separately
mcc –mA full myfun % Options combined, A option last

This format is not valid:

mcc –Am full myfun % Options combined, A option not last

In cases where you have more than one option that take arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.
6-25

mcc (Compiler 2.0)
Note The –V1.2 option cannot be combined with other options; it must stand
by itself. For example, you cannot use

mcc –V1.2ir myfun

You would use

mcc –V1.2 –ir myfun

If you include any C or C++ filenames on the mcc command line, the files are
passed directly to mex or mbuild, along with any Compiler-generated C or C++
files.

Simplifying the Compilation Process
Compiler 2.0, through its exhaustive set of options, gives you access to the tools
you need to do your job. If you want a simplified approach to compilation, you
can use one simple option, i.e., macro, that allows you to quickly accomplish
basic compilation tasks. If you want to take advantage of the power of the
Compiler, you can do whatever you desire to do by choosing various Compiler
options.

Table 6-1 shows the relationship between the simple, macro approach to
accomplish a standard compilation and the more advanced, multi-option
alternative.
6-26

mcc (Compiler 2.0)
The remainder of this reference page provides complete descriptions of these
options.

Differences Between Compiler 2.0 and Compiler 1.2 Options
Although most of the Compiler options perform the same functions in Compiler
2.0 and Compiler 1.2, there are several options whose functions differ. In
particular, some of the macros described in the previous section, “Simplifying
the Compilation Process,” behave differently depending on which Compiler you

Table 6-1: Basic Compiler Option Equivalencies

To build a Simple Advanced

Stand-alone C application –m –t –W main –L C –T link:exe –h

Stand-alone C++ application –p –t –W main –L Cpp –T link:exe –h

MEX-function –x –t –W mex –L C –T link:mex

Simulink S-function –S –t –W simulink –L C –T link:mex

Tr
a
n
sl

a
te

 M
 t

o
 C

/C
+
+

Fu
n
ct

io
n
 W

ra
p
p
er

Ta
rg

et
 L

a
n
g
u
a
g
e

O
u
tp

u
t

St
a
g
e

H
el

p
er

 F
u
n
ct

io
n
s

M
a
cr

o
 O

p
ti
o
n

6-27

mcc (Compiler 2.0)
use. Table 6-2 describes the functionality of the macro options in Compiler 2.0
and their corresponding functionality in Compiler 1.2.

To use the Compiler 1.2 version of these options, you must specify the –V1.2
option. For example, to generate a C function named main using Compiler 1.2,
use:

mcc –V1.2 –m myfunc

To generate a stand-alone C application using Compiler 2.0, use:

mcc –m myfunc

Setting Up Default Options
If you have some command line options that you wish always to pass to mcc,
you can do so by setting up an mccstartup file. Create a text file containing the
desired command line options and name the file mccstartup. Place this file in
one of two directories:

1 The current working directory, or

2 $HOME/matlab (UNIX) or <matlab>\bin (PC)

mcc searches for the mccstartup file in these two directories in the order shown
above. If it finds an mccstartup file, it reads it and processes the options within

Table 6-2: Macro Options

Option Compiler 2.0 Compiler 1.2

m Generates a stand-alone C
application.

Generates a C function
named main.

p Generates a stand-alone C++
application.

Generates a stand-alone C++
application when the file
name is main.m or a C++ file
is specified.

x Generates a MEX-function. Did not exist. (It was the
default.)

S Generates a Simulink
MEX-function.

Generates a Simulink
MEX-function.
6-28

mcc (Compiler 2.0)
the file as if they had appeared on the mcc command line before any actual
command line options. Both the mccstartup file and the –B option are
processed the same way.

Setting a MATLAB Path in the Stand-Alone MATLAB Compiler
Unlike the MATLAB version of the Compiler, which inherits a MATLAB path
from MATLAB, the stand-alone version has no initial path. If you want to set
up a default path, you can do so by making an mccpath file. To do this:

1 Create a text file containing the text –I <your_directory_here> for each
directory you want on the default path, and name this file mccpath.
(Alternately, you can call the MCCSAVEPATH M-function from MATLAB to
create an mccpath file.)

2 Place this file in one of two directories:

The current working directory, or

$HOME/matlab (UNIX) or <matlab>\bin (PC)

The stand-alone version of the MATLAB Compiler searches for the mccpath file
in these two directories in the order shown above. If it finds an mccpath file, it
processes the directories specified within the file and uses them to initialize its
search path. Note that you may still use the –I option on the command line or
in mccstartup files to add other directories to the search path. Directories
specified this way are searched after those directories specified in the mccpath
file.

Conflicting Options on Command Line
If you use conflicting options, the Compiler resolves them from left to right,
with the rightmost option taking precedence. For example, using the
equivalencies in Table 6-1,

mcc –m –W none test.m

is equivalent to

mcc –t –W main –L C –T link:exe –h –W none test.m
6-29

mcc (Compiler 2.0)
In this example, there are two conflicting –W options. After working from left to
right, the Compiler determines that the rightmost option takes precedence,
namely, –W none, and the Compiler does not generate a wrapper.

Note Macros and regular options may both affect the same settings and may
therefore override each other depending on their order in the command line.

Handling Full Pathnames
If you specify a full pathname to an M-file on the mcc command line, the
Compiler:

1 Breaks the full name into the corresponding path- and filenames (<path>
and <file>).

2 Replaces the full pathname in the argument list with “–I <path> <file>”.
For example,

mcc –m /home/user/myfile.m

would be treated as

mcc –m –I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For
example, suppose you have two different M-files that are both named myfile.m
and they reside in /home/user/dir1 and /home/user/dir2. The command

mcc –m –I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc –m –I /home/user/dir1 –I /home/user/dir2 myfile.m

The Compiler finds the myfile.m in dir1 and compiles it instead of the one in
dir2 because of the behavior of the –I option. If you are concerned that this
6-30

mcc (Compiler 2.0)
might be happening, you can specify the –v option and then see which M-file
the Compiler parses. The –v option prints the full pathname to the M-file.

Note The Compiler produces a warning (specified_file_mismatch) if a file
with a full pathname is included on the command line and it finds it
somewhere else.

Compiling Embedded M-Files
If the M-file you are compiling calls other M-files, you can list the called M-files
on the command line. Doing so causes the MATLAB Compiler to build all the
M-files into a single MEX-file, which usually executes faster than separate
MEX-files. Note, however, that the single MEX-file has only one entry point
regardless of the number of input M-files. The entry point is the first M-file on
the command line. For example, suppose that bell.m calls watson.m.
Compiling with

mcc –x bell watson

creates bell.mex. The entry point of bell.mex is the compiled code from
bell.m. The compiled version of bell.m can call the compiled version of
watson.m. However, compiling as

mcc –x watson bell

creates watson.mex. The entry point of watson.mex is the compiled code from
watson.m. The code from bell.m never gets executed.

As another example, suppose that x.m calls y.m and that y.m calls z.m. In this
case, make sure that x.m is the first M-file on the command line. After x.m, it
does not matter which order you specify y.m and z.m.
6-31

mcc (Compiler 2.0)
MATLAB Compiler 2.0 Option Flags
The MATLAB Compiler option flags perform various functions that affect the
generated code and how the Compiler behaves. Table 6-3 shows the categories
of the Compiler options.

The remainder of this reference page is subdivided into sections that
correspond to the Compiler option categories. Each section provides a full
description of all of the options in the category.

Note If you use the option flags that optimize the generated code, you must
use the –V1.2 option, making Compiler 1.2 the active compiler. The –V1.2
option is not supported in the stand-alone Compiler.

Macro Options
The macro options provide a simplified way to accomplish basic compilation
tasks.

Table 6-3: Compiler Option Categories

Category Purpose

Macros The macro options simplify the compilation
process by combining the most common
compilation tasks into single options.

Code Generation These options affect the actual code that
the Compiler generates. For example, –L
specifies the target language as either C or
C++.

Compiler and Environment These options provide information to the
Compiler such as where to put (–d) and find
(–I) particular files.

mbuild/mex These options provide information for the
mbuild and/or mex scripts.
6-32

mcc (Compiler 2.0)
-m (Stand-Alone C)
Produce a stand-alone C application. It includes helper functions by default
(–h), and then generates a stand-alone C wrapper (–W main). In the final stage,
this option compiles your code into a stand-alone executable and links it to the
MATLAB C/C++ Math Library (–T link:exe). For example, to translate an
M-file named mymfile.m into C and to create a stand-alone executable that can
be run without MATLAB, use:

mcc –m mymfile

The –m option is equivalent to the series of options:

–t –W main –L C –T link:exe –h

-p (Stand-Alone C++)
Produce a stand-alone C++ application. It includes helper functions by default
(–h), and then generates a stand-alone C++ wrapper (–W main). In the final
stage, this option compiles your code into a stand-alone executable and links it
to the MATLAB C/C++ Math Library (–T link:exe). For example, to translate
an M-file named mymfile.m into C++ and to create a stand-alone executable
that can be run without MATLAB, use:

mcc –p mymfile

The –p option is equivalent to the series of options:

–t –W main –L Cpp –T link:exe –h

-S (Simulink S-Function)
Produce a Simulink S-function that is compatible with the Simulink S-function
block. For example, to translate an M-file named mymfile.m into C and to
create the corresponding Simulink S-function using dynamically sized inputs
and outputs, use:

mcc –S mymfile

The –S option is equivalent to the series of options:

–t –W simulink –L C –T link:mex
6-33

mcc (Compiler 2.0)
-x (MEX-Function)
Produce a MEX-function. For example, to translate an M-file named mymfile.m
into C and to create the corresponding MEX-file that can be called directly from
MATLAB, use:

mcc –x mymfile

The –x option is equivalent to the series of options:

–t –W mex –L C –T link:mex

Code Generation Options

-A (Annotation Control for Output Source)
Control the type of annotation in the resulting C/C++ source file. The types of
annotation you can control are:

• M-file code and/or comment inclusion (annotation)

• #line preprocessor directive inclusion (line)

• Whether error messages report the source file and line number (debugline)

To control the M-file code that is included in the generated C/C++ source, use:

mcc –A annotation:type …

Table 6-4 shows the available types of code and comment annotation options.

Table 6-4: Code/Comment Annotation Options

type Description

all Provides the complete source of the M-file interleaved
with the generated C/C++ source. The default is all.

comments Provides all of the comments from the M-file
interleaved with the generated C/C++ source.

none No comments or code from the M-file are added to code.
6-34

mcc (Compiler 2.0)
To control the #line preprocessor directives that are included in the generated
C/C++ source, use:

mcc –A line:setting …

Table 6-5 shows the available #line directive settings.

To control if run-time error messages report the source file and line number,
use:

mcc –A debugline:on …

Table 6-6 shows the available debugline directive settings.

For example:

To include all of your M-code, including comments, in the generated file and the
standard #line preprocessor directives, use:

mcc –A annotation:all –A line:on …
or
mcc –A line:on … (The default is all for code/comment inclusion.)

Table 6-5: Line Annotation Options

Setting Description

on Adds #line preprocessor directives to the generated
C/C++ source code to enable source M-file debugging.

off Adds no #line preprocessor directives to the generated
C/C++ source code. The default is off.

Table 6-6: Run-Time Error Annotation Options

Setting Description

on Specifies the presence of source file and line number
information in run-time error messages.

off Specifies no source file and line number information in
run-time error messages. The default is off.
6-35

mcc (Compiler 2.0)
To include none of your M-code and no #line preprocessor directives, use:

mcc –A annotation:none –A line:off …

To include the standard #line preprocessor directives in your generated C/C++
source code as well as source file and line number information in your run-time
error messages, use:

mcc –A line:on –A debugline:on …

-F <option> (Formatting)
Control the formatting of the generated code. Table 6-7 shows the available
options.

-l (Line Numbers)
Generate C/C++ code that prints filename and line numbers on run-time
errors. This option flag is useful for debugging, but causes the executable to run
slightly slower. This option is equivalent to:

mcc –A debugline:on …

Table 6-7: Formatting Options

<Option> Description

list Generates a table of all the available formatting
options.

expression-indent:n Sets the number of spaces of indentation for all
expressions to n, where n is an integer. The
default indent is 4.

page-width:n Sets maximum width of generated code to n,
where n is an integer. The default width is 80.

statement-indent:n Sets the number of spaces of indentation for all
statements to n, where n is an integer. The
default indent is 2.
6-36

mcc (Compiler 2.0)
-L <language> (Target Language)
Specify the target language of the compilation. Possible values for language are
C or Cpp. The default is C. Note that these values are case insensitive.

-u (Number of Inputs)
Provide more control over the number of valid inputs for your Simulink
S-function. This option specifically sets the number of inputs (u) for your
function. If –u is omitted, the input will be dynamically sized. (Used with –S
option.)

-W <type> (Function Wrapper)
Control the generation of function wrappers for a collection of
Compiler-generated M-files. You provide a list of functions and the Compiler
generates the wrapper functions and any appropriate global variable
definitions. Table 6-8 shows the valid type options.

Table 6-8: Function Wrapper Types

<Type> Description

mex Produces a mexFunction() interface.

main Produces a POSIX shell main() function.

simulink Produces a Simulink C MEX S-function interface.

lib:<string> Produces an initialization and termination
function for use when compiling this
Compiler-generated code into a larger application.
This option also produces a header file containing
prototypes for all public functions in all M-files
specified. <string> becomes the base (file) name
for the generated C/C++ and header file. Creates a
.exports file that contains all non-static function
names.

none Does not produce a wrapper file. none is the
default.
6-37

mcc (Compiler 2.0)
Caution When generating function wrappers, you must specify all M-files
that are being linked together on the command line. These files are used to
produce the initialization and termination functions as well as global variable
definitions. If the functions are not specified in this manner, undefined
symbols will be produced at link time.

-y (Number of Outputs)
Provides more control over the number of valid outputs for your Simulink
S-function. This option specifically sets the number of outputs (y) for your
function. If –y is omitted, the output will be dynamically sized. (Used with –S
option.)

Compiler and Environment Options

-B <filename> (Bundle of Compiler Settings)
Replace –B <filename> on the mcc command line with the contents of the
specified file. The file should contain only mcc command line options and
corresponding arguments and/or other filenames. The file may contain other
–B options.You can place options that you always set in an mccstartup file. For
more information, see “Setting Up Default Options.”

-c (C Code Only)
Generate C code but do not invoke mex or mbuild, i.e., do not produce a
MEX-file or stand-alone application. This is equivalent to –T codegen placed
at the end of the mcc command line.

-d <directory> (Output Directory)
Place the output files from the compilation in the directory specified by the –d
option.
6-38

mcc (Compiler 2.0)
-h (Helper Functions)
Compile helper functions by default. Any helper functions that are called will
be compiled into the resulting MEX or stand-alone application. The –m option
automatically compiles all helper functions, so –m effectively calls –h.

Using the –h option is equivalent to listing the M-files explicitly on the mcc
command line.

The –h option purposely does not include built-in functions or functions that
appear in the MATLAB M-File Math Library portion of the C/C++ Math
Libraries. This prevents compiling functions that are already part of the C/C++
Math Libraries. If you want to compile these functions as helper functions, you
should specify them explicitly on the command line. For example, use

mcc –m minimize_it fmins

instead of

mcc –m –h minimize_it

-I <directory> (Directory Path)
Add a new directory path to the list of included directories. Each –I option adds
a directory to the end of the current search path. For example,

–I <directory1> –I <directory2>

would set up the search path so that directory1 is searched first for M-files,
followed by directory2. This option is important for stand-alone compilation
where the MATLAB path is not available.

-o <outputfile>
Specify the basename of the final executable output (MEX-file or application)
of the Compiler. A suitable, possibly platform-dependent, extension is added to
the specified basename (e.g., .exe for PC stand-alone applications, .mexsol for
Solaris MEX-files).

-t (Translate M to C/C++)
Translate M-files specified on the command line to C/C++ files.
6-39

mcc (Compiler 2.0)
-T <target> (Output Stage)
Specify the desired output stage. Table 6-9 gives the possible values of target.

-v (Verbose)
Display the steps in compilation, including:

• The Compiler version number

• The source filenames as they are processed

• The names of the generated output files as they are created

• The invocation of mex or mbuild

The –v option passes the –v option to mex or mbuild and displays information
about mex or mbuild.

-V1.2 (MATLAB Compiler 1.2)
Invoke the MATLAB Compiler 1.2. This option is not supported in the
stand-alone Compiler mode; it works only from the MATLAB prompt. If you
obtained good optimization from Compiler 1.2, this option enables you to
continue to benefit from the performance advantages of that Compiler. For
more information about the MATLAB Compiler 1.2 options, see the “mcc
(Compiler 1.2)” reference page.

Table 6-9: Output Stage Options

<Target> Description

codegen Translates M-files to C/C++ files. The default is
codegen.

compile:<bin> Translates M-files to C/C++ files; compiles to object
form.

link:<bin> Translates M-files to C/C++ files; compiles to object
form; links to executable form (MEX or stand-alone
application.)

where <bin> can be mex, exe, or lib. mex uses the mex script to build
a MEX-file; exe uses the mbuild script to build an executable; lib
uses mbuild to build a shared library.
6-40

mcc (Compiler 2.0)
-V2.0 (MATLAB Compiler 2.0)
Invoke the MATLAB Compiler 2.0. This option works from both the MATLAB
prompt and the DOS or UNIX command line.

-w (Warning)
Display warning messages. Table 6-10 shows the various ways you can use the
–w option.

Table 6-10: Warning Option

Syntax Description

(no –w option) Default; displays only serious warnings.

–w list Generates a table that maps <string> to
warning message for use with enable,
disable, and error. Appendix B lists the
same information.

–w Enables complete warnings.

–w disable[:<string>] Disables specific warning associated with
<string>. Appendix B lists the valid
<string> values. Leave off the optional
:<string> to apply the disable action to all
warnings.

–w enable[:<string>] Enables specific warning associated with
<string>. Appendix B lists the valid
<string> values. Leave off the optional
:<string> to apply the enable action to all
warnings.

–w error[:<string>] Treats specific warning associated with
<string> as error. Leave off the optional
:<string> to apply the error action to all
warnings.
6-41

mcc (Compiler 2.0)
-Y <license.dat File>
Use license information in license.dat file when checking out a Compiler
license.

mbuild/mex Options

-f <filename> (Specifying Options File)
Use the specified options file when calling mex or mbuild. This option allows
you to use different compilers for different invocations of the MATLAB
Compiler. This option is a direct pass-through to the mex or mbuild script. See
the Application Program Interface Guide for more information about using this
option with the mex script.

Note Although this option works as documented, it is suggested that you use
mex –setup or mbuild –setup to switch compilers.

-g (Debugging Information)
Cause mex or mbuild to invoke the C/C++ compiler with the appropriate C/C++
compiler options for debugging. You should specify –g if you want to debug the
MEX-file or stand-alone application with a debugger.

The –g option flag has no influence on the source code that the MATLAB
Compiler generates, though it does have some influence on the binary code that
the C/C++ compiler generates.

-M "string" (Direct Pass Through)
Pass string directly to the mex or mbuild script. This provides a useful
mechanism for defining compile-time options, e.g., –M "–Dmacro=value".

Note Multiple –M options do not accumulate; only the last –M option is used.
6-42

mcc (Compiler 2.0)
-z <path> (Specifying Library Paths)
Specify the path to use for library and include files. This option uses the
specified path for compiler libraries instead of the path returned by
matlabroot.

Examples Make a C translation and a MEX-file for myfun.m:

mcc –x myfun

Make a C translation and a stand-alone executable for myfun.m:

mcc –m myfun

Make a C++ translation and a stand-alone executable for myfun.m:

mcc –p myfun

Make a C translation and a Simulink S-function for myfun.m (using
dynamically sized inputs and outputs):

mcc –S myfun

Make a C translation and a Simulink S-function for myfun.m (explicitly calling
for one input and two outputs):

mcc –S –u 1 –y 2 myfun

Make a C translation and stand-alone executable for myfun.m. Look for
myfun.m in the /files/source directory, and put the resulting C files and
executable in the /files/target directory:

mcc –m –I /files/source –d /files/target myfun

Make a C translation and a MEX-file for myfun.m. Also translate and include
all M-functions called directly or indirectly by myfun.m. Incorporate the full
text of the original M-files into their corresponding C files as C comments:

mcc –x –h –A annotation:all myfun

Make a generic C translation of myfun.m:

mcc –t –L C myfun

Make a generic C++ translation of myfun.m:

mcc –t –L Cpp myfun
6-43

mcc (Compiler 2.0)
Make a C MEX wrapper file from myfun1.m and myfun2.m:

mcc –W mex –L C myfun1 myfun2

Make a C translation and a stand-alone executable from myfun1.m and
myfun2.m (using one mcc call):

mcc –m myfun1 myfun2

Make a C translation and a stand-alone executable from myfun1.m and
myfun2.m (by generating each output file with a separate mcc call):

mcc –t –L C myfun1 % yields myfun1.c
mcc –t –L C myfun2 % yields myfun2.c
mcc –W main –L C myfun1 myfun2 % yields myfun1_main.c
mcc –T compile:exe myfun1.c % yields myfun1.o
mcc –T compile:exe myfun2.c % yields myfun2.o
mcc –T compile:exe myfun1_main.c % yields myfun1_main.o
mcc –T link:exe myfun1.o myfun2.o myfun1_main.o

Note On PCs, filenames ending with .o above would actually end with .obj.
6-44

mcc (Compiler 1.2)
6mcc (Compiler 1.2)Purpose Invoke MATLAB Compiler 1.2.

Syntax mcc –V1.2 [–options] mfile1 [mfile2 ... mfileN]
[fun1=feval_arg1 ... funN=feval_argN]

Description By including the –V1.2 option on the mcc command line, you tell the Compiler
that you want to use Compiler 1.2. Compiler 2.0 is the default; not specifying
the –V1.2 option automatically uses Compiler 2.0.

Note This reference page provides information on Compiler 1.2. See “mcc
(Compiler 2.0)” for the mcc reference page for Compiler 2.0. You can make
Compiler 1.2 your default by using an mccstartup file. See “Setting Up
Default Options” in this chapter for complete details.

mcc is the MATLAB command that invokes the MATLAB Compiler. You must
issue the mcc –V1.2 command from the MATLAB prompt to use Compiler 1.2.
When using Compiler 1.2, the only additional required argument to mcc is the
name of an M-file. For example, the command to compile the M-file stored in
file myfun.m is:

mcc –V1.2 myfun

If you specify a relative pathname for an M-file, the M-file must be in a
directory on your MATLAB search path, or in your current directory.

Specifying Options
You may specify one or more MATLAB Compiler option flags to mcc. (The list
of options appears later in this reference page.) Most options have a one-letter
name. Precede the list of option flags with a single dash (–), or list the options
separately. For example, either syntax is acceptable:

mcc –V1.2 –ir myfun
mcc –V1.2 –i –r myfun
6-45

mcc (Compiler 1.2)
Note The –V1.2 option cannot be combined with other options; it must stand
by itself. For example, you cannot use

mcc –V1.2ir myfun

You would use

mcc –V1.2 –ir myfun

Setting Up Default Options
If you have some command line options that you wish always to pass to mcc,
you can do so by setting up an mccstartup file. Create a text file containing the
desired command line options and name the file mccstartup. Place this file in
one of two directories:

1 The current working directory, or

2 $HOME/matlab (UNIX) or <matlab>\bin (PC)

mcc searches for the mccstartup file in these two directories in the order shown
above. If it finds an mccstartup file, it reads it and processes the options within
the file as if they had appeared on the mcc command line before any actual
command line options. Both the mccstartup file and the –B option are
processed the same way.

Building a MEX-File From Multiple M-Files
If the M-file you are compiling calls other M-files, you can list the called M-files
on the command line. Doing so causes the MATLAB Compiler to build all the
M-files into a single MEX-file, which usually executes faster than separate
MEX-files. Note, however, that the single MEX-file has only one entry point
regardless of the number of input M-files. The entry point is the first M-file on
the command line. For example, suppose that bell.m calls watson.m.
Compiling with

mcc –V1.2 bell watson
6-46

mcc (Compiler 1.2)
creates bell.mex. The entry point of bell.mex is the compiled code from
bell.m. The compiled version of bell.m can call the compiled version of
watson.m. However, compiling as

mcc –V1.2 watson bell

creates watson.mex. The entry point of watson.mex is the compiled code from
watson.m. The code from bell.m never gets executed.

