
Computation

Visualization

Programming

The Language of Technical Computing

User’s Guide
Version 2

MATLAB
® C Math Library

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB C Math Library User’s Guide
 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: October 1995 First printing
January 1998 Revised for Version 1.2
January 1999 Revised for Version 2.0 (Release 11)

☎PHONE

FAX

✉MAIL

INTERNET

@

Contents
1
Getting Ready

Introduction . 1-2
Who Should Read This Book . 1-2
New MATLAB C Math Library Features 1-2

Unsupported MATLAB Features . 1-3
Library Routine Naming Convention . 1-3
MATLAB C Math Library Documentation 1-3

How This Book Is Organized . 1-3
Accessing Online Reference Documentation 1-4
Additional Sources of Information . 1-5

MATLAB C Math Library 1.2 Users . 1-6
MATLAB C Math Library Version 1.2 Documentation 1-6
Migrating Your Code to Version 2.0 . 1-6

Installing the MATLAB C Math Library 1-9
Installation with MATLAB . 1-9
Installation Without MATLAB . 1-9
Verifying a UNIX Workstation Installation 1-10
Verifying a PC Installation . 1-10

Building C Applications . 1-11
Packaging Stand-Alone Applications 1-11

Overview . 1-11
Compiler Options Files . 1-12

Building a Stand-Alone Application on UNIX 1-13
Configuring for C or C++ . 1-13

Locating Options Files . 1-13
Using the System Compiler . 1-14
Changing the Default Compiler . 1-14
Modifying the Options File . 1-15
Temporarily Changing the Compiler 1-16
i

ii Contents
Verifying mbuild . 1-16
Locating Shared Libraries . 1-17
Running Your Application . 1-18

mbuild Options . 1-18
Distributing Stand-Alone UNIX Applications 1-21

Building a Stand-Alone Application on Microsoft
Windows . 1-22

Configuring for C or C++ . 1-22
Locating Options Files . 1-22
Systems with Exactly One C/C++ Compiler 1-23
Systems with More than One Compiler 1-23
Changing the Default Compiler . 1-24
Modifying the Options File . 1-26
Combining Customized C and C++ Options Files 1-27
Temporarily Changing the Compiler 1-28

Verifying mbuild . 1-28
Shared Libraries (DLLs) . 1-28
Running Your Application . 1-29

mbuild Options . 1-29
Distributing Stand-Alone Microsoft Windows Applications . . 1-32

Building Shared Libraries . 1-33

Troubleshooting mbuild . 1-34
Options File Not Writable . 1-34
Directory or File Not Writable . 1-34
mbuild Generates Errors . 1-34
Compiler and/or Linker Not Found 1-34
mbuild Not a Recognized Command 1-34
Cannot Locate Your Compiler (PC) 1-34
Internal Error When Using mbuild -setup (PC) 1-35
Verification of mbuild Fails . 1-35

Building on Your Own . 1-36

2
Writing Programs

Overview . 2-2
A Simple Example Program . 2-2

3
Working with MATLAB Arrays

Overview . 3-2
Supported MATLAB Array Types . 3-2
MATLAB Array C Data Type . 3-3

Working with MATLAB Numeric Arrays 3-4
Creating Numeric Arrays . 3-5

Using Numeric Array Creation Routines 3-5
Creating Numeric Arrays by Calling Arithmetic Routines . . 3-9
Creating Numeric Arrays by Concatenation 3-9
Creating Numeric Arrays by Assignment 3-11

Initializing a Numeric Array with Data 3-12
Column-Major Storage versus Row-Major Storage 3-14

Example Program: Creating Numeric Arrays (ex1.c) 3-15

Working with MATLAB Sparse Matrices 3-18
Creating a Sparse Matrix . 3-19

Converting an Existing Matrix into Sparse Format 3-19
Creating a Sparse Matrix from Data 3-21

Converting a Sparse Matrix to Full Matrix Format 3-23
Evaluating Arrays for Sparse Storage 3-23

Working with MATLAB Character Arrays 3-25
Creating MATLAB Character Arrays . 3-26

Using Explicit Character Array Creation Routines 3-26
Converting Numeric Arrays to Character Arrays 3-27
Creating Multidimensional Arrays of Strings 3-27

Accessing Individual Strings in an Array of Strings 3-29
iii

iv Contents
Working with MATLAB Cell Arrays . 3-30
Creating Cell Arrays . 3-30

Using the Cell Array Creation Routine 3-31
Using Cell Array Conversion Routines 3-31
Using Concatenation to Create Cell Arrays 3-32
Using Assignment to Create Cell Arrays 3-34

Displaying the Contents of a Cell Array 3-34

Working with MATLAB Structures . 3-37
Creating Structures . 3-38

Using a Structure Creation Routine 3-38
Creating Multidimensional Arrays of Structures 3-38
Using a Structure Conversion Routine 3-39
Using Assignment to Create Structures 3-40

Performing Common Array Programming Tasks 3-41
Allocating and Freeing MATLAB Arrays 3-41
Displaying MATLAB Arrays . 3-41

Formatting Output . 3-42
Determining Array Type . 3-43
Determining the Size of an Array . 3-44

Obtaining the Length of a Single Dimension 3-45
Returning the Dimensions in Separate Arrays 3-45

Determining the Shape of an Array . 3-46

4
Managing Array Memory

Overview . 4-2
Why Choose Automated Memory Management? 4-3
Using Explicit Memory Management . 4-4

Using Arrays Under Automated Memory Management 4-6
Definitions . 4-6
Rules for Array Usage . 4-8

Paradigm for Working with Local Array Variables 4-8

Assigning Arrays to mxArray* Variables 4-9
Assigning a Value to an Array Destroys Its Previous Value 4-10
Assignment by Value . 4-11

Nesting Calls to Functions that Return Arrays 4-11
Deleting Your Arrays . 4-11
Avoiding Memory Leaks in Your Functions 4-12

Writing Functions Under Automated Memory
Management . 4-14

Using a Function Template As an Example 4-14
Function Template . 4-15
Main Routine Template . 4-16

Preparing Function Arguments for a New Context 4-16
Arguments to mlfEnterNewContext() 4-17
What Happens to the Array Arguments? 4-17
Purpose of mlfEnterNewContext() . 4-18

Restoring Function Arguments to their Previous Context . . . 4-18
Arguments to mlfRestorePreviousContext() 4-19
What Happens to the Array Arguments? 4-20
Purpose of mlfRestorePreviousContext() 4-20

Returning an Array from Your Function 4-20
Argument and Return for mlfReturnValue() 4-21
What Happens to the Array Argument? 4-21
Purpose of mlfReturnValue() . 4-22

Summary of Coding Steps . 4-22

Example Program: Managing Array Memory (ex2.c) 4-24
Example Without Automated Memory Management 4-31

Restrictions on Function Calling . 4-33
Function Uses Automated Memory Management 4-33
Function Does Not Use Automated Memory Management . . . 4-33

Recommendation . 4-34

Setting Up Your Own Allocation and Deallocation
Routines . 4-35
v

vi Contents
5
Indexing into Arrays

Overview . 5-2
Indexing Functions . 5-2
Terminology . 5-3
Dimensions and Subscripts . 5-3

In MATLAB . 5-3
In the MATLAB C Math Library . 5-4

Array Storage . 5-5

How to Call the Indexing Functions . 5-10
Overview . 5-10
Specifying the Target Array . 5-11
Specifying the Index String . 5-11

What an Indexing String Specifies . 5-12
What an Indexing String Doesn’t Specify 5-13
Complex Indexing Expressions . 5-13
Nesting Indexing Operations . 5-13

Specifying the Values for Indices . 5-14
Specifying a Source Array for Assignments 5-15

Assumptions for the Code Examples . 5-16

Using mlfIndexRef() for One-Dimensional Indexing 5-18
Overview . 5-18
Selecting a Single Element . 5-19
Selecting a Vector . 5-19

Specifying a Vector Index with mlfEnd() 5-20
Selecting a Matrix . 5-21
Selecting the Entire Matrix As a Column Vector 5-21

Using mlfIndexRef() for N-Dimensional Indexing 5-23
Overview . 5-23
Selecting a Single Element . 5-24
Selecting a Vector of Elements . 5-24

Specifying a Vector Index with mlfEnd() 5-26
Selecting a Row or Column . 5-26

Selecting a Matrix . 5-27
Selecting Entire Rows or Columns . 5-28
Selecting an Entire Matrix . 5-29

Extending Two-Dimensional Indexing to N Dimensions 5-29

Using mlfIndexRef() for Logical Indexing 5-31
Overview . 5-31
Using a Logical Matrix as a One-Dimensional Index 5-32
Using Two Logical Vectors as Indices . 5-32
Using One Colon Index and One Logical Vector as Indices . . . 5-33
Using a Scalar and a Logical Vector . 5-34
Extending Logical Indexing to N-Dimensions 5-35

Using mlfIndexAssign() for Assignments 5-36
Overview . 5-36
Assigning to a Single Element . 5-37
Assigning to Multiple Elements . 5-37
Assigning to a Subarray . 5-38
Assigning to All Elements . 5-39
Extending Two-Dimensional Assignment to N-Dimensions . . 5-39

Using mlfIndexDelete() for Deletion . 5-42

Indexing into Cell Arrays . 5-44
Overview . 5-45

Tips for Working with Cell Arrays . 5-45
Referencing a Cell in a Cell Array . 5-46
Referencing a Subset of a Cell Array . 5-46
Referencing the Contents of a Cell . 5-47
Referencing a Subset of the Contents of a Cell 5-47
Indexing Nested Cell Arrays . 5-47

Indexing the First Level . 5-48
Indexing the Second Level . 5-48
Indexing the Third Level . 5-48

Assigning Values to a Cell Array . 5-49
Deleting Elements from a Cell Array . 5-49

Deleting a Single Element . 5-50
Deleting an Entire Dimension . 5-50
vii

viii Contents
Indexing into MATLAB Structure Arrays 5-51
Overview . 5-51

Tips for Working with Structure Arrays 5-52
Accessing a Field . 5-52
Accessing the Contents of a Structure Field 5-53
Assigning Values to a Structure Field 5-53
Assigning Values to Elements in a Field 5-54
Referencing a Single Structure in a Structure Array 5-54
Referencing into Nested Structures . 5-54
Accessing the Contents of Structures Within Cells 5-55
Deleting Elements from a Structure Array 5-55

Deleting a Structure from the Array 5-56
Deleting a Field from All the Structures in an Array 5-56
Deleting an Element from an Array Contained by a Field . 5-56

Comparison of C and MATLAB Indexing Syntax 5-57

6
Calling Library Routines

Overview . 6-2

How to Call MATLAB Functions . 6-3
Returning One Output Argument and Passing Only Required
Input Arguments . 6-3
Passing Optional Input Arguments . 6-4
Passing Optional Output Arguments . 6-4
Passing Optional Input and Output Arguments 6-5
Passing Any Number of Inputs . 6-7

How Pure Varargin Functions Differ 6-8
Passing Any Number of Outputs . 6-9

Constructing an mlfVarargoutList . 6-10
How Pure Varargout Functions Differ 6-12

Summary of Library Calling Conventions 6-13
Exceptions to the Calling Conventions 6-14

Example Program: Calling Library Routines (ex3.c) 6-14

How to Call Operators . 6-19

Passing Functions As Arguments to Library Routines 6-20
How Function-Functions Use mlfFeval() 6-20
How mlfFeval() Works . 6-21
Extending the mlfFeval() Table . 6-21

Writing a Thunk Function . 6-22
Example Program: Passing Functions As Arguments (ex4.c) . 6-22

Output . 6-31

Replacing Argument Lists with a Cell Array 6-32
Positioning the Indexed Cell Array 6-33
Exception for Built-In Library Functions 6-33

7
Importing and Exporting Array Data

Overview . 7-2
Using mlfSave() to Write Data to a File 7-2
Using mlfLoad() to Read Data from a File 7-3
Example Program: Saving and Loading Data (ex5.c) 7-4

8
Handling Errors and Writing a Print Handler

Overview . 8-2

Handling Errors . 8-3
Customizing Error Handling . 8-5

Continuing Processing After Errors . 8-5
Example Program: Defining Try/Catch Blocks (ex6.c) 8-6
ix

x Contents
Replacing the Default Library Error Handler 8-9
Writing an Error Handler . 8-9
Registering Your Error Handler . 8-10
Example Program . 8-10

Defining a Print Handler . 8-14
Providing Your Own Print Handler . 8-14
Output to a GUI . 8-15

X Windows/Motif Example . 8-15
Microsoft Windows Example . 8-17

9
Library Routines

Why Two MATLAB Math Libraries? . 9-3

The MATLAB Built-In Library . 9-4
General Purpose Commands . 9-5
Operators and Special Functions . 9-5
Elementary Matrices and Matrix Manipulation 9-10
Elementary Math Functions . 9-12
Numerical Linear Algebra . 9-13
Data Analysis and Fourier Transform Functions 9-15
Character String Functions . 9-16
File I/O Functions . 9-17
Data Types . 9-18
Time and Dates . 9-19
Multidimensional Array Functions . 9-19
Cell Array Functions . 9-19
Structure Functions . 9-20
Sparse Matrix Functions . 9-20
Utility Routines . 9-21

MATLAB M-File Math Library . 9-24
Operators and Special Functions . 9-24
Elementary Matrices and Matrix Manipulation 9-25
Elementary Math Functions . 9-27
Specialized Math Functions . 9-29
Numerical Linear Algebra . 9-31
Data Analysis and Fourier Transform Functions 9-33
Polynomial and Interpolation Functions 9-35
Function-Functions and ODE Solvers 9-37
Character String Functions . 9-38
File I/O Functions . 9-40
Time and Dates . 9-40
Multidimensional Array Functions . 9-42
Cell Array Functions . 9-42
Structure Functions . 9-42
Sparse Matrix Functions . 9-43

Array Access and Creation Library . 9-46

A
Directory Organization

Directory Organization on UNIX . A-3
<matlab>/bin . A-3
<matlab>/extern/lib/$ARCH . A-4
<matlab>/extern/include . A-5
<matlab>/extern/examples/cmath . A-5

Directory Organization on Microsoft Windows A-7
<matlab>\bin . A-7
<matlab>\extern\include . A-8
<matlab>\extern\examples\cmath . A-9
xi

xii Contents
B
Errors and Warnings

Errors . B-3

Warnings . B-8

Who Should Read This Book 1-2
New MATLAB C Math Library Features 1-2
Library Routine Naming Convention 1-3
MATLAB C Math Library Documentation 1-3
MATLAB C Math Library 1.2 Users 1-6

Installing the MATLAB C Math Library 1-9
Installation with MATLAB 1-9
Installation Without MATLAB 1-9
Verifying a UNIX Workstation Installation 1-10
Verifying a PC Installation 1-10

Building C Applications 1-11
Overview . 1-11

Building a Stand-Alone Application on UNIX 1-13
Configuring for C or C++ 1-13
Verifying mbuild 1-16
mbuild Options 1-18
Distributing Stand-Alone UNIX Applications 1-21

Building a Stand-Alone Application
on Microsoft Windows 1-22

Configuring for C or C++ 1-22
Verifying mbuild 1-28
mbuild Options 1-29
Distributing Stand-Alone Microsoft Windows Applications . . 1-32

Building Shared Libraries 1-33

Troubleshooting mbuild 1-34

Building on Your Own 1-36
1

Getting Ready

Introduction . 1-2

1 Getting Ready

1-2
Introduction
The MATLAB ® C Math Library makes the mathematical core of MATLAB
available to application programmers. The library is a collection of more than
400 mathematical routines written in C. Programs written in any language
capable of calling C functions can call these routines to perform mathematical
computations.

The MATLAB C Math Library is based on the MATLAB language. The
mathematical routines in the MATLAB C Math Library are C callable versions
of features of the MATLAB language. However, you do not need to know
MATLAB or own a copy of MATLAB to use the MATLAB C Math Library. If
you have purchased the MATLAB C Math Library, then the only additional
software you need is an ANSI C compiler.

Who Should Read This Book
This book assumes that you are familiar with general programming concepts
such as function calls, variable declarations, and flow of control statements.
You also need to be familiar with the general concepts of C and linear algebra.
The audience for this book is C programmers who need a matrix math library
or MATLAB programmers who want the performance of C. This book will not
teach you how to program in either MATLAB or C.

New MATLAB C Math Library Features
Version 2.0 supports these new features:

• Over 60 new functions

• Data types

- Multidimensional arrays

- Cell arrays

- MATLAB Structures

- Sparse matrices

• Variable input and output argument lists (varargin/varargout)

• New indexing functions

• try blocks and catch blocks

Introduction
• Automated memory management for temporary variables

• Improved mbuild script

Unsupported MATLAB Features
The library does not include any Handle Graphics ® or Simulink® functions.

In addition, the library does not support the following MATLAB features:

• Objects

• MATLAB integer types (int8, int16, int32, uint8, uint16, and uint32)

• Functions that require the MATLAB interpreter, most notably eval() and
input()

Library Routine Naming Convention
All routines in the MATLAB C Math Library begin with the prefix mlf.

The name of every routine in the MATLAB C Math Library is derived from the
corresponding MATLAB function. For example, the MATLAB function sin is
represented by the MATLAB C Math Library function mlfSin. The first letter
following the mlf prefix is always capitalized.

MATLAB C Math Library Documentation
The documentation that supports Version 2.0 of the library includes:

• MATLAB C Math Library User’s Guide—This manual provides tutorial
information about the library. This manual is also available in PDF format,
accessible through the Help Desk.

• MATLAB C Math Library Reference—The reference pages for all the
MATLAB C Math library routines are available in HTML and PDF versions,
accessible through the Help Desk.

How This Book Is Organized
This chapter provides an introduction to the MATLAB C Math Library and
tells how to install it. In addition, it includes information about building
applications. The remainder of the book is organized as follows:

• Chapter 2: Writing Programs. This chapter introduces all the primary new
library features by showing how they are used in a simple example program.
1-3

1 Getting Ready

1-4
This chapter contains pointers to all the other chapters where you can find
more detailed information about each new feature.

• Chapter 3: Working with MATLAB Arrays. Arrays are the fundamental
MATLAB data type. This chapter describes how to create MATLAB arrays
in your C program.

• Chapter 4: Managing Array Memory. This chapter describes how to use the
MATLAB C Math library automatic memory management facility.

• Chapter 5: Indexing into Arrays. This chapter describes how to access
individual elements, or groups of elements, in an array. Using indexing you
can access, modify, or delete elements in an array.

• Chapter 6: Calling Library Routines. This chapter describes the MATLAB
C Math Library interface to the MATLAB functions. This chapter describes
how to call MATLAB functions that have variable numbers of input
arguments and return values.

• Chapter 7: Importing and Exporting Array Data. This chapter describes
how to use the mlfLoad() and mlfSave() routines to import data to your
application or export data from your application.

• Chapter 8: Handling Errors and Writing a Print Handler. This chapter
describes how to customize error handling and print handling using
MATLAB C Math Library routines.

• Chapter 9: Library Routines. This chapter lists the functions available in
the MATLAB C Math Library. The chapter groups the more than 400 library
functions into functional categories and provides a short description of each
function.

• Appendix A: Directory Organization. This chapter provides a description
of the MATLAB directory structure that positions the library’s files in
relation to other products from The MathWorks.

• Appendix B: Errors and Warnings. This appendix lists the error messages
issued by the library.

Accessing Online Reference Documentation
To access the online reference documentation, use the MATLAB Help Desk.
The Help Desk is a Web page that provides access to all MATLAB
documentation in HTML and PDF formats.

Introduction
To look up the syntax and behavior for a C Math Library function, refer to the
online MATLAB C Math Library Reference. This reference gives you access to
a reference page for each function. Each page presents the function’s C syntax
and links you to the online MATLAB Function Reference page for the
corresponding MATLAB function.

If you are a MATLAB user:

1 Type helpdesk at the MATLAB prompt.

2 From the MATLAB Help Desk, select C Math Library Reference from the
Other Products section.

If you are a stand-alone Math Library user:

1 Open the HTML file <matlab>/help/mathlib.html with your Web browser,
where <matlab> is the top-level directory where you installed the C Math
Library.

2 Select C Math Library Reference.

Additional Sources of Information
Also available from the Help Desk:

• Release notes for the MATLAB C Math Library
(<matlab>\extern\examples\cmath\release.txt)

• Online MATLAB Application Program Interface Reference

• Online MATLAB Application Program Interface Guide

• Online MATLAB Function Reference

• Installation Guide for UNIX

• Installation Guide for PC

MATLAB C Math Library 1.2 Users
Though the library maintains as much backwards compatibility as possible,
some functions have changed between Version 1.2 and Version 2.0. (See
“Migrating Your Code to Version 2.0” on page 1-6 for a list of these functions.)
1-5

1 Getting Ready

1-6
To use the signatures of the functions from Version 1.2, define the preprocessor
symbol, MLF_V1_2 when you build your application. For example, if you use the
tool mbuild to build your application:

mbuild -DMLF_V1_2 appfile.c

Note You must recompile existing code to use Version 2.0 of the MATLAB C
Math Library.

MATLAB C Math Library Version 1.2 Documentation
The documentation that supports Version 1.2 of the library includes:

• MATLAB C Math Library User’s Guide—This manual provides tutorial
information about the library. This manual is available in PDF format,
accessible through the Help Desk.

• MATLAB C Math Library Reference—The reference pages for all the
MATLAB C Math library routines are available in PDF format, accessible
through the Help Desk.

Migrating Your Code to Version 2.0
In most cases, you won’t need to make any changes to your current code base.
However, you need to modify your code in these two cases:

Introduction
• In existing code, update any calls you have made to the following functions:
mlfCov()
mlfDatestr
mlfDatevec
mlfDel2
mlfFeval
mlfFmin
mlfFmins
mlfFprintf
mlfFzero
mlfGradient
mlfInterp1
mlfInterp2
mlfLoad
mlfLu
mlfOde113
mlfOde15s
mlfOde23
mlfOde23s
mlfOde45
mlfOdeget
mlfOdeset
mlfOnes
mlfQr
mlfQuad
mlfQuad8
mlfRand
mlfRandn
mlfSave
mlfSize
mlfSprintf
mlfStrjust
mlfZeros

The prototypes for these functions have changed to support new features in
the library. For example, mlfSize() now takes a variable-length output
argument (varargout). The MATLAB C Math Library Reference, Version
2.0, documents the new prototypes. They are also listed in release.txt in
<matlab>\extern\examples\cmath.
1-7

1 Getting Ready

1-8
• Migrate any existing functions to automated memory management if you
want to call them from new functions that use automated memory
management. See Chapter 4 for information about using automated memory
management.

Installing the MATLAB C Math Library
Installing the MATLAB C Math Library
The MATLAB C Math Library is available on UNIX workstations and PCs
running Microsoft Windows (Windows 95, Windows 98, and Windows NT). The
installation process is different for each platform.

Note that the MATLAB C Math Library runs on only those platforms
(processor and operating system combinations) on which MATLAB runs. In
particular, the Math Libraries do not run on DSP or other embedded systems
boards, even if those boards are controlled by a processor that is part of a
system on which MATLAB runs.

Installation with MATLAB
If you are a licensed user of MATLAB, there are no special requirements for
installing the MATLAB C Math Library. Follow the instructions in the
MATLAB Installation Guide for your specific platform:

• Installation Guide for UNIX

• Installation Guide for PC

Choose the MATLAB C/C++ Math Library selection from list of components
that you can install, displayed by the installation program.

Before you begin installing the MATLAB C Math Library, you must obtain
from The MathWorks a valid License File (for concurrent licenses on UNIX
systems or PCs) or Personal License Password (individual license PC users).
These are usually supplied by fax or e-mail. If you have not already received a
License File or Personal License Password, contact The MathWorks via:

• The Web at www.mathworks.com. On the MathWorks site, click on the
MATLAB Access option, log in to the Access home page, and follow the
instructions. MATLAB Access membership is free of charge and available to
all customers.

• E-mail at service@mathworks.com

• Telephone at 508-647-7000; ask for Customer Service

• Fax at 508-647-7001
1-9

1 Getting Ready

1-1
Installation Without MATLAB
The process for installing the MATLAB C Math Library on its own is identical
to the process for installing MATLAB and its toolboxes. Although you are not
actually installing MATLAB, you can still follow the instructions in the
MATLAB Installation Guide for your specific platform.

Verifying a UNIX Workstation Installation
To verify that the MATLAB C Math Library has been installed correctly, build
one of the example programs distributed with the library. You can find the
example programs in the <matlab>/extern/examples/cmath directory, where
<matlab> is your root MATLAB installation directory. See ‘‘Building C
Applications’’ on page 1-11 to learn how to build the example programs using
the mbuild command.

To spot check the installation, cd to the directory
<matlab>/extern/include, where <matlab> symbolizes the MATLAB root
directory and verify that the file matlab.h exists.

Verifying a PC Installation
When installing a C compiler to use in conjunction with the Math Library,
install both the DOS and Windows targets and the command line tools.

The C Math Library installation adds

<matlab>\bin

to your $PATH environment variable, where <matlab> symbolizes the MATLAB
root directory. The bin directory contains the DLLs required by stand-alone
applications. After installation, reboot your machine.

To verify that the MATLAB C Math Library has been installed correctly, build
one of the example programs distributed with the library. You can find the
example programs in the <matlab>\extern\examples\cmath directory, where
<matlab> is your root MATLAB installation directory. See ‘‘Building C
Applications’’ on page 1-11 to learn how to build the example programs using
the mbuild command.

You can spot check the installation by checking for the file matlab.h in
<matlab>\extern\include and libmmfile.dll, libmatlb.dll, and
libmcc.dll in <matlab>\bin.
0

Building C Applications
Building C Applications
This section explains how to build stand-alone C applications on UNIX systems
and PCs running Microsoft Windows.

The section begins with a summary of the steps involved in building C
applications with the mbuild script and then describes platform-specific issues
for each supported platform. mbuild helps automate the build process. You can
use the mbuild script to build the examples shipped with the library and to
build your own stand-alone C applications.

Packaging Stand-Alone Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries with which the application was
linked. The necessary shared libraries vary by platform and are listed within
the individual UNIX and Windows sections that follow.

Overview
To build a stand-alone application using the MATLAB C Math Library, you
must supply your ANSI C compiler with the correct set of compiler and linker
options (or switches). To help you, The MathWorks provides a command line
utility called mbuild. The mbuild script makes it easy to:

• Set your compiler and linker settings

• Change compilers or compiler settings

• Switch between C and C++ development

• Build your application

On UNIX and Microsoft Windows systems, follow these steps to build C
applications with mbuild:

1 Verify that mbuild can create stand-alone applications.

2 Build your application.

You only need to reconfigure if you change compilers, for example, from
Watcom to MSVC, or upgrade your current compiler.
1-11

1 Getting Ready

1-1
Figure 1-1 shows the sequence on both platforms. The sections following the
flowchart provide more specific details for the individual platforms.

Figure 1-1: Sequence for Creating Stand-Alone C Applications

Compiler Options Files
mbuild stores compiler and linker settings in an options file. Options files
contain the required compiler and linker settings for your particular C
compiler. The MathWorks provides options files for every supported C
compiler.

Much of the information on options files in this chapter is provided for those
users who may need to modify an options file to suit their specific needs. Many
users never have to be concerned with how the options files work.

No

No

Yes
Reconfigure or use

See “Troubleshooting
mbuild”

Does
mbuild ex1.c

work?

Yes

Stop

Start

Test your
mbuild configuration.

mbuild -setup.
2

Building a Stand-Alone Application on UNIX
Building a Stand-Alone Application on UNIX
This section explains how to compile and link C source code into a stand-alone
UNIX application.

Configuring for C or C++
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 1-1 shows the supported file extensions. If you
include both C and C++ files, mbuild uses the C++ compiler and the MATLAB
C++ Math Library. If mbuild cannot deduce from the file extensions whether
to compile in C or C++, mbuild invokes the C compiler.

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see Table 1-2.

Locating Options Files
mbuild locates your options file by searching the following:

• The current directory
• $HOME/matlab

• <matlab>/bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Table 1-1: UNIX File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.C
.cxx
.cc
1-13

1 Getting Ready

1-1
Using the System Compiler
If your supported C compiler is installed on your system, you are ready to
create C stand-alone applications. To create a stand-alone C application, you
can simply enter

mbuild filename.c

This simple method works for the majority of users. Assuming filename.c
contains a main function, this example uses the system’s compiler as your
default compiler for creating your stand-alone application.

• If you are a user who does not need to change C or C++ compilers, or you do
not need to modify your compiler options files, you can skip ahead in this
section to “Verifying mbuild.”

• If you need to know how to select a different compiler or change the options
file, continue with this section.

Changing the Default Compiler
You need to use the setup option if you want to change your default compiler.
At the UNIX prompt type:

mbuild -setup

The setup option creates a user-specific options file for your ANSI C or C++
compiler. Using the setup option sets your default compiler so that the new
compiler is used every time you use the mbuild script.

Note The options file is stored in the MATLAB subdirectory of your home
directory, for example, $HOME/matlab/mbuildopts.sh. This allows each user
to have a separate mbuild configuration.
4

Building a Stand-Alone Application on UNIX
Executing mbuild -setup presents a list of options files currently included in
the bin subdirectory of MATLAB.

mbuild -setup

Using the ’mbuild -setup’ command selects an options file that is
placed in ~/matlab and used by default for ’mbuild’. An options
file in the current working directory or specified on the command
line overrides the default options file in ~/matlab.

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the ’mbuild -f’ command
(see ’mbuild -help’ for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :
 Build and link with MATLAB C/C++ Math Library

If there is more than one options file, you can select the one you want by
entering its number and pressing Return. If there is only one options file
available, it is automatically copied to your MATLAB directory if you do not
already have an mbuild options file. If you already have an mbuild options file,
you are prompted to overwrite the existing one.

Modifying the Options File
Another use of the setup option is if you want to change your options file
settings. For example, if you want to make a change to the current linker
settings, or you want to disable a particular set of warnings, you should use the
setup option.

If you need to change the options that mbuild passes to your compiler or linker,
you must first run

mbuild -setup

which copies a master options file to your local MATLAB directory, typically
$HOME/matlab/mbuildopts.sh.
1-15

1 Getting Ready

1-1
If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2 …]

to generate a list of all the current compiler settings.

To change the options, use an editor to make changes to your options file, which
is in your local MATLAB directory. Your local MATLAB directory is a
user-specific, MATLAB directory in your individual home directory that is used
specifically for your individual options files.

You can also embed the settings obtained from the verbose option of mbuild
into an integrated development environment (IDE) or makefile that you need
to maintain outside of MATLAB. Often, however, it is easier to call mbuild from
your makefile. See your system documentation for information on writing
makefiles.

Note Any changes made to the local options file will be overwritten if you
execute mbuild -setup again. To make the changes persist through repeated
uses of mbuild -setup, you must edit the master file itself,
<matlab>/bin/mbuildopts.sh.

Temporarily Changing the Compiler
To temporarily change your C or C++ compiler, use the -f option, as in

mbuild -f <options_file> filename.c [filename]

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Verifying mbuild
The C source code for the example ex1.c is included in the
<matlab>/extern/examples/cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
6

Building a Stand-Alone Application on UNIX
applications, copy ex1.c to your local directory and cd to that directory. Then,
at the UNIX prompt enter:

mbuild ex1.c

This should create the file called ex1. Stand-alone applications created on
UNIX systems do not have any extensions.

Locating Shared Libraries
Before you can run your stand-alone application, you must tell the system
where the API and C shared libraries reside. This table provides the necessary
UNIX commands depending on your system’s architecture.

It is convenient to place this command in a startup script such as
~/.cshrc. Then, the system will be able to locate these shared libraries
automatically, and you will not have to re-issue the command at the start of
each login session. The best choice is to place the libraries in ~/.login, which
only gets executed once, if that option is available on your system.

Note On all UNIX platforms, the C libraries are shipped as shared object
(.so) files or shared libraries (.sl). Any stand-alone application must be able
to locate the C libraries along the library path environment variable
(SHLIB_PATH, LIBPATH, or LD_LIBRARY_PATH) in order to be loaded.

Architecture Command

HP700 setenv SHLIB_PATH <matlab>/extern/lib/hp700:$SHLIB_PATH

IBM RS/6000 setenv LIBPATH <matlab>/extern/lib/ibm_rs:$LIBPATH

All others setenv LD_LIBRARY_PATH <matlab>/extern/lib/<arch>:$LD_LIBRARY_PATH

where:
<matlab> is the MATLAB root directory
<arch> is your architecture (i.e., alpha, lnx86, sgi, sgi64, sol2)
1-17

1 Getting Ready

1-1
Consequently, to share a stand-alone application with another user, you must
provide all of the required shared libraries. For more information about the
required shared libraries for UNIX, see ‘‘Distributing Stand-Alone UNIX
Applications’’ on page 1-21.

Running Your Application
To launch your application, enter its name on the command line. For example,

ex1

 1 3 5
 2 4 6

1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

mbuild Options
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know additional
details about the mbuild script; they use it in its simplest form. The following
information is provided for those users who require more flexibility with the
tool.
8

Building a Stand-Alone Application on UNIX
The mbuild syntax and options are

mbuild [-options] filename1 [filename2 …]

Table 1-2: mbuild Options on UNIX

Option Description

-c Compile only; do not link.

-D<name>[=<def>] Define C preprocessor macro <name> [as having
value <def>].

-f <optionsfile> Use <file> to override the default options file;
<file> is a full pathname if it is not in the current
directory.

-g Build an executable with debugging symbols
included.

-h[elp] Help; prints a description of mbuild and the list of
options.

-I<pathname> Include <pathname> in the list of directories to
search for header files.

-l<file> Link against library lib<file>.

-L<pathname> Include <pathname> in the list of directories to
search for libraries.

-lang <language> Override language choice implied by file extension.
<language> = c for C

cpp for C++
This option is necessary when you use an
unsupported file extension, or when you pass all .o
files and libraries.

-link <target> Specify output type.
<target> = exe for an executable (default)

shared for shared library
(See “Building Shared Libraries” on page 1-33 for an
example.)
1-19

1 Getting Ready

1-2
<name>=<def> Override options file setting for variable <name>. If
<def> contains spaces, enclose it in single quotes, for
example, CFLAGS=’opt1 opt2’. The definition,
<def>, can reference other variables defined in the
options file. To reference a variable in the options
file, prepend the variable name with a $,
for example, CFLAGS=’$CFLAGS opt2’.

-n No execute flag. Using this option displays the
commands that compile and link the target but does
not execute them.

-outdir
<dirname>

Place any generated object, resource, or executable
files in the directory <dirname>. Do not combine this
option with -output if the -output option gives a
full pathname.

-output <name> Create an executable named <name>. (An appropriate
executable extension is automatically appended.)

-O Build an optimized executable.

-setup Set up the default compiler and libraries. This
option should be the only argument passed.

-U<name> Undefine C preprocessor macro <name>.

-v Verbose; print all compiler and linker settings.

Table 1-2: mbuild Options on UNIX (Continued)

Option Description
0

Building a Stand-Alone Application on UNIX
Distributing Stand-Alone UNIX Applications
To distribute a stand-alone application, you must include the application’s
executable and the shared libraries against which the application was linked.
This package of files includes:

• Application (executable)
• libmmfile.ext

• libmatlb.ext

• libmat.ext

• libmx.ext

• libut.ext

• libmi.ext

where the file extension.ext is

.a on IBM RS/6000; .so on Solaris, Alpha, Linux, and SGI; and .sl on HP 700.

For example, to distribute the ex1 example for Solaris, you need to include ex1,
libmmfile.so, libmatlb.so, libmat.so, libmx.so, libut.so, and libmi.so.
Remember that the path variable must reference the location of the shared
libraries.
1-21

1 Getting Ready

1-2
Building a Stand-Alone Application on Microsoft Windows
This section explains how to compile and link C code into stand-alone Windows
applications.

Configuring for C or C++
mbuild determines whether to compile in C or C++ by examining the type of
files you are compiling. Table 1-1 shows the file extensions that mbuild
interprets as indicating C or C++ files. If you include both C and C++ files,
mbuild uses the C++ compiler and the MATLAB C++ Math Library. If mbuild
cannot deduce from the file extensions whether to compile in C or C++, mbuild
invokes the C compiler.

Note You can override the language choice that is determined from the
extension by using the -lang option of mbuild. For more information about
this option, as well as all of the other mbuild options, see Table 1-5.

Locating Options Files
To locate your options file, the mbuild script searches the following:

• The current directory

• The user Profiles directory
• <matlab>\bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C compiler and uses the

Table 1-3: Windows File Extensions for mbuild

Language Extension(s)

C .c

C++ .cpp
.cxx
.cc
2

Building a Stand-Alone Application on Microsoft Windows
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

The User Profile Directory Under Windows. The Windows user Profiles directory is
a directory that contains user-specific information such as Desktop
appearance, recently used files, and Start Menu items. The mbuild utility
stores its options file compopts.bat that is created during the -setup process
in a subdirectory of your user Profiles directory, named
Application Data\MathWorks\MATLAB.

Under Windows NT and Windows 95/98 with user profiles enabled, your user
profile directory is %windir%\Profiles\username. Under Windows 95/98 with
user profiles disabled, your user profile directory is %windir%. Under Windows
95/98, you can determine whether or not user profiles are enabled by using the
Passwords control panel.

Systems with Exactly One C/C++ Compiler
If your supported C compiler is installed on your system, you are ready to
create C stand-alone applications. On systems where there is exactly one C
compiler available to you, the mbuild utility automatically configures itself for
the appropriate compiler. So, for many users, to create a C stand-alone
application, you can simply enter

mbuild filename.c

This simple method works for the majority of users. It uses your installed C
compiler as your default compiler for creating your stand-alone applications.

• If you are a user who does not need to change compilers, or you do not need
to modify your compiler options files, you can skip ahead in this section to
“Verifying mbuild.”

• If you need to know how to change the options file or select a different
compiler, continue with this section.

Systems with More than One Compiler
On systems where there is more than one C compiler, the mbuild utility lets
you select which of the compilers you want to use. Once you choose your C
compiler, that compiler becomes your default compiler and you no longer have
to select one when you compile your stand-alone applications.
1-23

1 Getting Ready

1-2
For example, if your system has both the Borland and Watcom compilers, when
you enter for the first time

mbuild filename.c

you are asked to select which compiler to use.

mbuild has detected the following compilers on your machine:

[1] : Borland compiler in T:\Borland\BC.500
[2] : WATCOM compiler in T:\watcom\c.106

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number and pressing Return. You
are then asked to verify your information.

Changing the Default Compiler
To change your default C compiler, you select a different options file. You can
do this at any time by using the setup command.
4

Building a Stand-Alone Application on Microsoft Windows
This example shows the process of changing your default compiler to the
Microsoft Visual C/C++ Version 6.0 compiler.

mbuild -setup

Please choose your compiler for building standalone MATLAB
applications.

Would you like mbuild to locate installed compilers [y]/n? n

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0, 5.2, or 5.3)
[2] Microsoft Visual C/C++ (version 4.2, 5.2, or 6.0)
[3] Watcom C/C++ (version 10.6 or 11)

[0] None

Compiler: 2

Choose the version of your C/C++ compiler:
[1] Microsoft Visual C/C++ 4.2
[2] Microsoft Visual C/C++ 5.0
[3] Microsoft Visual C/C++ 6.0

version: 3

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Program Files\DevStudio6.
Do you want to use this compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Program Files\DevStudio6

Are these correct?([y]/n): y
1-25

1 Getting Ready

1-2
The default options file:
"C:\WINNT\Profiles\username
\Application Data\MathWorks\MATLAB\compopts.bat" is being
updated...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used every time you use the mbuild script.

Modifying the Options File
Another use of the setup option is if you want to change your options file
settings. For example, if you want to make a change the current linker settings,
or you want to disable a particular set of warnings, use the setup option.

The setup option copies the appropriate options file to your user profile
directory and names it compopts.bat. Make your user-specific changes to
compopts.bat in the user profile directory and save the modified file. This sets
your default compiler’s options file to your specific version.

Table 1-4 lists the names of the PC master options files included in this release
of the MATLAB C Math Library.

If you need to see which options mbuild passes to your compiler and linker, use
the verbose option, -v, as in

mbuild -v filename1 [filename2 …]

to generate a list of all the current compiler settings used by mbuild.

You can also embed the settings obtained from the verbose option into an
integrated development environment (IDE) or makefile that you need to
maintain outside of MATLAB. Often, however, it is easier to call mbuild from
your makefile. See your system documentation for information on writing
makefiles.
6

Building a Stand-Alone Application on Microsoft Windows
Note Any changes that you make to the local options file compopts.bat will
be overwritten the next time you run mbuild -setup. If you want to make
your edits persist through repeated uses of mbuild -setup, you must edit the
master file itself. The master options files are located in <matlab>\bin.

Combining Customized C and C++ Options Files
The options files for mbuild have changed as of MATLAB 5.3 (Release 11) so
that the same options file can be used to create both C and C++ stand-alone
applications. If you have modified your own separate options files to create C
and C++ applications, you can combine them into one options file.

To combine your existing options files into one universal C and C++ options file:

1 Copy from the C++ options file to the C options file all lines that set the
variables COMPFLAGS, OPTIMFLAGS, DEBUGFLAGS, and LINKFLAGS.

2 In the C options file, within just those copied lines from step 1, replace all
occurrences of COMPFLAGS with CPPCOMPFLAGS, OPTIMFLAGS with
CPPOPTIMFLAGS, DEBUGFLAGS with CPPDEBUGFLAGS, and LINKFLAGS with
CPPLINKFLAGS.

Table 1-4: Compiler Options Files on the PC

Compiler Master Options File

Borland C/C++, Version 5.0 bcccompp.bat

Borland C/C++, Version 5.2 bcc52compp.bat

Borland C/C++, Version 5.3 bcc53compp.bat

Microsoft Visual C/C++, Version 4.2 msvccompp.bat

Microsoft Visual C/C++, Version 5.0 msvc50compp.bat

Microsoft Visual C/C++, Version 6.0 msvc60compp.bat

Watcom C/C++, Version 10.6 watccompp.bat

Watcom C/C++, Version 11 wat11ccompp.bat
1-27

1 Getting Ready

1-2
This process modifies your C options file to be a universal C/C++ options file.

Temporarily Changing the Compiler
To temporarily change your C compiler, use the -f option, as in

mbuild -f <file> …

The -f option tells the mbuild script to use the options file, <file>. If <file>
is not in the current directory, then <file> must be the full pathname to the
desired options file. Using the -f option tells the mbuild script to use the
specified options file for the current execution of mbuild only; it does not reset
the default compiler.

Verifying mbuild
C source code for the example ex1.c is included in the
<matlab>\extern\examples\cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, enter at the DOS prompt:

mbuild ex1.c

This creates the file called ex1.exe. Stand-alone applications created on
Windows 95 or NT always have the extension .exe. The created application is
a 32-bit Microsoft Windows console application.

Shared Libraries (DLLs)
All the WIN32 Dynamic Link Libraries (DLLs) for the MATLAB C Math
Library are in the directory

<matlab>\bin

The .def files for the Microsoft and Borland compilers are in the
<matlab>\extern\include directory; mbuild dynamically generates import
libraries from the .def files.

Before running a stand-alone application, you must ensure that the directory
containing the DLLs is on your path. The directory must be on your operating
system $PATH environment variable. On Windows 95, set the value in your
autoexec.bat file; on Windows NT, use the Control Panel to set it.
8

Building a Stand-Alone Application on Microsoft Windows
Running Your Application
You can now run your stand-alone application by launching it from the
command line. For example,

ex1

 1 3 5
 2 4 6

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

mbuild Options
The mbuild script supports various options that allow you to customize the
building and linking of your code. Many users do not need to know any
additional details of the mbuild script; they use it in its simplest form. The
following information is provided for those users who require more flexibility
with the tool.
1-29

1 Getting Ready

1-3
The mbuild syntax and options are

mbuild [-options] filename1 [filename2 …]

Table 1-5: mbuild Options on Microsoft Windows

Option Description

@filename Replace @filename on the mbuild
command line with the contents of
filename. filename is a response file,
i.e., a text file that contains additional
command line options to be processed.

-c Compile only; do not link.

-D<name> Define C preprocessor macro <name>.

-f <file> Use <file> as the options file; <file> is
a full pathname if it is not in the current
directory.

-g Build an executable with debugging
symbols included.

-h[elp] Help; prints a description of mbuild and
the list of options.

-I<pathname> Include <pathname> in the list of
directories to search for header files.

-lang <language> Override language choice implied by file
extension.
<language> = c for C

cpp for C++
This option is necessary when you use an
unsupported file extension, or when you
pass all .o files and libraries.
0

Building a Stand-Alone Application on Microsoft Windows
-link <target> Specify output type.
<target> = exe for an executable

shared for DLL
exe is the default. (See “Building Shared
Libraries” on page 1-33 for an example.)

-outdir <dirname> Place any generated object, resource, or
executable files in the directory
<dirname>. Do not combine this option
with -output if the -output option gives
a full pathname.

-output <name> Create an executable named <name>. (An
appropriate executable extension is
automatically appended.)

-O Build an optimized executable.

-setup Set up the default compiler and libraries.
This option should be the only argument
passed.

-U<name> Undefine C preprocessor macro <name>.

-v Verbose; print all compiler and linker
settings.

Table 1-5: mbuild Options on Microsoft Windows (Continued)

Option Description
1-31

1 Getting Ready

1-3
Distributing Stand-Alone Microsoft Windows
Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries against which the application was
linked. This package of files includes:

• Application (executable)
• libmmfile.dll

• libmatlb.dll

• libmat.dll

• libmx.dll

• libut.dll

For example, to distribute the Windows version of the ex1 example, you need
to include ex1.exe, libmmfile.dll, libmatlb.dll, libmat.dll, libmx.dll,
and libut.dll.

The DLLs must be on the system path. You must either install them in a
directory that is already on the path or modify the PATH variable to include the
new directory.
2

Building Shared Libraries
Building Shared Libraries
You can use mbuild to build C shared libraries on both UNIX and the PC. All
of the mbuild options that pertain to creating stand-alone applications also
pertain to creating C shared libraries. To create a C shared library, you use the
option

-link shared

and specify one or more files with the .exports extension. The .exports files
are text files that contain the names of the functions to export from the shared
library, one per line. You can include comments in your code by beginning a line
(first column) with # or a *. mbuild treats these lines as comments and ignores
them. mbuild merges multiple .exports files into one master exports list. For
example, given file2.exports as:

times2
times3

and file1.c as:

int times2(int x)
{

return 2 * x;
}

int times3(int x)
{

return 3 * x;
}

The command

mbuild -link shared file1.c file2.exports

creates a shared library named file1.ext, where ext is the
platform-dependent shared library extension. For example, on the PC, it would
be called file1.dll.
1-33

1 Getting Ready

1-3
Troubleshooting mbuild
This section identifies some of the more common problems that may occur
when configuring mbuild to create applications.