As another example, suppose that x.m calls y.m and that y.m calls z.m. In this
case, make sure that x.m is the first M-file on the command line. After x.m, it
does not matter which order you specify y.m and z.m.

Calling feval
If the M-file you are compiling contains a call to feval, you can use the
fun=feval_arg syntax to specify the name of the function to be passed to
feval.

Do not put any spaces on either side of the equals sign. Consider these right
and wrong ways to specify a feval_arg:

mcc –V1.2 citrus fun1=lemon % correct
mcc –V1.2 citrus fun1 = lemon % incorrect

MATLAB Compiler 1.2 Option Flags
Some MATLAB Compiler option flags optimize the generated code, other
option flags generate compilation or runtime information, and some option
flags are Simulink-specific.

If you use the MATLAB Compiler mcc option flag –p to generate C++ code, then
these options are not supported:

• –i

• –l

• –r

-B <filename> (Bundle of Compiler Settings)
Replace –B <filename> on the mcc command line with the contents of the
specified file. The file should contain only mcc command line options and
corresponding arguments and/or other filenames. The file may contain other
6-47

mcc (Compiler 1.2)
–B options. You can place options that you always set in an mccstartup file. For
more information, see “Setting Up Default Options.”

-c (C/C++ Code Only)
Generate C/C++ code but do not invoke mex or mbuild, i.e., do not produce a
MEX-file.

-e (Stand-Alone External C Code)
Generate C code for stand-alone applications. The resulting C code cannot be
used to create MEX-files; it can be linked with the MATLAB C Math Library
and executed as a stand-alone application. Stand-alone applications do not
require MATLAB at runtime. Stand-alone applications can run even if
MATLAB is not installed on the system. See Chapter 4 for complete details on
stand-alone applications.

If you specify –e, the MATLAB Compiler does not invoke mex, consequently, it
does not produce a MEX-file. However, it does invoke mbuild to create a
stand-alone application when the name of the M-file is main.

-f <filename> (Specifying Options File)
Use the specified options file when calling mex or mbuild. This option allows
you to use different C or C++ compilers for different invocations of the
MATLAB Compiler. This option is a direct pass-through to the mex script. See
the Application Program Interface Guide for more information about using this
option with the mex script.

Note Although this option works as documented, it is suggested that you use
mex –setup or mbuild –setup to switch compilers.

-g (Debugging Information)
Cause mex or mbuild to invoke the C/C++ compiler with the appropriate C/C++
compiler options for debugging. You should specify –g if you want to debug the
MEX-file or stand-alone application with a debugger.
6-48

mcc (Compiler 1.2)
The –g option flag has no influence on the source code that the MATLAB
Compiler generates, though it does have some influence on the binary code that
the C/C++ compiler generates.

-h (Helper Functions)
Compile helper functions by default. Any helper functions that are called will
be compiled into the resulting MEX or stand-alone application.

Using the –h option is equivalent to listing the M-files explicitly on the mcc
command line.

The –h option purposely does not include built-in functions or functions that
appear in the MATLAB M-File Math Library portion of the C/C++ Math
Libraries. This prevents compiling functions that are already part of the C/C++
Math Libraries. If you want to compile these functions as helper functions, you
should specify them explicitly on the command line. For example, use

mcc –V1.2 minimize_it fmins

instead of

mcc –V1.2 –h minimize_it

Note Due to MATLAB Compiler 1.2 restrictions, some of the MATLAB 5
versions of the M-files for the C and C++ Math libraries do not compile as is.
The MathWorks has rewritten these M-files to conform to the Compiler 1.2
restrictions. The modified versions of these M-files are in

<matlab>/extern/src/tbxsrc

where <matlab> represents the top-level directory where MATLAB is
installed on your system.
6-49

mcc (Compiler 1.2)
-i (Inbounds Code)
Generate C/C++ code that does not:

• Check array subscripts to determine if array indexes are within range.

• Reallocate the size of arrays when the code requests a larger array. For
example, if you preallocate a 10-element vector, the generated code cannot
assign a value to the 11th element of the vector.

• Check input arguments to determine if they are real or complex.

The –i option flag can make a program run significantly faster, but not every
M-file is a good candidate for –i. For instance, you can specify –i only if your
M-file preallocates all arrays. You typically preallocate arrays with the zeros
or ones function.

If an M-file contains code that causes an array to grow, then you cannot compile
with the –i option. Using –i on such an M-file produces a MEX-file that fails
at runtime.

Note This option flag has no effect on C++ generated code, i.e., if the –p
MATLAB Compiler option flag is used.

-l (Line Numbers)
Generate C/C++ code that prints line numbers on internally detected errors.
This option flag is useful for debugging, but causes the MEX-file to run slightly
slower.

Note This option flag has no effect on C++ generated code, i.e., if the –p
MATLAB Compiler option flag is used.
6-50

mcc (Compiler 1.2)
-m (main Routine)
Generate a C function named main. The name the MATLAB Compiler gives to
your C function depends on the combination of option flags.

If you specify –m and place multiple M-files on the compilation command line:

• The MATLAB Compiler applies the –m option to the first M-file only.

• The MATLAB Compiler assumes the –e option for all subsequent M-files.

The generated main function reads and writes from the standard input and
standard output streams. POSIX-compliant operating systems include UNIX
and Microsoft Windows. Other operating systems may require window-system
specific changes for this code to work.

If your main M-function includes input or output arguments, the MATLAB
Compiler will instantiate the input arguments using the command line
arguments passed in by the POSIX shell. It will return the first output value
produced by the M-file as the status. In this way, you can compile command
line M-files into POSIX-compliant command line applications. For example,

function sts = echo(a, b, c)
display(a);
display(b);
display(c);
sts = 0;

This function echoes its three input arguments. It will function as an M-file
exactly the same way as it functions as a stand-alone application generated
using the –m option. Note that only strings are passed as input variables from
the POSIX shell and only a single scalar integer status is returned. Therefore,
the –m option does not work well for mathematical M-files.

Option Flags Resulting Function Name

neither –m nor –e mexFunction

–m only main

–e only mlfMfile1

–m and –e main
6-51

mcc (Compiler 1.2)
-M "string" (Direct Pass Through)
Pass string directly to the mex or mbuild script. This provides a useful
mechanism for defining compile-time options, e.g., –M "–Dmacro=value".

-p (Stand-Alone External C++ Code)
Generate C++ code for stand-alone applications. The resulting C++ code cannot
be used to create MEX-files; it can be linked with the MATLAB C++ Math
Library and executed as a stand-alone application. Stand-alone applications do
not require MATLAB at runtime. Stand-alone applications can run even if
MATLAB is not installed on the system. See Chapter 4 for complete details on
stand-alone applications.

-q (Quick Mode)
Quick mode executes only one pass through the type imputation and assumes
that complex numbers are contained in the inputs. Use Quick mode if at least
one of the parameters to the functions being compiled is complex.

-r (Real)
Generate C code based on the assumption that all input, output, and temporary
data in the MEX-file are real (not complex).

The –r option flag can make a program run significantly faster. However, if
your program contains any complex data, do not compile with –r.

Placing the %#realonly pragma anywhere in the input M-file has the same
effect as compiling with –r.

If you compile with –r but specify complex input data at runtime, the MEX-file
issues a fatal error. However, if you compile with both –r and –i, the MEX-file
does not check to see if the input data is complex. If the input data is complex,
the MEX-file will fail at runtime.

Note This option flag has no effect on C++ generated code, i.e., if the –p
MATLAB Compiler option flag is used.
6-52

mcc (Compiler 1.2)
-s (Static)
Translate MATLAB global variables to static C (local) variables. Compiling
without –s causes the MATLAB Compiler to generate code that preserves the
global status of any variables marked as global in an M-file.

Suppose that you tag n as a global variable in the MATLAB interpreter
workspace:

global n
n = 3;

Consider an M-file that accesses global variable n:

function m = earth
global n;
m = magic(n);

Compiling earth.m without –s yields a MEX-file that can access the value of
global variable n:

mcc earth
earth
ans =

8 1 6
3 5 7
4 9 2

Compiling earth.m with –s yields a MEX-file that cannot access the value of
global variable n:

mcc –s earth
earth
??? Error using ==> magic
Size vector must be a row vector with integer elements.

MEX-files access global variables very slowly because MEX-files have to call
back to the MATLAB interpreter to obtain the value of a global variable.

Some programmers tag variables as global solely to recall a value from one
invocation of the MEX-file to the next. If you are using global for this reason,
then you should consider specifying the –s option flag when you compile. Doing
so makes your MEX-file run faster. Compiling with –s causes the MEX-file to
store the value of the variable locally; no callback is needed to access the
6-53

mcc (Compiler 1.2)
variable’s value. The disadvantage to –s is that global variables are no longer
really global; other programs cannot access them.

Note This option flag has no effect on C++ generated code, i.e., if the –p
MATLAB Compiler option flag is used.

-S (Simulink S-Function)
Output a Simulink S-function with a dynamically sized number of inputs and
outputs. You can pass any number of inputs and outputs in or out of the
generated S-function. Since the MATLAB Fcn block and the S-Function block
are single-input, single-output blocks, only one line can be connected to the
input or output of these blocks. However, each line may be a vector signal,
essentially giving these blocks multi-input, multi-output capability.

Note The MATLAB Compiler option that generates a C language S-function
is a capital S (–S). Do not confuse it with the lowercase –s option that
translates MATLAB global variables to static C (local) variables.

-t (Tracing Statements)
Generate tracing print statements. This option flag is useful for debugging,
though it tends to generate a significant amount of information.

Note This option flag has no effect on C++ generated code, i.e., if the –p
MATLAB Compiler option flag is used.

-u (Number of Inputs)
Provide more control over the number of valid inputs for your Simulink
S-function. This option specifically sets the number of inputs for your function.
If –u is omitted, the input will be dynamically sized.
6-54

mcc (Compiler 1.2)
-v (Verbose)
Display the steps in compilation, including:

• The command that is invoked

• The Compiler version number

• The invocation of mex/mbuild

The –v flag passes the –v flag to mex or mbuild and displays information about
mex or mbuild. This option passes the full pathname of the file being compiled.

-w (Warning) and -ww (Complete Warnings)
Display warning messages indicating where sections of generated code are
likely to slow execution (for example, where the code contains callbacks to
MATLAB). This option flag does not affect the performance of the generated
code.

If you omit –w, the MATLAB Compiler suppresses most warning messages, but
still displays serious warning messages.

If you specify –w, the MATLAB Compiler displays up to 30 warning messages.
If there are more than 30 warning messages, the MATLAB Compiler
suppresses those past the 30th. To see all warning messages, use the –ww
option.

-y (Number of Outputs)
Provide more control over the number of valid outputs for your Simulink
S-function. This option specifically sets the number of outputs (y) for your
function. If –y is omitted, the output will be dynamically sized.

-z <path> (Specifying Library Paths)
Specify the path to use for library and include files. This option uses the
specified path for compiler libraries instead of the path returned by
matlabroot.
6-55

mcc (Compiler 1.2)
Examples Compile gazelle.m to create gazelle.mex:

mcc –V1.2 gazelle

Optimize the performance of gazelle.mex by compiling with two optimization
option flags:

mcc –V1.2 –ri gazelle

Compile two M-files (gazelle.m and cheetah.m) to create one MEX-file
(gazelle.mex):

mcc –V1.2 gazelle cheetah

Compile gazelle.m to create gazelle.c (C source code for a stand-alone
application):

mcc –V1.2 –e gazelle

Given leopard.m, an M-file containing a call to feval:

function leopard(fun1,x)
y = feval(fun1,x);
plot(x,y,'r+');

Compile leopard.m, telling the MATLAB Compiler that function fun1
corresponds to myfun:

mcc –V1.2 leopard fun1=myfun

Compile myfun.m to create a real, external version that includes a direct call to
auxfun1, and replaces feval(afun, . . .) by feval(auxfun2, . . .):

mcc –V1.2 –ire myfun auxfun1 afun=auxfun2

Make a quick-compiled version of myfun.m and compile all of the helper.m
functions into a single object:

mcc –V1.2 –q –h myfun

See Also mbint, mbreal, mbscalar, mbvector, reallog, realpow, realsqrt
6-56

Create a MEX-File A-2
Create a Simulink S-Function A-2
Create a Stand-Alone C Application A-2
Create a Stand-Alone C++ Application A-2
Create a C Shared Library A-2

mcc (Compiler 2.0) A-3

mcc (Compiler 1.2) A-6
A

MATLAB Compiler
Quick Reference

Common Uses of the Compiler A-2

A MATLAB Compiler Quick Reference

A-2
Common Uses of the Compiler
This section summarizes how to use the MATLAB Compiler to generate some
of its more standard results. The first four examples take advantage of the
macro options.

Create a MEX-File
To translate an M-file named mymfile.m into C and to create the corresponding
C MEX-file that can be called directly from MATLAB, use:

mcc –x mymfile

Create a Simulink S-Function
To translate an M-file named mymfile.m into C and to create the corresponding
Simulink S-function using dynamically sized inputs and outputs, use:

mcc –S mymfile

Create a Stand-Alone C Application
To translate an M-file named mymfile.m into C and to create a stand-alone
executable that can be run without MATLAB, use:

mcc –m mymfile

Create a Stand-Alone C++ Application
To translate an M-file named mymfile.m into C++ and to create a stand-alone
executable that can be run without MATLAB, use:

mcc –p mymfile

Create a C Shared Library
To create a C shared library that performs specialized calculations that you can
call from your own programs, use:

mcc –W lib:mylib –L C –t –T link:lib –h Function1 Function2 …

mcc (Compiler 2.0)
mcc (Compiler 2.0)
Bold entries in the Comment/Options column indicate default values.

Option Description Comment/Options

A annotation:type Controls M-file code/
comment inclusion in
generated C/C++ source

type = all
comments
none

A debugline:setting Controls the inclusion of
source filename and line
numbers in run-time error
messages

setting = on
off

A line:setting Controls the #line
preprocessor directives
included in the generated
C/C++ source

setting = on
off

B filename Replaces –B filename on
the mcc command line with
the contents of filename

The file should contain only mcc
command line options.

c Generates C code only Overrides –T option; equivalent to
–T codegen

d directory Places output in specified
directory

f filename Uses the specified options
file, filename

mex –setup and mbuild –setup
are recommended.

F option Specifies format parameters option = list
expression-indent:n
page-width:n
statement-indent:n

g Generates debugging
information
A-3

A MATLAB Compiler Quick Reference

A-4
h Compiles helper functions

I directory Adds new directory to path

l Generates code that reports
file and line numbers on
run-time errors

Equivalent to:
–A debugline:on

L language Specifies output target
language

language = C
Cpp

m Macro to generate a C
stand-alone application

Equivalent to:
–t –W main –L C –T link:exe –h

M "string" Passes string to mex or
mbuild

Use to define compile-time options.

o outputfile Specifies name/location of
final executable

p Macro to generate a C++
stand-alone application

Equivalent to:
–t –W main –L Cpp –T link:exe –h

S Macro to generate Simulink
S-function

Equivalent to:
–t –W simulink –L C –T link:mex

t Translates M code to C/C++
code

T target Specifies output stage target = codegen
compile:bin
link:bin

where bin = mex
exe
lib

u number Specifies number of inputs
for Simulink S-function

v Verbose; Displays
compilation steps

Option Description Comment/Options

mcc (Compiler 2.0)
V1.2 Invokes MATLAB Compiler
1.2

Not supported in stand-alone mode

V2.0 Invokes MATLAB Compiler
2.0

w option Displays warning messages option = list
level
level:string

where level = disable
enable
error

No w option displays only serious
warnings (default).

W type Controls the generation of
function wrappers

type = mex
main
simulink
lib:string
none

x Macro to generate
MEX-function

Equivalent to:
–t –W mex –L C –T link:mex

y number Specifies number of outputs
for Simulink S-function

Y licensefile Uses licensefile when
checking out a Compiler
license

z path Specifies path for library
and include files

? Displays help message

Option Description Comment/Options
A-5

A MATLAB Compiler Quick Reference

A-6
mcc (Compiler 1.2)
To use the MATLAB Compiler 1.2, you must use the –V1.2 option on the mcc
command line.

Option Description Comment/Options

B filename Replaces –B filename on the mcc
command line with the contents of
filename

The file should contain only mcc
command line options.

c Generates C code only

e Generates C code for stand-alone
application

f filename Uses the specified options file, filename mex –setup and
mbuild –setup are
recommended.

g Generates debugging information

h Compiles helper functions

i (Optimization) Assumes subscripts are
within bounds

Only valid when generating C
code.

l Generates code that reports file and line
numbers on run-time errors

m Generates a main C function

M "string" Passes string to mex or mbuild Defines compile-time options.

o outputfile Specifies name/location of final
executable

p Generates C++ code for stand-alone
application

q Quick mode; Executes one pass through
type imputation and assumes inputs
contain complex numbers

mcc (Compiler 1.2)
r (Optimization) Assumes input, output,
and temporary data are real

Only valid when generating C
code.

s Translates MATLAB global variables to
static C local variables

S Generates Simulink S-function

t Generates tracing print statements
(C mode only) in code.

u number Specifies number of inputs for Simulink
S-function

v Verbose; Displays compilation steps

V2.0 Invokes MATLAB Compiler 2.0

w Displays warning messages (up to 30)

ww Displays complete list of all warning
messages

y number Specifies number of outputs for Simulink
S-function

z path Specifies path for library and include files

? Displays help message

Option Description Comment/Options
A-7

A MATLAB Compiler Quick Reference

A-8

Compile-Time Messages B-3

Warning Messages B-11

Run-Time Messages B-18
B

Error and Warning
Messages

Introduction . B-2

B Error and Warning Messages

B-2
Introduction
This appendix lists and describes error messages and warnings generated by
the MATLAB Compiler. Compile-time messages are generated during the
compile or link phase. It is useful to note that most of these compile-time error
messages should not occur if MATLAB can successfully execute the
corresponding M-file. Run-time messages are generated when the executable
program runs.

Use this reference to:

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

Note When using the MATLAB Compiler, if you receive an Internal Error
message, record the specific message and report it to Technical Support at The
MathWorks at support@mathworks.com or 508 647-7000.

Compile-Time Messages
Compile-Time Messages

Error: An error occurred while shelling out to mex/mbuild (error code =
errorno). Unable to build executable (specify the –v option for more
information).
The Compiler reports this error if mbuild or mex generates an error.

Error: An error occurred writing to file filename: reason
The file could not be written. The reason is provided by the operating system.
For example, you may not have sufficient disk space available to write the file.

Error: Could not check out a Compiler license.
No additional Compiler licenses are available for your workgroup.

Error: Could not find license file.
(Windows only) The license.dat file could not be found in <MATLAB>\bin.

Error: Could not identify file to compile.
No M, C, or C++ files were specified on the mcc command line.

Error: File: "filename" not found.
A specified file could not be found on the path. Verify that the file exists and
that the path includes the file’s location. You can use the –I option to add a
directory to the search path

Error: File: "filename" is a script M-file and cannot be compiled with the
current Compiler.
The MATLAB Compiler cannot compile script M-files. To learn how to convert
script M-files to function M-files, see “Converting Script M-Files to Function
M-Files” in Chapter 3.

Error: File: filename Line: # Column: # "string1" expected, "string2"
found.
There is a syntax error in the specified line. See the online MATLAB Function
Reference pages accessible from the Help Desk.
B-3

B Error and Warning Messages

B-4
Error: File: filename Line: # Column: # () indexing must appear last in an
index expression.
If you use cell array indexing, {}, or the structure field access operator, ., to
index into an expression, it must be last in the index expression. For example,
you can use X(1).value and X{2}(1), but you cannot use X.value(1) or
X(1){2}.

Error: File: filename Line: # Column: # A variable cannot be made
storageclass1 after being used as a storageclass2.
You cannot change a variable’s storage class (global/local/persistent). Even
though MATLAB allows this type of change in scope, the Compiler does not.

Error: File: filename Line: # Column: # An array for multiple LHS
assignment must be a vector.
If the left-hand side of a statement is a multiple assignment, the list of
left-hand side variables must be a vector. For example,
[p1, p2, p3] = myfunc(a) % is correct
[p1; p2; p3] = myfunc(a) % is incorrect

Error: File: filename Line: # Column: # An array for multiple LHS
assignment cannot be empty.
If the left-hand side of a statement is a multiple assignment, the list of
left-hand side variables cannot be empty. For example,
[p1, p2, p3] = myfunc(a) % is correct
[] = myfunc(a) % is incorrect

Error: File: filename Line: # Column: # An array for multiple LHS
assignment cannot contain token.
If the left-hand side of a statement is a multiple assignment, the vector cannot
contain this token. For example, you cannot assign to constants.
[p1] = myfunc(a) % is correct
[3] = myfunc(a) % is incorrect

Error: File: filename Line: # Column: # Expected Literal, found "string".
There is a syntax error in the specified line. See the online MATLAB Function
Reference pages accessible from the Help Desk.

Compile-Time Messages
Error: File: filename Line: # Column: # Expected one of , ; % or EOL, got
"string".
There is a syntax error in the specified line. See the online MATLAB Function
Reference pages accessible from the Help Desk.

Error: File: filename Line: # Column: # Functions cannot be indexed using
{} or . indexing.
You cannot use the cell array constructor, {}, or the structure field access
operator, ., to index into a function.

Error: File: filename Line: # Column: # Invalid multiple left-hand-side
assignment.
For example, you try to assign to constants
[] = sin(1); % is incorrect

Error: File: filename Line: # Column: # MATLAB assignment cannot be
nested.
You cannot use a syntax such as x = y = 2. Use y= 2, x = y instead.

Error: File: filename Line: # Column: # Only functions can return multiple
values.
In this example, foo must be a function, it cannot be a variable:
[a, b] = foo;

Error: File: filename Line: # Column: # The end operator can only be used
within an array index expression.
You can use the end operator in an array index expression such as
sum(A(:, end)); you cannot use the end operator outside of such an
expression, for example, y = 1 + end.

Error: File: filename Line: # Column: # The name parametername occurs
twice as an input parameter.
The variable names specified on the function declaration line must be unique.
For example,
function foo(bar1, bar2) % is correct
function foo(bar, bar) % is incorrect
B-5

B Error and Warning Messages

B-6
Error: File: filename Line: # Column: # The name parametername occurs
twice as an output parameter.
The variable names specified on the function declaration line must be unique.
For example,
function [bar1, bar2] = foo % is correct
function [bar, bar] = foo % is incorrect

Error: File: filename Line: # Column: # The single colon operator (:) can
only be used within an array index expression.
You can only use the : operator by itself as an array index. For example,
A(:) = 5; is okay, but y = :; is not.

Error: File: filename Line: # Column: # Variable argument (varargin) must
be last in input argument list.
The function call must specify the required arguments first followed by
varargin. For example,
function [out1, out2] = example1(a, b, varargin) % is correct
function [out1, out2] = example1(a, varargin, b) % is incorrect

Error: File: filename Line: # Column: # Variable argument (varargout) must
be last in output argument list.
The function call must specify the required arguments first followed by
varargout. For example,
function [i, j, varargout]= ex2(x1, y1, x2, y2, val) % is correct
function [i, varargout, j]= ex2(x1, y1, x2, y2, val) % is incorrect

Error: Found illegal whitespace character in command line option: string.
The strings on the left and right side of the space should be separate
arguments to MCC.
For example,
mcc('–A', 'none') % is correct
mcc('–A none') % is incorrect

Compile-Time Messages
Error: Improper usage of option –optionname. Type "mcc –?" for usage
information.
You have incorrectly used a Compiler option. For more information about
Compiler options, see the section, “MATLAB Compiler 2.0 Option Flags,” in
Chapter 6 or type mcc –? at the command prompt.

Error: No source files were specified (–? for help).
You must provide the Compiler with the name of the source file(s) to compile.

Error: optionname is not a valid option argument.
You must use an argument that corresponds to the option. For example,
mcc –L Cpp … % is correct
mcc –L COBOL … % is incorrect

Error: Out of memory.
Typically, this message occurs because the Compiler requests a larger segment
of memory from the operating system than is currently available. Adding
additional memory to your system could alleviate this problem.

Error: Previous warning treated as error.
When you use the –w error option, this error displays immediately after a
warning message.