Options File Not Writable
When you run mbuild -setup, mbuild makes a copy of the appropriate options
file and writes some information to it. If the options file is not writable, you are
asked if you want to overwrite the existing options file. If you choose to do so,
the existing options file is copied to a new location and a new options file is
created.

Directory or File Not Writable
If a destination directory or file is not writable, ensure that the permissions are
properly set. In certain cases, make sure that the file is not in use.

mbuild Generates Errors
On UNIX, if you run mbuild filename and get errors, it may be because you
are not using the proper options file. Run mbuild -setup to ensure proper
compiler and linker settings.

Compiler and/or Linker Not Found
On PCs running Windows, if you get errors such as Bad command or filename
or File not found, make sure the command line tools are installed and the
path and other environment variables are set correctly.

mbuild Not a Recognized Command
If mbuild is not recognized, verify that <matlab>\bin is on your path. On
UNIX, it may be necessary to rehash.

Cannot Locate Your Compiler (PC)
If mbuild has difficulty locating your installed compilers, it is useful to know
how it goes about finding compilers. mbuild automatically detects your
installed compilers by first searching for locations specified in the following
environment variables:

• BORLAND for the Borland C/C++ Compiler, Version 5.0 or 5.2

• WATCOM for the Watcom C/C++ Compiler, Version 10.6 or 11.0
4

Troubleshooting mbuild
• MSVCDIR for Microsoft Visual C/C++, Version 5.0 or 6.0

• MSDEVDIR for Microsoft Visual C/C++, Version 4.2

Next, mbuild searches the Windows Registry for compiler entries. Note that
Watcom does not add an entry to the registry.

Internal Error When Using mbuild -setup (PC)
Some antivirus software packages such as Cheyenne AntiVirus and Dr.
Solomon may conflict with the mbuild -setup process. If you get an error
message during mbuild -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don’t
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mbuild Fails
If none of the previous solutions addresses your difficulty with mbuild, contact
Technical Support at The MathWorks at support@mathworks.com or
508-647-7000.
1-35

1 Getting Ready

1-3
Building on Your Own
To build any of the examples or your own applications without mbuild, compile
the file with an ANSI C compiler. You must set the include file search path to
contain the directory that contains the file matlab.h; compilers typically use
the -I switch to add directories to the include file search path. See Appendix
A to determine where matlab.h is installed. Link the resulting object files
against the libraries in this order:

1 MATLAB M-File Math Library (libmmfile)

2 MATLAB Built-In Library (libmatlb)

3 MATLAB MAT-File Library (libmat)

4 MATLAB Application Program Interface Library (libmx)

5 ANSI C Math Library (libm)

Specifying the libraries in the wrong order on the command line typically
causes linker errors. Note that on the PC if you are using the Microsoft Visual
C compiler, you must manually build the import libraries from the .def files
using lib. If you are using the Borland C Compiler, you can link directly
against the .def files using implib. If you are using Watcom, you must build
them from the DLLs using wlib. These commands are documented in your
compiler documentation.

On some platforms, additional libraries are necessary; see the platform-specific
section of the mbuild script for the names and order of these libraries on the
platforms we support.
6

A Simple Example Program 2-2
2

Writing Programs

Overview . 2-2

2 Writing Programs

2-2
Overview
The MATLAB C Math Library makes the powerful set of MATLAB math
functions available to C applications. While you can program with the library
using standard coding techniques, there are some programming idioms that
you must know to use the library effectively. This chapter presents a simple
stand-alone application that introduces these concepts including:

• Working with MATLAB arrays

• Calling MATLAB C Math Library functions, especially those that can accept
optional input arguments and can return multiple values

• Taking advantage of MATLAB C Math Library automated memory
management

• Using the MATLAB C Math Library error handling mechanism

A Simple Example Program
This example application determines if two numbers are relatively prime; that
is, the numbers share no common factors. While its function is trivial, the
application serves well as an introduction to programming in C with the
MATLAB C Math Library. The notes following the example highlight points of
particular interest in the example and contain pointers to other chapters in
this manual where you find more detailed information.

The source code for this example, named intro.c, is in the
<matlab>/extern/examples/cmath directory on UNIX systems, and in the
<matlab>\extern\examples\cmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See ‘‘Building C
Applications’’ on page 1-11 for information on building the examples.

Overview
/* intro.c*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

int main()
{

double num1, num2;
mxArray *volatile factors1 = NULL;
mxArray *volatile factors2 = NULL;
mxArray *volatile common_factors = NULL;

mlfEnterNewContext(0,0);

/* Get user input and convert from string to integer */
printf("Enter a number: ");
scanf("%lf", &num1);
printf("Enter a second number: ");
scanf("%lf", &num2);

mlfTry
{ /* Call MATLAB C Math Library functions */

/* Get factors of input numbers */
mlfAssign(&factors1, mlfFactor(mlfScalar(num1)));
mlfAssign(&factors2, mlfFactor(mlfScalar(num2)));

/* Determine if there are factors in common */
mlfAssign(&common_factors,

 mlfIntersect(NULL, NULL, factors1, factors2, NULL));

1

2

3

4

5

6

7

2-3

2 Writing Programs

2-4
/* If common_factors is an empty array, */
/* the numbers are relatively prime. */
if (mlfTobool(mlfIsempty(common_factors)))

printf("%0.0lf and %0.0lf are relatively prime\n",
num1, num2);

else
{

printf("%0.0lf and %0.0lf share common factor(s):",
num1, num2);

mlfPrintMatrix(common_factors);
}

} /* end mlfTry */
mlfCatch
{

mlfPrintf("In catch block: \n");
mlfPrintMatrix(mlfLasterr(NULL));

}
mlfEndCatch /* end catch block */

/* Free any arrays that were allocated. */
/* mxDestroyArray can handle NULL pointers. */
mxDestroyArray(factors1);
mxDestroyArray(factors2);
mxDestroyArray(common_factors);

mlfRestorePreviousContext(0,0);
return(EXIT_SUCCESS);

}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare pointers to three MATLAB arrays (mxArray *). All arguments to
MATLAB routines must be MATLAB arrays. In addition, the routines
return newly allocated MATLAB arrays as output. These pointers are
declared as volatile pointers because they are assigned values within a try
block and so may change without warning due to an error. For more

9

10

11

8

Overview
information about working with MATLAB arrays in C programs, see
Chapter 3.

3 Enable MATLAB C Math Library automated memory management by
calling mlfEnterNewContext(). With the library memory management
facility enabled, the library can delete the arrays it creates automatically.
This allows you to compose functions; that is, nest one function call within
another. For more information about automated memory management, see
Chapter 4.

4 Solicit input from the user using input and output functions but you can use
ANSI standard C input/output routines.

Note The library includes two routines, mlfLoad() and mlfSave(), that
allow you to import and export data in MAT-file format. For more information
about using these routines, see Chapter 7.

5 Define a try block using the MATLAB C Math library macro, mlfTry. When
a library function included in a try block encounters a run-time error, it
outputs an error message and then passes control to a catch block in the
program. In a catch block, an application can free arrays that have been
assigned to variables or perform other processing before exiting. For more
information about defining try and catch blocks, see ‘‘Handling Errors’’ on
page 8-3.

6 Call the MATLAB C Math Library routine mlfFactor() to find the prime
factors of each number input by the user. The call to mlfScalar(), which
converts the number input by the user from an integer to a MATLAB array,
is an example of nesting; this is only safe if automated memory
management. Because the application only uses the array returned by
mlfScalar() as input to mlfFactor(), there is no need to assign the array
to a variable. With automated memory management enabled, the library
frees the array after mlfFactor() is finished using it.

In contrast, because the example uses the array returned by mlfFactor()
several times, it assigns this array to a variable, factors1, using the
mlfAssign() routine. Any array that you assign to a variable, you must also
free, using mxDestroyArray(). (Arrays returned as output arguments by
2-5

2 Writing Programs

2-6
library routines are implicitly assigned to the variables by the library and
must also be destroyed.) For more information about assigning arrays to
variables, see Chapter 4.

7 Determine if there are any common values in the two arrays of prime factors
returned by the calls to the mlfFactor() routine. The mlfIntersect()
routine returns an array of the common values in the two arrays; if there are
no common factors, mlfIntersect() returns an empty array.

This call to mlfIntersect() illustrates the calling conventions the library
uses for MATLAB functions that support optional input arguments routines.
The library routines include in their signatures all optional input and
output arguments. If you do not use these optional arguments, you must
pass NULL in their place. For more information about calling MATLAB C
Math library routines, see Chapter 6.

8 Test the return value of mlfIsempty(). This routine returns an array
containing the value 1 (TRUE) if the common factor array is empty and
returns an array containing zero (FALSE) if the factor array contains data.
Because mlfIsempty() returns these values as a MATLAB array, you
cannot use the return value directly in the if statement. Instead, pass this
return value to the mlfTobool() routine, which converts the return value to
a standard C Boolean value.

You can also access individual elements in an array using standard
MATLAB indexing syntax; however, the values returned by indexing are
MATLAB arrays, not scalar values. For more information about indexing
into arrays, see Chapter 5.

9 This call to the mlfCatch macro defines the start of the application’s catch
block. The call to the mlfEndCatch macro defines the end of the catch block.
Catch blocks contain error handling code. This sample catch block calls the
mlfLasterr() routine to retrieve the text of the error message associated
with the last error and then outputs the message to the user. For more
information about handling errors with try and catch blocks, see Chapter 8.

10 Free the MATLAB arrays that were assigned to variables using
mlfAssign(). The arrays that were not assigned to variables are freed
automatically by the library. In the example, the arrays returned by the
nested calls to mlfScalar() are deleted automatically. The arrays assigned

Overview
to factors1 and factors2 are not deleted automatically. For more
information about assigning an array to a variable using the mlfAssign()
routine, see Chapter 4.

11 The sample application ends by disabling automated memory management
using the mlfRestorePreviousContext(). For more information about
enabling automated memory management, see Chapter 4.

Output
This sample program, when run in a DOS Command Prompt window, produces
the following output:

Enter a number: 333

Enter a second number: 444
333 and 444 share common factor(s): 3 37

A second run illustrates the alternate output:

Enter a number: 11

Enter a second number: 4
11 and 4 are relatively prime
2-7

2 Writing Programs

2-8

Supported MATLAB Array Types 3-2
MATLAB Array C Data Type 3-3

Working with MATLAB Numeric Arrays 3-4
Creating Numeric Arrays 3-5
Initializing a Numeric Array with Data 3-12
Example Program: Creating Numeric Arrays (ex1.c) 3-15

Working with MATLAB Sparse Matrices 3-18
Creating a Sparse Matrix 3-19
Converting a Sparse Matrix to Full Matrix Format 3-23
Evaluating Arrays for Sparse Storage 3-23

Working with MATLAB Character Arrays 3-25
Creating MATLAB Character Arrays 3-26
Accessing Individual Strings in an Array of Strings 3-29

Working with MATLAB Cell Arrays 3-30
Creating Cell Arrays 3-30
Displaying the Contents of a Cell Array 3-34

Working with MATLAB Structures 3-37
Creating Structures 3-38

Performing Common Array Programming Tasks . . . 3-41
Allocating and Freeing MATLAB Arrays 3-41
Displaying MATLAB Arrays 3-41
Determining Array Type 3-43
Determining the Size of an Array 3-44
Determining the Shape of an Array 3-46
3

Working with MATLAB
Arrays

Overview . 3-2

3 Working with MATLAB Arrays

3-2
Overview
To use the routines in the MATLAB C Math Library, you must pass your data
to the routines in the form of a MATLAB array. This chapter:

• Describes the MATLAB arrays supported by the library and the C data type
defined to represent them.

• Describes how to create arrays and perform other common array
programming tasks.

Because the library routines work the same as the corresponding MATLAB
functions, this chapter does not describe their function in detail. For more
information about MATLAB arrays and their use, see Using MATLAB.
Instead, this chapter provides an overview of working with MATLAB arrays
and highlights where the syntax of the library routine is significantly different
than its MATLAB counterpart.

Supported MATLAB Array Types
The MATLAB C Math Library supports the following MATLAB array types (or
classes):

• Numeric arrays—The library supports multidimensional numeric arrays,
where values are represented in double precision format. All MATLAB
arithmetic functions operate on numeric arrays. For more information about
working with numeric arrays, see ‘‘Working with MATLAB Numeric Arrays’’
on page 3-4.

• Sparse arrays—To conserve space, two-dimensional numeric arrays can be
stored in sparse format, where only nonzero elements of the array are stored.
Numeric arrays with more than two dimensions cannot be converted to
sparse format. For more information about working with sparse arrays, see
‘‘Working with MATLAB Sparse Matrices’’ on page 3-18.

• Character arrays—The library supports multidimensional arrays of
characters, represented in 16-bit ASCII Unicode format. For more
information about working with character arrays, see ‘‘Working with
MATLAB Character Arrays’’ on page 3-25.

Overview
• Cell arrays—The library supports multidimensional arrays of MATLAB’s
primary container type called cells. Each cell can contain any type of
MATLAB array, including other cell arrays. For more information about
working with cell arrays, see ‘‘Working with MATLAB Cell Arrays’’ on page
3-30.

• Structures—The library supports multidimensional arrays of MATLAB’s
other container type called structures. A structure can be thought of as a
one-dimensional cell array where each cell is assigned a name. These named
cells, called fields, define the organization of the structure. Do not confuse
MATLAB structures with standard C structures. For more information
about working with MATLAB structures, see ‘‘Working with MATLAB
Structures’’ on page 3-37.

Choose the MATLAB array type that best fits your data. For more detailed
information about these array types, see Using MATLAB.

MATLAB Array C Data Type
The MATLAB C Math Library uses one data type, mxArray, to represent all
types of MATLAB arrays. The mxArray data type is defined by the MATLAB
Application Program Interface (API). Each instance of this data type contains
information that identifies the type of array and the size and shape of the
array.

The mxArray data type is an opaque data type. The MATLAB API includes
routines to create arrays and access them. These routines are identified by the
prefix mx. For a complete list of these routines, see Chapter 9.

As a convenience, the MATLAB C Math Library includes routines to create
certain types of commonly used arrays. The sections in this chapter that
describe the various types of arrays detail these routines. These routines, like
all the library routines, are identified by the prefix mlf. You can use a mix of
mlf and mx routines to create and manipulate arrays.
3-3

3 Working with MATLAB Arrays

3-4
Working with MATLAB Numeric Arrays
The MATLAB C Math Library includes routines to create and manipulate
numeric arrays. Numeric arrays are the fundamental MATLAB array type.
The elements of the array are stored as a one-dimensional vector of
double-precision numbers. Imaginary data, if present, is stored in a separate
vector.

Table 3-1 lists the MATLAB C Math Library routines that create numeric
arrays and perform some basic tasks with them. The sections that follow
provide more detail about using these routines. For more detailed information
about using numeric arrays, see Using MATLAB. For more detailed
information about any of the library routines, see the online MATLAB C Math
Library Reference.

Table 3-1: Numeric Array Routines

To ... Use ...

Create a 1-by-1 array (scalar) mlfScalar()

Create a 1-by-n array (vector) mlfColon()

Create an m-by-n array (matrix) mlfDoubleMatrix() or
mxCreateDoubleMatrix()

Create a magic square (matrix) mlfMagic()

Create a multidimensional,
(m-by-n-by-p-by...) array

mxCreateNumericArray()

Create a numeric array by
concatenating existing arrays

mlfHorzcat()
mlfVertcat()

Create commonly useful,
multidimensional arrays, such as
arrays of ones, zeros, random
numbers, identity matrices, and
magic squares.

mlfOnes()
mlfZeros()
mlfRand(), mlfRandn()
mlfEye()
mlfMagic()

Working with MATLAB Numeric Arrays
Creating Numeric Arrays
To create a numeric array, use any of the following array creation mechanisms:

• Using an array creation routine

• Calling an arithmetic routine

• Concatenating existing arrays

• Assigning a value to an element in an array

Using Numeric Array Creation Routines
The MATLAB C Math Library contains many routines that create various
types of numeric arrays, including scalar arrays, vectors, matrices,
multidimensional arrays and some commonly useful arrays.

Creating Scalar Arrays. The simplest way to create an array is to use the
mlfScalar() routine. When you pass this routine a numeric value, it creates
an 1-by-1 numeric array containing the value, stored in double precision
format. Whenever you have to pass a numeric value to a library routine, you
can use mlfScalar().

Creating Two-Dimensional Arrays (Matrices). Because two-dimensional arrays of
double precision values are used so often in MATLAB, the library includes the
routine mlfDoubleMatrix() that allows you to create a matrix of double
precision values and initialize it with data. Note that you can use integers to
specify the array dimensions; you do not need to convert these to arrays.

static double data[] = { 1, 4, 2, 5, 3, 6 };

mxArray *A = NULL;

mlfAssign(&A, mlfDoubleMatrix(2, /* Rows */
 3, /* Columns */
 data,
 NULL));/* No imaginary part */

mlfPrintMatrix(A);

mxDestroyArray(A);
3-5

3 Working with MATLAB Arrays

3-6
This code produces the following output.

1 2 3
4 5 6

In this code fragment, note that the values in the C array used to initialize the
MATLAB array are not specified in numeric order because MATLAB stores
arrays in column major order and C arrays are stored in row-major order. For
more information about this, see “Initializing a Numeric Array with Data” on
page 3-12.

You can also use the MATLAB API routine, mxCreateDoubleMatrix(), to
create a matrix of doubles.

Creating Multidimensional Numeric Arrays. To create a multidimensional numeric
array, use the MATLAB API routine mxCreateNumericArray(). The
arguments to this routine are:

• The number of dimensions of the array

• The size of each dimension

• The type of data the array will contain

• Whether the data is real or complex

For example, the following code fragment creates a three-dimensional array,
with dimensions 3-by-3-by-2. The mxDOUBLE_CLASS argument specifies that the
array should contain double precision values. For a complete list of these class
specifiers, use the MATLAB Help Desk to view the mxClass_ID online
reference page.

Working with MATLAB Numeric Arrays
Note in the example that the arguments specifying the number of dimensions,
ndim, and the size of these dimensions, dims, do not need to be converted into
a MATLAB array. The MATLAB API routines accept integer arguments.

int ndim = 3; /* Number of dimensions */
int dims[3] = { 3,3,2 }; /* Size of dimensions */

mxArray *A = NULL; /* declare pointer to mxArray */

mlfAssign(&A, mxCreateNumericArray(ndim,
dims,
mxDOUBLE_CLASS,
mxREAL));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code creates the following 3-by-3-by-2 array.

(:,:,1) =
0 0 0
0 0 0
0 0 0

(:,:,2) =
0 0 0
0 0 0
0 0 0

For information about initializing this array with data, see “Initializing a
Numeric Array with Data” on page 3-12.

Creating Commonly Used Numeric Arrays. The MATLAB C Math Library includes
several routines that create commonly used multidimensional arrays:

• Array of ones, mlfOnes()

• Array of zeros, mlfZeros()

• Identity matrices, mlfEye()

• Random numbers, mlfRand()
3-7

3 Working with MATLAB Arrays

3-8
• Normally distributed random numbers, mlfRandn()

• Magic squares (limited to two-dimensions), mlfMagic()

With all these routines, the number of dimensions in the resulting array equals
the number of non-NULL arguments passed to the routine. To illustrate, the
following example passes three arguments to mlfOnes() to create a three
dimensional array. Because these routines allow you to create arrays of any
number of dimensions, you must signify the end of the argument list by
specifying a NULL.

mxArray *A = NULL;

mlfAssign(&A, mlfOnes(mlfScalar(2),
mlfScalar(3),
mlfScalar(2),
NULL));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code fragment creates the following array:

(:,:,1) =
1 1 1
1 1 1

(:,:,2) =
1 1 1
1 1 1

Creating Vectors of Number Sequences. To create a one dimensional array (vector)
that contains a number sequence, use the mlfColon() routine. This routine
performs the same function as the MATLAB colon (:) operator.

Working with MATLAB Numeric Arrays
For example, the following code fragment creates a vector of all the numbers
between 1 and 10.

mxArray *A = NULL;

mlfAssign(&A, mlfColon(mlfScalar(1),mlfScalar(10),NULL));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code creates the following output.

1 2 3 4 5 6 7 8 9 10

You can optionally specify an increment between the values in the vector. For
more information, see the mlfColon() reference page in the MATLAB C Math
Library Reference online documentation.

Creating Numeric Arrays by Calling Arithmetic Routines
The MATLAB C Math Library arithmetic routines create numeric arrays as
their output. For example, the sample application in Chapter 2 creates arrays
by calling the library arithmetic routines, mlfFactor() and mlfIntersect().

Creating Numeric Arrays by Concatenation
You can create arrays by grouping together existing MATLAB arrays using
concatenation. In MATLAB, you use the [] (brackets) operator to concatenate
arrays vertically or horizontally. For example, you can use the following syntax
in MATLAB to concatenate arrays. In this MATLAB example, the numeric
values being concatenated are scalar arrays. The semicolon indicates that you
want to create rows for vertical as well as horizontal concatenation.

» A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

The MATLAB C Math Library uses the mlfHorzcat() and mlfVertcat()
routines to perform horizontal and vertical concatenation. You nest calls to
mlfHorzcat() inside mlfVertcat() to create the same two-dimensional array
in a C program.
3-9

3 Working with MATLAB Arrays

3-1
Note This code fragment duplicates the preceding MATLAB syntax;
however, it is more efficient to create a two dimensional array of constants
using mlfDoubleMatrix(), rather than with mlfHorzcat() and mlfVertcat().

mxArray *A = NULL;
mlfAssign(&A, mlfVertcat(mlfHorzcat(mlfScalar(1),

mlfScalar(2),
mlfScalar(3),
NULL),

mlfHorzcat(mlfScalar(4),
mlfScalar(5),
mlfScalar(6),
NULL),

NULL));

mlfPrintMatrix(A);

mxDestroyArray(A);

Creating Multidimensional Numeric Arrays by Concatenation. Using mlfVertcat() and
mlfHorzcat(), you can only create two-dimensional arrays. To create a
multidimensional numeric array through concatenation, you must use the
mlfCat() routine. As arguments to mlfCat(), you specify the dimensions along
which to concatenate the arrays.
0

Working with MATLAB Numeric Arrays
For example, the following code fragment creates two matrices, and then
concatenates them to create a three-dimensional array.

mxArray *A = NULL;
mxArray *B = NULL;
mxArray *C = NULL;

static double data1[] = { 1, 4, 2, 5, 3, 6 };
static double data2[] = { 7, 10, 8, 11, 9, 12 };

mlfAssign(&A, mlfDoubleMatrix(2, 3, data1, NULL));
mlfAssign(&B, mlfDoubleMatrix(2, 3, data2, NULL));

mlfAssign(&C, mlfCat(mlfScalar(3), A, B, NULL));

mlfPrintMatrix(C);

mxDestroyArray(A);
mxDestroyArray(B);
mxDestroyArray(C);

This program displays the following output.

(:,:,1) =
1 2 3
4 5 6

(:,:,2) =
7 8 9
10 11 12

Creating Numeric Arrays by Assignment
You can also create a numeric array by assigning a value to a location in the
array, using the mlfIndexAssign() routine. The MATLAB C Math Library
creates a numeric array large enough to accommodate the specified location or
expands an existing array.
3-11

3 Working with MATLAB Arrays

3-1
The following example is equivalent to the MATLAB statement,
A(2,2) = 17. The C character string "(?,?)" specifies the format of the index
subscript. For more information about array indexing, see Chapter 5.

mxArray *A = NULL;

mlfIndexAssign(&A,
"(?,?)", /* Index subscript format */
mlfScalar(2),mlfScalar(2), /* subscripts */
mlfScalar(17)); /* value to be assigned */

mxDestroyArray(A);

This call creates the array A and fills it with zeros before performing the
assignment. The following output shows the array created by this code
fragment.