Error: The argument after the optionname option must contain a colon.
The format for this argument requires a colon. For more information, see
“MATLAB Compiler 2.0 Option Flags,” in Chapter 6 or type mcc –? at the
command prompt.

Error: The environment variable variablename is undefined.
On UNIX, the MATLAB and LM_LICENSE_FILE variables must be set. The mcc
shell script does this automatically when it is called the first time.

Error: The license manager failed to initialize (error code is errornumber).
You do not have a valid Compiler license or no additional Compiler licenses are
available.
B-7

B Error and Warning Messages

B-8
Error: The license.dat file was not found in the directory in which mcc.exe
resides.
(Windows only) The Compiler requires that your Compiler license file
(license.dat) be in the same directory as mcc.exe, i.e., <MATLAB>\bin.

Error: The option –optionname is invalid in modename mode (specify –?
for help).
The specified option is not available in the specified mode (V1.2 or V2.0). You
can use the –V1.2 or –V2.0 options to switch modes.

Error: The option –optionname must be immediately followed by
whitespace (e.g. "proper_example_usage").
These options require additional information, so they cannot be combined:
–A, –B, –d, –f, –F, –I, –L, –M, –o, –T, –u, –W, –x, –y, –Y, –z. For example, you can
use mcc –vc, but you cannot use mcc –Ac annotation:all.

Error: The options specified will not generate any output files.
Please use one of the following options to generate an executable output
file:

–x (generates a MEX-file executable using C)
–m (generates a stand-alone executable using C)
–p (generates a stand-alone executable using C++)
–S (generates a Simulink MEX S-function using C)
Or type mcc –? for more usage information

Use one of these options or another option that generates output file(s). See the
section, “MATLAB Compiler 2.0 Option Flags,” in Chapter 6 or type mcc –? at
the command prompt for more information.

Error: The specified file "filename" cannot be read.
There is a problem with your specified file. For example, the file is not readable
because there is no read permission.

Error: The stand-alone MCC Compiler does not support translating M-code
to C/C++ code in V1.2 mode.
To use the stand-alone Compiler, you must use V2.0 mode. Compiler 1.2
(V1.2 mode) is only available from the MATLAB command prompt.

Compile-Time Messages
Error: The –optionname option cannot be combined with other options.
The –V1.2 and –V2.0 options must appear separate from other options on the
command line. For example,
mcc –V2.0 –L Cpp … % is correct
mcc –V2.0L Cpp … % is incorrect

Error: The –optionname option requires an argument (e.g.
"proper_example_usage".
You have incorrectly used a Compiler option. For more information about
Compiler options, see the section, “MATLAB Compiler 2.0 Option Flags,” in
Chapter 6 or type mcc –? at the command prompt.

Error: This version of MCC does not support the creation of C++ MEX code.
You cannot create C++ MEX functions with the current Compiler.

Error: Unable to open file filename.
There is a problem with your specified file. For example, there is no write
permission to the output directory, or the disk is full.

Error: Unable to set license linger interval (error code is errornumber).
A license manager failure has occurred. Contact Technical Support at The
MathWorks with the full text of the error message.

Error: Unknown annotation option: optionname.
An invalid string was specified after the –A option. For a complete list of the
valid annotation options, see “MATLAB Compiler 2.0 Option Flags,” in
Chapter 6 or type mcc –? at the command prompt.

Error: Unknown typesetting option: optionname.
The valid typesetting options available with –F are expression-indent:n,
list, page-width, and statement-indent:n.

Error: Unknown warning enable/disable string: warningstring.
–w enable:, –w disable:, and –w error: require you to use one of the warning
string identifiers listed in the “Warning Messages” section of this Appendix.
B-9

B Error and Warning Messages

B-1
Error: Unrecognized option: –optionname.
The option is not one of the valid options for this version of the Compiler. See
the section, “MATLAB Compiler 2.0 Option Flags,” in Chapter 6 for a complete
list of valid options for Compiler 2.0 or type mcc –? at the command prompt.

Error: Use "–V1.2" or "–V2.0" to specify desired version.
You specified –V without a version number. You must use either –V1.2 or
–V2.0.

Error: versionnumber is not a valid version number. Use "–V1.2" or
"–V2.0".
If you specify a Compiler version number, it must be either –V1.2 or –V2.0.
The default is –V2.0.
0

Warning Messages
Warning Messages
This section lists the warning messages that the MATLAB Compiler 2.0 can
generate. Using the –w option for mcc, you can control which messages are
displayed. Each warning message contains a description and the warning
message identifier string (in parentheses) that you can enable or disable with
the –w option. For example, to enable the display of warnings related to
undefined variables, you can use:

mcc –w enable:undefined_variable …

To enable all warnings except those generated by the save command, use:

mcc –w enable –w disable:save_options …

To display a list of all the warning message identifier strings, use:

mcc –w list

For additional information about the –w option, see “MATLAB Compiler 2.0
Option Flags” in Chapter 6.

Warning: (PM) Warning: message.
(path_manager_warning) The path manager can experience file I/O problems
when reading the directory structure (permissions).

Warning: (PMI): message.
(path_manager_inform) This is an informational path manager message.

Warning: A line has number characters, violating the maximum page
width width.
(max_page_width_violation) To increase the maximum page width, use the
–F page-width:n option and set n to a larger value.

Warning: File: filename Line: # Column: # A BREAK statement appeared
outside of a loop. This BREAK is interpreted as a RETURN.
(break_without_loop) The break statement should be used in conjunction with
the for or while statements. When not used in conjunction with these
statements, the break statement acts as a return from a function.
B-11

B Error and Warning Messages

B-1
Warning: File: filename Line: # Column: # Attempt to call an unknown
function functionname. A run-time error will occur if this code is executed.
(undefined_function) The called function was not found on the search path.

Warning: File: filename Line: # Column: # Attempt to clear value when it
has not been previously defined.
(clear_undefined_value) The variable was cleared with the clear command
prior to being defined.

Warning: File: filename Line: # Column: # Empty clear. This statement will
cause a run-time error if executed.
(clear_empty) In compiled M-files, you must specifically list variable(s) to clear
when using the clear command.

Warning: File: filename Line: # Column: # References to functionname
require the C/C++ Graphics Library when executing in stand-alone mode.
A run-time error will occur if the C/C++ Graphics Library is not present.
(using_graphics_function) This warning is produced when a Graphics Library
call is present in the code. It is only generated when producing the main or lib
wrapper and not during normal compilation, unless it is specifically enabled.

Warning: File: filename Line: # Column: # References to variablename will
produce a run-time error because it is an undefined function or variable.
(undefined_variable_or_unknown_function) This warning appears if you refer
to a variable but never provide it with a value. The most likely cause of this
warning is when you call a function that is not on the path or it is a method
function. Note INLINE objects are not supported in this release and will
produce this warning when used.

Warning: File: filename Line: # Column: # The #function pragma expects
a list of function names.
(pragma_function_missing_names) This pragma informs the MATLAB
Compiler that the specified function(s) provided in the list of function names
will be called through an feval call. This is used so that the –h option will
automatically compile the selected functions.
2

Warning Messages
Warning: File: filename Line: # Column: # The call to function
functionname on this line passed quantity1 inputs and the function is
declared with quantity2. A run-time error will occur if this code is
executed.
(too_many_inputs) There is an inconsistency between the number of formal
and actual inputs to the function.

Warning: File: filename Line: # Column: # The call to function
functionname on this line requested quantity1 outputs and the function is
declared with quantity2. A run-time error will occur if this code is
executed.
(too_many_outputs) There is an inconsistency between the number of formal
and actual outputs for the function.

Warning: File: filename Line: # Column: # The clear function cannot
process the optionname option in compiled code.
(clear_cannot_handle_flag) You cannot use clear variables, clear mex,
clear functions, or clear all in compiled M-code.

Warning: File: filename Line: # Column: # The clear statement did not
specifically list the names of variables to be cleared as constant strings. A
run-time error will be reported if this code is executed.
(clear_non_constant_strings) Use one of the forms of the clear command that
contains the names of the variables to be cleared. Use clear name or
clear('name'); do not use clear(name).

Warning: File: filename Line: # Column: # The Compiler does not support
the optionname option to save. This option is ignored.
(save_option_ignored) You cannot use –ascii, –double, or –tabs with the save
command in compiled M-code.

Warning: File: filename Line: # Column: # The function functionname
mentioned in this #function pragma was not found.
(pragma_function_name_not_found) The specified function provided in the list
of function names will be called through an feval call. If the Compiler cannot
locate the function, the Compiler will produce a run-time error, hence the
warning.
B-13

B Error and Warning Messages

B-1
Warning: File: filename Line: # Column: # The functionname function is
only available in MEX mode. A run-time error will occur if this code is
executed in stand-alone mode.
(using_mex_only_function) This warning is produced if you call any built-in
function that is only available in mexmode. It is only generated when producing
the main or lib wrapper and not during normal compilation, unless specifically
enabled.

Warning: File: filename Line: # Column: # The load statement cannot be
translated unless it specifically lists the names of variables to be loaded
as constant strings.
(load_without_constant_strings) Use one of the forms of the load command
that contains the names of the variables to be loaded, for example,
load filename num or y = load('filename')

Warning: File: filename Line: # Column: # The save statement cannot be
translated unless it specifically lists the names of variables to be saved as
constant strings.
(save_without_constant_strings) Use one of the forms of the save command
that contains the names of the variables to be saved, for example,
save filename num

Warning: File: filename Line: # Column: # This load statement did not
provide a list of names and will not be translated. Rewrite this load to
specifically mention the variables being loaded.
(load_without_names) You must specify the names of the variables to load,
such as load x.mat num1 as opposed to load x.mat, which loads all variables
in x.mat.

Warning: File: filename Line: # Column: # This save statement did not
provide a list of names and will not be translated. Rewrite this save to
specifically mention the variables being saved.
(save_without_names) You must specify the names of the variables to save,
such as save x.mat num1 as opposed to save x.mat, which saves all variables
in x.mat.
4

Warning Messages
Warning: File: filename Line: # Column: # Unmatched "end".
(end_without_block) The end statement does not have a corresponding for,
while, switch, try, or if statement.

Warning: File: filename Line: # Column: # Unrecognized Compiler pragma
pragmaname.
(unrecognized_pragma) Use one of the Compiler pragmas as described in
Chapter 6, “Reference”.

Warning: File: filename Line: # Column: # name has been used as both a
function and a variable, the variable is ignored.
(inconsistent_variable) When a name represents both a function and a variable,
it is used as the function only.

Warning: File: filename Line: # Column: # variablename has not been
defined prior to use on this line.
(undefined_variable) Variables should be defined prior to use.

Warning: File:filename Line: # Column: # The Compiler does not support
EVAL or INPUT functions. Code will still be generated, but calls to these
functions are replaced with a run-time error.
(eval_not_supported) Currently, these are unsupported functions.

Warning: Ignoring parameter with ‘=' in it: parametername. Specify
–V1.2 to use this command line syntax.
(equals_ignored) In Compiler 2.0, you cannot pass the names of input functions
at compile time using the feval function.

Warning: Line: # Column: # Duplicate function with name functionname1
has been renamed to functionname2 and no calls will be generated to it
from M code.
(duplicate_function_name) This warning occurs when an M-file contains more
than one function with the same name.
B-15

B Error and Warning Messages

B-1
Warning: M-file "filename" was specified on the command line with full
path of "pathname", but was found on the search path in directory
"directoryname" first.
(specified_file_mismatch) The Compiler detected an inconsistency between the
location of the M-file as given on the command line and in the search path. The
Compiler uses the location in the search path. This warning occurs when you
specify a full pathname on the mcc command line and a file with the same base
name (filename) is found earlier on the search path. This warning is issued in
the following example if the file afile.m exists in both dir1 and dir2:
mcc –x –I /dir1 /dir2/afile.m

Warning: No M-function source available for functionname, assuming
function [varargout] = functionname(varargin).
(using_stub_function) The Compiler found a .p or .mex version of the function
and is substituting a generic function declaration in its place.

Warning: The function functionname is an intrinsic MATLAB function. The
signature of the function found in file "filename" does not match the
known signature for this function:
known number of inputs = quant1, found number of inputs = quant2
known number of outputs = quant1 found number of outputs = quant2
known varargin used = quant1, found varargin used = quant2
known varargout used = quant1, found varargout used = quant2
known nargout used = quant1, found nargout used = quant2

(builtin_signature_mismatch) When compiling an M-file that is contained in
The MathWorks libraries, the number of inputs/outputs and the signatures to
the function must match exactly.

Warning: The option optionname is ignored in modename mode (specify
–? for help)
(switch_ignored) Modename = 1.2 or 2.0. Certain options only have meaning in
one or the other mode. For example, if you use the –e option, you can’t use the
–V2.0 option. For more information about Compiler options, see the section,
“MATLAB Compiler 2.0 Option Flags,” in Chapter 6.
6

Warning Messages
Warning: The specified private directory is not unique. Both
directoryname1 and directoryname2 are found on the path for this
private directory.
(duplicate_private_directories) The Compiler cannot distinguish which private
function to use. For more information, see “Compiling Private and Method
Functions” in Chapter 5.
B-17

B Error and Warning Messages

B-1
Run-Time Messages

Note The error messages described in this section are generated by the
Compiler into the code exactly as they are written, but are not the only source
of run-time errors. You also can receive run-time errors can from the C/C++
Math Libraries; these errors are not documented in this book. Math Library
errors do not include the source file and line number information. If you
receive such an error and are not certain if it is coming from the C/C++ Math
Libraries or your M-code, compile with the –A debugline:on option to get
additional information about which part of the M source code is causing the
error. For more information about –A (the annotation option), see “Code
Generation Options” in Chapter 6.

Run-time Error: File: filename Line: # Column: # Attempt to call an
unknown function functionname.
The function was not found at compile time.

Run-time Error: File: filename Line: # Column: # Empty clear.
The source M-function called clear with no arguments.

Run-time Error: File: filename Line: # Column: # The call to function
functionname on this line passed quantity1 inputs and the function is
declared with quantity2.
There is an inconsistency between the formal and actual number of inputs to a
function.

Run-time Error: File: filename Line: # Column: # The call to function
functionname on this line requested quantity1 outputs and the function is
declared with quantity2.
There is an inconsistency between the formal and actual number of outputs
from a function.
8

Run-Time Messages
Run-time Error: File: filename Line: # Column: # The clear statement did
not specifically list the names of variables to be cleared as constant
strings.
Use one of the forms of the clear command that contains the names of the
variables to be cleared, for example,
clear name

Run-time Error: File: filename Line: # Column: # The Compiler does not
support EVAL or INPUT functions.
Currently, these are unsupported functions.

Run-time Error: File: filename Line: # Column: # The function functionname
was called with more than the declared number of inputs (quantity1).
There is an inconsistency between the declared number of formal inputs and
the actual number of inputs.

Run-time Error: File: filename Line: # Column: # The function functionname
was called with more than the declared number of outputs (quantity1).
There is an inconsistency between the declared number of formal outputs and
the actual number of outputs.

Run-time Error: File: filename Line: # Column: # The load statement did not
specifically list the names of variables to be loaded as constant strings.
Use one of the forms of the load command that contains the names of the
variables to be loaded, for example,
load filename num value

Run-time Error: File: filename Line: # Column: # The save statement did
not specifically list the names of variables to be saved as constant strings.
Use one of the forms of the save command that contains the names of the
variables to be saved, for example,
save testdata num value
B-19

B Error and Warning Messages

B-2
Run-time Error: File: filename Line: # Column: # This load statement did
not provide a list of names and was not translated.
Specify the names of the variables to load, such as load x.mat num1 as opposed
to load x.mat, which loads all variables in x.mat. You can also use the form
y = load('file').

Run-time Error: File: filename Line: # Column: # This save statement did
not provide a list of names and was not translated.
Specify the names of the variables to save, such as save x.mat num1 as opposed
to save x.mat, which saves all variables in x.mat.

Run-time Error: File: filename Line: # Column: # variablename has not
been defined prior to use on this line.
Variables should be defined prior to use.
0

<matlab> . C-4
<matlab>/bin . C-4
<matlab>/bin/$ARCH C-5
<matlab>/extern/lib/$ARCH C-5
<matlab>/extern/include C-6
<matlab>/extern/include/cpp C-7
<matlab>/extern/src/tbxsrc C-7
<matlab>/extern/examples/compiler C-8
<matlab>/toolbox/compiler C-10

Directory Organization on Microsoft Windows C-12
<matlab> . C-13
<matlab>\bin . C-13
<matlab>\extern\lib C-14
<matlab>\extern\include C-15
<matlab>\extern\include\cpp C-17
<matlab>\extern\src\tbxsrc C-17
<matlab>\extern\examples\compiler C-17
<matlab>\toolbox\compiler C-19
C

Directory Organization

Directory Organization on UNIX C-3

C Directory Organization

C-2
This chapter describes the directory organization of the MATLAB Compiler on
UNIX and Microsoft Windows systems.

Note that if you also install the MATLAB C/C++ Math Library, the directory
organization is different from those shown in this chapter. See the chapters
about directory organization in the MATLAB C Math Library User’s Guide (for
the C Math Library) or the MATLAB C++ Math Library User’s Guide (for the
C++ Math Library).

Directory Organization on UNIX
Directory Organization on UNIX
Installation of the MATLAB Compiler places many new files into directories
already used by MATLAB. In addition, installing the MATLAB Compiler
creates several new directories. This figure illustrates the directories in which
the MATLAB Compiler files are located.

In the illustration, <matlab> symbolizes the top-level directory where
MATLAB is installed on your system.

extern

lib

bin

<matlab>

$ARCH

include

examples

toolbox

compiler

compiler

MATLAB Compiler installation creates shaded directories.

MATLAB installation creates unshaded directories.

src

tbxsrc

$ARCH
C-3

C Directory Organization

C-4
<matlab>
The <matlab> directory, in addition to containing many other directories, can
contain one MATLAB Compiler document.

<matlab>/bin
This table lists the files in the <matlab>/bin directory that are relevant to
compiling.

Compiler_Readme Optional document that describes configuration
details, known problems, workarounds, and
other useful information.

matlab UNIX shell script that initializes your
environment and then invokes the MATLAB
interpreter. MATLAB also provides a matlab
script, but the MATLAB Compiler version
overwrites the MATLAB version. The difference
between the two versions is that the MATLAB
Compiler version adds the appropriate directory
(<matlab>/extern/lib/arch) to the shared
library path.

mbuild UNIX shell script that controls the building and
linking of your code.

mex UNIX shell script that creates MEX-files from C
MEX-file source code. See the Application
Program Interface Guide for more details on
mex. MATLAB also installs mex; the MATLAB
Compiler installation copies the existing version
of mex to mex.old prior to installing the new
version of mex.

gccopts.sh Options file for building gcc MEX-files.

mbuildopts.sh Shell script used by mbuild and mbuild.m.

Directory Organization on UNIX
<matlab>/bin/$ARCH
The <matlab>/bin/$ARCH directory, where $ARCH specifies a particular UNIX
platform, contains the platform-specific Compiler executable and Compiler
shared libraries.

<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains libraries.

This table lists the library for the MATLAB Compiler.

mcc UNIX shell script that initializes the
environment and invokes MATLAB Compiler in
the platform-specific bin directory.

mexopts.sh Options file for building MEX-files using the
system’s native compiler.

mcc Platform-specific MATLAB Compiler
executable.

libmwcompiler.so
libmwcompiler.sl
libmwcompiler.a

Compiler shared library that contains shared
code between the DOS/UNIX Compiler and the
MEX-file based Compiler.

libmatlbmx.so
libmatlbmx.sl
libmatlbmx.a

Shared library that contains the Math Library
API for use by MEX-files.

libmccmx.so
libmccmx.sl
libmccmx.a

MATLAB Compiler Library for MEX-files.
Contains the mcc and mcm routines required for
building MEX-files (–V1.2 mode only).
C-5

C Directory Organization

C-6
This table lists the libraries for the MATLAB C Math Library, a separate
product.

This table lists the library for the MATLAB C++ Math Library, a separate
product.

<matlab>/extern/include
The <matlab>/extern/include directory contains the header files for
developing C applications that interface with MATLAB.

libmmfile.so
libmmfile.sl
libmmfile.a

MATLAB M-File Math Library. Contains
callable versions of the M-files in the MATLAB
Toolbox. Needed for building stand-alone
applications that require MATLAB toolbox
functions.

libmcc.so
libmcc.sl
libmcc.a

MATLAB Compiler Library for stand-alone
applications. Contains the mcc and mcm routines
required for building stand-alone applications
(–V1.2 mode only).

libmatlb.so
libmatlb.sl
libmatlb.a

MATLAB Math Built-In Library. Contains
callable versions of MATLAB built-in math
functions and operators. Required for building
stand-alone applications.

libmatpp.so
libmatpp.sl
libmatpp.a

MATLAB C++ Math Library. Contains callable
versions of MATLAB built-in math functions
and operators. Required for building
stand-alone C++ applications.

matlab.h Header file for MATLAB Math Built-In Library
and MATLAB M-File Math Library.

libmatlb.h Header file for MATLAB Built-In Library.

libmmfile.h Header file for M-File Math Library.

Directory Organization on UNIX
This table lists the relevant header files from MATLAB.

<matlab>/extern/include/cpp
This table lists the header file for the MATLAB C++ Math Library, a separate
product.

Note There are numerous other files included by matlab.hpp in this directory.

<matlab>/extern/src/tbxsrc
The <matlab>/extern/src/tbxsrc directory contains the MATLAB
Compiler-compatible M-files.

libsgl.h Header file for C/C++ Graphics Library API.

mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines;
installed with MATLAB.

matrix.h Header file containing a definition of the
mxArray type and function prototypes for matrix
access routines; installed with MATLAB.

mcc.h Header files used by Compiler in –V1.2 mode.

mccsimulink.h Contains library functions used to support the
building of Simulink S-functions.

mex.h Header file for building MEX-files. Contains
function prototypes for mex routines; installed
with MATLAB.

matlab.hpp Header file for MATLAB C++ Math Library.
C-7

C Directory Organization

C-8
<matlab>/extern/examples/compiler
The <matlab>/extern/examples/compiler directory holds sample M-files, C
functions, UNIX shell scripts, and makefiles described in this book. For some
examples, the online version may differ from the version in this book. In those
cases, assume that the online versions are correct.

earth.m M-file that accesses a global variable
(page 6-53).

fibocert.m M-file that explores assertions (page D-19).

fibocon.m M-file used to show MEX-file source code
(page D-38).

fibomult.m M-file that explores helper functions
(page D-29).

gasket.m M-file that determines the coordinates of a
Sierpinski Gasket (page 3-3).

hello.m M-file that displays Hello, World.

houdini.m Script M-file that cubes each element of a 2-by-2
matrix (page 3-17).

lu2.m M-file example that benefits from %#ivdep .

DOT.mexrc.sh Example .mexrc.sh file that supports ANSI C
compilers.

Makefile Example gmake-compatible makefile for
building stand-alone applications. (Only gmake
can process this makefile.)

README Short description of each file in this directory.

main.m M-file “main program” that calls mrank
(page 4-34).

mrank.m M-file to calculate the rank of magic squares
(page 4-33).

Directory Organization on UNIX
mrankp.c POSIX-compliant C function “main program”
that calls mrank. Demonstrates how to write C
code that calls a function generated by the
MATLAB Compiler. Input for this function
comes from the standard input stream and
output goes to the standard output stream
(page 4-43).

mrankwin.c Windows version of mrankp.c.

multarg.m M-file that contains two input and two output
arguments (page 4-44).

multargp.c C function “main program” that calls multarg.
Demonstrates how to write C code that calls a
function generated by the MATLAB Compiler
(page 4-44).

mycb.m M-file example used to study callbacks
(page D-29).

mydep.m M-file example used to show a case when
%#ivdep generates incorrect results.

myfunc.m M-file that explores helper functions
(page D-18).

myph.c C function print handler initialization
(page 5-72).

mypoly.m M-file example used to study callbacks
(page D-31).

novector.m M-file example that demonstrates the influence
of vectorization (page D-36).

plot1.m M-file example that calls feval (page D-33).

plotf.m M-file example that calls feval multiple times
(page D-33).
C-9

C Directory Organization

C-1
<matlab>/toolbox/compiler
The <matlab>/toolbox/compiler directory contains the MATLAB Compiler’s
additions to the MATLAB command set.

squares1.m M-file example that does not preallocate a
matrix (page D-34).

squares2.m M-file example that preallocates a matrix
(page D-35).

squibo.m M-file to calculate “squibonacci” numbers.
Compile squibo.m into a MEX-file.

squibo2.m M-file example that contains a %#realonly
pragma.

tridi.m M-file to solve a tridiagonal system of equations.
Compile tridi.m into a MEX-file.

yovector.m M-file example that demonstrates the influence
of vectorization (page D-36).

Contents.m List of M-files in this directory.

inbounds.m Help file for the %#inbounds pragma.

ivdep.m Help file for the %#ivdep pragma.

mbchar.m Assert variable is a MATLAB character string.

mbcharscalar.m Assert variable is a character scalar.

mbcharvector.m Assert variable is a character vector, i.e., a
MATLAB string.

mbint.m Assert variable is integer.

mbintscalar.m Assert variable is integer scalar.

mbintvector.m Assert variable is integer vector.

mbreal.m Assert variable is real.
0

Directory Organization on UNIX
mbrealscalar.m Assert variable is real scalar.

mbrealvector.m Assert variable is real vector.

mbscalar.m Assert variable is scalar.

mbuild.m Build stand-alone applications from MATLAB
command prompt.

mbvector.m Assert variable is vector.

mcc.<mex> Invoke the MATLAB Compiler.

mccexec.<mex> MATLAB Compiler internal routine.

mccsavepath.m Duplicate MATLAB’s search path for use with
Compiler 2.0.

reallog.m Natural logarithm for nonnegative real inputs.

realonly.m Help file for the %#realonly pragma.

realpow.m Array power function for real-only output.

realsqrt.m Square root for nonnegative real inputs.
C-11

C Directory Organization

C-1
Directory Organization on Microsoft Windows
You must install MATLAB prior to installing the MATLAB Compiler.
Installing the MATLAB Compiler places many new files into directories
already created by the MATLAB installation. In addition, installing the
MATLAB Compiler creates several new directories. This figure illustrates the
Microsoft Windows directories into which the MATLAB Compiler installation
places files.

In the illustration, <matlab> symbolizes the top-level folder where MATLAB is
installed on your system.

extern

lib

bin

<matlab>

include

examples

toolbox

MATLAB Compiler installation creates shaded directories.

MATLAB installation creates unshaded directories.

compiler

cpp

src

tbxsrc

compiler
2

Directory Organization on Microsoft Windows
<matlab>
The <matlab> directory, in addition to containing many other directories, can
contain one MATLAB Compiler document.

<matlab>\bin
The <matlab>\bin directory contains the files required to build stand-alone
applications and MEX-files.

This table lists the library for the MATLAB Compiler.

This table lists the libraries for the MATLAB C Math Library, a separate
product, and the Compiler options files.

Compiler_Readme Optional document that describes configuration
details, known problems, workarounds, and
other useful information.

compiler.dll Kernel code for the MATLAB Compiler product
shared between the MEX and stand-alone
versions of the Compiler.

libmccmx.dll MATLAB Compiler Library for MEX-files.
Contains the mcc and mcm routines required for
building MEX-files (–V1.2 mode only).

mcc.exe Executable that compiles M code to C code and
optionally invokes mex or mbuild.

libmatlbmx.dll Shared library that contains the Math Library
API for use by MEX-files.

libmmfile.dll MATLAB M-File Math Library. Contains
callable versions of the M-files in the MATLAB
Toolbox. Needed for building stand-alone
applications that require MATLAB toolbox
functions.
C-13

C Directory Organization

C-1
All DLLs are in WIN32 format.

<matlab>\extern\lib
The MATLAB C++ Math Library, a separate product, has three separate,
compiler-specific libraries. Each library contains callable versions of MATLAB

libmcc.dll MATLAB Compiler Library for stand-alone
applications. Contains the mcc and mcm routines
required for building stand-alone applications
(–V1.2 mode only).

libmatlb.dll MATLAB Math Built-In Library. Contains
callable versions of MATLAB built-in math
functions and operators. Required for building
stand-alone applications.

mex.bat Batch file that builds C files into MEX-files. See
the Application Program Interface Guide for
more details on MEX.BAT.

mbuild.bat Batch file that builds C files into stand-alone C
or C++ applications with math libraries.

mexopts.bat Default options file for use with mex.bat.
Created by mex –setup.

compopts.bat Default options file for use with mbuild.bat.
Created by mbuild –setup.

Options files for
mex.bat

Options and settings for C and C++ compilers to
create MEX-files, e.g., bccopts.bat for use with
Borland C++ and watcopts.bat for use with
Watcom C/C++, Version 10.x.

Options files for
mbuild.bat

Options and settings for C and C++ compilers to
create stand-alone applications, e.g.,
msvccompp.bat for use with Microsoft Visual C
and bcc52compp.bat for use with Borland
C/C++.
4

Directory Organization on Microsoft Windows
built-in math functions and operators. The MATLAB C++ Math Library is
required for building stand-alone C++ applications.

<matlab>\extern\include
The <matlab>\extern\include directory contains the header files that come
with MATLAB-based, software development products.

This table lists the header file for the MATLAB Compiler 1.2.

This table lists the header file for the MATLAB C Math Library, a separate
product.

libmatpb50.lib MATLAB C++ Math Library for Borland
Compiler V5.0.

libmatpb52.lib MATLAB C++ Math Library for Borland
Compiler V5.2.

libmatpb53.lib MATLAB C++ Math Library for Borland
Compiler V5.3.

libmatpm.lib MATLAB C++ Math Library for Microsoft
Visual C++ (MSVC) Compiler.

libmatpw106.lib MATLAB C++ Math Library for Watcom
Compiler V10.6.

libmatpw11.lib MATLAB C++ Math Library for Watcom
Compiler V11.

mcc.h Header file for MATLAB Compiler Library.

matlab.h Header file for MATLAB Math Library.

libmatlb.h Header file for MATLAB Built-In Library.

libmmfile.h Header file for M-File Math Library.

libsgl.h Header file for C/C++ Graphics Library API.
C-15

C Directory Organization

C-1
This table lists the relevant header files from MATLAB.

The following .def files are used by the MSVC and Borland compilers. The
lib*.def files are used by MSVC and the _lib*.def files are used by Borland.

mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines;
installed with MATLAB.

matrix.h Header file containing a definition of the
mxArray type and function prototypes for matrix
access routines; installed with MATLAB.

mex.h Header file for building MEX-files. Contains
function prototypes for mex routines; installed
with MATLAB.

libmmfile.def
_libmmfile.def

Contains names of functions exported from the
MATLAB M-File Math Library DLL.

libmcc.def
_libmcc.def

Contains names of functions exported from the
MATLAB Compiler Library for stand-alone
applications.

libmatlb.def
_libmatlb.def

Contains names of functions exported from the
MATLAB Math Built-In Library.

libmatlbmx.def
_libmatlbmx.def

Contains the Math Library API for use by
MEX-files.

libmccmx.def
_libmccmx.def

Contains names of functions exported from
libmccmx.

libmx.def
_libmx.def

Contains names of functions exported from
libmx.dll.
6

Directory Organization on Microsoft Windows
<matlab>\extern\include\cpp
This table lists the header file for the MATLAB C++ Math Library, a separate
product.

Note There are numerous other files included by matlab.hpp in this directory.

<matlab>\extern\src\tbxsrc
The <matlab>\extern\src\tbxsrc directory contains the MATLAB
Compiler-compatible M-files.

<matlab>\extern\examples\compiler
The <matlab>\extern\examples\compiler directory holds sample M-files, C
functions, and batch files described in earlier chapters of this book. For some
examples, the online version may differ from the version in this book. In those
cases, assume that the online versions are correct.

matlab.hpp Header file for MATLAB C++ Math Library.

earth.m M-file that accesses a global variable
(page 6-53).

fibocert.m M-file that explores assertions (page D-19).

fibocon.m M-file used to show MEX-file source code
(page D-38).

fibomult.m M-file that explores helper functions
(page D-29).

gasket.m M-file that determines the coordinates of a
Sierpinski Gasket (page 3-3).

hello.m M-file that displays Hello, World.
C-17

C Directory Organization

C-1
houdini.m Script M-file that cubes each element of a 2-by-2
matrix (page 3-17).

lu2.m M-file example that benefits from %#ivdep.

README Short description of each file in this directory.

main.m M-file “main program” that calls mrank
(page 4-34).

mrank.m M-file to calculate the rank of magic squares
(page 4-33).

mrankp.c POSIX-compliant C function “main program”
that calls mrank. Demonstrates how to write C
code that calls a function generated by the
MATLAB Compiler. Input for this function
comes from the standard input stream and
output goes to the standard output stream
(page 4-43).

mrankwin.c Windows version of mrankp.c.

multarg.m M-file that contains two input and two output
arguments (page 4-44).

multargp.c C function “main program” that calls multarg.
Demonstrates how to write C code that calls a
function generated by the MATLAB Compiler
(page 4-44).

mycb.m M-file example used to study callbacks
(page D-29).

mydep.m M-file example used to show a case when
%#ivdep generates incorrect results.

myfunc.m M-file that explores helper functions
(page D-18).

myph.c C function print handler initialization
(page 5-72).
8

Directory Organization on Microsoft Windows
<matlab>\toolbox\compiler
The <matlab>\toolbox\compiler directory contains the MATLAB Compiler’s
additions to the MATLAB command set.

mypoly.m M-file example used to study callbacks
(page D-31).

novector.m M-file example that demonstrates the influence
of vectorization (page D-36).

plot1.m M-file example that calls feval (page D-33).

plotf.m M-file example that calls feval multiple times
(page D-33).

squares1.m M-file example that does not preallocate a
matrix (page D-34).

squares2.m M-file example that preallocates a matrix
(page D-35).

squibo.m M-file to calculate “squibonacci” numbers.
Compile squibo.m into a MEX-file.

squibo2.m M-file example that contains a %#realonly
pragma.

tridi.m M-file to solve a tridiagonal system of equations.
Compile tridi.m into a MEX-file.

yovector.m M-file example that demonstrates the influence
of vectorization (page D-36).

Contents.m List of M-files in this directory.

inbounds.m Help file for the %#inbounds pragma.

ivdep.m Help file for the %#ivdep pragma.

mbchar.m Assert variable is a MATLAB character string.
C-19

C Directory Organization

C-2
mbcharscalar.m Assert variable is a character scalar.

mbcharvector.m Assert variable is a character vector, i.e., a
MATLAB string.

mbint.m Assert variable is integer.

mbintscalar.m Assert variable is integer scalar.

mbintvector.m Assert variable is integer vector.

mbreal.m Assert variable is real.

mbrealscalar.m Assert variable is real scalar.

mbrealvector.m Assert variable is real vector.

mbscalar.m Assert variable is scalar.

mbuild.m Build stand-alone applications from MATLAB
command prompt.

mbvector.m Assert variable is vector.

mcc.dll Invoke the MATLAB Compiler 2.0.

mccexec.dll MATLAB Compiler 1.2 internal routine.

mccsavepath.m Duplicate MATLAB’s search path for use with
Compiler 2.0.

reallog.m Natural logarithm for nonnegative real inputs.

realonly.m Help file for the %#realonly pragma.

realpow.m Array power function for real-only output.

realsqrt.m Square root for nonnegative real inputs.
0

Why Use Compiler 1.2? D-2
About This Appendix D-2

Limitations and Restrictions D-4
MATLAB Compiler 1.2 D-4

Type Imputation D-8
Type Imputation Across M-Files D-8

Optimization TechniquesD-10
Optimizing with Compiler Option FlagsD-10
Optimizing Through AssertionsD-17
Optimizing with PragmasD-21
Optimizing by Avoiding Complex CalculationsD-26
Optimizing by Avoiding Callbacks to MATLABD-27
Optimizing by Preallocating MatricesD-34
Optimizing by VectorizingD-35

The Generated CodeD-37
MEX-File Source Code Generated by mccD-37
Stand-Alone C Source Code Generated by mcc -eD-45
Stand-Alone C++ Code Generated by mcc -pD-50
D

Using Compiler 1.2

Introduction . D-2

D Using Compiler 1.2

D-2
Introduction
This appendix provides information on Compiler 1.2. To use this Compiler, you
must explicitly include the –V1.2 option on the mcc command line.

Why Use Compiler 1.2?
The primary reason for using Compiler 1.2 is if you need code that is optimized
for performance. If you don’t require optimized code, then you should use
Compiler 2.0.

About This Appendix
In addition to discussing the optimization techniques available with Compiler
1.2, this appendix contains information on the code generated by Compiler 1.2,
and the limitations and restrictions for this version of the Compiler.

Note All references to the MATLAB Compiler and mcc in this Appendix refer
to version 1.2 of the Compiler.

Limitations and Restrictions
This section summarizes restrictions on MATLAB code that can be used with
the Compiler. It also describes differences between the MATLAB Compiler 1.2
and the MATLAB interpreter. Finally, this section discusses the restrictions
that exist on stand-alone applications generated by the Compiler.

Type Imputation
Type imputation is the process that the MATLAB Compiler uses to analyze
how variables in M-files are assigned values and how these values are used.
This analysis helps produce more efficient C code from the M-files.

Optimization
The optimization sections of this appendix explain how to improve the
performance of code generated by the MATLAB Compiler 1.2.

Introduction
You can optimize performance for C code by:

• Supplying appropriate MATLAB Compiler options (page D-10).

• Avoiding callbacks to MATLAB (page D-27).

• Preallocating matrices in your M-file (page D-34).

You can optimize performance for C and C++ code by:

• Type imputation (page D-8).

• Specifying assertions (page D-17).

• Specifying pragmas (page D-21).

• Avoiding complex calculations (page D-26).

• Vectorizing your M-file (page D-35).

The MATLAB C++ Math Library User’s Guide provides additional information
about how to optimize C++ applications that use the MATLAB C++ Math
Library.

Note In this release of MATLAB Compiler 2.0, optimization requires the
–V1.2 option, making MATLAB Compiler 1.2 the working version.

The Generated Code
This section describes the code generated by Compiler 1.2, in particular:

• The C code that the mcc command generates (MEX-files)

• The C code that the mcc –V1.2 –m command generates (stand-alone)

• The C++ code that mcc –V1.2 –p command generates (stand-alone)
D-3

D Using Compiler 1.2

D-4
Limitations and Restrictions
Version 1.2 of the MATLAB Compiler was a compatibility release that brought
the Compiler into compliance with MATLAB 5. Although Compiler 1.2 works
with MATLAB 5, it does not support many of the newer features of MATLAB
5. In addition, code generated with Compiler 1.2 is not guaranteed to be
forward compatible.

The remainder of this section describes the limitations of Compiler 1.2.

MATLAB Compiler 1.2

MATLAB Code
There are some limitations and restrictions on the kinds of MATLAB code with
which the MATLAB Compiler can work. The MATLAB Compiler Version 1.2
cannot compile:

• Script M-files.

• M-files containing eval or input. These functions create and use internal
variables that only the MATLAB interpreter can handle.

• M-files that use the explicit variable ans.

• M-files that create or access sparse matrices.

• Built-in MATLAB functions (functions such as eig have no M-file, so they
can’t be compiled), however, calls to these functions are okay.

• Functions that are only MEX functions.

• Functions that use variable argument lists (varargin).

• M-files that use feval to call another function defined within the same file.
(Note: In stand-alone C and C++ modes, a new pragma
(%#function <name-list>) is used to inform the MATLAB Compiler that the
specified function will be called through an feval call. See “Using feval” in
Chapter 5 for more information.)

Limitations and Restrictions
• Calls to load or save that do not specify the names of the variables to load or
save. The load and save functions are supported in compiled code for lists of
variables only. For example, this is acceptable:
load(filename, 'a', 'b', 'c'); % This is OK and loads the

% values of a, b, and c from
% the file.

However, this is not acceptable:
load(filename, var1, var2, var3); % This is not allowed.

There is no support for the load and save options –ascii, –mat, –v1.2, and
–append, and the variable wildcard (*).

• M-files that use multidimensional arrays, cell arrays, structures, or objects.

Variable Names Ending with Underscores. The MATLAB Compiler generates a
warning message for M-files that contain variables whose names end with an
underscore (_) or an underscore followed by a single digit. For example, if your
M-file contains the variables result_ or result_8, the Compiler would
generate a warning message because these names can conflict with the
Compiler-generated names and may cause errors.

MATLAB Compiler-Compatible M-Files. Since Compiler 1.2 cannot handle return
results from functions that are MATLAB 5 objects (cell arrays, structures,
objects), handling of the ODE solvers in MEX mode is problematic. To properly
handle odeget() and odeset(), a set of MATLAB Compiler-compatible M-files
that produce the same results is included with the MATLAB Compiler. These
M-files must be on the path in MEX mode because Compiler 1.2 will generate
calls to them and the MATLAB 5 versions will return cell arrays causing a
runtime error.

The directories containing the MATLAB Compiler-compatible M-files are:

• On UNIX, <matlab>/extern/src/tbxsrc

• On Windows, <matlab>\extern\src\tbxsrc

This stipulation also applies to the return structure of polyval used as input
to polyfit. Calls to Handle Graphics functions will produce errors in
stand-alone mode if you do not have the optional MATLAB C/C++ Graphics
Library.
D-5

D Using Compiler 1.2

D-6
Differences Between the MATLAB Compiler 1.2 and Interpreter
In addition, there are several circumstances where the behavior of the
MATLAB Compiler 1.2 is slightly different from the MATLAB interpreter’s:

• The MATLAB interpreter permits complex operands to <, <=, >, and >= but
ignores any imaginary components of the operands. The MATLAB Compiler
does not permit complex operands to <, <=, >, and >=. In fact, the MATLAB
Compiler assumes that any operand to these operators is real.

• The MATLAB Compiler assumes all arguments to the iterator operator (:)
are scalars.

• The MATLAB Compiler forces all arguments to zeros, ones, eye, and rand
to be integers. The MATLAB interpreter allows noninteger arguments to
these functions but issues a warning indicating that noninteger arguments
may not be supported in a future release.

• The MATLAB interpreter stores all numerical data as double-precision,
floating-point values. By contrast, the MATLAB Compiler sometimes stores
numerical data in integer data types. Integer results (the results of adding,
subtracting, or multiplying integers) must fit into integer variables. A very
large integer might overflow an integer variable but be represented correctly
in a double-precision, floating-point variable.

• The MATLAB Compiler treats the assertion functions (i.e., the functions
whose names begin with mb, such as mbintvector) as type declarations. The
MATLAB Compiler does not use these functions for type verification.
Assertion functions will not appear in the output generated by the compiler.

Restrictions on Stand-Alone Applications
The restrictions and limitations noted in the previous section also apply to
stand-alone applications. In addition, stand-alone applications cannot access:

• MATLAB debugging functions, such as dbclear

• MATLAB graphics functions, such as surf, plot, get, and set

• MATLAB exists function

• Calls to MEX-file functions because the MATLAB Compiler needs to know
the signature of the function

• Simulink functions

Limitations and Restrictions
Although the MATLAB Compiler 1.2 can compile M-files that call these
functions, the MATLAB C and C++ Math libraries do not support them.
Therefore, unless you write your own versions of the unsupported routines, the
linker will report unresolved external reference errors.
D-7

D Using Compiler 1.2

D-8
Type Imputation
The MATLAB interpreter views all variables in M-files as a single object type,
the MATLAB array. All MATLAB variables, including scalars, vectors,
matrices, strings, cell arrays, and structures are stored as MATLAB arrays.
The mxArray declaration corresponds to the internal data structure that
MATLAB uses to represent arrays. The MATLAB array is the C language
definition of a MATLAB variable.

To generate efficient C code from an M-file, the MATLAB Compiler analyzes
how the variables in the M-files are assigned values and how these values are
used. The goal of this analysis is to determine which variables can be
downsized to a smaller data type (a C int or a C double). This analysis process
is called type imputation; the MATLAB Compiler imputes a data type for a
variable. For example, if the MATLAB Compiler sees

[m,n] = size(a);

then the MATLAB Compiler probably imputes the C int type for variables m
and n because in MATLAB the result of this operation always yields integer
scalars.

In some cases, the MATLAB Compiler has to read several lines of code in order
to impute properly. For example, if the MATLAB Compiler sees

[m,n] = size(a);
m = m + .25;

then the MATLAB Compiler imputes the C double data type for variable m.

Note Specifying assertions and pragmas, as described later in this chapter,
can greatly assist the type imputation process.

Type Imputation Across M-Files
If an M-file calls another M-file function, the MATLAB Compiler reads the
entire contents of the called M-file function as part of the type imputation

Type Imputation
analysis. For example, consider an M-file function named profit that calls
another M-file function getsales:

function p = profit(inflation)
revenue = getsales(inflation);
...
p = revenue – costs;

To impute the data types for variables p and revenue, the MATLAB Compiler
reads the entire contents of the file getsales.m.

Suppose you compile getsales.m to produce getsales.mex. When invoked,
profit.mex calls getsales.mex. However, the MATLAB Compiler reads
getsales.m. In other words, the runtime behavior of profit.mex depends on
getsales.mex, but type imputations depend on getsales.m. Therefore, unless
getsales.m and getsales.mex are synchronized, profit.mex may run
peculiarly.

To ensure the files are synchronized, recompile every time you modify an
M-file.
D-9

D Using Compiler 1.2

D-1
Optimization Techniques

Optimizing with Compiler Option Flags
Some MATLAB Compiler option flags optimize the generated code; other
option flags generate compilation or runtime information. The two most
important optimization option flags are –i (suppress array boundary checking)
and –r (generate real variables only).

Consider the squibo M-file:

function g = squibo(n)
% The first n "squibonacci" numbers.
g = zeros(1,n);
g(1) = 1;
g(2) = 1;
for i = 3:n
 g(i) = sqrt(g(i–1)) + g(i–2);
end

We compiled squibo.m with various combinations of performance option flags
on a Pentium Pro 200 MHz workstation running Linux. Then, we ran the
resulting MEX-file 10 times in a loop and measured how long it took to run.
Table D-1 shows the results of the squibo example using n equal to 10,000 and
executing it 10 times in a loop.

As you can see from the performance table, –r and –i have a strong influence
on elapsed execution time.

Table D-1: Performance for n=10000, run 10 times

Compile Command Line Elapsed Time (in sec.) % Improvement

squibo.m (uncompiled) 5.7446 --

mcc –V1.2 squibo 3.7947 33.94

mcc –V1.2 –r squibo 0.4548 92.08

mcc –V1.2 –i squibo 2.7815 51.58

mcc –V1.2 –ri squibo 0.0625 98.91
0

Optimization Techniques
In order to understand how –r and –i improve performance, you need to look
at the MEX-file source code that the MATLAB Compiler generates. When
examining the generated code, focus on two sections:

• The comment section that lists the MATLAB Compiler’s assumptions.

• The code that the MATLAB Compiler generates for loops. Most programs
spend the vast majority of their CPU time inside loops.

An Unoptimized Program
Compiling squibo.m without any optimization option flags produces a
MEX-file that runs only about 34% faster than the M-file. The MATLAB
Compiler can do a lot better than that. To determine what’s slowing things
down, examine the MEX-file source code that the MATLAB Compiler
generates.

Type Imputations for Unoptimized Case. After analyzing squibo.m, the MATLAB
Compiler imputations in squibo.c are:

/***************** Compiler Assumptions ****************
*

 * C0_ complex scalar temporary
 * I0_ integer scalar temporary
 * g complex vector/matrix
 * i integer scalar
 * n integer scalar
 * sqrt <function>
 * squibo <function being defined>
 * zeros <function>
 ***/

The MATLAB interpreter uses the MATLAB mxArray to store all variables.
However, the MATLAB Compiler generates variables having additional data
types like integer scalars. The MATLAB Compiler scrutinizes the M-file code
and option flags for places where it can downsize a variable to a scalar; a scalar
variable requires less accompanying code and memory.

The assumptions list for squibo.c shows variables (CO_ and I0_) that do not
appear in squibo.m. The MATLAB Compiler uses these variables to hold
intermediate results. Although it is hard to make definitive judgments about
intermediate variables, you generally want to keep them to a minimum. You
D-11

D Using Compiler 1.2

D-1
can sometimes make a program run faster by writing code (or applying option
flags) that eliminates the need for some of them.