0 0
0 17

Initializing a Numeric Array with Data
You can specify the value of elements in an array using mlfIndexAssign().
However, if you want to assign values to many elements in an array, this
method can become tedious.

The fastest way to initialize a MATLAB array is to obtain a pointer to the data
area in the mxArray data type and copy data to this location. You use the
MATLAB API routine mxGetPr() to retrieve this pointer and copy your data to
this location using the standard C memcpy() routine. The API also includes a
routine, mxGetPi(), that lets you initialize the imaginary part of an array in
the same way.

Note Make sure the data you are copying into the array will fit into the
storage associated with the pointer returned by mxGetPr(). The MATLAB C
Math Library will not grow or expand an array when you copy data directly
into the mxArray data pointer.
2

Working with MATLAB Numeric Arrays
The following example illustrates this procedure, which is a common MATLAB
C Math Library programming idiom. Note that MATLAB API routines accept
integer arguments.

int ndim = 3;
int dims[3] = {3,3,2};
int bytes_to_copy = (3 * 3 * 2) * sizeof(double);
double data[] = { 1,4,7,2,5,8,3,6,9,10,13,16,11,14,17,12,15,18};

double *pr = NULL;
mxArray *A = NULL;

/* create the array */
mlfAssign(&A ,mxCreateNumericArray(ndim,

dims,
mxDOUBLE_CLASS,
mxREAL));

/* get pointer to data in array */
pr = mxGetPr(A);

/* copy data to pointer */
memcpy(pr, data, bytes_to_copy);

mlfPrintMatrix(A);

mxDestroyArray(A);

This program displays the following output.

(:,:,1) =
1 2 3
4 5 6
7 8 9

(:,:,2) =
10 11 12
13 14 15
16 17 18
3-13

3 Working with MATLAB Arrays

3-1
Column-Major Storage versus Row-Major Storage
It is important to note in the previous example that the MATLAB C Math
Library stores its arrays in column-major order, unlike C, which stores arrays
in row-major order. Static arrays of data that are declared in C and that
initialize MATLAB C Math Library arrays must store their data in
column-major order. For this reason, we recommend not using
two-dimensional C language arrays to initialize a MATLAB array because the
mapping of array elements from C to MATLAB can become confusing.

As an example of the difference between C’s row-major array storage and
MATLAB’s column-major array storage, consider a 3-by-3 matrix filled with
the numbers from one to nine.

1 4 7
2 5 8
3 6 9

Notice how the numbers follow one another down the columns. If you join the
end of each column to the beginning of the next, the numbers are arranged in
counting order.

To recreate this structure in C, you need a two-dimensional array.

static double square[][3] = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};

Notice how the numbers are specified in row-major order; the numbers in each
row are contiguous. In memory, C lays each number down next to the last, so
this array might have equivalently (in terms of memory layout) been declared.

static double square[] = {1, 4, 7, 2, 5, 8, 3, 6, 9};

To a C program, these arrays represent the matrix first presented: a 3-by-3
matrix in which the numbers from one to nine follow one another in counting
order down the columns.

However, if you initialize a 3-by-3 MATLAB mxArray structure with either of
these C arrays, the results will be quite different. MATLAB stores its arrays in
column-major order. MATLAB treats the first three numbers in the array as
the first column, the next three as the second column, and the last three as the
third column. Each group of numbers that C considers to be a row, MATLAB
treats as a column.
4

Working with MATLAB Numeric Arrays
To MATLAB, the C array above represents this matrix.

1 2 3
4 5 6
7 8 9

Note how the rows and columns are transposed.

To construct a matrix where the counting order proceeds down the columns
rather than across the rows, the numbers need to be stored in the C array in
column-major order.

static double square[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

This C array, when used to initialize a MATLAB array, produces the desired
result.

Example Program: Creating Numeric Arrays (ex1.c)
As an illustration, this program creates two arrays and then prints them. The
primary purpose of this example is to present a simple yet complete program.
The code, therefore, demonstrates only one of the ways to create an array. Each
of the numbered sections of code is explained in more detail below. You can find
the code for this example in the <matlab>/extern/examples/cmath directory
on UNIX systems and in the <matlab>\extern\examples\cmath directory on
PCs, where <matlab> represents the top-level directory of your installation.
3-15

3 Working with MATLAB Arrays

3-1
 /* ex1.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

static double real_data[] = { 1, 2, 3, 4, 5, 6 };
static double cplx_data[] = { 7, 8, 9, 10, 11, 12 };

int main()
{
 /* Declare two matrices and initialize to NULL */
 mxArray *mat0 = NULL;
 mxArray *mat1 = NULL;

 /* Enable automated memory management */
 mlfEnterNewContext(0, 0);

 /* Create the matrices and assign data to them */
 mlfAssign(&mat0, mlfDoubleMatrix(2, 3, real_data, NULL));
 mlfAssign(&mat1, mlfDoubleMatrix(3, 2, real_data, cplx_data));

 /* Print the matrices */
mlfPrintMatrix(mat0);

 mlfPrintMatrix(mat1);

 /* Free the matrices */
mxDestroyArray(mat0);

 mxDestroyArray(mat1);

 /* Disable automated memory management */
 mlfRestorePreviousContext(0, 0);

return(EXIT_SUCCESS);
}

1

2

3

4

5

6

Working with MATLAB Numeric Arrays
Notes

1 Include “matlab.h”. This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare two static arrays of real numbers that are subsequently used to
initialize matrices. The data in the arrays is interpreted by the MATLAB C
Math Library in column-major order. The first array, real_data, stores the
data for the real part of both matrices, and the second, cplx_data, stores the
imaginary part of mat1.

3 Create two full matrices with mlfDoubleMatrix(). mlfDoubleMatrix()
takes four arguments: the number of rows, the number of columns, a pointer
to a standard C array of data to initialize the real part of the array and a
pointer to a C array of data to initialize the imaginary part, if present.
mlfDoubleMatrix()allocates an mxArray structure and storage space for the
elements of the matrix, initializing each entry in the matrix to the values
specified in the initialization arrays. The first matrix, mat0, does not have
an imaginary part. The second matrix, mat1, has an imaginary part. mat0
has two rows and three columns, and mat1 has three rows and two columns.

4 Print the matrices. mlfPrintMatrix() calls the installed print handler,
which in this example is the default print handler. See the section Chapter
8 for details on writing and installing a print handler.

5 Free the matrices.

The program produces this output:

1 3 5
2 4 6

1.0000 + 7.0000i 4.0000 +10.0000i
2.0000 + 8.0000i 5.0000 +11.0000i
3.0000 + 9.0000i 6.0000 +12.0000i
3-17

3 Working with MATLAB Arrays

3-1
Working with MATLAB Sparse Matrices
The MATLAB C Math Library includes routines to create and manipulate
sparse arrays. Sparse matrices provides a more efficient storage format for
two-dimensional numeric arrays with few non-zero elements. Only
two-dimensional numeric arrays can be converted to sparse storage format.

Table 3-2 lists the MATLAB C Math Library routines used to create sparse
matrices and perform some basic tasks on them. The sections that follow
provide more detail about using these routines. For more detailed information
about using sparse arrays, see Using MATLAB. For more detailed information
about any of the library routines, see the online MATLAB C Math Library
Reference.

Table 3-2: Sparse Matrix Routines

To ... Use ...

Create a sparse matrix mlfSparse()

Convert a sparse matrix into a full
matrix

mlfFull()

Replace nonzero sparse matrix
elements with ones

mlfSpones()

Replace nonzero sparse matrix
elements with random numbers

mlfSprand()
mlfSprandn()
mlfSprandnsym()

Import from external sparse matrix
format

mlfSpconvert()

Create a sparse identity matrix mlfSpeye()

Extract a band or diagonal group of
elements from a matrix and create a
sparse matrix

mlfSpdiags()

Determine the number of nonzero
elements in a numeric matrix.

mlfNnz()
8

Working with MATLAB Sparse Matrices
Creating a Sparse Matrix
To create a sparse matrix, call the MATLAB C Math Library mlfSparse()
routine. Using this routine, you can create sparse arrays in two ways:

• By converting an existing array to sparse format

• By specifying the data and the location of the data in the sparse array

Converting an Existing Matrix into Sparse Format
To create a sparse matrix from a standard numeric array, use the mlfSparse()
routine. mlfSparse() converts the numeric array into sparse storage format.

To illustrate, the following code fragment creates a 12-by-12 identity matrix.
Of the 144 elements in this matrix, only 12 elements have nonzero values. In
full format, all 144 are allocated storage. When this identity matrix is
converted to sparse matrix format, only the 12 nonzero elements have storage
allocated for them.

Determine if a matrix has any
nonzero elements or if all elements
are nonzero

mlfAny() or
mlfAll()

Determine the amount of storage
allocated for the nonzero elements of
a sparse matrix

mlfNzmax()

Apply a function to all the nonzero
elements of a sparse matrix

mlfSpfun()

Table 3-2: Sparse Matrix Routines (Continued)

To ... Use ...
3-19

3 Working with MATLAB Arrays

3-2
In the example, the NULLs included in the call to mlfSparse() represent
optional arguments. The following section describes these optional arguments.

mxArray *A = NULL;
mxArray *B = NULL;

/* Create the identity matrix */
mlfAssign(&A, mlfEye(mlfScalar(12),NULL));
mlfPrintMatrix(A);

/* Convert the identity matrix to sparse format */
mlfAssign(&B,mlfSparse(A,NULL,NULL,NULL,NULL,NULL));
mlfPrintMatrix(B);

mxDestroyArray(A); /* Free bound arrays */
mxDestroyArray(B);
0

Working with MATLAB Sparse Matrices
This code displays the identity matrix in full and sparse formats.

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1
(6,6) 1
(7,7) 1
(8,8) 1
(9,9) 1
(10,10) 1
(11,11) 1
(12,12) 1

Creating a Sparse Matrix from Data
You can create a sparse matrix, specifying the value and location of all the
nonzero elements when you create it. Using mlfSparse(), you specify as
arguments:

• Two vectors, i and j, that specify the row and column subscripts of the
nonzero elements.

• One vector, s, containing the real or complex data you want to store in the
sparse matrix. Vectors i, j and s should all have the same length.
3-21

3 Working with MATLAB Arrays

3-2
• Two scalar arrays, m and n, that specify the dimensions of the sparse matrix
to be created.

• An optional scalar array that specifies the maximum amount of storage that
can be allocated for this sparse array.

The following code example illustrates how to create a sparse 8-by-7 sparse
matrix from data. This call specifies a single value, 9, for all the nonzero
elements of the sparse matrix which is replicated in all nonzero elements by
scalar expansion. To see the pattern formed by this sparse matrix, see the
output of this code which follows.

static double row_subscripts[] = { 3, 4, 5, 4, 5, 6 };
static double col_subscripts[] = { 4, 3, 3, 5, 5, 4 };

mxArray *i = NULL;
mxArray *j = NULL;
mxArray *S = NULL;

mlfAssign(&i, mlfDoubleMatrix(1, 6, row_subscripts, NULL));
mlfAssign(&j, mlfDoubleMatrix(1, 6, col_subscripts, NULL));

mlfAssign(&S, mlfSparse(i, /* Row subscripts */
j, /* Column subscripts */
mlfScalar(9), /* Data */
mlfScalar(8),
mlfScalar(7),
NULL));

mlfPrintMatrix(S);
mlfPrintMatrix(mlfFull(S));

mxDestroyArray(i);
mxDestroyArray(j);
mxDestroyArray(S);
2

Working with MATLAB Sparse Matrices
This code produces the following output.

(4,3) 9
(5,3) 9
(3,4) 9
(6,4) 9
(4,5) 9
(5,5) 9

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 9 0 0 0
0 0 9 0 9 0 0
0 0 9 0 9 0 0
0 0 0 9 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Converting a Sparse Matrix to Full Matrix Format
You can convert a sparse matrix to a full format matrix by using the mlfFull()
routine. The previous example nested a call to this routine in
mlfPrintMatrix() to show the pattern created by the values in the sparse
matrix.

mlfPrintMatrix(mlfFull(F));

Evaluating Arrays for Sparse Storage
To see if a MATLAB array is a good candidate for sparse format storage,
determine the number of nonzero elements in an array, using the mlfNnz()
routine. The following code fragment creates the same 12-by-12 identity
matrix, shown in the example in “Converting an Existing Matrix into Sparse
3-23

3 Working with MATLAB Arrays

3-2
Format” on page 3-19, and then prints out the number of nonzero elements in
the matrix.

mxArray *I = NULL;

/* Create the array */
mlfAssign(&I, mlfEye(mlfScalar(12),NULL));

/* Determine the number of nonzero elements */
mlfPrintMatrix(mlfNnz(I));

mxDestroyArray(I);

This code outputs the number of nonzero elements in the 12-by-12 identity
matrix: 12.
4

Working with MATLAB Character Arrays
Working with MATLAB Character Arrays
The MATLAB C Math Library also includes routines to create and manipulate
character arrays. One-dimensional character arrays are also called strings.
Multidimensional character arrays are also called arrays of strings. In an array
of strings, each string must be the same length. The routines that create arrays
of strings use blanks to pad the strings to the same length. In a cell array of
strings, individual strings can be different lengths. For information about cell
arrays, see “Working with MATLAB Cell Arrays” on page 3-30.

Table 3-3 lists the MATLAB C Math Library routines used to create character
arrays and perform some basic tasks with them. The sections that follow
provide more detail about using these routines. For more detailed information
about using character arrays, see Using MATLAB. For more detailed
information about any of the library routines, see the online MATLAB C Math
Library Reference.

Table 3-3: Character Array Routines

To ... Use ...

Create a character array mxCreateString()

Create a character array from a
numeric array

mlfChar()

Convert a character array to its
underlying numeric representation.

mlfDouble()

Concatenate character strings into a
multidimensional, blank-padded
character array

mlfStr2mat()
mlfStrcat()
mlfStrvcat()

Convert an array of blank-padded
character strings into a cell array of
strings

mlfCellstr()

Concatenate each character string
in a cell array of strings into a
multidimensional array of strings.

mlfChar()
3-25

3 Working with MATLAB Arrays

3-2
Creating MATLAB Character Arrays
Wherever you pass a character string to a MATLAB C Math Library routine,
the string must be a MATLAB character string array, not a standard C
null-terminated character string. MATLAB represents characters in 16-bit,
Unicode format.

Using Explicit Character Array Creation Routines
The easiest way to create a MATLAB character string is with the MATLAB
API routine mxCreateString(). You pass this routine a standard C character
string as an argument, delimited by double quotation marks. (In the MATLAB
interpreted environment, strings are delimited by single quotation marks.)

mxArray *A = NULL;

mlfAssign(&A, mxCreateString("my string"));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code produces the following output.

my string

Remove extra blank characters from
individual rows in a character array.

mlfDeblank()

Display a character string. mlfDisp(), mlfPrintMatrix()

Convert a number to its string
representation, specifying format.

mlfNum2Str()

Convert an array of integers into a
string array.

mlfInt2str()

Convert character string to a
numeric array.

mlfStr2num()

Table 3-3: Character Array Routines (Continued)

To ... Use ...
6

Working with MATLAB Character Arrays
Converting Numeric Arrays to Character Arrays
To convert a numeric array into a character array, use the mlfChar() routine.
The following code creates an array containing the ASCII codes for each
character in “my string” and then call mlfChar() to convert this numeric array
into a MATLAB character array.

mxArray *i;
static double ASCII_codes[] = {109,121,32,115, \

116,114,105,110,103 };

mlfAssign(&i, mlfDoubleMatrix(1, 9, ASCII_codes, NULL));

mlfPrintMatrix(mlfChar(i,NULL));

mxDestroyArray(A);

This code produces the following output.

my string

To convert this character array back into its underlying numeric
representation in double precision format, use the mlfDouble() routine.

Creating Multidimensional Arrays of Strings
You can create a multidimensional array of MATLAB character strings;
however, each string must have the same length. The MATLAB C Math
Library routines that create arrays of character strings pad the strings with
blanks to make them all a uniform length.

Note To create a multidimensional character array without padding, use cell
arrays. For more information, see “Working with MATLAB Cell Arrays” on
page 3-30.
3-27

3 Working with MATLAB Arrays

3-2
To illustrate, the following code fragment creates a two-dimensional array
character from two strings of different lengths.

mxArray *A = NULL;
mxArray *D1 = NULL;
mxArray *D2 = NULL;

/* create array of strings */
mlfAssign(&A, mlfChar(mxCreateString("my string"),

 mxCreateString("my dog"),
 NULL));

mlfPrintMatrix(A);

/* Get the size of each dimension of the array of strings */
mlfSize(mlfVarargout(&D1,&D2,NULL),A,NULL);

/* Print out the size of each dimension */
mlfFprintf(mlfScalar(1),

 mxCreateString("Resulting array is %d-by-%d.\n"),
D1,
D2,
NULL);

mxDestroyArray(A);
mxDestroyArray(D1);
mxDestroyArray(D2);

As the following output illustrates, mlfChar() creates an 2-by-9 character
array. This indicates that it added three blanks characters to the string ”my
dog” to make it the same length as ”my string.”

my string
my dog

Resulting array is 2-by-9.

You can also use the mlfStrcat(), mlfStrvcat() and mlfStr2mat() routines
to group strings into a multidimensional character array. For more information
about these routines, see the online MATLAB C Math Library Reference.
8

Working with MATLAB Character Arrays
Accessing Individual Strings in an Array of Strings
You can manipulate multidimensional character arrays just as you would a
standard MATLAB numeric array. For example, to extract an individual string
from a character array, use standard MATLAB indexing syntax. Note,
however, that a string extracted from a character array in this fashion may
contain blank padding characters. To remove these blank characters from the
character array, use the mlfDeblank() routine.

The following code fragment extracts the string ”my dog” from the character
array, A, created in the previous section. This is equivalent to the MATLAB
statement B = A(2,:). The example displays the size of the extracted array, B,
before and after removing blanks. Note that the index format string is passed
as a standard C string; it does not need to be a MATLAB character array.

mxArray *B = NULL;

mlfAssign(&B,mlfIndexRef(A,
"(?,?)", /* index format string */
mlfScalar(2), /* row two */
mlfCreateColonIndex()));

mlfPrintMatrix(mlfSize(NULL,B,NULL));
mlfPrintMatrix(mlfSize(NULL,mlfDeblank(B),NULL));

mlfPrintMatrix(B);

mxDestroyArray(B);

This code produces the following output.

1 9
1 6
3-29

3 Working with MATLAB Arrays

3-3
Working with MATLAB Cell Arrays
MATLAB cell arrays provide a way to group together a collection of dissimilar
MATLAB arrays.

Table 3-4 lists the MATLAB C Math Library routines used to create cell arrays
and perform basic tasks with them. The sections that follow provide more
detail about using these routines. For more detailed information about using
cell arrays, see Using MATLAB. For more detailed information about any of
the library routines, see the online MATLAB C Math Library Reference.

Creating Cell Arrays
The MATLAB C Math Library allows you to create cell arrays by:

• Using a cell array creation function

• Using a cell array conversion function

• Concatenating existing arrays

• Assigning a value to an element in a cell array

Table 3-4: Cell Array Routines

To ... Use ...

Create a multidimensional array of
empty cells

mlfCell()

Convert an array of blank-padded
character strings into a cell array of
strings

mlfCellstr()

Create a cell array by concatenating
existing arrays

mlfCellhcat()

Convert a structure into a cell array mlfStruct2Cell()

Convert a numeric array into a cell
array

mlfNum2cell()

View the contents of each cell in a
cell array

mlfCelldisp()
0

Working with MATLAB Cell Arrays
Using the Cell Array Creation Routine
You can create an array of empty cells using the mlfCell() routine. The
following code fragment creates a 2-by-3-by-2 array of empty cells.

mxArray *A = NULL;

mlfAssign(&A, mlfCell(mlfScalar(2),
mlfScalar(3),
mlfScalar(2),
NULL));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code produces the following output.

(:,:,1) =
[] [] []
[] [] []

(:,:,2) =
[] [] []
[] [] []

MATLAB uses brackets to indicate cell array elements and [] represents an
empty cell. You can then assign values to cells in the array using assignment.
For an example of assigning a value to a cell in a cell array, see “Using
Assignment to Create Cell Arrays” on page 3-34.

Using Cell Array Conversion Routines
You can also create cell arrays by converting other MATLAB arrays into cell
arrays. The MATLAB C Math Library includes routines that convert a numeric
array into a cell array, mlfNum2cell(), or a structure into a cell array,
mlfStruct2cell().
3-31

3 Working with MATLAB Arrays

3-3
The following code fragment creates a numeric array, using mlfOnes(), and
converts it into a cell array using the mlfNum2cell() routine.

mxArray *N = NULL;
mxArray *C = NULL;

/* Create a numeric array */
mlfAssign(&N, mlfOnes(mlfScalar(2),mlfScalar(3),NULL));
mlfPrintMatrix(N);

/* Convert it into a cell array */
mlfAssign(&C, mlfNum2cell(N,NULL));

mlfPrintMatrix(C);

mxDestroyArray(N);
mxDestroyArray(C);

In this output, the brackets indicate that each element in the numeric array
has been placed into a cell in the cell array.

1 1 1
1 1 1

[1] [1] [1]
[1] [1] [1]

The brackets indicate cell array elements.

Using Concatenation to Create Cell Arrays
You can group existing MATLAB arrays into a cell array by concatenation. In
MATLAB, you use the {} (braces) operator to create cell arrays through
2

Working with MATLAB Cell Arrays
concatenation. For example, you can use the following syntax in MATLAB to
concatenate arrays into a cell array:

» A = 1:10
A =

1 2 3 4 5 6 7 8 9 10

» B= 'my string'
B =
my string

» C = [1 2 3; 4 5 6]
C =
 1 2 3
 4 5 6

» D = { A B C }
D =
 [1x10 double] 'my string' [2x3 double]

To create the same cell array through concatenation in a C program, use the
MATLAB C Math Library mlfCellhcat() routine. This routine performs the
same function as {}, the MATLAB cell concatenation operator.

mxArray *A = NULL;
mxArray *B = NULL;
mxArray *C = NULL;
mxArray *D = NULL;
static double data[] = { 1, 4, 2, 5, 3, 6 };

mlfAssign(&A, mlfColon(mlfScalar(1),mlfScalar(10),NULL));
mlfAssign(&B, mxCreateString("my string"));
mlfAssign(&C, mlfDoubleMatrix(2, 3, data, NULL));

mlfAssign(&D, mlfCellhcat(A,B,C,NULL));
mlfPrintMatrix(D);

mxDestroyArray(A);
mxDestroyArray(B);
mxDestroyArray(C);
mxDestroyArray(D);
3-33

3 Working with MATLAB Arrays

3-3
To see the output from this code fragment, see “Displaying the Contents of a
Cell Array” on page 3-34.

Using Assignment to Create Cell Arrays
You can also create a cell array by assigning a value to a location in a cell array,
using the mlfIndexAssign() routine. The MATLAB C Math Library creates a
cell array large enough to accommodate the specified location or expands an
existing array. For more information about using indexing with cell arrays, see
Chapter 5.

The following example is equivalent to the MATLAB statement,
A(2,2) = {17}. Note the use of curly braces in the index subscript format
string: "{?,?}". This syntax indicates you want to create a cell array. Also note
that the index subscript format string may be passed as a standard C character
string; it does not need to be a MATLAB character array.

mxArray *A = NULL;

mlfIndexAssign(&A,
"{?,?}", /* index subscript format string */
mlfScalar(2), /* index value */
mlfScalar(2), /* index value */
mlfScalar(17)); /* value to be assigned */

mlfPrintMatrix(A);

mxDestroyArray(A);

The following output shows the cell array created by this code fragment.

[] []
[] [17]

Displaying the Contents of a Cell Array
When you use mlfPrintMatrix() or mlfDisp() to display a cell array, the
MATLAB C Math Library displays the type of array stored in each cell but it
does not display the contents of the cell (except for string arrays and scalar
values). To view the contents of each cell, you must use the mlfCelldisp()
routine.
4

Working with MATLAB Cell Arrays
The mlfCelldisp() routine supports a second, optional argument which
specifies the text string used to identify each cell in the output. In the example,
the character “D” is passed to mlfCelldisp() as its second argument. This
appears in the output in the line that prefixes each cell, such as "D{1} =". If
you do not specify this second argument, mlfCelldisp() uses the text string
"ans", as in "ans{1} =".

The following code fragment creates a cell array and prints out the cell array
using both mlfPrintMatrix() and mlfCelldisp().

mxArray *A = NULL;
mxArray *B = NULL;
mxArray *C = NULL;
mxArray *D = NULL;
static double data[] = { 1, 4, 2, 5, 3, 6 };

mlfAssign(&A, mlfColon(mlfScalar(1),mlfScalar(10),NULL));
mlfAssign(&B, mxCreateString("my string\n"));
mlfAssign(&C, mlfDoubleMatrix(2, 3, data, NULL));

mlfAssign(&D, mlfCellhcat(A,B,C,NULL));

mlfPrintMatrix(mxCreateString("The mlfPrintMatrix() output:"));
mlfPrintMatrix(D);

mlfPrintMatrix(mxCreateString("The mlfCelldisp() output:"));
mlfCelldisp(D,mxCreateString("D"));

mxDestroyArray(A);
mxDestroyArray(B);
mxDestroyArray(C);
mxDestroyArray(D);
3-35

3 Working with MATLAB Arrays

3-3
This code produces the following output:

The mlfPrintMatrix() output:
[2x3 double] [1x5 double] ’my string’

The mlfCellDisp() output:
D{1} =

1 2 3 4 5 6 7 8 9 10

D{2} =
my string

D{3} =
 1 2 3
 4 5 6
6

Working with MATLAB Structures
Working with MATLAB Structures
A MATLAB structure can be thought of as a one-dimensional cell array in
which each cell is assigned a name. These named cells are called fields. You can
create multidimensional arrays of structures; all the structures in an array of
structures must have the same fields.

Table 3-5 lists the MATLAB C Math Library routines used to create structures
and perform basic tasks with them. The sections that follow provide more
detail about using these routines. For more detailed information about using
structures, see Using MATLAB. For more detailed information about any of the
library routines, see the online MATLAB C Math Library Reference.

Table 3-5: MATLAB Structure Routines

To ... Use ...

Create a structure an initialize it
with values.

mlfStruct()

Convert a cell array into a
structure.

mlfCell2struct()

Determine the names of the fields
in a structure.

mlfFieldnames()

Determine if a string is the name
of a field in a structure.

mlfIsfield()

Access the contents of a field in a
structure.

mlfGetfield()

Specify the value of a field in a
structure.

mlfSetfield()

Remove a field from each structure
in an array of structures.

mlfRmfield()
3-37

3 Working with MATLAB Arrays

3-3
Creating Structures
The MATLAB C Math Library allows you to create structures by:

• Using a structure creation routine

• Using a structure conversion routine

• Assigning a value to an element in a structure

Using a Structure Creation Routine
You can create a structure using the mlfStruct() routine. This routine lets you
define the fields in the structure and assign a value to each field. For example,
the following code fragment creates a structure that contains two fields, a text
string and a scalar value.

mxArray *A = NULL;

mlfAssign(&A, mlfStruct(mxCreateString("name"), /* Field */
mxCreateString("John"), /* Value */
mxCreateString("number"), /* Field */
mlfScalar(311), /* Value */
NULL));

mlfPrintMatrix(A);

mlfDestroyArray(A)

This code produces the following output:

name: ’John’
number: 311

Because the mlfStruct() routine can accept a varying number of input
arguments, you must terminate the argument list with a NULL.

Creating Multidimensional Arrays of Structures
The mlfstruct() routine defines the fields and values in a single instance of a
structure, in effect a 1-by-1 structure array. To create a multidimensional
array of structures, use MATLAB indexing to assign a value to a field in a
structure with an index other than (1,1). MATLAB will extend the array of
structures to accommodate the location specified. For more information about
8

Working with MATLAB Structures
using assignment with structures, see “Using Assignment to Create
Structures” on page 3-40.

Using a Structure Conversion Routine
You can also create structures by converting an existing MATLAB cell array
into a structure, using the mlfCell2struct() routine. This example creates a
cell array to be converted, and a second cell array that specifies the names of
the fields in the structure. You pass these two cell arrays, along with the
dimensions of the structure array, as arguments to mlfCell2struct().

mxArray *C = NULL; /* cell array to convert */
mxArray *F = NULL; /* cell array of field names */
mxArray *S = NULL; /* structure */

/* create cell array to be converted */
mlfAssign(&C, mlfCellhcat(mxCreateString("tree"),

mlfScalar(37.4),
mxCreateString("birch"),
NULL));

/* create cell array of field names */
mlfAssign(&F, mlfCellhcat(mxCreateString("category"),

mxCreateString("height"),
mxCreateString("name"),
NULL));

/* convert cell array to structure */
mlfAssign(&S,mlfCell2struct(C,F,mlfScalar(2)));

mlfPrintMatrix(C);
mlfPrintMatrix(S);

mlfDestroyArray(C);
mlfDestroyArray(F);
mlfDestroyArray(S);

Note that, because mlfCellhcat() accepts a variable number of input
arguments, you must terminate the input argument list with a NULL.
3-39

3 Working with MATLAB Arrays

3-4
This code generates the following output.

’tree’ [37.4000] ’birch’

category: ’tree’
height: 37.4000
name: ’birch’

Using Assignment to Create Structures
You can also create a structure by assigning a value to a location in a structure,
using the mlfIndexAssign() routine. The MATLAB C Math Library creates a
structure (or array of structures) large enough to accommodate the location
specified by the index string. For more information about structure indexing,
see Chapter 5.

The following example is equivalent to the MATLAB statement,
A(2) = struct(’name’,’jim’,’number’,312).

mxArray *A = NULL;

mlfIndexAssign(&A,
"(?)", /* Index subscript format string */
mlfScalar(2), /* Index subscript value */
mlfStruct(mxCreateString("name"), /* Field */

mxCreateString("Jim"), /* Value */
mxCreateString("number"),/* Field */
mlfScalar(312), /* Value */
NULL));

mlfPrintMatrix(A);

mlfDestroyArray(A);

The following output shows the structure created by this code fragment.

1x2 struct with fields
name
number

For more detailed information about using mlfIndexAssign() to assign values
to fields in a structure, see Chapter 5.
0

Performing Common Array Programming Tasks
Performing Common Array Programming Tasks
The following sections describes common array programming tasks that you
must perform for all types of MATLAB array.

Allocating and Freeing MATLAB Arrays
When you create a MATLAB array, using any of the array creation
mechanisms, the MATLAB C Math Library allocates the storage for the array.
The responsibility for freeing the allocated storage is shared between you and
the library automated memory management facility.

When automated memory management is enabled, all the arrays returned by
library routines are temporary. That is, when these arrays are passed to
another library routine, that routine destroys the array before returning. This
capability allows you to nest, or compose, calls to MATLAB C Math Library
routines without causing memory leaks. The calls to the mlfScalar() routine
which are nested in the examples in this chapter illustrate routine nesting.

If your application needs to use an array several times, you must assign the
array to an mxArray pointer variable to make it persist. This is called binding
the array to a variable. You use the mlfAssign() routine to bind an array to an
array pointer variable. Arrays returned as output arguments are bound to
variables automatically by the library. Any array you bind to a variable you
must explicitly free. Use the mxDestroyArray() routine to free bound arrays.

All the code examples in this chapter assume that the MATLAB C Math
Library automated memory management is enabled. For information about
enabling memory management, see Chapter 4.

Displaying MATLAB Arrays
To output an array to the display, use the MATLAB C Math Library
mlfPrintMatrix() routine. This routine can display all types of MATLAB
arrays of any dimension. The following code fragment creates a 2-by-2 matrix
3-41

3 Working with MATLAB Arrays

3-4
filled with ones and then uses mlfPrintMatrix() to output the array to the
screen.

mxArray *A = NULL;

mlfAssign(&A,mlfOnes(mlfScalar(2),mlfScalar(2),NULL));

mlfPrintMatrix(A);

mxDestroyArray(A);

This code produces the following output.

1 1
1 1

When used with a cell array, the mlfPrintMatrix() output includes the type
and size of the array stored in each cell but not the data in the array (except for
scalar arrays and character arrays). To view the data in each cell in a cell array,
you must use the mlfCelldisp() routine. See page 3-34 for more information.

Formatting Output
You can also create formatted array output using the mlfFprintf() routine.
This routine allows you to create your own output formats and applies these
formats to all the elements in a MATLAB array. For example, if you specify the
format string "%d", mlfFprintf() prints out each element in an array as an
integer.

Note Do not confuse mlfFprintf() with mlfPrintf(). mlfFprintf() can
format MATLAB arrays; mlfPrintf() does not. mlfPrintf() is the same as
the standard C printf() routine except that it directs output to the MATLAB
print handler. For more information about print handlers, see Chapter 8.
2

Performing Common Array Programming Tasks
The following code prints the 2-by-2 array, A, created in the previous section to
the display.

mxArray *A = NULL;

mlfAssign(&A,mlfOnes(mlfScalar(2),mlfScalar(2),NULL));

mlfFprintf(mlfScalar(1), /* stdout */
mxCreateString("Array A = %d\n"), /* format string */
A, /* array */
NULL);

This code produces the following output, illustrating how mlfFprintf()
applies the format to each element in an array.

array A = 1
array A = 1
array A = 1
array A = 1

Determining Array Type
The MATLAB C Math Library includes several routines that allow you to
determine the type of an array. Each routine tests for a particular type of array
and returns 1 if the array being tested matches the indicated type and 0 (zero)
otherwise.

Table 3-6: Array Type Routines

Array Type Routine

Numeric array mlfIsnumeric()

Character array mlfIschar()

Sparse array mlfIssparse()

Cell array mlfIscell()

Cell array of strings mlfIscellstr()

Structure mlfIsstruct()
3-43

3 Working with MATLAB Arrays

3-4
As an example, the following code uses the mlfIsnumeric() routine to test if a
2-by-2 array of ones is a numeric array.

mxArray *A = NULL;
mxArray *B = NULL;

/* Create two-dimensional array */
mlfAssign(&A, mlfOnes(mlfScalar(2),mlfScalar(2),NULL));

/* Determine if array is numeric */
mlfAssign(&B, mlfIsnumeric(A));

mlfFprintf(mlfScalar(1), /* stdout */
mxCreateString("Isnumeric returns %d.\n"),
B, /* array */
NULL);

mxDestroyArray(A);
mxDestroyArray(B);

Because the array created is numeric, this code produces the following output:

Isnumeric returns 1.

Determining the Size of an Array
To determine the size of an array, use the mlfSize() routine. The mlfSize()
routine returns a row vector containing the dimensions of the array. This code
4

Performing Common Array Programming Tasks
example creates a 2-by-3-by2 array and displays the size vector returned by
mlfSize().

mxArray *A = NULL;
mxArray *dims = NULL;

/* Create three-dimensional array */
mlfAssign(&A, mlfOnes(mlfScalar(2),

mlfScalar(3),
mlfScalar(2),
NULL));

/* Determine size of array */
mlfAssign(&dims, mlfSize(NULL,A,NULL));

/* Display size vector */
mlfPrintMatrix(mxCreateString("The size of the array is \n"));
mlfPrintMatrix(dims);

mxDestroyArray(A);
mxDestroyArray(dims);

This code produces the following output:

The size of the array is
 2 3 2

Obtaining the Length of a Single Dimension
You can also get the size of one particular dimension of an array by specifying
the dimension as an input argument. To get the length of the longest dimension
of a multidimensional array, use the mlfLength() routine. You can also use
this routine to determine the size of a vector.

Returning the Dimensions in Separate Arrays
The mlfSize() routine can optionally return each dimension in a separate
array. You specify these arrays as output arguments passed to the
mlfVarargout() routine. (For more information about calling library routines
that take variable number of input and output arguments, see Chapter 6.)

The following code returns the dimensions in three output arguments: dim1,
dim2, and dim3. When used with output arguments, you do not need to bind the
3-45

3 Working with MATLAB Arrays

3-4
return value from mlfSize() to a variable. The routine binds the return values
to the output arguments specified. As with all bound arrays, you must
explicitly free them.

mlfSize(mlfVarargout(&dim1,&dim2,&dim3,NULL), C, NULL);

mxDestroyArray(dim1);
mxDestroyArray(dim2);
mxDestroyArray(dim3);

If the array has more dimensions than the number of output arguments
specified, the last output argument contains the product of the remaining
dimensions.

Determining the Shape of an Array
To determine the number of dimensions of an array, use the mlfNdims()
routine. This code uses mlfNdims() to get the number of dimensions of a
2-by-3-by-2 array.

mxArray *A = NULL;
mxArray *ndims = NULL;

/* Create three-dimensional array */
mlfAssign(&A, mlfOnes(mlfScalar(2),

mlfScalar(3),
mlfScalar(2),
NULL));

/* Determine dimensions */
mlfAssign(&ndims, mlfNdims(A));

mlfFprintf(mlfScalar(1),
 mxCreateString("The array has %d dimensions"),

ndims,
NULL);

mxDestroyArray(A);
mxDestroyArray(ndims);

This code outputs the value 3, indicating that the array C is a
three-dimensional array.
6

Why Choose Automated Memory Management? 4-3
Using Explicit Memory Management 4-4

Using Arrays Under Automated Memory Management . 4-6
Definitions . 4-6
Rules for Array Usage 4-8
Assigning Arrays to mxArray* Variables 4-9
Nesting Calls to Functions that Return Arrays 4-11
Deleting Your Arrays 4-11
Avoiding Memory Leaks in Your Functions 4-12

Writing Functions Under Automated Memory
Management 4-14

Using a Function Template As an Example 4-14
Preparing Function Arguments for a New Context 4-16
Restoring Function Arguments to their Previous Context . . 4-18
Returning an Array from Your Function 4-20
Summary of Coding Steps 4-22

Example Program: Managing Array Memory (ex2.c) . . 4-24
Example Without Automated Memory Management 4-31

Restrictions on Function Calling 4-33
Function Uses Automated Memory Management 4-33
Function Does Not Use Automated Memory Management . . 4-33

Setting Up Your Own Allocation and Deallocation
Routines 4-35
4

Managing Array Memory

Overview . 4-2

4 Managing Array Memory

4-2
Overview
This chapter shows you how to manage array memory in the functions that you
write with the MATLAB C Math Library. The chapter:

• Explains the rules for assigning values to arrays, nesting calls to library
functions, and deleting arrays.

You will use the library functions mlfAssign() for assignment and
mxDestroyArray() for deletion.

• Shows you how to enable automated memory management in each function
that you write.

The functions that you write follow the pattern of this template code. In this
code, memory management routines are highlighted by grey boxes.

mxArray *FunctionName(mxArray **output_arg1, mxArray *input_arg1,
 mxArray *input_arg2)
{
 mxArray *local_return_value = NULL;
 mxArray *local_var1 = NULL;

mxArray *local_var2 = NULL;

 /* Perform the work of the function. */
 /* */

/* Note: Don’t destroy local_return_value */
mxDestroyArray(local_var1);
mxDestroyArray(local_var2);

}

mlfEnterNewContext(1,2, output_arg1, input_arg1, input_arg2)

mlfRestorePreviousContext(1,2,
 output_arg1, input_arg1, input_arg2);

return mlfReturnValue(local_return_value);

Overview
Any main function that you write follows the pattern of this template code.

int main()
{
 /* Initialize variables. */

 /* Perform the work of main(). */

 return(EXIT_SUCCESS);
}

Note Be sure to look over the example program later in this chapter. To use
automated memory management, you must follow explicit guidelines for each
function that you write.

Why Choose Automated Memory Management?
The MATLAB C Math Library provides two ways for you to manage array
memory:

• Automated memory management (new in Version 2.0 of the library)

• Explicit memory management

In versions of the MATLAB C Math Library prior to Version 2.0, explicit
memory management was the only memory management technique. It is still
available, and existing code is compatible with the routines that use automated
memory management. See ‘‘Restrictions on Function Calling’’ on page 4-33 to
learn about the compatibility between the two styles of managing memory.

You must choose either automated memory management or explicit memory
management to manage array memory in your application. We strongly
recommend that you choose the automated memory management technique
because of the benefits it offers:

mlfEnterNewContext(0,0);

mlfRestorePreviousContext(0,0);
4-3

4 Managing Array Memory

4-4
• You can embed calls to library functions as function arguments.

• You don’t need to declare mxArray* variables to store temporary values, or
explicitly delete those temporary arrays.

• Your code is typically more compact and more readable. A formula that
contains multiple function calls can be written as a single line of code rather
than several.

For example, compare the MATLAB code

z = sin(x) + cos(y)

to this C code that uses automated memory management

mlfAssign(&z, mlfPlus(mlfSin(x), mlfCos(y)));

and then to this C code that uses explicit memory management.

mxArray *temp_x, *temp_y;

temp_x = mlfSin(x);
temp_y = mlfCos(y);
z = mlfPlus(tempx, temp_y);
mxDestroyArray(temp_x);
mxDestroyArray(temp_y);

Using automated memory management makes your code more like MATLAB.
The code is easier to write, easier to read, and far less likely to leak memory.

Using Explicit Memory Management
Routines in the MATLAB C Math Library return a pointer to a newly allocated
mxArray. Versions of the MATLAB C Math Library prior to Version 2.0
required you to follow a strict set of rules to prevent memory leaks. You were
required to assign the returned mxArray to an array variable before passing it
to another function. You could not nest calls to library functions. When you
were finished with an array, you were required to explicitly delete it.

Explicit memory management still works this way. All arrays are treated alike.

Overview
Under explicit memory management:

• You assign a value to an mxArray* variable in two different ways:

- By using the assignment operator (=) to assign the return value from a
library function to an mxArray* variable.

- By passing an mxArray* variable (uninitialized or initialized to NULL) as an
output argument to a library function. The function assigns a value to it.

Then you must:

• Delete each array with mxDestroyArray() when you’re done using it.

Because explicit memory management requires that you declare array
variables for all your arrays and make calls to mxDestroyArray(), it is
error-prone, resulting in memory leaks.

See ‘‘Example Without Automated Memory Management’’ on page 4-31 for an
example of explicit memory management.
4-5

4 Managing Array Memory

4-6
Using Arrays Under Automated Memory Management
This section describes how to work with arrays under automated memory
management. The section:

• Defines temporary and bound arrays

• Lists the rules for working with arrays

• Describes how to assign values to array variables

• Describes how to nest calls to library functions

• Describes when you need to delete arrays

• Describes how to avoid memory leaks

See ‘‘Writing Functions Under Automated Memory Management’’ on page 4-14
for information about writing your own functions that include the assignments,
deletions, and nested calls to functions described in this section.

Definitions
Automated memory management distinguishes between two types of arrays:

• Temporary arrays

• Bound arrays

Understanding the definition of the temporary and bound states for an array
will help you understand:

• Why you can nest calls to library functions

• Why you need to call mlfAssign() rather than use the assignment operator
(=) for assignments

• Why you need to follow the rules for writing functions presented in ‘‘Writing
Functions Under Automated Memory Management’’ on page 4-14

This diagram illustrates how library functions return temporary arrays and
how arrays become bound if they are assigned to an array variable (mxArray *).

Using Arrays Under Automated Memory Management
Definition of a Temporary Array. MATLAB C Math Library functions return
pointers to newly allocated mxArrays as their return values. The library marks
these arrays as temporary arrays.

Key Behavior for a Temporary Array. When you pass a temporary array as an input
argument to another library function, that function deletes the temporary
array before it returns. You do not have to delete it yourself. This behavior
allows you to embed calls to library functions as arguments to other library
functions without leaking memory.

Definition of a Bound Array. To make an array persist, you must assign it to a
variable by using the function mlfAssign() or pass an array variable as an
output array argument to a library function. The MATLAB C Math Library
marks the array as a bound array.

Key Behavior for a Bound array. When you pass a bound array as an input
argument to another library function, the array still exists when the function
completes. Bound arrays are not automatically deleted; you must explicitly
delete the array by calling mxDestroyArray().

mlfAssign(&A, mlfOnes(mlfScalar(4));

Bound Array

Temporary Array Temporary Array
4-7

4 Managing Array Memory

4-8
Rules for Array Usage
You must follow these rules for using arrays under automated memory
management:

• You can assign a value to an mxArray* variable in two different ways:

- By calling mlfAssign() to assign the return value from a library function
to an mxArray* variable.

Conceptually, mlfAssign() is like the assignment operator. Its first
argument (an mxArray**) corresponds to the lefthand side of an
assignment statement. Its second argument (an mxArray*) corresponds to
the righthand side. For example,

mlfAssign(&B, mlfRand(dim));

is equivalent to the MATLAB code B = rand(dim).

- By passing a pointer to an initialized (to NULL or a valid array) array
variable as an output argument to a function. Internally, the function
assigns a value to it by calling mlfAssign(). For example,

mxArray *U = NULL, *S = NULL, *V = NULL;
mlfAssign(&U, mlfSvd(&S, &V, X, NULL));

mlfSvd() calls mlfAssign() on the output arguments S and V, making
them bound arrays.

• You can nest calls to MATLAB C Math Library functions. For example,
mlfAssign(&z, mlfPlus(mlfSin(x), mlfCos(y)));

• You must delete each array that is bound to a variable. For example,
mxDestroyArray(A);

Paradigm for Working with Local Array Variables
If you follow this paradigm in your code, managing memory for local array
variables becomes straightforward.

Implied by the paradigm: Let the library manage array memory between the
initialization of arrays and the deletion of arrays:

Using Arrays Under Automated Memory Management
• Declare and initialize local array variables at the beginning of your function.
For example, from the template code on page 4-2,
mxArray *local_return_value = NULL;
mxArray *local_var1 = NULL;
mxArray *local_var2 = NULL;

• Use the local array variables in the course of your function: assigning values
to them, passing them as input or output arguments to other functions. In
the template code, this section is simply commented.
/* Perform the work of the function. */

• Destroy local array variables at the end of your function. For example, from
the template code,

/* Note: Don’t destroy local_return_value */
mxDestroyArray(local_var1);
mxDestroyArray(local_var2);

Note You may be used to initializing local array variables to valid arrays
when you declare the variables. You can no longer do so. Although you can
initialize array variables to NULL when you declare them, you must make a
separate call to mlfAssign() to initialize the variable to a valid array.

Assigning Arrays to mxArray* Variables
You assign a value to an array variable (mxArray *) by calling mlfAssign().
MATLAB C Math Library functions call mlfAssign() to assign values to the
array output arguments passed to them.