By default, the MATLAB Compiler generates code to handle all possible
circumstances. Therefore, the MATLAB Compiler tends to impute that most
matrices are complex. Complex matrices require more supporting code than do
real matrices. MEX-files that manipulate complex vector/matrices run slower
than those that manipulate real vector/matrices. The MATLAB Compiler
imputes the complex vector/matrix type for variable g. Applying certain
optimizations (described in this chapter) to squibo.m causes the MATLAB
Compiler to impute the real vector/matrix type for variable g. When g is a real
vector/matrix, squibo runs significantly faster.

The Generated Loop Code. Here is the C MEX-file source code that the MATLAB
Compiler generates for the loop:

/* for i=3:n */
 for (I0_ = 3; I0_ <= n; I0_ = I0_ + 1)
 {
 i = I0_;
 /* g(i) = sqrt(g(i–1)) + g(i–2); */
 Mprhs_[0] = mccTempVectorElement(&g, (i – 1));
 Mplhs_[0] = 0;
 mccCallMATLAB(1, Mplhs_, 1, Mprhs_, "sqrt", 7);
 C0__r = mccImportScalar(&C0__i, 0, 0, Mplhs_[0],

" (squibo, line 7): C0_");
 mccSetVectorElement(&g, mccRint(i),

(C0__r + (mccGetRealVectorElement(&g,
mccRint((i – 2))))),
(C0__i + mccGetImagVectorElement(&g,
mccRint((i – 2)))));

 /* end */
 }

The body of the M-file loop contains only one statement. The MATLAB
Compiler expands this one statement into six C code statements. The most
expensive of these six statements in terms of processing time is the callback to
MATLAB (mccCallMATLAB). The MATLAB Compiler cannot impute any type or
bounds information so it generates code to handle complex values and perform
subscript checking. If you need this behavior, then the extra C code is
2

Optimization Techniques
necessary. If you do not need this behavior, instruct the MATLAB Compiler to
optimize the code further.

Optimizing with the -r Option Flag
Compiling an M-file with the –r option flag causes the MATLAB Compiler to
impute the type real for all input, output, and temporary values and variables
in the MEX-file. In other words, the generated MEX-file does not contain any
code to handle complex numbers. Handling complex numbers normally
requires a significant amount of code in a MEX-file, so eliminating this code
can make a MEX-file run faster. Note that if the Compiler detects a complex
number when compiling with the –r option, it will generate an error message.

Compiling with the –r option makes squibo.mex run about 92% faster than
squibo.m. Obviously, the –r option has made a significant impact. To find out
why, examine the MATLAB Compiler imputations and the generated loop
code.

Type Imputations for -r. The –r option flag forces the MATLAB Compiler to
assume that no variables are complex. With the –r option flag, the MATLAB
Compiler assumptions are:

/***************** Compiler Assumptions ****************
 *
 * I0_ integer scalar temporary
 * R0_ real scalar temporary
 * g real vector/matrix
 * i integer scalar
 * n integer scalar
 * realsqrt <function>
 * squibo <function being defined>
 * zeros <function>
 ***/

Notice that variable g is now real. (Without –r, variable g is complex.)

Is it safe to compile with the –r option flag? Yes, because g(i–1) cannot become
negative. As long as g(i–1) is nonnegative, sqrt(g(i–1)) is always real.
D-13

D Using Compiler 1.2

D-1
The Generated Loop Code for -r. Since the MATLAB Compiler no longer has to
generate code to handle complex values, the code within the loop reduces to
only three C code statements. Here is the entire loop:

/* for i=3:n */
for (I0_ = 3; I0_ <= n; I0_ = I0_ + 1)
{

i = I0_;
/* g(i) = sqrt(g(i–1)) + g(i–2); */
R0_ = sqrt((mccGetRealVectorElement(&g, mccRint((i – 1)))));
mccSetRealVectorElement(&g, mccRint(i),

(R0_ + (mccGetRealVectorElement(&g,
mccRint((i – 2))))));

/* end */
}

This code calculates square roots by calling the sqrt function in the standard
C library. If you compile without the –r option, the resulting code makes a
callback to MATLAB to calculate square roots. Since callbacks are relatively
slow, eliminating the callback makes the program run much faster. The sqrt
function in the standard C library only handles positive real input and only
produces real output. The MATLAB Compiler can generate a call to the sqrt
function of the standard C library because the –r option assures the MATLAB
Compiler that g(i–1) is real and that the result of sqrt(g(i–1)) is also real.
Without the –r option, the MATLAB Compiler has to allow for the possibility
that g(i–1) is complex or negative.

The mccSetRealVectorElement routine assigns a value (the sum of
sqrt(g(i–1)) and g(i–2)) to the i-th element of g. Before doing that
assignment, the mccSetRealVectorElement routine checks the value of i:

• If i is zero or negative, mccSetRealVectorElement issues an error and
terminates the program.

• If i is positive, mccSetRealVectorElement checks to see if i is less than or
equal to the number of elements in g. If i is larger than the current number
of elements in g, then mccSetRealVectorElement grows g until it is large
enough to hold the new element (just as the MATLAB interpreter does).
4

Optimization Techniques
Optimizing with the -i Option Flag
The –i option flag generates code that:

• Does not allow matrices to grow larger than their starting size.

• Does not check matrix bounds.

The MATLAB interpreter allows arrays to grow dynamically. If you do not
specify –i, the MATLAB Compiler also generates code that allows arrays to
grow dynamically. However, dynamic arrays, for all their flexibility, perform
relatively slowly.

If you specify –i, the generated code does not permit arrays to grow
dynamically. Any attempts to access an array beyond its fixed bounds will
cause a runtime error. Using –i reduces flexibility but also makes array access
significantly cheaper.

To be a candidate for compiling with –i, an M-file must preallocate all arrays.
Use the zeros or ones function to preallocate arrays. (Refer to the “Optimizing
by Preallocating Matrices” section later in this chapter.)

Caution If you fail to preallocate an array and compile with the –i option,
your system will behave unpredictably and may crash.

If you forget to preallocate an array, the MATLAB Compiler cannot detect the
mistake; the errors do not appear until runtime. If your program crashes with
an error referring to:

• Bus errors

• Memory exceptions

• Phase errors

• Segmentation violations

• Unexplained application errors

then there is a good chance that you forgot to preallocate an array.

The –i option makes some MEX-files run faster, but generally, you have to use
–i in combination with –r in order to see real speed advantages. For example,
compiling squibo.m with –i does not produce any speed advantages, but
D-15

D Using Compiler 1.2

D-1
compiling squibo.m with a combination of –i and –r creates a very fast
MEX-file.

Optimizing with a Combination of -r and -i Flags
Compiling programs with a combination of –r and –i produces code with all
the speed advantages of both option flags. Compile with both option flags only
if your M-file:

• Contains no complex values or operations

• Preallocates all arrays, and then never changes their size

Compiling squibo.m with –ri produces an extremely fast version of
squibo.mex. In fact, the resulting squibo.mex runs more than 98% faster than
squibo.m.

Type Imputations for -ri . When compiling with –r and –i, the MATLAB Compiler
type imputations are:

/***************** Compiler Assumptions ****************
 *
 * I0_ integer scalar temporary
 * R0_ real scalar temporary
 * g real vector/matrix
 * i integer scalar
 * n integer scalar
 * realsqrt <function>
 * squibo <function being defined>
 * zeros <function>
 ***/

The MATLAB Compiler’s type imputations for –ri are identical to the
imputations for –r alone. Additional performance improvements are due to the
generated loop code.
6

Optimization Techniques
The Generated Loop Code for -ri. The MATLAB Compiler generates the loop code:

/* for i=3:n */
for (I0_ = 3; I0_ <= n; I0_ = I0_ + 1)
{
 i = I0_;
 /* g(i) = sqrt(g(i-1)) + g(i-2); */
 R0_ = sqrt((mccPR(&g)[((i-1)-1)]));
 mccPR(&g)[(i-1)] = (R0_ + (mccPR(&g)[((i-2)-1)]));
 /* end */
}

This loop is very short and contains no callbacks to MATLAB. The –ri loop is
more efficient than the –r loop because subscript checking is eliminated. In
addition, the –ri loop code gains some speed by using the C assignment
operator (=) to assign values. By contrast, the –r loop code assigns values by
calling the relatively expensive mccSetRealVectorElement function.

Optimizing Through Assertions
By adding assertions to an M-file, you can guide the MATLAB Compiler’s type
imputations. Assertions help the MATLAB Compiler recognize where it can
generate simpler data types (and the associated simpler code).

Assertions are M-file functions (installed by the MATLAB Compiler) whose
names begin with the letters mb, which stands for “must be.”

Function Assertions

mbscalar(x) x must be a scalar.

mbvector(x) x must be a vector.

mbint(x) x must be an integer.

mbchar(x) x must be a character string.

mbreal(x) x must be real (not complex).

mbcharscalar(x) x must be a character scalar.

mbintscalar(x) x must be an integer scalar.
D-17

D Using Compiler 1.2

D-1
The MATLAB Compiler and MATLAB interpreter both recognize assertions
and issue error messages if a variable does not satisfy a particular assertion.
For example, if variable x holds the value 4.5, then

mbint(x)

triggers an error message in both the MATLAB Compiler and interpreter
because x is not an integer.

The MATLAB Compiler, unlike the MATLAB interpreter, uses assertions to
guide type imputations. Therefore, the MATLAB Compiler imputes the C int
data type for variable x. Since the MATLAB interpreter does not support
different C data types, the mbint assertion does not influence the MATLAB
interpreter. However, since the assertions are M-files that check the value of
their input, the MATLAB interpreter executes extra code, which will cause an
error if the value of the variable cannot be represented in the specified C type.

Although you can use assertions on any variable in an M-file, you typically use
assertions to constrain the data types of input arguments. For example,
mbintscalar forces the input argument, n, to myfunc to be an integer scalar:

function y = myfunc(n)
mbintscalar(n);

A single assertion can have a fairly wide ranging influence. For example, if you
assert that variable a is real, then the MATLAB Compiler also assumes that
the variables to which you assign a are also real. For instance, in the code

mbreal(a);
b = a + 2;

the mbreal assertion allows the MATLAB Compiler to impute the real type for
both a and b.

mbrealscalar(x) x must be a real scalar.

mbcharvector(x) x must be a vector of characters.

mbintvector(x) x must be a vector of integers.

mbrealvector(x) x must be a vector of real numbers.

Function Assertions
8

Optimization Techniques
Note that the MATLAB Compiler does not automatically impute that all
variables that interact with variable a are real. For example, although the
MATLAB Compiler imputes the real type for a

mbreal(a);
b = a + 2i;

the MATLAB Compiler still imputes the complex type for variable b.

An Assertion Example
To explore assertions, consider the M-file

function [g,h] = fibocert(a,b)

% $Revision: 1.1 $

% Part 1 contains an assertion
mbreal(a); % Assert that "a" contains only real numbers.
n = max(size(a));
g = zeros(1,n);
g(1) = a(1);
g(2) = a(2);
for c = 3:n
 g(c) = g(c – 1) + g(c – 2) + a(c);
end

% Part 2 contains no assertions
n = max(size(b));
h = zeros(1,n);
h(1) = b(1);
h(2) = b(2);
for c = 3:n
 h(c) = h(c – 1) + h(c – 2) + b(c);
end

This M-file consists of two parts labeled Part 1 and Part 2. Both parts are
identical except that Part 1 contains the assertion

mbreal(a);
D-19

D Using Compiler 1.2

D-2
fibocert accepts real data into argument a and either real or complex data
into argument b. Compiling fibocert.m

mcc –V1.2 fibocert

generates a telling list of imputations, among them:

* a real vector/matrix
* b complex vector/matrix
* c integer scalar
* g real vector/matrix
* h complex vector/matrix

The MATLAB Compiler imputes the complex vector/matrix type for variable b.
The mbreal assertion forces the MATLAB Compiler to impute the real vector/
matrix type for variable a. If you remove the mbreal assertion, the MATLAB
Compiler imputes the complex vector/matrix type for variable a.

Since variable b is complex, the MATLAB Compiler imputes the complex
vector/matrix type for variable h. The side effect of asserting that variable a is
real is that the MATLAB Compiler imputes that variable g is also real.

Note the difference between the –r MATLAB Compiler option and the mbreal
assertion. The –r option tells the MATLAB Compiler to assume that there are
no complex variables anywhere in the file. The mbreal assertion gives the
MATLAB Compiler advice about a particular variable. If compiled with the –r
option, the resulting MEX-file does not accept any complex data, for example:

mcc –V1.2 –r fibocert
f1 = 1:0.5:1000;
f2 = f1 + 4i;
[fibor,fiboc] = fibocert(f1,f2);
??? Runtime Error: Encountered a complex value where a real was
expected
(compiling with –l may give line number)
0

Optimization Techniques
Optimizing with Pragmas
The MATLAB Compiler provides three pragmas that affect code optimization.
You can use these pragmas to send optimization information to the MATLAB
Compiler. The three optimization pragmas are:

• %#inbounds

• %#realonly

• %#ivdep

All pragmas begin with a percent sign (%) and thus appear as comments to the
MATLAB interpreter. Therefore, the MATLAB interpreter ignores all
pragmas.

The %#inbounds and %#realonly pragmas are the equivalent of the –i and –r
MATLAB Compiler option flags, respectively. Placing %#inbounds in an M-file
causes the MATLAB Compiler to generate the same source code as compiling
with the –i option flag. You can place %#inbounds and %#realonly anywhere
within an M-file; these pragmas affect the whole file.

The %#ivdep pragma tells the MATLAB Compiler to ignore vector
dependencies in the assignment statement that immediately follows it. Using
%#ivdep can speed up some assignment statements, but using it incorrectly
causes assignment errors.

Unlike %#inbounds and %#realonly, the %#ivdep pragma has no option flag
equivalent. Also unlike %#inbounds and %#realonly, the placement of %#ivdep
within an M-file is critical. A %ivdep pragma only influences the statement in
the M-file that immediately follows it. If that statement happens to be an
assignment statement, %#ivdep may be able to optimize it. If that statement is
not an assignment statement, %#ivdep has no effect. You can place multiple
%#ivdep pragmas inside an M-file.

%#inbounds
%#inbounds is the pragma version of the MATLAB Compiler option flag –i. The
syntax of the inbounds pragma is:

%#inbounds

This pragma has no effect on C++ generated code (i.e., if the –p MATLAB
Compiler option flag is used). Placing the pragma anywhere inside an M-file
D-21

D Using Compiler 1.2

D-2
has the same effect as compiling that file with –i. The %#inbounds pragma (or
–i) causes the MATLAB Compiler to generate C code that:

• Does not check array subscripts to determine if array indices are within
range.

• Does not reallocate the size of arrays when the code requests a larger array.
For example, if you preallocate a 10-element vector, the generated code
cannot assign a value to the 11th element of the vector.

• Does not check input arguments to determine if they are real or complex.

The %#inbounds pragma can make a program run significantly faster, but not
every M-file is a good candidate for %#inbounds. For instance, you can only
specify %#inbounds if your M-file preallocates all arrays. You typically
preallocate arrays with the zeros or ones functions.

Note If an M-file contains code that causes an array to grow, then you cannot
compile with the %#inbounds option. Using %#inbounds on such an M-file
produces code that fails at runtime.

Using %#inboundsmeans you guarantee that your code always stays within the
confines of the array. If your code does not, your compiled program will
probably crash.

The %#inbounds pragma applies only to the M-file in which it appears. For
example, suppose %#inbounds appears in alpha.m. Given the command:

mcc –V1.2 alpha beta

the %#inbounds pragma in alpha.m has no influence on the way the MATLAB
Compiler compiles beta.m.

%#ivdep
The %#ivdep pragma tells the MATLAB Compiler to ignore vector
dependencies in the assignment statement that immediately follows it. The
syntax of the Ignore-vector-dependencies (ivdep) pragma is:

%#ivdep
2

Optimization Techniques
This pragma has no effect on C++ generated code (i.e., if the –p MATLAB
Compiler option flag is used). Since the %#ivdep pragma only affects a single
line of an M-file, you can place multiple %#ivdep pragmas into an M-file. Using
%#ivdep can speed up some assignment statements, but using %ivdep
incorrectly causes assignment errors.

The %#ivdep pragma borrows its name from a similar feature in many
vectorizing C and Fortran compilers.

This is an M-file function that does not (and should not) contain any %#ivdep
pragmas:

function a = mydep
a = 1:8;
a(3:6) = a(1:4);

Compiling this program and then running the resulting MEX-file yields the
correct answer, which is:

mydep
ans =

1 2 1 2 3 4 7 8

The assignment statement

a(3:6) = a(1:4)

accesses values on the right side of the assignment that have been changed
earlier by the left side of the assignment. (This is the “vector dependency”
referred to in the name.) The MATLAB Compiler deals with this problem by
creating a temporary matrix for such a computation, in effect doing the
assignment in two steps:

TEMP = A(1:4);
A(3:6) = TEMP;

If you mistakenly place an %#ivdep pragma in the M-file

function a = mydep
a = 1:8;
%#ivdep
a(3:6) = a(1:4);
D-23

D Using Compiler 1.2

D-2
then the resulting MEX-file does not create a temporary matrix and
consequently calculates the wrong answer:

mydep
ans =

1 2 1 2 1 2 7 8

The MATLAB Compiler creates a temporary matrix to handle many
assignments. In some situations, the temporary matrix is not needed and
causes MEX-files to run more slowly. Use %#ivdep to flag those assignment
statements that do not need a temporary matrix. Using %#ivdep typically
results in faster code but the code may not be correct if there are vector
dependencies.

For example, this M-file benefits from %#ivdep.

function [A,p] = lu2(A)
[m,n] = size(A);
p = (1:m)’;

for k = 1:min(m,n)–1
 q = min(find(abs(A(k:m,k)) == max(abs(A(k:m,k))))) + k–1;
 if q ~= k
 p([k q]) = p([q k]);
 A([k q],:) = A([q k],:);
 end
 if A(k,k) ~= 0
 A(k+1:m,k) = A(k+1:m,k)/A(k,k);
 for j = k+1:n;
 %# ivdep
 A(k+1:m,j) = A(k+1:m,j) – A(k+1:m,k)*A(k,j);
 end
 end
end

The %#ivdep pragma tells the MATLAB Compiler that the elements being
referenced on the right side are independent of the elements on the left side.
Therefore, the MATLAB Compiler can create a MEX-file that calculates the
4

Optimization Techniques
correct answer without generating a temporary matrix. Table D-2 shows that
the %#ivdep pragma had a significant impact on the performance of lu2.

%#realonly
%#realonly is the pragma version of the MATLAB Compiler option flag –r. The
syntax of the real only pragma is:

%#realonly

This pragma has no effect on C++ generated code (i.e., if the –p MATLAB
Compiler option flag is used). Placing the pragma anywhere inside an M-file
has the same effect as compiling that file with –r. Specifying both –r and
%#realonly has the same effect as specifying only %#realonly.

%#realonly tells the MATLAB Compiler to generate source code with the
assumption that all input data, output data, and temporary data in the M-file
are real. Since all data are real, all operations are also real.

In this example, the function squibo2 contains a %#realonly pragma.

function g = squibo2(n)
#%realonly
g = ones(1,n);
for i=4:n
 g(i) = sqrt(g(i–1)) + g(i–2) + g(i–3);
end

The %#realonly pragma forces the MATLAB Compiler to generate real-only
data and operations.

mcc –V1.2 squibo2

An alternative way of ending up with the same code is to omit the %#realonly
pragma and to compile with

mcc –V1.2 –r squibo2

Table D-2: Performance for lu2(magic(100)), run 20 times

MEX-File Elapsed Time (in sec.)

lu2 containing %#ivdep 1.8610

lu2 omitting %#ivdep 2.6102
D-25

D Using Compiler 1.2

D-2
The %#realonly pragma applies only to the M-file in which it appears. For
example, suppose %#realonly appears in alpha.m. Given the command

mcc –V1.2 alpha beta

the %#realonly pragma in alpha.m has no influence on the way the MATLAB
Compiler compiles beta.m.

Optimizing by Avoiding Complex Calculations
The MATLAB Compiler adds three special functions to MATLAB—reallog,
realpow, and realsqrt—that are real-only versions of the log, .^ (array
power), and sqrt functions. The three real-only functions accept only real
values as input and return only real values as output. Because they do not have
to handle complex values, the three real-only functions execute faster than log,
.^, and sqrt.

For example, consider the simple M-file function:

function h = powwow1(a,b)
h = a .^ b;

This coding of powwow1 is appropriate if there is even a slight possibility that a,
b, or h is complex. (Note that h can be complex even if a and b are both real, e.g.,
a = –1 and b = 0.5.) On the other hand, if you are certain that a, b, and h are
always going to be real, then a better way to write the M-file is:

function h = powwow2(a,b)
h = realpow(a,b);

Function Description

Y = reallog(X) Return the natural logarithm of the elements of X,
if X is positive. Otherwise signal an error.

Z = realpow(X,Y) Return the elements of X raised to the Y power. If X
is negative and Y is not an integer, signal an error.

Y = realsqrt(X) Return the square root of the elements of X, if X is
nonnegative. Otherwise return an error.
6

Optimization Techniques
If you invoke powwow2 and mistakenly specify a complex value for a or b, then
the function issues an error message and halts execution.

Effects of the Real-Only Functions
The MATLAB Compiler assumes that all input and output arguments to a
real-only function are real. For example, since powwow2 calls realpow, the
MATLAB Compiler imputes the real type for all of realpow’s input and output
arguments (a, b, and h). Since all variables in powwow2 are real, the MATLAB
Compiler generates no code to handle complex data.

Automatic Generation of the Real-Only Functions
If you compile with the –r option flag, the MATLAB Compiler automatically
converts log, sqrt, and .^ to their real versions. For example, compiling
powwow1 with the –r option flag generates the same code as compiling powwow2
without the –r option flag.

If the result of a call to log or sqrt is guaranteed to be real, the MATLAB
Compiler often imputes the function call to be real only. For example, since the
number 2 is both real and positive, the MATLAB Compiler generates code for

a = sqrt(2);

as if the code were written

a = realsqrt(2);

As another example, suppose an M-file contains:

a = sqrt(b);
mbreal(a);

Since variable a is guaranteed to be real, the MATLAB Compiler converts sqrt
to realsqrt and further imputes the real type for variable b.

For more information about reallog, realpow, and realsqrt, see their
corresponding reference pages in Chapter 6.

Optimizing by Avoiding Callbacks to MATLAB
Callbacks to the MATLAB interpreter slow down a MEX-file’s performance.
The MATLAB Compiler generates callbacks to handle some MATLAB
functions, particularly the more complicated and time-consuming ones. The
D-27

D Using Compiler 1.2

D-2
MATLAB Compiler handles simple functions without making a callback. For
example, to compile the call to the relatively simple ones function

a = ones(5,7)

the MATLAB Compiler does not generate a callback to the MATLAB
interpreter. The MATLAB Compiler generates a call to the mccOnesMN routine
contained in the MATLAB Compiler Library:

mccOnesMN(&a, 5, 7);

On the other hand, the lu call is a complicated function. Therefore, the
MATLAB Compiler translates

X = lu(A);

into the callback:

mccCallMATLAB(1, Mplhs_, 1, Mprhs_, "lu", 2);

This mccCallMATLAB routine asks the MATLAB interpreter to compute the lu
decomposition.

Whenever possible, you should try to produce code that minimizes these
callbacks. Here are a few suggestions:

• Identify when callbacks are occurring.

• Avoid calling other M-files that themselves call built-in functions.

• Compile referenced M-files along with the target M-file.

This section takes a closer look at these suggestions.

Identifying Callbacks
There are two ways to find callbacks to MATLAB:

• Study the MEX-file source code the MATLAB Compiler generates and look
for calls to mccCallMATLAB.

• Invoke the MATLAB Compiler with the –w option flag.
8

Optimization Techniques
To study callbacks, consider the function M-file named mycb:

function g = mycb(n)
g = ones(1,n);
for i = 4:n
 temp1 = log(g(i–1) + g(i–2));
 temp2 = tan(g(i–3));
 g(i) = temp1 + temp2;
end
log10(g);

Compiling mycb with the –w option flag shows that mycb makes a number of
callbacks to built-in functions:

mcc –V1.2 –w mycb
Warning: MATLAB callback of 'tan' will be slow (line 5)
Warning: MATLAB callback of 'log10' will be slow (line 8)

This output tells you that the MATLAB Compiler generates mccCallMATLAB
calls for the tan and log10 functions. Notice that the ones and log functions do
not appear in this list of callbacks. That is because the MATLAB Compiler
handles ones by generating a call to mccOnesMN and log by generating a call to
mcmLog (both routines are in the MATLAB Compiler Library). The calls to
mccOnesMN and mcmLog are resolved at link time.