Prototype:

mxArray *mlfAssign(mxArray **dest, mxArray *src);

mlfAssign() copies the array value from its second argument src
(representing the righthand side of the assignment) to its first argument *dest
(representing the lefthand side of the assignment). If src is a temporary array,
mlfAssign() only copies the pointer without copying the array data. For
example,

mlfAssign(&Y, mlfCos(X));
4-9

4 Managing Array Memory

4-1
assigns the array returned by mlfCos() to Y, a pointer to an mxArray.

mlfAssign() marks the assigned array as a bound array. You are responsible
for deleting the bound arrays that result from a call to mlfAssign().

Note Always call mlfAssign() when you want an array to persist. Do not use
the assignment operator (=). Becoming accustomed to programming with
mlfAssign() rather than the assignment operator (=) is the biggest
adjustment you’ll need to make when programming with automated memory
management.

Assigning a Value to an Array Destroys Its Previous Value
If you assign a value to an array variable that already has a value,
mlfAssign() destroys the variable’s previous value before assigning the new
value. You do not need to call mxDestroyArray() before calling mlfAssign().
For example, in these two statements,

mlfAssign(&c, mlfScalar(5));
mlfAssign(&c, mlfScalar(6));

mlfAssign() destroys the contents of c (the scalar array 5) before assigning the
scalar array containing 6 to c.

Exception. Just as the MATLAB language preserves the value of an array
passed as an input argument across a function call, mlfAssign() leaves an
array value unchanged (does not make a copy) if the array is a bound (not
temporary) input array argument on entry to the function. For example, given
this function

mxArray *func(mxArray **a, mxArray *b)

and this call within the function

mlfAssign(&b, mlfScalar(5));

mlfAssign() modifies the value of b locally within the function. However,
because b is an input argument, the call to mlfAssign() does not destroy the
old value.
0

Using Arrays Under Automated Memory Management
Assignment by Value
mlfAssign() implements assignment by value. When the array on the
righthand side of the assignment (the second argument to mlfAssign()) is
already bound to a variable, the array on the lefthand side receives a copy of
that array. For example,

mxArray *A = NULL;
mxArray *B = NULL;

mlfAssign(&A, mlfRand(mlfScalar(4)));
mlfAssign(&B, A);

A and B point to two different arrays.

Note that the copy is actually a shared-data copy until the application requires
two separate copies of the data. The MATLAB C Math Library supports full
copy-on-write semantics.

Nesting Calls to Functions that Return Arrays
You can nest calls to library functions as arguments to other library functions.
When you nest calls, the library deletes the array returned from the call for
you. For example, when you call the library’s indexing functions, you can
embed the calls to mlfScalar() that define the index values.

mlfAssign(&B,
mlfIndexRef(A, "(?,?)", mlfScalar(2), mlfScalar(2)));

The two calls to mlfScalar() each return a temporary array that the function
mlfIndexRef() deletes just before it returns.

See ‘‘Writing Functions Under Automated Memory Management’’ on page
4-14, which explains the rules for writing functions so that they can be nested.

Deleting Your Arrays
You must explicitly delete:

• Any array that you’ve bound to a variable by calling mlfAssign()

• Any array that you’ve passed as an output argument to a function
4-11

4 Managing Array Memory

4-1
mxDestroyArray() destroys the array (mxArray*) passed to it. For example,

mxDestroyArray(A);

destroys array A.

mxDestroyArray() does handle a NULL argument. However, mxDestroyArray()
does not reinitialize the mxArray* pointer passed to it to NULL. If you assign an
array to an mxArray* variable and subsequently delete that array by calling
mxDestroyArray(), then you must reinitialize the mxArray* variable to NULL
before reassigning another array to that variable. If you follow the ‘‘Paradigm
for Working with Local Array Variables’’ on page 4-8, then you avoid this
awkward coding.

mlfAssign(&c, mlfScalar(5));
mxDestroyArray(c);
c = NULL;
mlfAssign(&c, mlfScalar(6));

Avoiding Memory Leaks in Your Functions
Structuring your code as recommended in ‘‘Paradigm for Working with Local
Array Variables’’ on page 4-8 helps you avoid the following memory leaks.

1 Never call a library function without assigning the array it returns to an
array variable (by calling mlfAssign()) or without embedding the call as an
argument to a library function.

Memory leak:

mlfSin(X);

The array returned by mlfSin() is not bound to a variable and never freed.
2

Using Arrays Under Automated Memory Management
2 Never assign a value to an array variable without subsequently deleting the
array.

Memory leak:

void func(mxArray *y)
{
mxArray *x;

mlfEnterNewContext(0,1,y);
mlfAssign(&x, mlfSin(y));
mlfRestorePreviousContext(0,1,y);
}

You must pair each mxArray* declaration with a call to mxDestroyArray().

3 Never use the assignment operator to assign array values.

Unexpected termination of your program:

x is a temporary array. If x is subsequently passed as an input argument to
a function, that function will delete x.Any subsequent reference to x will
cause your program to crash.

x = mlfSin(y); /* x is temporary. */
a = mlfPlus(x, mlfScalar(1)); /* x is deleted. */
b = mlfPlus(a, x); /* Program crashes. */
4-13

4 Managing Array Memory

4-1
Writing Functions Under Automated Memory Management
You must follow a set procedure when you write a function that conforms to the
rules of automated memory management. It’s not hard. The pattern is the
same for each function.

By calling the functions:

• mlfEnterNewContext()

• mlfRestorePreviousContext()

• mlfReturnValue()

in each function that you write (that uses arrays),

• A call to your function can be embedded as an input argument to another
function. For example,
mlfAssign(&A, mlfPlus(myFunc(A), B));

• A call to another function can be embedded as an input argument to your
function. For example,

mlfAssign(&B, myFunc(mlfSin(X));

Specifically, mlfEnterNewContext(), mlfRestorePreviousContext(), and
mlfReturnValue() (along with mlfAssign() described in ‘‘Assigning Arrays to
mxArray* Variables’’ on page 4-9) manipulate the temporary and bound state
of an array in order to:

• Preserve bound array input arguments across the call to your function

• Delete any temporary array that is passed as an array input argument to
your function (just before your function returns)

• Return a temporary array from your function

Using a Function Template As an Example
You can use the template code below as the basis for writing functions that use
the library’s automated memory management. Internally, all MATLAB C
Math Library functions call the functions highlighted in the template by grey
boxes. Your functions must do the same.

You can find the general function template and a main routine template in
<matlab>/extern/examples/cmath/mem_mgt_func_template.c and
4

Writing Functions Under Automated Memory Management
mem_mgt_main_template.c respectively where <matlab> represents the
top-level directory of your installation.

See ‘‘Using Arrays Under Automated Memory Management’’ on page 4-6 for
information that applies to the sections of the template that aren’t highlighted.

Function Template
As an example, this template function takes one array output argument, two
array input arguments, and returns an array. Your functions will, of course,
vary the number of input and output arguments.

Notice how mlfEnterNewContext() and mlfRestorePreviousContext()
operate on the array arguments passed to FunctionName. mlfReturnValue()
manipulates the array returned from FunctionName.

mxArray *FunctionName(mxArray **output_arg1, mxArray *input_arg1,
 mxArray *input_arg2)
{
 mxArray *local_return_value = NULL;
 mxArray *local_var1 = NULL;

mxArray *local_var2 = NULL;

 /* Perform the work of the function. */
 /* */

/* Note: Don’t destroy local_return_value */
mxDestroyArray(local_var1);
mxDestroyArray(local_var2);

}

mlfEnterNewContext(1,2, output_arg1, input_arg1, input_arg2)

mlfRestorePreviousContext(1,2,
 output_arg1, input_arg1, input_arg2);

return mlfReturnValue(local_return_value);
4-15

4 Managing Array Memory

4-1
Main Routine Template
The template for the main() routine is different from the general template
because main() does not take any array input or output arguments or return
an array. Passing 0 as an argument to mlfEnterNewContext() and
mlfRestorePreviousContext() indicates that main() has no output and input
array arguments. A call to mlfReturnValue() is not required.

int main()
{
 /* Initialize variables. */

 /* Perform the work of main(). */

 return(EXIT_SUCCESS);
}

Preparing Function Arguments for a New Context
Each function that you write must begin with a call to mlfEnterNewContext().
Typically, place the call after the declaration and initialization of local
variables. You must call mlfEnterNewContext() before the first call to
mlfAssign().

The call to mlfEnterNewContext() signals that MATLAB C Math Library
automated memory management is in effect for the function.
mlfEnterNewContext() operates on the output and input array arguments
passed to your function. It ensures that the memory allocated for those arrays,
whether temporary or bound, persists for the duration of the function.

Prototype:

void mlfEnterNewContext(int nout, int nin, ...);

 Sample Call from Template:

mlfEnterNewContext(0,0);

mlfRestorePreviousContext(0,0);

mlfEnterNewContext(1,2, output_arg1, input_arg1, input_arg2)
6

Writing Functions Under Automated Memory Management
Arguments to mlfEnterNewContext()
mlfEnterNewContext() takes the number of output arguments, the number of
input arguments, and a variable-length list of the actual output and input
arguments to the function. You do not need to terminate the list of arguments
with a NULL argument.

Pass these arguments to mlfEnterNewContext() in the order listed:

1 The number (int nout) of array output arguments declared by your
function. Specify 0 if there are no array output arguments declared (in the
same way the main() template function does on page 4-16).

The template function declares one output argument.

2 The number (int nin) of array input arguments declared by your function.
Specify 0 if there are no array input arguments declared (in the same way
the main() template function does).

The template function on page 4-15 declares two input arguments.

3 The array output arguments (mxArray **) themselves, in the order declared
for the function.

In the template, output_arg1 is passed.

4 The array input arguments (mxArray *) themselves, in the order declared
for the function.

In the template, input_arg1 and input_arg2 are passed.

Note You only list mxArray** and mxArray* arguments. For example, if a
function takes an argument of type char* or int, do not include it in the count
of output and input arguments or in the list of the arguments themselves.

What Happens to the Array Arguments?
mlfEnterNewContext() changes the state of temporary input arrays from
temporary to bound, enabling them to persist for the duration of the function.
4-17

4 Managing Array Memory

4-1
If they are passed as input arguments to other functions, they are passed as
bound arrays and not deleted.

Backward Compatibility Note mlfEnterNewContext() recognizes when
the current function is called from a function that does not use automated
memory management. In that context, it ensures that the input arguments,
which are all temporary arrays, are handled correctly and not subsequently
deleted by mlfRestorePreviousContext(). Output arguments that do not
point to NULL or to a valid array are also handled correctly.

Purpose of mlfEnterNewContext()
mlfEnterNewContext() ensures that the memory allocated for temporary
arrays will not be destroyed until you signal the end of the array context by
calling mlfRestorePreviousContext(). It ensures that bound arrays will not
be destroyed by your function or any function that it calls.

Restoring Function Arguments to their Previous
Context
Each function that you write must close with a call to
mlfRestorePreviousContext(). Place the call just before the return
statement for your function.

The call operates on the output and input array arguments passed to your
function. It ensures that the memory allocated for those arrays is restored to
its state at the time of the function call.

Important You can’t return from your function before calling
mlfRestorePreviousContext(), and you can call
mlfRestorePreviousContext() only once in your function.

Prototype:

void mlfRestorePreviousContext(int nout, int nin, ...);
8

Writing Functions Under Automated Memory Management
Sample Call from Template:

Arguments to mlfRestorePreviousContext()
mlfRestorePreviousContext() takes the number of output arguments, the
number of input arguments, and a variable-length list of the actual output and
input arguments to the function. You do not need to terminate the list of
arguments with a NULL argument.

Pass the same arguments to mlfRestorePreviousContext() as you passed to
mlfEnterNewContext():

1 The number (int nout) of array output arguments declared by your
function. Specify 0 if there are no array output arguments declared (in the
same way the main() template function does).

The template function declares one output argument.

2 The number (int nin) of array input arguments declared by your function.
Specify 0 if there are no array output arguments declared (in the same way
the main() template function does).

The template function declares two input arguments.

3 The array output arguments (mxArray **) themselves, in the order declared
for the function.

In the template, output_arg1 is passed.

4 The array input arguments (mxArray *) themselves, in the order declared
for the function.

In the template, input_arg1 and input_arg2 are passed.

mlfRestorePreviousContext(1,2,
 output_arg1, input_arg1, input_arg2);
4-19

4 Managing Array Memory

4-2
Note You only list mxArray** and mxArray* arguments. For example, if a
function takes an argument of type char* or int, do not include it in the count
of output and input arguments or in the list of the arguments themselves.

What Happens to the Array Arguments?
mlfRestorePreviousContext() restores the state of the input arrays to their
state at the time of the function call:

• Any array input argument that was temporary at the time of the function
call becomes temporary again.

• Any array input argument that was bound at the time of the function call
remains bound.

mlfRestorePreviousContext() then performs an important action: it deletes
any input array arguments that are temporary.

Backward Compatibility Note mlfRestorePreviousContext()
recognizes when the current function is called from a function that does not
use automated memory management. In that call context, where all arrays
are temporary, it does not delete any arrays.

Purpose of mlfRestorePreviousContext()
This is the key step that allows a call to another function to be embedded as an
input argument to your function. Your function deletes the temporary arrays
passed to it, ensuring proper deletion of the memory for temporary arrays.

Returning an Array from Your Function
Before you pass an array to the return statement in your function, you must
pass that array to mlfReturnValue(). mlfReturnValue() makes the array a
temporary array. Your function can therefore return a temporary array just
like each function in the MATLAB C Math Library does.
0

Writing Functions Under Automated Memory Management
Prototype:

mxArray *mlfReturnValue(mxArray *a);

Sample Call from Template:

Note You cannot have multiple return statements in your function. You
must code in a style that ends your function with a call to
mlfRestorePreviousContext() followed by a single return statement,
return(mlfReturnValue(result)).

Argument and Return for mlfReturnValue()
Pass the array that your function returns (an mxArray*) to mlfReturnValue().
The array is a bound array when it is passed to mlfReturnValue() and is
typically the result of an assignment made within the function or the value of
an output argument set by a function call.

mlfReturnValue() makes the array a temporary array and returns the same
array. You can nest the call to mlfReturnValue() in the return statement for
your function.

You do not need to call mlfReturnValue() if you are writing a function that
does not return a pointer to an array (in the same way that the main() template
doesn’t call mlfReturnValue()).

Note Do not pass an array input argument to mlfReturnValue(). Instead,
use mlfAssign() to assign the array to a local variable first and then pass
that local variable to mlfReturnValue().

What Happens to the Array Argument?
mlfReturnValue() changes the bound state of the array passed to it to
temporary. You then pass that array to the return statement.

return mlfReturnValue(local_return_value);
4-21

4 Managing Array Memory

4-2
Purpose of mlfReturnValue()
By marking the returned array temporary, you ensure that a call to your
function can be nested as an argument to another function without leaking
memory.

Summary of Coding Steps
The steps you must take are the same for every function you write:

1 Declare the interface for your function:

- Does it return an array?

- Does it take any array output arguments?

- Does it take any array input arguments?

2 Initialize local array variables to NULL or to valid arrays:

Library functions, including mlfAssign(), require that output arguments
are initialized to NULL or to a valid array.

3 Call mlfEnterNewContext() to turn on automated memory management for
your function and to change the status of temporary input arrays to bound
arrays:

Pair this call with a call to mlfRestorePreviousContext() at the end of your
function.

4 Perform the work of your function:

Becoming accustomed to programming with mlfAssign() rather than the
assignment operator (=) is the biggest adjustment you’ll need to make in
your programming style.

5 Free any bound array variables by calling mxDestroyArray():

However, do not destroy the return value from your function.
2

Writing Functions Under Automated Memory Management
6 Call mlfRestorePreviousContext() to reset the state for each input array
the value it had on entering the function and then to delete any temporary
arrays:

Pass the same arguments that you passed to mlfEnterNewContext().

7 Call mlfReturnValue() to make the array you are returning temporary and
then return the temporary array:

You can nest the call to mlfReturnValue() within the return statement.
4-23

4 Managing Array Memory

4-2
Example Program: Managing Array Memory (ex2.c)
This example program demonstrates how to write functions that use the same
automated memory management technique as the MATLAB C Math Library.
Apply this technique to every function you write.

This section presents an annotated example; ‘‘Example Without Automated
Memory Management’’ on page 4-31 shows comparable code that does uses
explicit memory management.

Each of the numbered sections of code is explained in more detail below. You
can find the code for the example in <matlab>/extern/examples/cmath/ex2.c
where <matlab> represents the top-level directory of your installation. See
“Building C Applications” in Chapter 1 for information on building the
examples.

The example is split into two parts. (In a working program, both parts would
be placed in the same file.) The first part includes header files, declares two file
static variables, and defines a routine that demonstrates how the library
manages array memory. The second section contains the main program.
4

Example Program: Managing Array Memory (ex2.c)
/* ex2.c */

#include <stdio.h>
#include <stdlib.h> /* used for EXIT_SUCCESS */
#include <string.h>

#include "matlab.h"

static double real_data1[] = { 1, 2, 3, 4, 5, 6 };
static double real_data2[] = { 6, 5, 4, 3, 2, 1 };

mxArray *Automated_Mem_Example(mxArray **z_out, mxArray *x_in,
 mxArray *y_in)
{
 mxArray *result_local = NULL;
 mxArray *q_local = NULL;

 mlfEnterNewContext(1, 2, z_out, x_in, y_in);

 /* In MATLAB: result = sqrt(sin(x) + cos(x)) */
 mlfAssign(&result_local,
 mlfSqrt(mlfPlus(mlfSin(x_in), mlfCos(x_in))));

 /* In MATLAB: q = sqrt(cos(y) - sin(y)) */
 mlfAssign(&q_local,
 mlfSqrt(mlfMinus(mlfCos(y_in), mlfSin(y_in))));

 /* In MATLAB: z = q * result - q^3 */
 mlfAssign(z_out,
 mlfMinus(mlfTimes(q_local, result_local),
 mlfPower(q_local, mlfScalar(3))));

 mxDestroyArray(q_local);
 mlfRestorePreviousContext(1, 2, z_out, x_in, y_in);
 return mlfReturnValue(result_local);
}

1

2

3

4

6

7
8

5

9

4-25

4 Managing Array Memory

4-2
Notes
The numbers in the list below correspond to the numbered sections of code
above:

1 Include header files. matlab.h declares the mxArray data structure and the
prototypes for all the functions in the MATLAB C Math Library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Define the interface for your function. This function,
Automated_Mem_Example(), takes two inputs and returns two outputs. It
has one return value, one output array argument (mxArray **z_out), and
two input array arguments (mxArray *x_in and mxArray *y_in). The
definition of the function follows the MATLAB C Math Library calling
conventions where output arguments precede input arguments. You can
write functions that follow these calling conventions or implement your own.

The body of Automated_Mem_Example() performs three calculations that
illustrate how the library manages the memory allocated for the arrays. The
first two calculations operate on the two input arguments; the third on two
local arrays that store the results from the previous calculations. The
function returns one result in the output argument and the other result as
the return value from the function.

3 Initialize the local variables to NULL or to valid arrays. result_local will be
used to store the function’s return value. q_local will be used in a local
calculation.

Note All MATLAB C Math Library functions, including mlfAssign(),
require that output arguments are initialized to NULL or point to a valid array.

4 Call mlfEnterNewContext() to create a new memory context for your
function. mlfEnterNewContext() is always paired with a call to
mlfRestorePreviousContext(), which appears at the end of the function.

The first integer argument, 1, specifies the number of output array
arguments (not including the return value) passed to
Automated_Mem_Example(); the second integer argument, 2, specifies the
number of input array arguments. The arrays themselves (mxArray** for
6

Example Program: Managing Array Memory (ex2.c)
output arguments, mxArray* for input arguments), z_out, x_in, and y_in,
are passed next, in the same order as they were passed to the function. You
do not need to terminate the list with NULL. Note that
mlfEnterNewContext() can take any number of arguments.

mlfEnterNewContext() changes the state of any temporary input arrays
from temporary to bound enabling them to persist for the duration of the
function. If they are passed as input arguments to other functions, they are
passed as bound arrays.

5 The first calculation passes the input argument x_in to the MATLAB C
Math Library functions mlfSin() and mlfCos(). These two calls return
temporary arrays, which are passed to another library function, mlfPlus().
The temporary array returned from the call to mlfPlus() is then passed to
the library function mlfSqrt().

In this series of nested calls only the return from mlfSqrt() is assigned to a
variable via the mlfAssign() function. That array, result_local, becomes
a bound array. The temporary arrays returned from mlfSin() and mlfCos()
and passed to mlfPlus() are automatically deleted by mlfPlus();
mlfSqrt() deletes the temporary array returned from mlfPlus().

6 Calls to mlfAssign() now appear as frequently as the assignment operator
(=) did in code prior to MATLAB C Math Library Version 2.0. The array on
the left-hand side of the assignment (the first argument to mlfAssign())
becomes a bound array and persists. You must explicitly delete it; the library
does not.

These calculations again illustrate the automated memory management
provided by the library. If you do not want to keep the array returned from
a library function, just nest the call as an argument to a function. The return
from the call (a temporary array) will be deleted by the other function.

In these calculations, q_local and z_out, are each the targets of an
assignment statement. Both are marked as bound arrays. Since q_local is
a local variable, it must be explicitly deleted within this function. z_out is
4-27

4 Managing Array Memory

4-2
an output array argument that will be explicitly deleted in the calling
function.

See ‘‘Assigning Arrays to mxArray* Variables’’ on page 4-9 to learn how
mlfAssign() determines whether to delete the contents of the target
argument and whether to make a shared data copy of the source argument.

7 Free any local, bound array variables. If you’ve assigned (by calling
mlfAssign()) a value to any local variable that is an array, you must destroy
it by calling mxDestroyArray().

Note The exception is a local, bound array that is the return value from the
function. Do not call mxDestroyArray() on your return value.

8 Call mlfRestorePreviousContext() to restore the memory context that
existed prior to the function call. Supply the same arguments that you
passed to mlfEnterNewContext().

Before ending your function and returning a value, you must call
mlfRestorePreviousContext() to reestablish the state (temporary or
bound) of input arguments prior to the function call. Any input argument
that becomes temporary is then deleted by mlfRestorePreviousContext().
If you fail to call mlfRestorePreviousContext(), your program will leak
memory.

If an input array is bound when it is passed to a function, it will never be
destroyed automatically by that function or any function that it calls.

9 Return a temporary array. mlfReturnValue() marks its argument as
temporary. You must pass any mxArray* that your function returns to
mlfReturnValue() before passing it to the return statement. If you forget
this step, the automated memory management of the library will be
disrupted for the variable that you return, and memory will leak.
8

Example Program: Managing Array Memory (ex2.c)
The second section of code contains the main program.

int main()
{
 mxArray *mat0 = NULL;
 mxArray *output_array = NULL;
 mxArray *result_array = NULL;

 mlfEnterNewContext(0, 0);

 mlfAssign(&mat0, mlfDoubleMatrix(2, 3, real_data1, NULL));

 mlfAssign(&result_array,
 Automated_Mem_Example(&output_array,

mat0,
mlfDoubleMatrix(2, 3, real_data2, NULL)));

 mlfPrintf("mat0:\n");
 mlfPrintMatrix(mat0);
 mlfPrintf("output_array:\n");
 mlfPrintMatrix(output_array);
 mlfPrintf("result_array:\n");
 mlfPrintMatrix(result_array);

 mxDestroyArray(mat0);
 mxDestroyArray(result_array);
 mxDestroyArray(output_array);

 mlfRestorePreviousContext(0, 0);
 return(EXIT_SUCCESS);
}

Notes
The numbers in the list below correspond to the numbered sections of code
above:

1 Initialize any local array variables to NULL. MATLAB C Math Library
functions that use automated memory management require that you
initialize any output arguments to NULL or a valid array. For example, before
you call mlfAssign(), you must initialize its first argument, an output

1

2

4

5

6

3

7

4-29

4 Managing Array Memory

4-3
argument, to NULL or a valid array. Note that if you pass a pointer to a valid
array, the contents of that array will be deleted before the assignment to the
output argument takes place.

2 Pass 0 as the first and second argument to mlfEnterNewContext(),
indicating that the main() routine does not have any array output or input
arguments.

3 Call mlfAssign() to assign the return from the MATLAB C Math Library
function mlfDoubleMatrix() to the array variable mat0 (a pointer to an
mxArray). mlfDoubleMatrix() returns a 2-by-3 temporary array initialized
with the data contained in the static C array, real_data1. mat0 becomes a
bound array and will persist until explicitly deleted.

4 Call mlfAssign() to assign the return from a user-defined function to an
array variable. Automated_Mem_Example() uses the automated memory
management provided by the MATLAB C Math Library functions.

mat0 is a bound array when it is passed as an input argument to
Automated_Mem_Example(). The return value from mlfDoubleMatrix() is a
temporary array. After the call to Automated_Mem_Example(), mat0 still
exists; the temporary array has been deleted by Automated_Mem_Example().

5 Print the arrays. mlfPrintMatrix() returns void rather than an array
(mxArray *). Both mlfPrintMatrix() and mlfPrintf() use the installed
print handling routine to display their output. Because this example does
not register a print handling routine, all output goes through the default
print handler. The default print handler uses printf. See the section
“Defining a Print Handler” in Chapter 8 for details on registering print
handlers.

6 Free each local, bound array by calling mxDestroyArray(). Note that
mxDestroyArray() can handle a NULL argument if you inadvertently pass a
pointer to an array that has already been destroyed and set to NULL.

7 End the function by calling mlfRestorePreviousContext(). Pass 0 as the
first and second argument to indicate that main() has no input and output
arguments.
0

Example Program: Managing Array Memory (ex2.c)
Output
When run, the program produces this output.

mat0:
 1 3 5
 2 4 6

output_array:
 -0.0714 -0.0331 + 0.2959i -0.9461 + 1.5260i
 -0.6023 -1.2631 + 1.2030i 0 + 0.6181i

result_array:
 1.1755 0 + 0.9213i 0 + 0.8217i
 0.7022 0 + 1.1876i 0.8251

Example Without Automated Memory Management
The function Explicit_Mem_Example() performs the same calculations as
Automated_Mem_Example() in the previous example. Compare the use of
temporary variables, nonnested calls to the MATLAB C Math Library
functions, and calls to mxDestroyArray(). It contains twenty-six lines of code
compared to Automated_Mem_Example()’s nine lines.

Important: You can still code to this interface. The MATLAB C Math
Library continues to support it. However, you cannot call
Explicit_Mem_Example() from a function that uses automated memory
management. The routine that calls Explicit_Mem_Example(), whether it is
main() or another function, cannot include calls to mlfEnterNewContext()
and mlfRestorePreviousContext().

If automated memory management were in effect, the calls to the library
functions in Explicit_Mem_Example() could unexpectedly delete the
temporary arrays passed to them as input arguments.
4-31

4 Managing Array Memory

4-3
mxArray *Explicit_Mem_Example(mxArray **z_out, mxArray *x_in,
 mxArray *y_in)
{
 mxArray *result_local, *q_local;
 mxArray *temp1, *temp2, *temp3;

 /* In MATLAB: r = sqrt(sin(x) + cos(x)) */
 temp1 = mlfSin(x_in);
 temp2 = mlfCos(y_in);
 temp3 = mlfPlus(temp1, temp2);
 result_local = mlfSqrt(temp3);

 mxDestroyArray(temp1);
 mxDestroyArray(temp2);
 mxDestroyArray(temp3);

 /* In MATLAB: q = sqrt(cos(y) - sin(y)) */
 temp1 = mlfCos(y_in);
 temp2 = mlfSin(y_in);
 temp3 = mlfMinus(temp1, temp2);
 q_local = mlfSqrt(temp3);

 mxDestroyArray(temp1);
 mxDestroyArray(temp2);
 mxDestroyArray(temp3);

 /* In MATLAB: z = q * r - q^3 */
 temp1 = mlfScalar(3);
 temp2 = mlfPower(q_local, temp1);
 temp3 = mlfTimes(q_local, result_local);
 *z_out = mlfMinus(temp3, temp2);

 mxDestroyArray(temp1);
 mxDestroyArray(temp2);
 mxDestroyArray(temp3);

 mxDestroyArray(q_local);

 return result_local;
}

2

Restrictions on Function Calling
Restrictions on Function Calling

Function Uses Automated Memory Management
If you write a new function that uses the MATLAB C Math Library’s
automated memory management (functions that start with
mlfEnterNewContext() and end with mlfRestorePreviousContext()), you
can:

• Call other new functions that you’ve written with automated memory
management.

• Call MATLAB C Math Library Version 2.0 functions.

You cannot:

• Call a function that you wrote with the MATLAB C Math Library prior to
Version 2.0.

• Call a new function that you’ve written without using automated memory
management, unless the function does not manipulate arrays.

Note Functions written with or without automated memory management
can call your function.

Function Does Not Use Automated Memory
Management
If you write a new function that does not use the library’s automated memory
management (declares temporary variables, does not nest calls to the library
functions), you can:

• Call a function that you wrote with the MATLAB C Math Library prior to
Version 2.0

• Call a new function that you’ve written with or without automated memory
management

• Call MATLAB C Math Library Version 2.0 functions
4-33

4 Managing Array Memory

4-3
Note Functions written without automated memory management can call
your function; functions written with automated memory management
cannot.

Recommendation
Though the explicit approach seems to offer flexibility, you lose the benefits of
the library’s automated memory management.

Mixing memory management styles is not recommended. Choose one style or
the other. Use the mlfEnterNewContext() and mlfRestorePreviousContext()
pair and mlfAssign() for all your functions or none of your functions.

Note Some functions have changed between Version 1.2 and Version 2.0 of
the library. You must update any calls in existing code to the group of
functions that have a different prototype for Version 2.0 of the MATLAB C
Math Library. See the release notes, release.txt, in the
<matlab>/extern/examples/cmath directory of your installation for a list of
these functions.
4

Setting Up Your Own Allocation and Deallocation Routines
Setting Up Your Own Allocation and Deallocation Routines
The MATLAB C Math Library calls mxMalloc to allocate memory and mxFree
to free memory. These routines in turn call the standard C runtime library
routines malloc and free.

If your application requires a different memory management implementation,
you can register your allocation and deallocation routines with the MATLAB C
Math Library by calling the function mlfSetLibraryAllocFcns().

void mlfSetLibraryAllocFcns(calloc_proc calloc_fcn,
free_proc free_fcn,
realloc_proc realloc_fcn,
malloc_proc malloc_fcn);

You must write four functions whose addresses you then pass to
mlfSetLibraryAllocFcns():

1 calloc_fcn is the name of the function that mxCalloc uses to perform
memory allocation operations. The function that you write must have the
prototype:

void * callocfcn(size_t nmemb, size_t size);

Your function should initialize the memory it allocates to 0 and should
return NULL for requests of size 0.

2 free_fcn is the name of the function that mxFree uses to perform memory
deallocation (freeing) operations. The function that you write must have the
prototype:

void freefcn(void *ptr);

Make sure your function handles NULL pointers. free_fcn(0) should do
nothing.
4-35

4 Managing Array Memory

4-3
3 realloc_fcn is the name of the function that mxRealloc uses to perform
memory reallocation operations. The function that you write must have the
prototype:

void * reallocfcn(void *ptr, size_t size);

This function must grow or shrink memory. It returns a pointer to the
requested amount of memory, which contains as much as possible of the
previous contents.

4 malloc_fcn is the name of the function to be called in place of malloc to
perform memory allocation operations. The prototype for your function must
match:

void * mallocfcn(size_t n);

Your function should return NULL for requests of size 0.

Refer to the MATLAB Application Program Interface Reference online help for
more detailed information about writing these functions.
6

How to Call the Indexing Functions 5-10

Assumptions for the Code Examples 5-16

Using mlfIndexRef() for One-Dimensional Indexing . . 5-18

Using mlfIndexRef() for N-Dimensional Indexing . . . 5-23

Using mlfIndexRef() for Logical Indexing 5-31

Using mlfIndexAssign() for Assignments 5-36

Using mlfIndexDelete() for Deletion 5-42

Indexing into Cell Arrays 5-44

Indexing into MATLAB Structure Arrays 5-51

Comparison of C and MATLAB Indexing Syntax 5-57
5

Indexing into Arrays

Overview . 5-2

5 Indexing into Arrays

5-2
Overview
The MATLAB interpreter provides a sophisticated and powerful indexing
operator that allows you to access and modify multiple array elements. The
MATLAB C++ Math Library also supports an indexing operator. The MATLAB
C Math Library provides the same indexing functionality as the MATLAB
interpreter and the MATLAB C++ Math Library but through a different
mechanism. Instead of an indexing operator, the MATLAB C Math Library
provides indexing functions.

This chapter describes how to:

• Call the indexing functions

• Use one-dimensional, n-dimensional, and logical subscripts

• Make assignments using indexing

• Make deletions using indexing

• Index into cell arrays

• Index into structure arrays

Indexing Functions
Conceptually, the indexing functions in C are very similar to the indexing
operations in MATLAB. In MATLAB, you can

• Access

• Modify

• Delete

elements of an array. For example, A(3,1) accesses the first element in row 3
of matrix A.

In the MATLAB C Math Library, the functions:

• mlfIndexRef()

• mlfIndexAssign()

• mlfIndexDelete()

allow you to do exactly the same thing.

Overview
Terminology
These two diagrams illustrate the terminology used in this chapter.

Figure 5-1: From the MATLAB Perspective

Figure 5-2: From the MATLAB C Math Library Perspective

Dimensions and Subscripts

In MATLAB
There are three types of data in MATLAB: multidimensional numeric arrays,
cell arrays and structures (objects are just a special kind of structure).
Therefore, there are three types of indexing, one for each type of data:

A (3, 1)
SubscriptTarget Array

Indices

mlfIndexRef(A, "(?,?)", mlfScalar(3), mlfScalar(1));

Target Array

Indexing String

Index Value

Index Value
5-3

5 Indexing into Arrays

5-4
• Standard indexing, which uses parentheses () in MATLAB

• Cell array indexing, which uses curly braces {} in MATLAB

• Structure indexing, which uses named fields, for example, color, in
MATLAB

Both standard indexing and cell array indexing take numeric arguments, one
argument for each dimension of the array being indexed into, while structure
indexing uses only the name of the structure field.

Note Standard indexing can be used with all three types of data, while cell
array indexing can only be used on cell arrays and structure indexing only on
structures. You can combine, for example, standard indexing and structure
indexing on a structure.

In the MATLAB C Math Library
The indexing functions in the MATLAB C Math Library support
N-dimensional standard, cell array, and structure indexing.

An array subscript consists of one or more indices passed as mxArray *
arguments to one of the indexing functions. For example, the two-dimensional
indexing expression

mlfIndexRef(A, "(?,?)", mlfScalar(3), mlfScalar(1))

applies the subscript (3,1) to A and returns the element at row three, column
one. mlfIndexRef(A, "(?)", mlfScalar(9)), a one-dimensional indexing
expression, returns the ninth element of array A.

Note The indexing functions follow the MATLAB convention for array
indices: indices begin at one rather than zero.

Overview
An index mxArray argument can contain a scalar, vector, matrix, or the result
from a call to the special function mlfCreateColonIndex().

• A scalar subscript selects a scalar value.

• A subscript with vector or matrix indices selects a vector or matrix of values.

• The mlfCreateColonIndex() index, which loosely interpreted means ‘‘all,’’
selects, for example, all the columns in a row or all the rows in a column.

You can also use the mlfColon() function, which is patterned after the
MATLAB colon operator, to specify a vector subscript. For example,
mlfColon(mlfSclar(1), mlfScalar(10), NULL) specifies the vector
[1 2 3 4 5 6 7 8 9 10].

Note You cannot index into an array with more dimensions than the array
has, although you can use fewer dimensions.

Tip for-loops provide an easy model for thinking about indexing. A
one-dimensional index is equivalent to a single for-loop; a two-dimensional
index is equivalent to two nested for-loops. The size of the subscript
determines the number of iterations of the for-loop. The value of the subscript
determines the values of the loop iteration variables.

Array Storage
MATLAB stores each array as a column of values regardless of the actual
dimensions. This column consists of the array columns, appended top to
bottom. For example, MATLAB stores

A = [2 6 9; 4 2 8; 3 0 1]
5-5

5 Indexing into Arrays

5-6
as

 2
 4
 3
 6
 2
 0
 9
 8
 1

Accessing A with a single subscript indexes directly into the storage column.
A(3) accesses the third value in the column, the number 3. A(7) accesses the
seventh value, 9, and so on.

If you supply more subscripts, MATLAB calculates an index into the storage
column based on the array’s dimensions. For example, assume a
two-dimensional array like A has size [d1 d2], where d1 is the number of rows
in the array and d2 is the number of columns. If you supply two subscripts
(i,j) representing row-column indices, the equivalent one-dimensional index
is

(j–1)*d1+i

Given the expression A(3,2), MATLAB calculates the offset into A’s storage
column as (2-1)*3+3, or 6. Counting down six elements in the column accesses
the value 0.

This storage and indexing scheme also extends to multidimensional arrays.
You can think of an N-dimensional array as a series of “pages,” each of which
is a two-dimensional array. The first two dimensions in the N-dimensional
array determine the shape of the pages, and the remaining dimensions
determine the number of pages.

In a three- (or higher) dimensional array, for example, MATLAB iterates over
the pages to create the storage column, again appending elements columnwise.
You can think of three-dimensional arrays as “books,” with a two-dimensional
array on each page. The term page is used frequently in this document to refer
to a two-dimensional array that is part of a larger N-dimensional array.

Labeling the dimensions past three is more difficult. You can imagine shelves
of books for dimension 4, rooms of shelves for dimension 5, libraries of rooms

Overview
for dimension 6, etc. This document rarely uses an array of dimension greater
than three or four, although MATLAB and the MATLAB C Math Library
handle any number of dimensions that doesn’t exceed the amount of memory
available on your computer.

For example, consider a 5-by-4-by-3-by-2 array C.
5-7

5 Indexing into Arrays

5-8
page(1,1) =

 1 4 3 5
 2 1 7 9
 5 6 3 2
 0 1 5 9
 3 2 7 5

page(2,1) =

 6 2 4 2
 7 1 4 9
 0 0 1 5
 9 4 4 2
 1 8 2 5

page(3,1) =

 2 2 8 3
 2 5 1 8
 5 1 5 2
 0 9 0 9
 9 4 5 3

page(1,2) =

 9 8 2 3
 0 0 3 3
 6 4 9 6
 1 9 2 3
 0 2 8 7

page(2,2) =

 7 0 1 3
 2 4 8 1
 7 5 8 6
 6 8 8 4
 9 4 1 2

page(3,2) =

 1 6 6 5
 2 9 1 3
 7 1 1 1
 8 0 1 5
 3 2 7 6

M displays C asATLAB M stores C asATLAB

 1
 2
 5
 0
 3
 4
 1
 6
 1
 2
 3
 7
 3
 5
 7
 5
 9
 2
 9
 5
 6
 7
 0
 9
 1
 2
 1
 0
 4
 8
 4
 4
 1
 4
 2
 2
 9
 5
 2
 5
 2
 2
 5
 0
 9
 2
 5
 1
 9
 4

...

Overview
Again, a single subscript indexes directly into this column. For example, C(4)
produces the result

ans =

0

If you specify two subscripts (i,j) indicating row-column indices, MATLAB
calculates the offset as described above. Two subscripts always access the first
page of a multidimensional array, provided they are within the range of the
original array dimensions.

If more than one subscript is present, all subscripts must conform to the
original array dimensions. For example, C(6,2) is invalid, because all pages of
C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing scheme
accordingly. For example, consider four subscripts (i,j,k,l) into a
four-dimensional array with size [d1 d2 d3 d4]. MATLAB calculates the offset
into the storage column by

(l–1)(d3)(d2)(d1)+(k–1)(d2)(d1)+(j–1)(d1)+i

For example, if you index the array C using subscripts (3,4,2,1), MATLAB
returns the value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d1 d2 d3 ... dn]
using any subscripts (s1 s2 s3 ... sn) is:

(sn–1)(dn–1)(dn–2)...(d1)+(sn–1–1)(dn–2)...(d1)+...+(s2–1)(d1)+s1

Because of this scheme, you can index an array using any number of subscripts.
You can append any number of 1s to the subscript list because these terms
become zero. For example, C(3,2,1,1,1,1,1,1) is equivalent to C(3,2).
5-9

5 Indexing into Arrays

5-1
How to Call the Indexing Functions
Using the three indexing functions mlfIndexRef(), mlfIndexAssign(), and
mlfIndexDelete() is straightforward once you understand how each forms
and applies the subscript. The three functions work in a similar way and
support indexing into arrays of any dimension, including cell arrays and
structure arrays.

The prototypes for the three functions are:

mxArray *mlfIndexRef(mxArray *target_array,
const char* index_string, ...);

mxArray *mlfIndexAssign(mxArray **target_array,
const char* index_string, ...);

mxArray *mlfIndexDelete(mxArray **target_array,
const char* index_string, ...);

Use mlfIndexRef() to read one or more values from an array,
mlfIndexAssign() to change one or more values in an array, and
mlfIndexDelete() to remove one or more elements from an array.

Overview
Each indexing function requires at least three arguments; mlfIndexAssign()
requires at least four. The first argument is the array to which the indexing
operation is being applied. Since both mlfIndexAssign() and
mlfIndexDelete() modify the array, the first argument to these functions
must be an mxArray**; as mlfIndexRef() does not modify the array, its first
argument is an mxArray*.

The second argument is a string describing the indexing operation. This string
uses a simplification of the MATLAB indexing syntax; (), {} and .field
(depending on what type of indexing you’re doing) are required, but the actual
values that would appear in a MATLAB index operation are replaced by ?’s in
the MATLAB C Math Library. For example, the MATLAB expression
x{3}(2,4,2).color (a combination of cell array, standard, and structure
indexing) results in the following string: "{?}(?,?,?).color".

The third and subsequent arguments are the values to use in place of the ?’s in
the string. These values must be mxArray*’s and are very often the result of a
0

How to Call the Indexing Functions
call to mlfScalar(), which creates an mxArray* from a double-precision
floating-point number or a integer.

When calling mlfIndexAssign(), the last argument in the list is the source
array that contains the values to write into the target array. Note that the
source array must be exactly the same size as the subset of the target array
specified by the indexing expression in the second argument and subsequent
arguments.

Refer to the online MATLAB C Math Library Reference for more detail on the
interface for the three functions.

Specifying the Target Array
Each indexing function takes a target array as its first argument. The
subscript is applied to this array:

• For mlfIndexRef(), the first argument is the array that you want to extract
elements from.

• For mlfIndexAssign(), the first argument is the array that you want to
change elements of (be assigned to).

• For mlfIndexDelete(), the first argument is the array that you want to
delete elements from.

Note mlfIndexRef() takes an mxArray*; mlfIndexAssign() and
mlfIndexDelete() take mxArray** as their first argument.

Specifying the Index String
You pass an indexing string as the second argument to an indexing function.
An indexing string is always surrounded by "". For example, the MATLAB
indexing expression A(2,1) is written like this in the MATLAB C Math
Library.

mlfIndexRef(A, "(?,?)", mlfScalar(2), mlfScalar(1))

"(?,?)" is the indexing string that specifies a two-dimensional index. The
question mark, ?, is a placeholder for each index value.
5-11

5 Indexing into Arrays

5-1
• If you’re indexing into a regular array, use parentheses,(), to enclose the
subscript.

• If you’re indexing into a cell array, use braces, {}, to enclose the subscript.

Some more sample indexing strings:

"(?,?,?,?)": standard indexing
"{?}": cell array indexing
"(?,?).y{?}": combined standard, structure, and cell array indexing

What an Indexing String Specifies
When you specify an indexing string, you provide the following information to
the indexing functions:

• Number of dimensions in the subscript

For example, the single ? in "(?)" indicates a one-dimensional subscript.
The three ?’s in "(?,?,?)" indicates a three-dimensional subscript.

• Type of indexing

For example, the parentheses in "(?,?)" indicate array indexing. The braces
in "{?,?}" indicate that you are accessing the contents of a cell in a cell
array.

• Which field in a structure you’re accessing

.field indicates you’re accessing a field within a structure.

Table 5-1: Elements of Index String Syntax

Syntax
Element

Definition Example

() Encloses an array subscript. "(?,?)"

{ } Encloses a cell array subscript. "{?,?}"

, Separates dimensions of the subscript "(?,?,?)"

? Placeholder for a single array index
value.

"(?)"

.field Indicates a field in a structure ("?.score")
2

How to Call the Indexing Functions
What an Indexing String Doesn’t Specify
Your indexing string does not specify:

• The values of the indices themselves

The ? is a placeholder for actual values. The values are specified as
subsequent mxArray* arguments passed to the indexing functions.

• Nested subscripts

Each ? is a placeholder for a single array index.

Complex Indexing Expressions
In MATLAB, you can write complicated indexing expressions. For example,
this MATLAB expression

B{3}(7).bfield(2,1)

combines cell array, standard, and structure indexing. The expression first
selects the third element of cell array B; this third element must be an array.
From this array it selects the seventh element, which must be a structure with
at least one field, named bfield. From that structure it selects the array stored
in the bfield field, and then the element at position (2,1) within that array.

In the MATLAB C Math Library, you can specify this entire indexing operation
as a single string: "{?}(?).bfield(?,?)". Passing this string to any of the
MATLAB C Math Library indexing functions selects that location for reading,
writing, or deletion.

In the MATLAB C Math Library, the expression becomes

mlfIndexRef(B, "{?}(?).bfield(?,?)",
mlfScalar(3), mlfScalar(7),
mlfScalar(2), mlfScalar(1));

Nesting Indexing Operations
In MATLAB, you can nest indexing operations; when you do, the results of the
inner indexing operation supply the index values for the outer index operation.
Because the MATLAB C Math Library represents MATLAB indexing
operations with calls to mlfIndexRef(), you can recreate the MATLAB
behavior in the library by nesting calls to mlfIndexRef() inside one another.
5-13

5 Indexing into Arrays

5-1
For example, the MATLAB expression

x(y(4)) = 3

becomes

mlfIndexAssign(&x, "(?)", mlfIndexRef(y, "(?)", mlfScalar(4)),
mlfScalar(3));

The MATLAB expression

D = A(foo(1,B(2,3)), bar(4,C(:)))

becomes

mlfAssign(&D,
 mlfIndexRef(A,"(?,?)",
 foo(mlfScalar(1),
 mlfIndexRef(B,"(?,?)",mlfScalar(2),mlfScalar(3))),
 bar(mlfScalar(4),
 mlfIndexRef(C,"(?)",mlfCreateColonIndex()))));

Specifying the Values for Indices
Because the second argument, the index string, only describes the types of
operations to be performed and does not contain the actual subscript values,
you must pass these values seperately to the indexing functions. Following the
indexing string argument, you pass a list of pointers to mxArrays. Each array
contains the value of an index in your subscript(s).