Compiling Multiple M-Files into One MEX-File
When M-files call other M-files, which in turn may call additional M-files, the
called files are called helper functions. If your M-file uses helper functions, you
can often improve performance by building all accessed M-files into a single
MEX-file. The MATLAB Compiler always compiles all functions that appear in
the same M-file into the resulting application as helper functions.

Consider the function fibomult.m

function g = fibomult(n)
g = ones(1,n);
for i = 3:n
 g(i) = myfunc(g(i–1)) + g(i–2);
end
D-29

D Using Compiler 1.2

D-3
where myfunc is defined as:

function z = myfunc(x)
temp1 = x .* 10 .* sin(x);
z = round(temp1);

If you compile fibomult by itself, the resulting code has to do a callback to
MATLAB in order to find myfunc. Since callbacks to MATLAB are slow,
performance is not optimal. The problem is compounded by the fact that this
callback happens one time for each iteration of the loop. The results on our
machine are:

mcc –V1.2 fibomult
tic; fibomult(10000); toc
elapsed_time =
 16.4851

If you compile fibomult.m and myfunc.m together, the resulting code does not
contain any callbacks to MATLAB and performance is significantly better:

mcc –V1.2 fibomult myfunc
tic; fibomult(10000); toc
elapsed_time =
 0.0690

Compiling two M-files on the same mcc command line produces only one
MEX-file. The resulting MEX-file has the same root filename as the first M-file
on the compilation command line. For example,

mcc –V1.2 fibomult myfunc

creates fibomult.mex (not myfunc.mex).

Note You can build several M-files into one MEX-file. However, no matter
how many input M-files there are, MEX-files still offer only one entry point.
Thus, a MEX-file is different from a library of C routines, each of which can be
called separately.

Using the -h Option. You can also compile multiple M-files into a single MEX-file
or stand-alone application by using the –h option of the mcc command. The –h
option compiles all helper functions into a single MEX-file or stand-alone
0

Optimization Techniques
application. In this example, you can compile fibomult.m and myfunc.m
together into the single MEX-file, fibomult.mex, by using:

mcc –V1.2 –h fibomult

Using the –h option is equivalent to listing the M-files explicitly on the mcc
command line.

The –h option purposely does not include built-in functions or functions that
appear in the MATLAB M-File Math Library portion of the C/C++ Math
Libraries. This prevents compiling functions that are already part of the C/C++
Math Libraries. If you want to compile these functions as helper functions, you
should specify them explicitly on the command line. For example, use

mcc –V1.2 minimize_it fmins

instead of

mcc –V1.2 –h minimize_it

Note Due to Compiler restrictions, some of the MATLAB 5 versions of the
M-files for the C and C++ Math Libraries do not compile as is. The
MathWorks has rewritten these M-files to conform to the Compiler
restrictions. The modified versions of these M-files are in <matlab>/extern/
src/tbxsrc, where <matlab> represents the top-level directory where
MATLAB is installed on your system.

Compiling MATLAB Provided M-Files. Callbacks sometimes appear in unexpected
places. For example, consider the function M-file:

function g = mypoly(n)
m = magic(n);
m = m / 5;
g = poly(m);

MATLAB implements poly as an M-file rather than as a built-in function.
Compiling poly.m along with your own M-file does not improve the
performance of mypoly.m.
D-31

D Using Compiler 1.2

D-3
The –w option flag reveals the problem:

mcc –V1.2 –w mypoly poly
Warning: MATLAB callback of 'magic' will be slow (line 2)
Warning:
You are compiling a copyrighted M-file. You may use the resulting
copyrighted C source code, object code, or linked binary in your
own work, but you may not distribute, copy, or sell it without
permission from The MathWorks or other copyright holder.

... in function 'poly'
Warning: MATLAB callback of 'eig' will be slow
 ... in function 'poly', line 24
Warning: MATLAB callback of 'isfinite' will be slow
 ... in function 'poly', line 32
Warning: MATLAB callback of 'sort' will be slow
 ... in function 'poly', line 42
Warning: MATLAB callback of 'conj' will be slow
 ... in function 'poly', line 42
Warning: MATLAB callback of 'sort' will be slow
 ... in function 'poly', line 42
Warning: MATLAB callback of 'isequal' will be slow
 ... in function 'poly', line 42

In other words, poly itself calls many MATLAB built-in functions.
Consequently, compiling poly does not increase its execution speed.

Caution If you compile a copyrighted M-file, you may use the resulting
copyrighted C source code, object code, or linked binary in your own work, but
you may not distribute, copy, or sell it without permission from The
MathWorks, Inc. or other copyright holder.

Compiling M-Files That Call feval
The first argument to the feval function is the name of another function. The
MATLAB interpreter allows you to specify the name of this input function at
runtime. In a similar manner, the code generated by the MATLAB Compiler
allows you to specify the name of this input function at runtime. However, the
MATLAB Compiler also lets you specify the name of this input function at
2

Optimization Techniques
compile time. Specifying the name of this input function at compile time can
improve performance.

For example, consider a function M-file named plot1 containing a call to feval:

function plot1(fun,x)
y = feval(fun,x)
plot(y);

If you compile plot1 in the usual manner

mcc –V1.2 plot1

you must invoke plot1 like this

plot1('myfun',7);

plot1.mex makes a callback to MATLAB to find the function myfun. To avoid
the expense of the callback, specify on the compilation command line the name
of the function that you want to pass to feval. For example, to pass myfun as
the argument to feval, invoke the MATLAB Compiler as:

mcc –V1.2 plot1 fun=myfun

If an M-file contains multiple feval calls, you can pass the names of none,
some, or all of the input function names at compile time. For example, consider
an M-file named plotf.m that contains two calls to feval:

function plotf(fun1,fun2,x)
hold on
y = feval(fun1,x);
plot(x,y,'g+');
z = feval(fun2,x);
plot(x,z,'b');

The fastest possible code for plotf is generated by specifying the names of both
input functions on the compilation command line. For example, the command
line

mcc –V1.2 plotf fun1=orange fun2=lemon

causes the MATLAB Compiler to generate code in plotf.c that explicitly calls
orange and lemon. Using the fun=feval_arg syntax creates faster runtime
performance; however, this syntax eliminates the inherent flexibility of feval.
D-33

D Using Compiler 1.2

D-3
No matter what you specify as the first and second arguments to plotf, for
instance:

plotf('dumb','dumber',0:pi/100:pi);

plotf.mex still calls orange and lemon.

Many MATLAB functions are themselves M-files. Many of these M-files (for
example fzero and ode23) call feval. For example, consider an M-file named
ham.m containing the line:

y = fzero(fun,8);

Since fzero calls feval, you can tell the MATLAB Compiler which function
fzero must evaluate, for example:

mcc –V1.2 ham fun=greenegg

Note The facility described in this section is supported for backwards
compatibility only and may be removed in the future. For additional
information on feval, see “Using feval” in Chapter 5 .

Optimizing by Preallocating Matrices
You should preallocate matrices (or vectors) whenever possible. Preallocating
matrices eliminates the need for costly memory reallocations. For example,
consider the M-file:

function myarray = squares1(n)
for i = 1:n

myarray(i) = i * i;
end

The squares1 function runs relatively slowly because the MATLAB interpreter
must grow the size of myarray with each pass through the loop. To grow
myarray:

• The MATLAB interpreter must ask the operating system to allocate more
memory.

• In some cases, the MATLAB interpreter must copy the previous contents of
myarray to a new region of memory.
4

Optimization Techniques
Growing myarray is expensive, particularly when i becomes large.

A better approach is to allocate a row vector of n elements prior to the
beginning of the loop, typically by calling the zeros or ones function

function myarray = squares2(n)
myarray = zeros(1,n);
for i = 1:n

myarray(i) = i * i;
end

The zeros function in squares2 allocates enough space for all n elements of the
vector. Thus, squares2 does not have to reallocate space at every iteration of
the loop. squares2 runs significantly faster than squares1, in both the
interpreted and compiled forms. Table D-3 shows the execution times for the
interpreted and compiled versions of the two M-files.

Optimizing by Vectorizing
The MATLAB interpreter runs vectorized M-files faster than M-files that
contain loops. In fact, the MATLAB interpreter runs vectorized M-files so
efficiently that compiling vectorized M-files into MEX-files rarely brings big
performance improvements. (See Using MATLAB for more information on how
to vectorize M-files.)

Table D-3: Performance for n=5000, run 10 times

M-file Function Form Elapsed Time (sec.)

squares1
(not preallocated)

Interpreted 9.0298

Compiled 1.1537

squares2
(preallocated)

Interpreted 2.1329

Compiled 0.0622
D-35

D Using Compiler 1.2

D-3
To demonstrate the influence of vectorization, consider a nonvectorized M-file
containing an unnecessary for loop:

function h = novector(stop)
for angle = 1:stop
 radians = (angle ./ 180) .* pi;
 h(angle) = sin(radians);
end

Vectorizing the angle variable eliminates the for loop:

function h = yovector(stop)
angle = 1:stop;
radians = (angle ./ 180) .* pi;
h = sin(radians);

Table D-4 shows the execution times for the interpreted and the compiled
versions of the two M-files.

As expected, the vectorized form of the program runs significantly faster than
the nonvectorized form. However, compiling the vectorized version has no
significant impact on performance.

Table D-4: Performance for n=19200

M-file Form Elapsed Time (sec.)

novector

(not vectorized)

Interpreted 23.1750

Compiled 2.5108

yovector

(vectorized)

Interpreted 0.0256

Compiled 0.0231
6

The Generated Code
The Generated Code

MEX-File Source Code Generated by mcc
The contents of MEX-files produced by the MATLAB Compiler depend, of
course, on the contents of the M-files being compiled. However, most MEX-files
produced by the MATLAB Compiler share this common format:

Figure D-1: Structure of MEX-File Source Code Generated by Compiler

At least one
argument is
complex.

All arguments
are real.

Code to examine input
values to determine whether
to branch to the Complex
Branch or the Real Branch.

Declare variables.

Import input arguments.

Perform complex calculations.

Export output arguments.

Complex Branch

Declare variables.

Import input arguments.

Perform real calculations.

Export output arguments.

Real Branch

#include Header Files

MEX-file Gateway Function Declaration
D-37

D Using Compiler 1.2

D-3
For example, consider the simple M-file fibocon.m:

function g = fibocon(n,x)
g(1)=1; g(2)=1;
for i=3:n
 g(i) = g(i – 1) + g(i – 2) + x;
end

Compiling fibocon.m

mcc –V1.2 fibocon

yields the MEX-file source code that this section details.

Header Files
Invoking the MATLAB Compiler without the –e option flag causes the
MATLAB Compiler to include these header files inside the MEX-file source
code:

#include <math.h>
#include "mex.h"
#include "mcc.h"

This table lists the included header files.

MEX-File Gateway Function
All MEX-files, whether generated by the MATLAB Compiler or written by a
programmer, must contain the standard MEX-file gateway routine. The
gateway routine is the entry point for all MEX-files. The gateway routine may
in turn call other routines in the MEX-file.

Header File Contains Declarations and Prototypes

math.h ANSI/ISO C Math Library

mex.h MEX-files

mcc.h MATLAB Compiler Library
8

The Generated Code
The name of the gateway routine is always mexFunction, which takes the form
of:

void
mexFunction(
 int nlhs_,
 mxArray *plhs_[],
 int nrhs_,
 const mxArray *prhs_[]
)

mexFunction has the same prototype regardless of the number of arguments
that the MEX-file expects to receive or to return. See the Application Program
Interface Guide for details on mexFunction.

Complex Argument Check
The MATLAB Compiler generates the following input test code to determine if
the input data contains any imaginary parts:

int ci_;
int i_;
/* Argument Checking */
for (ci_=i_=0; i_<nrhs_; ++i_)
{
 if (mccPI(prhs_[i_]))
 {
 ci_ = 1;
 break;
 }
}
if (ci_)
{
 /* Complex Branch */
 ...
}
else
{
 /* Real Branch */
 ...
}

D-39

D Using Compiler 1.2

D-4
The input test code examines each input argument to determine whether the
argument has an imaginary component. If any input variable has an imaginary
component, the input test code sets the flag variable ci_ to 1. If ci_ is set to 1,
the program executes the Complex Branch. If ci_ has not been set to 1, then
the program executes the Real Branch. See the Application Program Interface
Guide for details on the pi field of the mxArray structure.

If the MATLAB Compiler determines that none of the input arguments is
complex, the MATLAB Compiler does not generate a Complex Branch.
Similarly, compiling with the –r option flag forces the MATLAB Compiler to
suppress generating the Complex Branch. If you pass complex input to a
function that has no Complex Branch, then the function returns an error
message and exits.

If you compile with both the –r and –i option flags, the input test code is not
present. Consequently, the MEX-file does not check input arguments. If you
pass complex input to a function having no input test code, the function may
produce incorrect results.

Computation Section — Complex Branch and Real Branch
The computation section performs the computations defined in the M-file. As
noted earlier, the computation section typically contains both a Complex
Branch and a Real Branch; however, only one of these gets executed at
runtime. Both branches have the same basic organization, which is:

• A list of commented MATLAB Compiler assumptions and then the variable
declarations themselves

• Code to import the passed argument values to variables

• Code to perform the calculations

• Code to return the results back to MATLAB
0

The Generated Code
Declaring Variables . Each branch begins with a commented list of MATLAB
Compiler assumptions and an uncommented list of variable declarations. For
example, the imputations for the Complex Branch of fibocon.c are:

/***************** Compiler Assumptions ****************
 *
 * I0_ integer scalar temporary
 * fibocon <function being defined>
 * g complex vector/matrix
 * i integer scalar
 * n complex vector/matrix
 * x complex vector/matrix
 ***/

Variable declarations follow the assumptions. For example, the variable
declarations of fibocon.c are:

 mxArray g;
 mxArray n;
 mxArray x;
 int i = 0;
 int I0_ = 0

This table shows the mapping between commented MATLAB Compiler
assumptions and the actual C variable declarations.

All vectors and matrices, whether real or complex, are declared as mxArray
structures. All scalars are declared as simple C data types (either int or
double). An int or double consumes far less space than an mxArray structure.

Assumption C Type

Integer scalar int

Real scalar double

Complex vector/matrix mxArray

Real vector/matrix mxArray
D-41

D Using Compiler 1.2

D-4
The MATLAB Compiler tries to preserve the variable names you specify inside
the M-file. For instance, if a variable named jam appears inside an M-file, then
the analogous variable in the compiled version is usually named jam.

The MATLAB Compiler typically generates a few “temporary” variables that
do not appear inside the M-file. All variables whose names end with an
underscore (_) are temporary variables that the MATLAB Compiler creates in
order to help perform a calculation.

When coding an M-file, you should pick variable names that do not end with an
underscore. For example, consider the two variable names:

hoop = 7; % Good variable name
hoop_ = 7; % Bad variable name

In addition, you should pick variable names that do not match reserved words
in the C language; for example:

switches = 7; % Good variable name
switch = 7; % Bad variable name because switch is a C keyword

Importing Input Arguments. When you invoke a MEX-file, MATLAB automatically
assigns the passed input arguments to the prhs parameter of the mexFunction
routine. For example, invoking fibocon as

fibocon(20,5)

causes MATLAB to assign the first input argument (20) to *prhs[0] and the
second argument (5) to *prhs[1]. The generated MEX-file source code copies
the relevant values that prhs points to into variables with more intuitive
names. For example, fibocon.c uses this code to copy the contents of *prhs[0]
to variable n and the contents of *prhs[1] to variable x_r:

n = mccImportReal(&n_set_, 0, (nrhs_>0) ? prhs_[0] : 0, "n");
x_r = mccImportScalar(&x_i, &x_set_, 0, (nrhs_>1) ? prhs_[1] : 0,

" (fibocon, line 1): x");
mccComplexInit(g);

Each element pointed to by the prhs array has the mxArray type. However, not
all variables in the MEX-file source code have the mxArray type; some variables
are int or double. The MEX-file source code must copy the relevant fields of
each mxArray input argument into int and double variables. To do the copying,
MEX-files rely on a family of import routines from the MATLAB Compiler
Library. All import routines have names beginning with mccImport.
2

The Generated Code
For example, *prhs[0] corresponds to variable n. However, *prhs[0] is an
mxArray and variable n is a double. The mccImportReal import routine
converts the mxArray into the double and assigns the double to variable n.
Similarly, mccImport converts the second input mxArray, *prhs[1], into the C
int variable x_r.

The generated MEX-file source code uses some of the fields of the mxArray type
differently than documented in the Application Program Interface Guide. To
initialize these fields, the generated MEX-file source code calls one of its matrix
initialization routines, such as mccComplexInit.

Performing Calculations . Following the variable declarations, the MATLAB
Compiler generates the code to perform the calculations. For example, the
calculations section of the real branch of fibocon.c is:

/* g(1)=1; g(2)=1; */
mccSetRealVectorElement(&g, 1, (double)1);
mccSetRealVectorElement(&g, 2, (double)1);
/* for i=3:n */
if(!n_set_)
{
 mexErrMsgTxt("variable n undefined, line 3");
}
for (I0_ = 3; I0_ <= n; I0_ = I0_ + 1)
{
 i = I0_;
 /* g(i) = g(i-1) + g(i-2) + x; */
 if(!x_set_)
 {
 mexErrMsgTxt("variable x undefined, line 4");
 }
 mccSetRealVectorElement(&g, i, (((mccGetRealVectorElement(&g,

(i-1))) + (mccGetRealVectorElement(&g, (i-2)))) + x));
 /* end */
}
mccReturnFirstValue(&plhs_[0], &g);

Export Output Arguments. Each generated MEX-file must export its output
variables into a form that the MATLAB interpreter understands. Exporting an
output variable entails:
D-43

D Using Compiler 1.2

D-4
• Converting each output variable to the standard mxArray type. If an output
variable is an int or a double, the MEX-file must convert the variable to an
mxArray. If the output variable is an mxArray variable, the source code must
still massage several fields in the mxArray structure because the MATLAB
Compiler uses some of the fields of the mxArray in a nonstandard way.

• Copying each output variable to the appropriate fields of the plhs array.

To accomplish both objectives, generated MEX-files rely on a family of export
routines from the MATLAB Compiler Library. All export routines have names
that begin with mccReturn. For example, mccReturnFirstValue returns the
value of variable g:

mccReturnFirstValue(&plhs_[0], &g);

Note In subsequent versions of the MATLAB Compiler, mcc routines may
change or may disappear from the library. Avoid hand modifying these
routines; let the MATLAB Compiler generate mcc calls. If you want a program
to behave differently, modify the M-file and recompile.
4

The Generated Code
Stand-Alone C Source Code Generated by mcc -e
The –e option flag causes the MATLAB Compiler to generate C code for
stand-alone applications. This section explains the code. Most C source code
generated by the mcc –e command shares this common format:

Figure D-2: Structure of Stand-Alone C Source Code Generated by Compiler

At least one
argument is
complex.

All arguments
are real.

Code to examine input
values to determine whether
to branch to the Complex
Branch or the Real Branch.

Declare variables.

Import input arguments.

Perform complex calculations.

Export output arguments.

Complex Branch

Declare variables.

Import input arguments.

Perform real calculations.

Export output arguments.

Real Branch

#include Header Files

mlf Function Declaration
D-45

D Using Compiler 1.2

D-4
Header Files
The MATLAB Compiler generates these #include preprocessor statements:

#include <math.h>
#include "matrix.h"
#include "mcc.h"
#include "matlab.h"

This table lists the included header files.

mlf Function Declaration
This section explains the function that the MATLAB Compiler generates when
you specify the –e option flag. Note that the generated function is completely
different than the MEX-file gateway function.

Name of Generated Function
The MATLAB Compiler assigns the name of a C function by placing the mlf
prefix before the M-file function name. For example, compiling a function
M-file named squibo produces a C function named mlfSquibo.

The MATLAB Compiler ignores the case of the letters in the input M-file
function name. The output function name capitalizes the first letter and puts
all remaining letters in lower case. For example, compiling an M-file function
named sQuIBo produces a C function named mlfSquibo.

If the input M-file function is named main, then the MATLAB Compiler names
the C function main, rather than mlfMain.Using the –m option flag also forces
the MATLAB Compiler to name the C function main. (See the description of the
mcc (Compiler 1.2) reference page in Chapter 6 for further details.)

Header File Contains Declarations and Prototypes

math.h ANSI C Math Library

matrix.h Matrix Access Routines

mcc.h MATLAB Compiler Library

matlab.h MATLAB C Math Library
6

The Generated Code
Output Arguments. If an M-file function does not specify any output parameters,
then the MATLAB Compiler generates a C function prototype having a return
type of mxArray *. Upon completion, the generated C function passes back a
null pointer to its caller.

If an M-file function defines only one output parameter, then the MATLAB
Compiler maps that output parameter to the return parameter of the
generated C function. For example, consider an M-file function that returns
one output parameter:

function rate = unicycle();

The MATLAB Compiler maps the output parameter rate to the return
parameter of C routine mlfUnicycle:

mxArray *mlfUnicycle()

The return parameter always has the type mxArray *.

If an M-file function defines more than one output parameter, then the
MATLAB Compiler still maps the first output parameter to the return
parameter of the generated C function. The MATLAB Compiler maps
subsequent M-file output parameters to C input/output arguments. For
example, the M-file function prototype for tricycle

function [rate, price, weight] = tricycle()

maps to this C function prototype:

mxArray *
mlfTricycle(mxArray **price_lhs_, mxArray **weight_lhs_)

The MATLAB Compiler generates C functions so that every input/output
argument:

• Has the same type, namely, mxArray **

• Has a name ending with _lhs_

Input Arguments. The MATLAB Compiler generates one input argument in the
C function prototype for each input argument in the M-file.

Consider an M-file function named bicycle containing two input arguments:

function rate = bicycle(speeds, gears)
D-47

D Using Compiler 1.2

D-4
The MATLAB Compiler translates bicycle into a C function named
mlfBicycle whose function prototype is:

mxArray *
mlfBicycle(mxArray *speeds_rhs_, mxArray *gears_rhs_)

Every input argument in the C function prototype has the same data type,
which is:

mxArray *

Notice that the MATLAB Compiler gives every input argument the _rhs_
suffix.

Functions Containing Input and Output Arguments. Given a function containing both
input and output arguments, for example,

function [g, h] = canus(a, b);

the resulting C function, mlfCanus, has the prototype

mxArray *
mlfCanus(mxArray **h_lhs_, mxArray *a_rhs_, mxArray *b_rhs_)

The M-file arguments map to the C function prototype as:

• M-file output argument g corresponds to the return value of mlfCanus.

• M-file output argument h corresponds to h_lhs.

• M-file input argument a corresponds to a_rhs.

• M-file input argument b corresponds to b_rhs.

In the C function prototype, the first input argument follows the last output
argument. If there is only one output argument, then the first input argument
becomes the first argument to the C function.

The Body of the mlf Routine
The code comprising the body of the generated mlf routine is similar to the code
comprising the body of a MEX-file function. Like a MEX-file function, the body
of the mlf routine typically starts by determining whether any arguments
contain any complex values. If any arguments do, then the code branches to the
Complex Branch. If all arguments are real, the code branches to the Real
Branch.
8

The Generated Code
The code within each branch appears in the order:

1 Declares variables.

2 Imports input arguments.

3 Performs calculations.

4 Exports output arguments.

The code for step 3, performing calculations, contains one significant difference
from the way MEX-files perform calculations. The code generated by mcc –e
never calls back to the MATLAB interpreter. For example, consider an M-file
containing a call to the eig function:

eig(m);

If you invoke the MATLAB Compiler without the –e option flag, the MATLAB
Compiler handles the call to eig by generating a callback to the MATLAB
interpreter:

mccCallMATLAB(1, Mplhs_, 1, Mprhs_, "eig", 2);

However, if you invoke the MATLAB Compiler with the –e option flag, the
MATLAB Compiler handles the call to eig by generating a call to the mlfEig
function of the MATLAB C Math Library:

mccImport(&a, (mxArray *) mlfEig(0, &(rhs_[0]), 0), 1, 2);

Trigonometric Functions
If you compile an M-file that makes calls to trigonometric functions, you may
notice that the MATLAB Compiler generates calls to both mcc and mlf
functions. For example, compiling the M-file

function a = myarc(x)
a = acos(x);

generates code that contains calls to both mccAcos and mlfAcos. The reason for
this is simple: efficiency. mccAcos handles real matrices and mlfAcos handles
complex matrices. Computing the arc cosine of a complex matrix takes more
time than computing the arc cosine of a real matrix. When the MATLAB
Compiler is able to determine that a matrix is real, it generates a call to
D-49

D Using Compiler 1.2

D-5
mccAcos. The resulting code runs faster than it would if the MATLAB Compiler
only generated calls to mlfAcos.

This behavior is not restricted to acos — all of the inverse trigonometric
functions have both mcc and mlf counterparts.

Stand-Alone C++ Code Generated by mcc -p
This section explains the structure of the C++ code generated by the MATLAB
Compiler. Unlike the MEX-file code and the stand-alone C code, the
stand-alone C++ code is not divided into a complex branch and a real branch.
The generated C++ mixes complex and real computations in a single body of
code. This makes the code more concise and more readable.

Figure D-3: Structure of Stand-Alone C++ Source Code Generated by Compiler

Declare variables.

Count input/output arguments.

Perform complex calculations.

Return output arguments.

Function Body

#include Header Files

 Function Declaration

Constants and Static Variables
0

The Generated Code
Header Files
All generated C++ functions include two header files:

#include <iostream.h>
#include "matlab.hpp"

This table lists the included header files.

Constants and Static Variables
The MATLAB Compiler turns every matrix constant, string, or numeric in a
MATLAB M-file into two static variables. The first of these variables is an
array of doubles; this is the data corresponding to the MATLAB constant. The
second variable is always an mwArray; it is built using the data in the first
variable and is the value used in the generated code. String constants become
arrays of ASCII numeric values.

Function Declaration

Name of Generated Function. The MATLAB Compiler uses the name of the M-file
function as the name of the generated C++ function. For example, compiling a
function M-file named squibo produces a C++ function named squibo.

When generating C++, the MATLAB Compiler ignores the case of the letters in
the input M-file function name. The Compiler uses only lowercase letters in the
generated function name. For example, compiling an M-file function named
sQuIBo produces a C++ function named squibo.

If the input M-file function is named main, then the MATLAB Compiler names
the C++ function main. Using the –m option flag also forces the MATLAB
Compiler to name the C++ function main. (See the description of the mcc
(Compiler 1.2) reference page in Chapter 6 for further details.)

Output Arguments. If an M-file function does not specify any output parameters,
then the MATLAB Compiler generates a C++ function prototype having a
return type of void.

Header File Contains Declarations and Prototypes For

iostream.h C++ input and output streams

matlab.hpp MATLAB C++ Math Library
D-51

D Using Compiler 1.2

D-5
If an M-file function defines only one output parameter, then the MATLAB
Compiler maps that output parameter to the return parameter of the
generated C++ function. For example, consider an M-file function that returns
one output parameter:

function rate = unicycle();

The MATLAB Compiler maps the output parameter rate to the return
parameter of the C++ routine unicycle:

mwArray unicycle()

The return parameter always has the type mwArray.

If an M-file function defines more than one output parameter, then the
MATLAB Compiler still maps the first output parameter to the return
parameter of the generated C++ function. The MATLAB Compiler maps
subsequent M-file output parameters to C++ input/output arguments. For
example, the M-file function prototype for tricycle

function [rate, price, weight] = tricycle()

maps to this C++ function prototype:

mwArray tricycle(mwArray *price, mwArray *weight)

The MATLAB Compiler generates C++ functions so that every input/output
argument has the same:

• Type, namely, mwArray *

• Name as the corresponding MATLAB output argument

Input Arguments. The MATLAB Compiler generates one input argument in the
C++ function prototype for each input argument in the M-file.

Consider an M-file function named bicycle containing two input arguments:

function rate = bicycle(speeds, gears)

The MATLAB Compiler translates bicycle into a C++ function named
mlfBicycle whose function prototype is:

mwArray bicycle(mwArray speeds, mwArray gears)
2

The Generated Code
Every input argument in the C++ function prototype has the same type, which
is:

mwArray

Notice that the C++ input arguments have exactly the same names as the
M-file input arguments.

Functions Containing Both Input and Output Arguments. Given a function containing
both input and output arguments, for example:

function [g, h] = canus(a, b);

the resulting C++ function, canus, has the prototype:

mwArray canus(mwArray *h, mwArray a, mwArray b)

The M-file arguments map to the C++ function prototype as:

• M-file output argument g corresponds to the return value of canus.

• M-file output argument h corresponds to C++ input/output argument h.

• M-file input argument a corresponds to C++ input argument a.

• M-file input argument b corresponds to C++ input argument b.

In the C++ function prototype, the first input argument follows the last output
argument. If there is only one output argument, then the first input argument
becomes the first argument to the C++ function.

Functions with Optional Arguments. The MATLAB Compiler uses C++ default
arguments to handle the optional input and output arguments of a MATLAB
M-file function. In C++, arguments with default values need not be specified
when the function is called. In C++, default arguments must be given a default
value. The MATLAB Compiler uses 0 (zero) for optional output arguments and
the special matrix mwArray::DIN for optional input arguments. The function
declaration specifies which arguments have default values.

In MATLAB, functions with optional arguments use the two special variables
nargin (number of inputs) and nargout (number of outputs) to determine the
number of arguments they’ve been passed. When it compiles a function that
uses nargin or nargout, the MATLAB Compiler generates code to count the
number of input and output arguments that don’t have the default values. It
stores the results in two special variables _nargin_count and _nargout_count,
which correspond exactly to the MATLAB variables nargin and nargout.
D-53

D Using Compiler 1.2

D-5
Function Body
In C, the code comprising the body of the generated routine is similar to the
code comprising the body of a MEX-file function, with a real and complex
branch. However, in C++, there is only one branch, which mixes real and
complex calculations as necessary.

The C++ code has this structure:

1 Declares variables.

2 Counts input/output arguments. (Optional)

3 Performs calculations.

4 Returns output arguments.

The code for step 3, performing calculations, contains one significant difference
from the way MEX-files perform calculations. The code generated by mcc –p
never calls back to the MATLAB interpreter. For example, consider an M-file
containing a call to the eig function:

eig(m);

If you invoke the MATLAB Compiler without the –p option flag, the MATLAB
Compiler handles the call to eig by generating a callback to the MATLAB
interpreter:

mccCallMATLAB(1, Mplhs_, 1, Mprhs_, "eig", 2);

However, if you invoke the MATLAB Compiler with the –p option flag, the
MATLAB Compiler handles the call to eig by generating a call to the eig
function of the MATLAB C++ Math Library:

eig(m);
4

Index
Symbols
#line directives 5-59
%#external 6-3
%#function 6-4
%#inbounds D-21
%#inbounds (Compiler 1.2) D-21
%#ivdep D-22
%#realonly D-25
.cshrc 4-13
.DEF file 4-25

A
–A option flag 6-34
adding directory to path

–I option flag 6-39
algorithm hiding 1-16
annotating

–A option flag 6-34
code 5-57, 6-34
output 6-34

ANSI compiler
installing on Microsoft Windows 2-18
installing on UNIX 2-7

application
POSIX main 5-33

application coding with
M-files and C files 4-39
M-files and C/C++ files 4-39
M-files only 4-33

argument
variable input 1-4
variable output 1-4

arguments
output

default value 4-47
arguments (Compiler 1.2)
default D-53
array power function 6-19
assertions (Compiler 1.2) D-17

example D-19
assumptions list (Compiler 1.2)

intermediate variables D-11
mapping to C data types D-42

B
–B option flag 6-38, 6-47
bcc53opts.bat 2-16
bccopts.bat 2-16
Borland compiler 2-15

environment variable 2-26
bounds checking 6-50
bounds checking (Compiler 1.2) D-15
bundling compiler options

–B option flag 6-38, 6-47
bus errors (Compiler 1.2) D-15

C
–c option flag 6-38, 6-48
C

compilers
supported on PCs 2-15
supported on UNIX 2-6

data types (Compiler 1.2) D-42
generating 6-38
generating code 6-48
interfacing to M-code 5-63
main wrapper 5-35
shared library wrapper 5-42
static variables 6-53
I-1

Index

I-2
C++
compilers

supported on PCs 2-15
supported on UNIX 2-6

interfacing to M-code 5-63
library wrapper 5-47
main wrapper 5-36
required features

templates 4-8
callbacks to MATLAB (Compiler 1.2) D-27, D-30

finding D-28
in stand-alone applications D-49, D-54
influence of –r D-14

cell array 1-4
changing compiler on PC 2-20
changing license file

–Y option flag 6-42
code

controlling #line directives 5-59
controlling comments in 5-57
controlling run-time error information 5-60
hiding 1-16
porting 5-50
setting indentation 5-51
setting width 5-51

command duality 5-33
command line syntax 3-9
compiled code vs. interpreted code 1-15
compiler

C++ requirements 4-8
changing default on PC 4-21
changing default on UNIX 4-10
changing on PC 2-20
choosing on PC 4-20
choosing on UNIX 4-10
selecting on PC 2-19
Compiler 1.2. See MATLAB Compiler (Compiler
1.2).

Compiler 2.0. See MATLAB Compiler.
Compiler library

on UNIX 4-13
Compiler. See MATLAB Compiler.
compiling

complete syntactic details 6-25-6-44, 6-45-6-56
embedded M-file 6-31
getting started 3-1-3-6

compiling (Compiler 1.2)
M-files that use feval D-32
multiple M-files D-29

complex branch (Compiler 1.2) D-40
complex variables (Compiler 1.2) D-12

avoiding D-26
influence of mbreal D-20
influence of –r option flag D-13
testing input arguments for D-39

compopts.bat 2-17
computational section of MEX-file (Compiler 1.2)

D-40
configuration problems 2-25
conflicting options

resolving 3-10, 6-29
creating MEX-file 3-5
.cshrc 4-13

D
–d option flag 6-38
data type imputation. See type imputations.
debugging

functions (Compiler 1.2) D-6
–g option flag 6-42, 6-48
line numbers of errors 6-36, 6-50
with tracing print statements 6-54

Index
debugline setting 5-60
default arguments D-53
Digital Fortran 2-26
Digital UNIX

C++ shared libraries 4-15
Fortran shared libraries 4-15

directory
user profile 2-17

DLL. See shared library.
double (Compiler 1.2) D-41
duality

command/function 5-33

E
–e option flag 6-48
earth.m 6-53
edge detection

edge() 4-47
Marr-Hildreth method 4-53
Prewitt method 4-53
Roberts method 4-53
Sobel method 4-53

eig D-54
embedded M-file 6-31
environment variable 2-26

library path 4-13
error messages

Compiler B-2
compile-time B-3-B-10
internal error B-2
run-time B-18-B-20
warnings B-11-B-17

errors
compiling with –i (Compiler 1.2) D-15
getting line numbers of 6-36, 6-50

eval 3-11

eval (Compiler 1.2) D-4
executables. See wrapper file.
export list 5-42
export routines (Compiler 1.2) D-44
%#external 5-63, 6-3
eye (Compiler 1.2) D-6

F
–F option flag 5-51, 6-36
–f option flag 6-42, 6-48
Fcn block 3-14
feval 5-65, 6-4

interface function 5-22, 5-26
feval (Compiler 1.2) 6-47, D-32
feval pragma 6-4
file

license.dat 2-7, 2-18
mccpath 6-29
synchronized D-9
wrapper 1-8

for. See loops.
formatting code 5-51

–F option flag 6-36
listing all options 5-51
setting indentation 5-54
setting page width 5-51

Fortran 2-26
full pathnames

handling 6-30
%#function 5-65, 6-4
function

calling from M-code 5-63
comparison to scripts 3-17
compiling

method 5-6
private 5-6
I-3

Index

I-4
duality 5-33
feval interface 5-22, 5-26
hand-written implementation version 5-63
helper 4-38
helper (Compiler 1.2) D-29
implementation version 5-22
inline 3-11
interface 5-22
mangled name 5-47
nargout interface 5-24, 5-28
normal interface 5-23, 5-28
void interface 5-25, 5-29
wrapper 5-31

–W option flag 6-37
function M-file 3-17
functions

unsupported in stand-alone mode 3-12
fzero (Compiler 1.2) D-34

G
–g option flag 6-42, 6-48
gasket.m 3-3
gateway routine (Compiler 1.2) D-38
gcc compiler 2-6
generated code

foo.c example 5-13
foo.c++ example 5-19
gasket.c example 5-10
gasket.c++ example 5-16

generated Compiler files 5-4
global variables 6-53
graphics functions (Compiler 1.2) D-6

H
–h option flag 6-39, 6-49
–h option flag (Compiler 1.2) D-30
header file

C example 5-8
C++ example 5-9

header files (Compiler 1.2)
generated by mcc D-38
generated by mcc –e D-46

helper functions
–h option 6-39, 6-49
in stand-alone applications 4-38

helper functions (Compiler 1.2) D-29, D-30
–h option D-30

hiding code 1-16

I
–I option flag 6-39
–i option flag 6-50
–i option flag (Compiler 1.2) D-10, D-15
image

format
grayscale 4-48
Microsoft Windows Bitmap 4-48

viewing
Microsoft Windows 4-49
UNIX 4-49

import routines (Compiler 1.2) D-42
imputation (Compiler 1.2). See type imputation.
%#inbounds D-21
%#inbounds (Compiler 1.2) D-21
indentation

setting 5-54
inline functions 3-11
input 3-11
input (Compiler 1.2) D-4
input arguments (Compiler 1.2)

default D-53

Index
input test code (Compiler 1.2) D-39
inputs

dynamically sized 3-14
setting number 3-15

installation
Microsoft Windows 95/98 2-14
Microsoft Windows NT 2-14
PC 2-15

verify from DOS prompt 2-24
verify from MATLAB prompt 2-23

UNIX 2-5
verify from MATLAB prompt 2-12
verify from UNIX prompt 2-12

int (Compiler 1.2) D-41
interface function 5-22
interfacing M-code to C/C++ code 5-63
intermediate variables (Compiler 1.2) D-11
internal error B-2
invoking

MEX-files 3-6
M-files 3-4

iterator operators (Compiler 1.2) D-6
%#ivdep (Compiler 1.2) D-21

L
–L option flag 6-37
–l option flag 6-36, 6-50
lasterr function 5-62
libmatlb 4-3
libmmfile 4-3
libmx 4-3
libraries

shared
locating on PC 4-25
locating on UNIX 4-13

UNIX C-5

library
path 4-13
shared C 1-16
static C++ 1-16
wrapper 5-47

libtbx 1-18
libut 4-3
license problem 1-6, 2-18, 2-27, 4-32
license.dat file 2-7, 2-18
licensing 1-6
limitations

PC compilers 2-15
UNIX compilers 2-6

limitations of MATLAB Compiler 1.2 D-4
ans D-4
cell arrays D-5
eval D-4
input D-4
multidimensional arrays D-5
objects D-5
script M-files D-4
sparse matrices D-4
structures D-5
varargin D-4

limitations of MATLAB Compiler 2.0 3-11
built-in functions 3-11
eval 3-11
input 3-11
MEX functions 3-11
objects 3-11
script M-file 3-11

#line directives 5-59
line numbers 6-36, 6-50
Linux 2-6
load 1-5
locating shared libraries

on UNIX 4-13
I-5

Index

I-6
log (Compiler 1.2) D-26
logarithms 6-18
loops

in M-files 3-4
loops (Compiler 1.2)

influence of –r D-14
influence of –r and –i together D-17
unoptimized D-12

M
–M option flag 6-42, 6-52
–m option flag 4-34, 6-33, 6-51
macro option 3-7

–m 6-33
–p 6-33
–S 6-33
–x 6-34

main program 5-33
main routine (Compiler 1.2)

C program D-46
C++ program D-51
generating with –m option flag 6-51

main wrapper 5-33
main.m 4-33
makefile 1-5, 4-12
mangled function names 5-47
math.h (Compiler 1.2) D-38
MATLAB API Library. See MATLAB Array Ac-

cess and Creation Library.
MATLAB Array Access and Creation Library

1-10, 4-3
MATLAB C++ Math Library

header file C-7
MATLAB Compiler

annotating code 5-57
capabilities 1-2, 1-13
code produced 1-8
compatibility 6-41
Compiler-generated C++ files 4-49
Compiler-generated routines 4-51

F interface function 4-53
main() 4-50
Mf implementation function 4-51
mlxF interface function 4-55

compiling MATLAB-provided M-files 4-37
creating MEX-files 1-8
directory organization

Microsoft Windows C-12
UNIX C-3

error messages B-2
executable types 1-8
flags 3-7
formatting code 5-51
generated C/C++ code 5-10
generated files 5-4
generated header files 5-8
generated interface functions 5-22
generated wrapper functions 5-31
generating MEX-Files 2-3
generating source files 5-31
getting started 3-1
good M-files to compile 1-15
installing on

PC 2-14
UNIX 2-5, 2-7

installing on Microsoft Windows 2-17
license 1-6
limitations 3-11
macro 6-26
new features 1-3
options 3-7, 6-32-6-44
options summarized A-3
setting path in stand-alone mode 6-29

Index
Simulink S-function output 6-33
Simulink-specific options 3-14
supported executable types 5-31
syntax 6-25
system requirements

Microsoft Windows 2-14
UNIX 2-5

troubleshooting 2-27, 4-32
verbose output 6-40
warning messages B-2
warnings output 6-41
why compile M-files? 1-15

MATLAB Compiler (Compiler 1.2)
assertions D-17
assumptions list D-11
callback D-30
compatibility 6-40
Compiler-compatible M-files D-5

MEX mode D-5
generating callbacks D-27
limitations D-4
optimization option flags D-10
option flags 6-47
options A-6
Simulink S-function output 6-54
syntax 6-45
type imputations D-8, D-11
verbose output 6-55
warnings output 6-55
why use it D-2

MATLAB Compiler 2.0
new features 1-3

MATLAB interpreter 1-2
running a MEX-file 1-8

MATLAB interpreter (Compiler 1.2)
callbacks D-27
data type use D-11

dynamic matrices D-15
pragmas D-21

MATLAB libraries
Math 1-10, 4-3
M-file Math 1-10, 4-3, 4-37, 6-39, 6-49
Utilities 1-10, 4-3

MATLAB libraries (Compiler 1.2)
M-file Math D-31

MATLAB plug-ins. See MEX wrapper.
matrices

sparse D-4
matrices (Compiler 1.2)

dynamic D-15
preallocating D-34

Matrix 1-18
mbchar 6-6
mbcharscalar 6-7
mbcharvector 6-8
mbint 6-9
mbint (Compiler 1.2)

example D-18
mbintscalar 6-11
mbintscalar (Compiler 1.2)

example D-18
mbintvector 6-12
mbreal 6-13
mbreal (Compiler 1.2)

example D-18
mbrealscalar 6-14
mbrealvector 6-15
mbscalar 6-16
mbuild 4-7

options 6-22
overriding language on

PC 4-19
UNIX 4-9
I-7

Index

I-8
–setup option 4-21
PC 4-21
UNIX 4-10

troubleshooting 4-30
verbose option

PC 4-23
UNIX 4-11

verifying
PC 4-24
UNIX 4-12

mbuild script
options on UNIX 4-16
PC options 4-26
UNIX options 4-15

mbvector 6-17
mcc 6-25

combining options 3-10
Compiler 1.2 options A-6
Compiler 2.0 options A-3
conflicting options 3-10

mcc (Compiler 1.2)
options 6-45

mcc command line syntax 3-9
mccCallMATLAB (Compiler 1.2) D-49, D-54

expense of D-12
finding D-29

mccComplexInit (Compiler 1.2) D-43
mcc.h (Compiler 1.2) D-38
mccImport (Compiler 1.2) D-42
mccImportReal (Compiler 1.2) D-43
mccOnes (Compiler 1.2) D-29
mccOnesMN (Compiler 1.2) D-28
mccpath file 6-29
mccReturnFirstValue (Compiler 1.2) D-44
MCCSAVEPATH 6-29
mccSetRealVectorElement (Compiler 1.2) D-14,

D-17
mccstartup 6-28, 6-46
measurement. See timing.
memory exceptions (Compiler 1.2) D-15
method directory 5-6
method function

compiling 5-6
metrics. See timing.
mex

configuring on PC 2-19
overview 1-8
suppressing invocation of 6-38, 6-48
verifying

on Microsoft Windows 2-22
on UNIX 2-11

MEX wrapper 1-8, 5-32
MEX-file

bus error 2-25
comparison to stand-alone applications 4-2
compatibility 1-8
computation error 2-25
configuring 2-3
creating on

UNIX 2-10
example of creating 3-5
extension

Microsoft Windows 2-23
UNIX 2-11

for code hiding 1-16
generating with MATLAB Compiler 2-3
invoking 3-6
overview 1-8
precedence 3-6
problems 2-25-2-26
segmentation error 2-25
timing 3-6
troubleshooting 2-25

Index
MEX-file (Compiler 1.2)
computational section D-40
contents generated by mcc D-37-D-44
entry point D-30
from multiple M-files D-30
gateway routine D-38

MEX-file built from multiple M-files (Compiler
1.2) D-29

MEX-function 6-34
mexFunction (Compiler 1.2) D-39

prhs argument D-42
mex.h (Compiler 1.2) D-38
mexopts.bat 2-17
M-file

best ones to compile 1-15
Compiler-compatible D-5
compiling embedded 6-31
example

earth.m 6-53
gasket.m 3-3
houdini.m 3-17
main.m 4-33
mrank.m 4-33, 4-39

function 3-17
invoking 3-4
MATLAB-provided 4-37
script 3-11, 3-17

M-files (Compiler 1.2)
candidates for –r and –i D-16
effects of vectorizing D-35
examples

fibocert.m D-19
fibomult.m D-29
mycb.m D-29
mypoly.m D-31
novector.m D-36
plotf D-33

powwow1.m D-26
powwow2.m D-27
squares1.m D-34
squibo.m D-10
yovector.m D-36

multiple D-29
scripts D-4
that use feval D-32
vectorizing D-35

Microsoft Visual C++ 2-15
environment variable 2-26

Microsoft Windows
building stand-alone applications 4-19
directory organization C-12
system requirements 2-14

Microsoft Windows 95/98
Compiler installation 2-14

Microsoft Windows NT
Compiler installation 2-14

Microsoft Windows registry 2-26
mlf function signatures (Compiler 1.2) D-46
mlfEig (Compiler 1.2) D-49
mrank.m 4-33, 4-39
MSVC. See Microsoft Visual C++.
msvc50opts.bat 2-16
msvc60opts.bat 2-16
msvcopts.bat 2-16
multidimensional array 1-3
multiple M-files D-29
mwMatrix 1-19
mxArray type (Compiler 1.2) D-41

prhs D-42

N
nargout

interface function 5-24, 5-28
I-9

Index

I-10
new features 1-3
normal interface function 5-23, 5-28

O
–o option flag 6-39
ode23 (Compiler 1.2) D-34
ones (Compiler 1.2) D-6, D-28, D-35
optimization 1-7
optimizing performance 1-15

measuring performance 3-4
optimizing performance (Compiler 1.2)

D-3-D-36
assertions D-17-D-20
avoiding callbacks D-27
avoiding complex calculations D-26
compiler option flags D-10
compiling MATLAB provided M-files D-31
helper functions D-30
–i option flag D-15
pragmas D-21
preallocating matrices D-34
–r and –i option flags together D-16
–r option flag D-13
vectorizing D-35

option flags (Compiler 1.2)
for performance optimization D-10

options 3-7
Compiler 1.2 A-6
Compiler 2.0 A-3
macro 3-7
overriding 3-10
resolving conflicting 3-10, 6-29
setting default 6-28, 6-46

options file
combining customized on PC 4-24
locating 2-17
locating on PC 4-19
locating on UNIX 4-9
making changes persist on

PC 4-23
UNIX 4-12

modifying on
PC 4-22
UNIX 4-11

modifying on PC 2-22
on UNIX 4-11
PC 2-16, 4-23
purpose 4-7
temporarily changing on

PC 4-24
UNIX 4-12

UNIX 2-6
output arguments (Compiler 1.2)

default D-53
outputs

dynamically sized 3-14
setting number 3-15

P
–p option flag 6-33, 6-52
page width

setting 5-51
pass through

–M option flag 6-42, 6-52
path

setting in stand-alone mode 6-29
pathnames

handling full 6-30
PC

options file 2-16
running stand-alone application 4-25
supported compilers 2-15

Index
PC compiler
limitations 2-15

performance (Compiler 1.2). See optimizing
performance.

personal license password 2-18
phase errors (Compiler 1.2) D-15
PLP 2-18
poly (Compiler 1.2) D-31
porting code 5-50
POSIX main application 5-33
POSIX main wrapper 5-33
pragma

%#external 5-63
feval 6-4
ignore-vector-dependencies D-22
inbounds D-21

pragma (Compiler 1.2) D-21
preallocating matrices (Compiler 1.2) D-34
prhs (Compiler 1.2) D-42
print handler 5-67-5-74

building the executable 5-74
initializing 5-74
naming initialization routine in

C 5-73
M 5-73

registering 5-68, 5-72
writing 5-68, 5-72
writing initialization routine in

C 5-73
M 5-73

private function
ambiguous names 5-7
compiling 5-6

problem with license 2-18

Q
–q option flag 6-52
quick mode

–q option flag 6-52

R
–r option flag 6-52, D-10
–r option flag (Compiler 1.2)

performance improvements D-13
rand (Compiler 1.2) D-6
rank 4-37
real branch (Compiler 1.2) D-40
real variables 6-52, D-12
reallog 6-18
reallog (Compiler 1.2) D-26
%#realonly (Compiler 1.2) D-21
real-only functions

reallog 6-18
realpow 6-19
realsqrt 6-20

realpow 6-19
realpow (Compiler 1.2) D-26
realsqrt 6-20
realsqrt (Compiler 1.2) D-26
registry 2-26
relational operators (Compiler 1.2) D-6
resolving conflicting options 3-10, 6-29
response file 4-26
run-time errors

controlling information 5-60

S
–S option flag 3-14, 6-33, 6-53, 6-54
sample time 3-15

specifying 3-15
I-11

Index

I-12
save 1-5
script M-file 3-11, 3-17

converting to function M-files 3-17
script M-files (Compiler 1.2) D-4
setting default options 6-28, 6-46
S-function 3-14

generating 3-14
passing inputs 3-14
passing outputs 3-14

shared library 1-16, 4-29
distributing with stand-alone application 4-6,

4-28
header file 5-42
locating on PC 4-25
locating on UNIX 4-13
UNIX 4-13
wrapper 5-42

Sierpinski Gasket 3-3, 5-3
Simulink

compatible code 3-14
S-function 3-14
–u option flag 6-37
wrapper 5-37
–y option flag 6-38

Simulink S-function
output 6-33, 6-54
restrictions on 3-16

sparse matrices (Compiler 1.2) D-4
specifying option file

–f option flag 6-42, 6-48
specifying output directory

–d option flag 6-38
specifying output file

–o option flag 6-39
specifying output stage

–T option flag 6-40
sqrt (Compiler 1.2) D-14, D-26
square roots 6-20
squibo.m (Compiler 1.2)

influence of option flags D-10
stand-alone applications 4-2

distributing on PC 4-28
distributing on UNIX 4-14
generating C applications 6-33, 6-48
generating C++ applications 6-33, 6-52
helper functions 4-38
overview 4-5

C 1-9
C++ 1-10

process comparison to MEX-files 4-2
restrictions on 3-12
restrictions on Compiler 2.0 3-12
UNIX 4-9
writing your own function 4-37

stand-alone applications (Compiler 1.2)
callbacks D-49, D-54
code comparison to MEX-files D-48, D-54
code generated by mcc –e D-45
function prototypes D-46
input arguments D-47
output arguments D-47
restrictions on D-6

stand-alone C applications
system requirements 4-2

stand-alone C++ applications
system requirements 4-3

stand-alone Compiler
setting path 6-29

stand-alone external applications
restrictions on Compiler 1.2 D-6

startup script 4-13
static C variables 6-53
static library 1-16
structure 1-4

Index
supported executables 5-31
switch 1-4
synchronized files (Compiler 1.2) D-9
syntax

mcc 3-9
system requirements

Microsoft Windows 2-14
UNIX 2-5

T
–T option flag 6-40
–t option flag 5-31, 6-39, 6-54
target language

–L option flag 6-37
templates requirement 4-8
temporary variables (Compiler 1.2) D-42
testing input arguments (Compiler 1.2) D-39
timing 3-4
tracing 6-54
translate M to C

–t option flag 6-39
troubleshooting

Compiler problems 2-27, 4-32
mbuild problems 4-30
MEX-file problems 2-25

type imputations (Compiler 1.2) D-8
influence of –r D-13
influence of –ri D-16
unoptimized D-11

U
–u option flag 3-15, 6-37
underscores in variable names (Compiler 1.2)

D-5
legal names D-42

UNIX
building stand-alone applications 4-9
Compiler installation 2-5
directory organization C-3
libraries C-5
options file 2-6
running stand-alone application 4-14
supported compilers 2-6
system requirements 2-5

UNIX compiler
limitations 2-6

unsupported functions in stand-alone mode 3-12
upgrading 1-18

from Compiler 1.0/1.1 1-18
from Compiler 1.2 1-18

user profile directory 2-17

V
–v option flag 6-40, 6-55
–V1.2 option flag 6-40, 6-45
–V2.0 option flag 6-41
varargin 1-4
varargin (Compiler 1.2) D-4
varargout 1-4
variable input argument 1-4
variable output argument 1-4
variables (Compiler 1.2)

generated declarations D-41
legal names D-5
temporary D-42

vectorizing (Compiler 1.2) D-35
verbose compiler output 6-40, 6-55
VisualMATLAB 4-28
void interface function 5-25, 5-29
I-13

Index

I-14
W
–W option flag 6-37
–w option flag 6-41, 6-55
–w option flag (Compiler 1.2) D-28
warning message

Compiler B-2
warnings in compiler output 6-41, 6-55
wat11copts.bat 2-16
Watcom

C 2-15
environment variable 2-26

watcopts.bat 2-16
Windows. See Microsoft Windows.
wrapper

C main 5-35
C shared library 5-42
C++ library 5-47
C++ main 5-36
main 5-33
MEX 5-32
Simulink S-function 5-37

wrapper file 1-8
MEX 1-8
target types 1-14

wrapper function 5-31
–ww option flag 6-55

X
–x option flag 6-34

Y
–Y option flag 6-42
–y option flag 3-15, 6-38
Z
–z option flag 6-43, 6-55
zeros (Compiler 1.2) D-6, D-35

	Introducing the MATLAB Compiler
	Introduction
	Before You Begin
	New Features
	Data Constructs
	Multidimensional Arrays
	Cell Arrays
	Structure Arrays
	Sparse Arrays

	Programming Tools
	Variable Input Arguments
	Variable Output Arguments
	try … catch … end
	switch … end

	Language Enhancements
	Persistent Variables
	load and save Commands

	Improved Compiler Options
	Macro Options
	Error/Warning Messages
	Improved mex and mbuild Scripts
	Stand-Alone Compiler

	Compiler Licensing Changes
	Running MATLAB Not Required
	Dedicated Compiler License

	MATLAB Compiler 1.2 Users
	Differences Between Compiler 1.2 and 2.0
	Optimization

	Overview
	Creating MEX-Files
	Creating Stand-Alone Applications
	C Stand-Alone Applications
	C++ Stand-Alone Applications
	Developing a Stand-Alone Application

	The MATLAB Compiler Family
	Why Compile M-Files?
	Faster Execution
	Cases When Performance Does Not Improve
	Cases When Performance Does Improve
	Compiler 1.2 Functionality

	Hiding Proprietary Algorithms
	Stand-Alone Applications and Libraries

	Upgrading from Previous Versions
	MATLAB Compiler 1.2
	Compatibility
	Installation

	MATLAB Compiler 1.0/1.1
	Changed Library Name
	Changed Data Type Names

	Installation and Configuration
	Getting Started
	Overview

	UNIX Workstations
	System Requirements
	Supported ANSI C and C++ UNIX Compilers
	Known Compiler Limitations

	Compiler Options Files
	Locating Options Files

	Installation
	MATLAB Compiler
	ANSI C or C++ Compiler
	Things to Be Aware of

	mex Verification
	Choosing a Compiler
	Using the System Compiler

	Changing Compilers
	Changing the Default Compiler
	Modifying the Options File
	Temporarily Changing the Compiler

	Creating MEX-Files

	MATLAB Compiler Verification
	Verifying from MATLAB
	Verifying from UNIX Command Prompt

	Microsoft Windows on PCs
	System Requirements
	Supported ANSI C and C++ PC Compilers
	Known Compiler Limitations

	Compiler Options Files
	Locating Options Files
	The User Profile Directory Under Windows

	Installation
	MATLAB Compiler
	ANSI C or C++ Compiler
	Things to Be Aware of

	mex Verification
	Choosing a Compiler
	Systems with Exactly One C/C++ Compiler
	Systems with More than One C/++ Compiler

	Changing Compilers
	Changing the Default Compiler
	Modifying the Options File
	Temporarily Changing the Compiler

	Creating MEX-Files

	MATLAB Compiler Verification
	Verifying from MATLAB
	Verifying from DOS Command Prompt

	Troubleshooting
	mex Troubleshooting
	Cannot Locate Your Compiler (PC)
	Internal Error When Using mex –setup (PC)
	Verification of mex Fails

	Troubleshooting the Compiler
	Licensing Problem
	MATLAB Compiler Does Not Generate MEX-File

	Getting Started with MEX-Files
	A Simple Example
	Sierpinski Gasket Example
	How the Function Works

	Invoking the M-File
	Compiling the M-File into a MEX-File
	Invoking the MEX-File

	Compiler Options
	Macros
	Understanding a Macro Option

	Command Line Syntax
	Conflicting Options on Command Line

	Limitations and Restrictions
	MATLAB Code
	Stand-Alone Applications

	Generating Simulink S-Functions
	Simulink-Specific Options
	Using the -S Option
	Using the -u and -y Options

	Specifying S-Function Characteristics
	Sample Time
	Data Type

	Converting Script M-Files to Function M-Files

	Stand-Alone Applications
	Introduction
	Differences Between MEX-Files and Stand-Alone Appl...
	Stand-Alone C Applications
	Stand-Alone C++ Applications

	Building Stand-Alone C/C++ Applications
	Overview
	Packaging Stand-Alone Applications

	Getting Started
	Introducing mbuild
	Compiler Options Files

	Building Stand-Alone Applications on UNIX
	Configuring for C or C++
	Locating Options Files

	Preparing to Compile
	Using the System Compiler
	Changing Compilers
	Changing the Default Compiler
	Modifying the Options File
	Temporarily Changing the Compiler

	Verifying mbuild
	Locating Shared Libraries
	Running Your Application

	Verifying the MATLAB Compiler
	Distributing Stand-Alone UNIX Applications
	Installing C++ and Fortran Support

	About the mbuild Script

	Building Stand-Alone Applications on PCs
	Configuring for C or C++
	Locating Options Files

	Preparing to Compile
	Choosing a Compiler
	Systems with Exactly One C/C++ Compiler
	Systems with More than One C/C++ Compiler

	Changing Compilers
	Changing the Default Compiler
	Modifying the Options File
	Combining Customized C and C++ Options Files
	Temporarily Changing the Compiler

	Verifying mbuild
	Shared Libraries
	Running Your Application

	Verifying the MATLAB Compiler
	About the mbuild Script
	Using an IDE

	Distributing Stand-Alone Windows Applications

	Building Shared Libraries
	Troubleshooting
	Troubleshooting mbuild
	Options File Not Writeable
	Directory or File Not Writeable
	mbuild Generates Errors
	Compiler and/or Linker Not Found
	mbuild Not a Recognized Command
	mbuild Works from Shell but Not from MATLAB (UNIX)...
	Cannot Locate Your Compiler (PC)
	Internal Error When Using mbuild –setup (PC)
	Verification of mbuild Fails

	Troubleshooting the Compiler
	Licensing Problem
	MATLAB Compiler Does Not Generate Application

	Coding with M-Files Only
	Alternative Ways of Compiling M-Files
	Compiling MATLAB-Provided M-Files Separately
	Compiling mrank.m and rank.m as Helper �Functions

	Mixing M-Files and C or C++
	Simple Example
	mrank.m
	The Build Process
	mrankp.c
	An Explanation of mrankp.c

	Advanced C Example
	An Explanation of This C Code

	Advanced C++ Example
	Algorithm for the Example
	M-Files for the Example
	Building the Example
	Running the Example
	Compiler-Generated C++ Files
	The Generated Main C++ Routine
	Generated feval() Function Table

	C++ Functions Generated from each M-file Function
	The Generated Mf Implementation Function
	The Generated F Interface Function
	F Interface Functions That Return a Value or Take ...

	The Generated mlxF Interface Function
	MlxF Interface Functions That Return a Value or Ta...

	Controlling Code Generation
	Introduction
	Example M-Files
	Sierpinski Gasket M-File
	foo M-File
	fun M-File
	sample M-File

	Generated Code

	Compiling Private and Method Functions
	The Generated Header Files
	C Header File
	C++ Header File

	The Generated C/C++ Code
	C Code from gasket.m
	C Code from foo.m
	C++ Code from gasket.m
	C++ Code from foo.m

	Internal Interface Functions
	C Interface Functions
	mlxF Interface Function
	mlfF Interface Function
	mlfNF Interface Function
	mlfVF Interface Function

	C++ Interface Functions
	mlxF Interface Function
	F Interface Function
	NF Interface Function
	VF Interface Function

	Supported Executable Types
	Generating Files
	MEX-Files
	Main Files
	POSIX Main Wrapper
	C Main Wrapper Function
	C++ Wrapper Function

	Simulink S-Functions
	C Libraries
	sometimefun.c
	sometimefun.h
	sometimefun.exports

	C Shared Library
	C++ Libraries
	sometimefun.cpp
	sometimefun.hpp

	Porting Generated Code to a Different Platform

	Formatting Compiler-Generated Code
	Listing All Formatting Options
	Setting Page Width
	Default Width
	Page Width = 40

	Setting Indentation Spacing
	Default Indentation
	Modified Indentation

	Including M-File Information in Compiler Output
	Controlling Comments in Output Code
	Comments Annotation
	All Annotation
	No Annotation

	Controlling #line Directives in Output Code
	Include #line Directives

	Controlling Information in Run-Time Errors

	Interfacing M-Code to C/C++ Code
	C Example
	Using feval

	Print Handlers
	Main Routine Written in C
	Registering a Print Handler
	Writing a Print Handler

	Main Routine Written in M-Code
	Example Files
	Writing the Print Handler in C/C++
	Registering the Print Handler
	Naming the Print Handler Initialization Routine in...
	Naming the Dummy Print Handler Initialization Rout...
	Writing the Initialization Routine in C
	Writing a Dummy Initialization Function in M-Code
	Initializing the Print Handler in Your Main M-File...

	Building the Executable
	Testing the Executable

	Reference
	Pragmas
	Functions
	Command Line Tools
	Command Line Syntax
	Simplifying the Compilation Process
	Differences Between Compiler 2.0 and Compiler 1.2 ...
	Setting Up Default Options
	Setting a MATLAB Path in the Stand-Alone MATLAB Co...
	Conflicting Options on Command Line
	Handling Full Pathnames
	Compiling Embedded M-Files
	MATLAB Compiler 2.0 Option Flags
	Macro Options
	Code Generation Options
	Compiler and Environment Options
	mbuild/mex Options
	Specifying Options
	Setting Up Default Options
	Building a MEX-File From Multiple M-Files
	Calling feval

	MATLAB Compiler 1.2 Option Flags
	-B <filename> (Bundle of Compiler Settings)
	-c (C/C++ Code Only)
	-e (Stand-Alone External C Code)
	-f <filename> (Specifying Options File)
	-g (Debugging Information)
	-h (Helper Functions)
	-i (Inbounds Code)
	-l (Line Numbers)
	-m (main Routine)
	-M "string" (Direct Pass Through)
	-p (Stand-Alone External C++ Code)
	-q (Quick Mode)
	-r (Real)
	-s (Static)
	-S (Simulink S-Function)
	-t (Tracing Statements)
	-u (Number of Inputs)
	-v (Verbose)
	-w (Warning) and -ww (Complete Warnings)
	-y (Number of Outputs)
	-z <path> (Specifying Library Paths)

	MATLAB Compiler Quick Reference
	Common Uses of the Compiler
	Create a MEX-File
	Create a Simulink S-Function
	Create a Stand-Alone C Application
	Create a Stand-Alone C++ Application
	Create a C Shared Library

	mcc (Compiler 2.0)
	mcc (Compiler 1.2)

	Error and Warning Messages
	Introduction
	Compile-Time Messages
	Error: An error occurred while shelling out to mex...
	Error: An error occurred writing to file filename:...
	Error: Could not check out a Compiler license.
	Error: Could not find license file.
	Error: Could not identify file to compile.
	Error: File: "filename" not found.
	Error: File: "filename" is a script M-file and can...
	Error: File: filename Line: # Column: # "string1" ...
	Error: File: filename Line: # Column: # () indexin...
	Error: File: filename Line: # Column: # A variable...
	Error: File: filename Line: # Column: # An array f...
	Error: File: filename Line: # Column: # An array f...
	Error: File: filename Line: # Column: # An array f...
	Error: File: filename Line: # Column: # Expected L...
	Error: File: filename Line: # Column: # Expected o...
	Error: File: filename Line: # Column: # Functions ...
	Error: File: filename Line: # Column: # Invalid mu...
	Error: File: filename Line: # Column: # MATLAB ass...
	Error: File: filename Line: # Column: # Only funct...
	Error: File: filename Line: # Column: # The end op...
	Error: File: filename Line: # Column: # The name p...
	Error: File: filename Line: # Column: # The name p...
	Error: File: filename Line: # Column: # The single...
	Error: File: filename Line: # Column: # Variable a...
	Error: File: filename Line: # Column: # Variable a...
	Error: Found illegal whitespace character in comma...
	Error: Improper usage of option –optionname. Type ...
	Error: No source files were specified (–? for help...
	Error: optionname is not a valid option argument.
	Error: Out of memory.
	Error: Previous warning treated as error.
	Error: The argument after the optionname option mu...
	Error: The environment variable variablename is un...
	Error: The license manager failed to initialize (e...
	Error: The license.dat file was not found in the d...
	Error: The option –optionname is invalid in modena...
	Error: The option –optionname must be immediately ...
	Error: The options specified will not generate any...
	Error: The specified file "filename" cannot be rea...
	Error: The stand-alone MCC Compiler does not suppo...
	Error: The –optionname option cannot be combined w...
	Error: The –optionname option requires an argument...
	Error: This version of MCC does not support the cr...
	Error: Unable to open file filename.
	Error: Unable to set license linger interval (erro...
	Error: Unknown annotation option: optionname.
	Error: Unknown typesetting option: optionname.
	Error: Unknown warning enable/disable string: warn...
	Error: Unrecognized option: –optionname.
	Error: Use "–V1.2" or "–V2.0" to specify desired v...
	Error: versionnumber is not a valid version number...

	Warning Messages
	Warning: (PM) Warning: message.
	Warning: (PMI): message.
	Warning: A line has number characters, violating t...
	Warning: File: filename Line: # Column: # A BREAK ...
	Warning: File: filename Line: # Column: # Attempt ...
	Warning: File: filename Line: # Column: # Attempt ...
	Warning: File: filename Line: # Column: # Empty cl...
	Warning: File: filename Line: # Column: # Referenc...
	Warning: File: filename Line: # Column: # Referenc...
	Warning: File: filename Line: # Column: # The #fun...
	Warning: File: filename Line: # Column: # The call...
	Warning: File: filename Line: # Column: # The call...
	Warning: File: filename Line: # Column: # The clea...
	Warning: File: filename Line: # Column: # The clea...
	Warning: File: filename Line: # Column: # The Comp...
	Warning: File: filename Line: # Column: # The func...
	Warning: File: filename Line: # Column: # The func...
	Warning: File: filename Line: # Column: # The load...
	Warning: File: filename Line: # Column: # The save...
	Warning: File: filename Line: # Column: # This loa...
	Warning: File: filename Line: # Column: # This sav...
	Warning: File: filename Line: # Column: # Unmatche...
	Warning: File: filename Line: # Column: # Unrecogn...
	Warning: File: filename Line: # Column: # name has...
	Warning: File: filename Line: # Column: # variable...
	Warning: File:filename Line: # Column: # The Compi...
	Warning: Ignoring parameter with ‘=' in it: parame...
	Warning: Line: # Column: # Duplicate function with...
	Warning: M-file "filename" was specified on the co...
	Warning: No M-function source available for functi...
	Warning: The function functionname is an intrinsic...
	Warning: The option optionname is ignored in moden...
	Warning: The specified private directory is not un...

	Run-Time Messages
	Run-time Error: File: filename Line: # Column: # A...
	Run-time Error: File: filename Line: # Column: # E...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # T...
	Run-time Error: File: filename Line: # Column: # v...

	Directory Organization
	Directory Organization on UNIX
	<matlab>
	<matlab>/bin
	<matlab>/bin/$ARCH
	<matlab>/extern/lib/$ARCH
	<matlab>/extern/include
	<matlab>/extern/include/cpp
	<matlab>/extern/src/tbxsrc
	<matlab>/extern/examples/compiler
	<matlab>/toolbox/compiler

	Directory Organization on Microsoft Windows
	<matlab>
	<matlab>\bin
	<matlab>\extern\lib
	<matlab>\extern\include
	<matlab>\extern\include\cpp
	<matlab>\extern\src\tbxsrc
	<matlab>\extern\examples\compiler
	<matlab>\toolbox\compiler

	Using Compiler 1.2
	Introduction
	Why Use Compiler 1.2?
	About This Appendix
	Limitations and Restrictions
	Type Imputation
	Optimization
	The Generated Code

	Limitations and Restrictions
	MATLAB Compiler 1.2
	MATLAB Code
	Variable Names Ending with Underscores
	MATLAB Compiler-Compatible M-Files

	Differences Between the MATLAB Compiler 1.2 and In...
	Restrictions on Stand-Alone Applications

	Type Imputation
	Type Imputation Across M-Files

	Optimization Techniques
	Optimizing with Compiler Option Flags
	An Unoptimized Program
	Type Imputations for Unoptimized Case
	The Generated Loop Code

	Optimizing with the -r Option Flag
	Type Imputations for -r
	The Generated Loop Code for -r

	Optimizing with the -i Option Flag
	Optimizing with a Combination of -r and -i Flags
	Type Imputations for -ri
	The Generated Loop Code for -ri

	Optimizing Through Assertions
	An Assertion Example

	Optimizing with Pragmas
	%#inbounds
	%#ivdep
	%#realonly

	Optimizing by Avoiding Complex Calculations
	Effects of the Real-Only Functions
	Automatic Generation of the Real-Only Functions

	Optimizing by Avoiding Callbacks to MATLAB
	Identifying Callbacks
	Compiling Multiple M-Files into One MEX-File
	Using the -h Option
	Compiling MATLAB Provided M-Files

	Compiling M-Files That Call feval

	Optimizing by Preallocating Matrices
	Optimizing by Vectorizing

	The Generated Code
	MEX-File Source Code Generated by mcc
	Header Files
	MEX-File Gateway Function
	Complex Argument Check
	Computation Section — Complex Branch and Real Bran...
	Declaring Variables
	Importing Input Arguments
	Performing Calculations
	Export Output Arguments

	Stand-Alone C Source Code Generated by mcc -e
	Header Files
	mlf Function Declaration
	Name of Generated Function
	Output Arguments
	Input Arguments
	Functions Containing Input and Output Arguments

	The Body of the mlf Routine
	Trigonometric Functions

	Stand-Alone C++ Code Generated by mcc -p
	Header Files
	Constants and Static Variables
	Function Declaration
	Name of Generated Function
	Output Arguments
	Input Arguments
	Functions Containing Both Input and Output Argumen...
	Functions with Optional Arguments

	Function Body

	Index