For example, the two calls to mlfScalar() in the following indexing expression
pass the values for the indices in the two-dimensional subscript (2,1). If A
were an array with more than two dimensions, you could specify more than two
dimensions in the index string, and pass more than two index values to
mlfIndexRef().

mlfIndexRef(A, "(?,?)", mlfScalar(2), mlfScalar(1))

The indexing functions apply the subscript to the target array. Each function
constructs the subscript based on the content of the indexing string. The
indexing functions count the number of expressions that are delimited by
commas within each parenthesized, (), or bracketed, {}, subscript within the
indexing string to determine the structure of the subscript(s) and the number
of mxArray* index arguments to expect.
4

How to Call the Indexing Functions
Note Do not supply NULL to terminate the list of arguments passed to an
indexing function. Each function detects the end of the argument list by
counting the number of arguments indicated by the indexing string itself.

Specifying a Source Array for Assignments
mlfIndexAssign() requires one more argument than the other two indexing
functions: a pointer to an mxArray that contains the new values for the target
array. Pass the source array after the mxArray* arguments that specify the
values for the subscript. Note that this source array must be exactly the same
size as the subset of the target array specified by the indexing expression.
5-15

5 Indexing into Arrays

5-1
Assumptions for the Code Examples
The C code included in the following sections demonstrates how to perform
indexing with the MATLAB C Math Library. For the most part, each example
only presents the call to an indexing function. As you read the examples,
assume that the code relies on declarations, assignments, and deletions that
follow these conventions:

• Automated memory management is in effect. The functions that contain this
code would begin with a call to mlfEnterNewContext() and end with calls to
mlfRestorePreviousContext() and mlfReturnValue(). Assignments are
made by calling mlfAssign().

• The source arrays are created using the mlfDoubleMatrix() function. For
example, this code creates matrix A:
static double A_array_data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
mxArray *A;
mlfAssign(&A, mlfDoubleMatrix(3, 3, A_array_data, NULL));

See “Example Program: Creating Numeric Arrays (ex1.c)” in Chapter 3 for a
complete example of how to use this function.

• Matrix A, which is used throughout the examples, is equal to:
1 4 7
2 5 8
3 6 9

• Nested calls to mlfScalar() create the arrays that contain the indices.
Because automatic memory management is in effect, these scalar arrays are
automatically deleted by the library because they are temporary arrays.

• Each mxArray that is the target of an assignment must be deleted after the
program finishes with it.
mxDestroyArray(A);

• Many of the examples use the mlfHorzcat() and mlfVertcat() functions to
create the vectors and matrices that are used as indices. mlfHorzcat()
concatenates its arguments horizontally; mlfVertcat() concatenates its
arguments vertically.
6

Assumptions for the Code Examples
Refer to the online MATLAB C Math Library Reference for more information
on mlfScalar(), mlfCreateColonIndex(), mxCreateDoubleMatrix(),
mxGetPr(), mlfHorzcat(), and mlfVertcat().
5-17

5 Indexing into Arrays

5-1
Using mlfIndexRef() for One-Dimensional Indexing
This section describes how to select:

• A single element with a one-dimensional scalar index

• A vector with a one-dimensional vector index

• A subarray with a one-dimensional matrix index

• All elements in the matrix with the colon index

All examples work with example matrix A. Notice that the value of each
element in A is equal to that element’s position in the column-major
enumeration order. For example, the third element of A is the number 3 and
the ninth element of A is the number 9.

A =
1 4 7
2 5 8
3 6 9

‘‘Assumptions for the Code Examples’’ on page 5-16 explains the conventions
used in the examples.

Overview
A one-dimensional subscript contains a single index. When you use the
MATLAB C Math Library to perform one-dimensional indexing, you pass
mlfIndexRef() a pointer to one array that represents the index. The index
array can contain a scalar, vector, matrix, or the return from a call to the
mlfCreateColonIndex() function.

The size and shape of the one-dimensional index determine the size and shape
of the result; the size of the result is exactly equal to the size of the
one-dimensional subscript. For example, a one-dimensional row vector index
produces a one-dimensional row vector result. Given the matrix A, the
expression A([1 5 8]) produces the row-vector [1 5 8].

To apply a one-dimensional subscript to an N-dimensional array, you need to
know how to go from the one-dimensional index value to a location inside the
array. See ‘‘Array Storage’’ on page 5-5 for complete details on how MATLAB
counts one dimensionally through arrays of N dimensions.
8

Using mlfIndexRef() for One-Dimensional Indexing
Note The range for a one-dimensional index depends on the size of the array.
For a given array A, it ranges from 1, the first element of the array, to
prod(size(A)), the last element in an N-dimensional array. Contrast this
range with the two ranges for a two-dimensional index where the row value
varies from 1 to M, and the column value from 1 to N.

Selecting a Single Element
Use a scalar index to select a single element from the array. For example,

mlfAssign(&B, mlfIndexRef(A, "(?)", mlfScalar(5)));

performs the same operation as A(5) in MATLAB and selects the fifth element
of A, the number 5.

Selecting a Vector
Use a vector index to select multiple elements from an array. For example,

mlfIndexRef(A, "(?)",
mlfHorzcat(mlfScalar(2), mlfScalar(5), mlfScalar(8), NULL))

performs the same operation as A([2 5 8]) in MATLAB and selects the second,
fifth and eighth elements of the matrix A:

2 5 8

Because the index is a 1-by-3 row vector, the result is also a 1-by-3 row vector.

The code

mlfAssign(&B, mlfIndexRef(A, "(?)",
 mlfVertcat(mlfScalar(2), mlfScalar(5), mlfScalar(8), NULL)));

selects the same elements of A, but returns the result as a column vector
because the call to mlfVertcat() produced a column vector:

2
5
8

A([2;5;8]) in MATLAB performs the same operation. Note the semicolons.
5-19

5 Indexing into Arrays

5-2
Specifying a Vector Index with mlfEnd()
Sometimes you don’t know how large an array is in a particular dimension, but
you want to perform an indexing operation that requires you to specify the last
element in that dimension. In MATLAB, you can use the end function to refer
to the last element in a given dimension.

For example, A(6:end) selects the elements from A(6) to the end of the array.
The MATLAB C Math Library’s mlfEnd() function corresponds to MATLAB’s
end() function. Given an array, a dimension (1 = row , 2 = column, 3 = page,
and so on), and the number of indices in the subscript, mlfEnd() returns (as a
1-by-1 array) the index of the last element in the specified dimension. You can
then use that scalar array to generate a vector index.

Given the row dimension for a vector or scalar array, mlfEnd() returns the
number of columns. Given the column dimension for a vector or scalar array, it
returns the number of rows. For a matrix, mlfEnd() treats the matrix like a
vector and returns the number of elements in the matrix.

Note that the number of indices in the subscript corresponds to the number of
index arguments that you pass to mlfIndexRef().

This C code selects all but the first five elements in matrix A, just as A(6:end)
does in MATLAB.

mxArray *end_index=NULL, *B=NULL;
mlfAssign(&end_index,

mlfColon(mlfScalar(6),
mlfEnd(A, mlfScalar(1), mlfScalar(1)), NULL));

mlfAssign(&B, mlfIndexRef(A, "(?)", end_index));

The second argument, mlfScalar(1), to mlfEnd() identifies the dimension
where mlfEnd() is used, here the row dimension. The third argument,
mlfScalar(1), indicates the number of indices in the subscript; for
one-dimensional indexing, it is always one. This code selects these elements
from matrix A:

6 7 8 9
0

Using mlfIndexRef() for One-Dimensional Indexing
Selecting a Matrix
Use a matrix index to select a matrix. A matrix index works just like a vector
index, except the result is a matrix rather than a vector. For example, let B be
the index matrix:

1 2
3 2

Then,

mlfAssign(&X, mlfIndexRef(A, "(?)", B));

is

1 2
3 2

Note that the example matrix A was chosen so that
mlfIndexRef(A,"(?)", X) equals X for all types of one-dimensional indexing.
This is not generally the case. For example, if A were changed to
mlfAssign(&A, mlfMagic(mlfScalar(3)));

8 1 6
3 5 7
4 9 2

and B remains the same, then mlfIndexRef(A, "(?)", B) would equal

8 3
4 3

Note In both cases, size(A(B)) is equal to size(B). This is a fundamental
property of one-dimensional indexing.

Selecting the Entire Matrix As a Column Vector
Use the colon index to select all the elements in an array. The result is a column
vector. For example,

mlfAssign(&B, mlfIndexRef(A, "(?)", mlfCreateColonIndex()));
5-21

5 Indexing into Arrays

5-2
is:

1
2
3
4
5
6
7
8
9

The colon index means ‘‘all.’’ It is a context-sensitive function. It expands to a
vector array containing all the indices of the dimension in which it is used (its
context). In the context of an M-by-N array A, A(:) in MATLAB notation is
equivalent to A([1:M*N]’). When you use colon, you don’t have to specify M
and N explicitly, which is convenient when you don’t know M and N.
2

Using mlfIndexRef() for N-Dimensional Indexing
Using mlfIndexRef() for N-Dimensional Indexing
This section describes how to:

• Extract a scalar from a matrix

• Extract a vector from a matrix

• Extract a subarray from a matrix

• Extend two-dimensional indexing to N dimensions

All two-dimensional examples work with example matrix A.

1 4 7
2 5 8
3 6 9

There is no functional difference between two-dimensional indexing and
N-dimensional indexing (where N > 2). Because it is easier to understand
two-dimensional arrays, most of the examples in this section deal with
two-dimensional arrays. See ‘‘Extending Two-Dimensional Indexing to N
Dimensions’’ on page 5-29 to learn how to work with arrays of dimension
greater than two.

To use the code samples in your own code, see ‘‘Assumptions for the Code
Examples’’ on page 5-16, which explains the conventions used in the examples.

Overview
An N-dimensional subscript contains N indices. The first index is the row
index, the second is the column index, the third the page index, and so on.
When you use the MATLAB C Math Library to perform N-dimensional
indexing, you pass mlfIndexRef() N index arrays as arguments that together
represent the subscript: the first index array argument stores the row index,
the second the column index, the third the page index, etc. Each index array
can store a scalar, vector, matrix, or the result from a call to the function
mlfCreateColonIndex().
5-23

5 Indexing into Arrays

5-2
The size of the indices rather than the size of the subscripted matrix
determines the size of the result; the size of the result is equal to the product
of the sizes of the N indices. For example, assume matrix A is set to:

1 4 7
2 5 8
3 6 9

If you index matrix A with a 1-by-5 vector and a scalar, the result is a
five-element vector: five elements in the first index times one element in the
second index. If you index matrix A with a three-element row index and a
two-element column index, the result has six elements arranged in three rows
and two columns.

Selecting a Single Element
Use two scalar indices to extract a single element from an array.

For example,

mlfAssign(&B,
mlfIndexRef(A, "(?,?)", mlfScalar(2), mlfScalar(2)));

selects the element 5 from the center of matrix A (the element at row 2, column
2).

Selecting a Vector of Elements
Use one vector and one scalar index, or one matrix and one scalar index, to
extract a vector of elements from an array. You can use the functions
mlfHorzcat(), mlfVertcat(), or mlfCreateColonIndex() to make the vector
or matrix index, or use an mxArray variable that contains a vector or matrix
returned from other functions.

The indexing routines iterate over the vector index or down the columns of the
matrix index, pairing each element of the vector or matrix with the scalar
index. Think of this process as applying a (scalar, scalar) subscript multiple
times; the result of each selection is collected into a vector.
4

Using mlfIndexRef() for N-Dimensional Indexing
For example,

mlfAssign(&B,
mlfIndexRef(A, "(?,?)",

mlfHorzcat(mlfScalar(1), mlfScalar(3), NULL),
mlfScalar(2)));

selects the first and third element (or first and third rows) of column 2:

4
6

In MATLAB A([1 3], 2) performs the same operation.

If you reverse the positions of the indices (A(2, [1 3]) in MATLAB):

mlfAssign(&B,
mlfIndexRef(A, "(?,?)",

mlfScalar(2),
mlfHorzcat(mlfScalar(1), mlfScalar(3), NULL)));

you select the first and third elements (or first and third columns) of row 2:

2 8

If the vector index contains the same number multiple times, the same element
is extracted multiple times. For example,

mlfAssign(&B,
mlfIndexRef(A, "(?,?)",

mlfScalar(2),
mlfHorzcat(mlfScalar(3), mlfScalar(3), NULL)));

returns two copies of the element at A(2,3):

8 8

Note You can pass any number of arguments to mlfHorzcat() or
mlfVertcat(). You can nest calls to either function.
5-25

5 Indexing into Arrays

5-2
Specifying a Vector Index with mlfEnd()
The mlfEnd() function, which corresponds to the MATLAB end() function,
provides another way of specifying a vector index. Given an array, a dimension
(1 = row , 2 = column, 3 = page, and so on), and the number of indices in the
subscript, mlfEnd() returns the index of the last element in the specified
dimension. You then use that scalar array to generate a vector index. See
‘‘Specifying a Vector Index with mlfEnd()’’ on page 5-20 for a more complete
description of how and why you use the end function in MATLAB.

Given the row dimension, mlfEnd() returns the number of columns. Given the
column dimension, it returns the number of rows. The number of indices in the
subscript corresponds to the number of index arguments you pass to
mlfIndexRef().

This code selects all but the first element in row 3, just as

A(3, 2:end)

does in MATLAB.

mxArray *two=NULL, *end_index=NULL, *B=NULL;
mlfAssign(&two, mlfScalar(2));
mlfAssign(&end_index, mlfColon(two, mlfEnd(A, two, two), NULL));
mlfAssign(&B, mlfIndexRef(A, "(?,?)",

mlfScalar(3), end_index));

The second argument to mlfEnd(), two, identifies the dimension where
mlfEnd() is used, here the column dimension. The third argument, two,
indicates the number of indices in the subscript; for two-dimensional indexing,
it is always two. This code selects these elements from matrix A:

6 9

Selecting a Row or Column
Use a colon index and a scalar index to select an entire row or column. For
example,

mlfIndexRef(A, "(?,?)", mlfScalar(1), mlfCreateColonIndex())

selects the first row:

1 4 7
6

Using mlfIndexRef() for N-Dimensional Indexing
mlfIndexRef(A, "(?,?)", mlfCreateColonIndex(), mlfScalar(2)) selects
the second column:

4
5
6

Selecting a Matrix
Use two vector indices, or a vector and a matrix index, to extract a matrix. You
can use the function mlfHorzCat(), mlfVertcat(), or mlfCreateColonIndex()
to make each vector or matrix index, or use mxArray variables that contain
vectors or matrices returned from other functions.

The indexing code iterates over both vector indices in a pattern similar to a
doubly nested for-loop:

for each element I in the row index
for each element J in the column index

select the matrix element A(I,J)

For each of the indicated rows, this operation (A([1 2], [1 3 2]) in MATLAB)
selects the column elements at the specified column positions. For example,

mlfAssign(&B,
mlfIndexRef(A, "(?,?)",

mlfHorzcat(mlfScalar(1), mlfScalar(2), NULL),
mlfHorzcat(mlfScalar(1), mlfScalar(3),

mlfScalar(2), NULL)));

selects the first, third, and second (in that order) elements from rows 1 and 2,
yielding:

1 7 4
2 8 5

Notice that the result has two rows and three columns. The size of the result
matrix always matches the size of the index vectors: the row index had two
elements; the column index had three elements. The result is 2-by-3.
5-27

5 Indexing into Arrays

5-2
The indexing routines treat a matrix index as one long vector, moving down the
columns of the matrix. The loop for a subscript composed of a matrix in the row
position and a vector in the column position works like this:

for each column I in the row index matrix B
for each row J in the Ith column of B

for each element K in the column index vector
select the matrix element A(B(I,J), K)

For example, let the matrix B equal:

1 1
2 3

Then the expression

mlfIndexRef(A, "(?,?)", B,
mlfHorzcat(mlfScalar(1), mlfScalar(2), NULL))

performs the same operation as A(B,[1 2]) in MATLAB and selects the first,
second, first, and third elements of columns 1 and 2:

1 4
2 5
1 4
3 6

Selecting Entire Rows or Columns
Use a colon index and a vector or matrix index to select multiple rows or
columns from a matrix. For example,

mlfIndexRef(A, "(?,?)",
mlfHorzcat(mlfScalar(2), mlfScalar(3), NULL),
mlfCreateColonIndex())

performs the same operation as A([2 3],:) in MATLAB and selects all the
elements in rows two and three:

2 5 8
3 6 9
8

Using mlfIndexRef() for N-Dimensional Indexing
You can use the colon index in the row position as well. For example, the
expression

mlfAssign(&B,
mlfIndexRef(A, "(?,?)",

mlfCreateColonIndex(),
mlfHorzcat(mlfScalar(3), mlfScalar(1), NULL)));

performs the same operation as A(:,[3 1]) in MATLAB and selects all the
elements in columns 3 and 1, in that order:

7 1
8 2
9 3

Subscripts of this form make duplicating the rows or columns of a matrix easy.

Selecting an Entire Matrix
Using the colon index as both the row and column index selects the entire
matrix. Although this usage is valid, referring to the matrix itself without
subscripting is much easier.

Extending Two-Dimensional Indexing to N
Dimensions
Two-dimensional indexing extends very naturally to N dimensions; simply use
more index arguments. Let A be a 3-by-3-by-2 three-dimensional array (two
3-by-3 pages):

Page 1:

1 4 7
2 5 8
3 6 9

Page 2:

10 13 16
11 14 17
12 15 18
5-29

5 Indexing into Arrays

5-3
Then the MATLAB expression A(:,:,2) selects all of page 2, A(1,:,:) selects
all the columns in row 1 on all the pages, A(2,2,2) selects the element at the
middle of page 2 (the number 14), and so on.

It is very simple to convert these MATLAB indexing expressions into MATLAB
C Math Library indexing expressions:

A(:,:,2) becomes

mlfIndexRef(A, "(?,?,?)", mlfCreateColonIndex(),
mlfCreateColonIndex(), mlfScalar(2))

The result of this operation is the 3-by-3 array on page 2 of A:

10 13 16
11 14 17
12 15 18

A(1,:,:) becomes

mlfIndexRef(A, "(?,?,?)", mlfScalar(1), mlfCreateColonIndex(),
mlfCreateColonIndex())

The result of this operation is a three-dimensional array 1-by-3-by-2 in which
each “page” consists of the first row of the corresponding page of A.

Page 1:

1 4 7

Page 2:

10 13 16

Finally, A(2,2,2) becomes:

mlfIndexRef(A, "(?,?,?)", mlfScalar(2), mlfScalar(2),
mlfScalar(2))

The result of this operation is the 1-by-1 array 14.

If the array A had more than three dimensions, the index strings would have
more than three ?’s in them, and they would be followed by more than three
index values. All of the other types of indexing discussed in this chapter
(selecting entire rows and columns, etc.) work equally well on N-dimensional
arrays.
0

Using mlfIndexRef() for Logical Indexing
Using mlfIndexRef() for Logical Indexing
This section describes how to use:

• A logical index as a one-dimensional subscript

• Two logical vectors as indices in a two-dimensional subscript

• A colon index and a logical vector as a two-dimensional subscript

• A logical index to select elements from a row or column

The examples work with matrix A and the logical array B.

A
1 4 7
2 5 8
3 6 9

B
1 0 1
0 1 0
1 0 1

‘‘Assumptions for the Code Examples’’ on page 5-16 explains the conventions
used in the examples.

Overview
Logical indexing is a special case of n-dimensional indexing. A logical index is
a vector or a matrix that consists entirely of ones and zeros. Applying a logical
subscript to a matrix selects the elements of the matrix that correspond to the
nonzero elements in the subscript.

Logical indices are generated by the relational operator functions (mlfLt(),
mlfGt(), mlfLe(), mlfGe(), mlfEq(), mlfNeq()) and by the function
mlfLogical(). Because these functions attach a logical flag to a logical matrix,
you cannot create a logical index simply by assigning ones and zeros to a vector
or matrix.

You can form an n-dimensional logical subscript by combining a logical index
with scalar, vector, matrix, or colon indices.
5-31

5 Indexing into Arrays

5-3
Using a Logical Matrix as a One-Dimensional Index
When you use a logical matrix as an index, the result is a column vector. For
example, if the logical index matrix B equals

1 0 1
0 1 0
1 0 1

Then

mlfAssign(&X, mlfIndexRef(A, "(?)", B));

equals

1
3
5
7
9

Notice that B has ones at the corners and in the center, and that the result is a
column vector of the corner and center elements of A.

Note that you can create B by calling mlfAssign(&B, mlfLogical(matrix))
where matrix stores a matrix of 1’s and 0’s.

If the logical index is not the same size as the subscripted array, the logical
index is treated like a vector. For example, if B = logical([1 0; 0 1]), then

mlfAssign(&X, mlfIndexRef(A, "(?)", B));

equals

1
4

since B has a zero at positions 2 and 3 and a 1 at positions 1 and 4. Logical
indices behave just like regular indices in this regard.

Using Two Logical Vectors as Indices
Two vectors can be logical indices into an M-by-N matrix A. The size of a logical
vector index often matches the size of the dimension it indexes, although this
is not a requirement.
2

Using mlfIndexRef() for Logical Indexing
For example, let B = logical([1 0 1]) and C = logical([0 1 0]), two vectors
that do match the sizes of the dimensions where they are used. Then,

mlfAssign(&X, mlfIndexRef(A, "(?,?)", B, C));

equals

4
6

B, the row index vector, has nonzero entries in the first and third elements.
This selects the first and third rows. C, the column index vector, has only one
nonzero entry, in the second element. This selects the second column. The
result is the intersection of the two sets selected by B and C, that is, all the
elements in the second columns of rows 1 and 3.

Or, let B = logical([1 0]) and C = logical([0 1]), two vectors that do not
match the sizes of the dimensions where they are used. Then

mlfAssign(&X, mlfIndexRef(A, "(?,?)", B, C));

equals

4

This is tricky. B, the row index, selects row 1 but does not select row 2. C, the
column index, does not select column 1 but does select column 2. There is only
one element in array A in both row 1 and column 2, the element 4.

Using One Colon Index and One Logical Vector as
Indices
This type of indexing is very similar to the two-vector case. Here, however, the
colon index selects all of the elements in a row or column, acting like a vector
of ones the same size as the dimension to which it is applied. The logical index
works just like a nonlogical index in terms of size.

For example, let the index vector B = logical([1 0 1]). Then

mlfIndexRef(A, "(?,?)", mlfCreateColonIndex(), B)
5-33

5 Indexing into Arrays

5-3
equals

1 7
2 8
3 9

The colon index selects all rows, and B selects the first and third columns in
each row. The result is the intersection of these two sets, that is, the first and
third columns of the matrix.

For comparison,

mlfAssign(&X, mlfIndexRef(A, "(?,?)", B, mlfCreateColonIndex()));

equals

1 4 7
3 6 9

B selects the first and third rows, and the colon index selects all the columns in
each row. The result is the intersection of the sets selected by each index, that
is, the first and third rows of the matrix.

Using a Scalar and a Logical Vector
Let matrix X be a 4-by-4 magic square.

X = magic(4);

16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Let B be a logical matrix that indicates which elements in row two of matrix X
are greater than 9. B is the result of the greater than (>) operation

mlfAssign(&target_row,
mlfIndexRef(X, "(?,?)", mlfScalar(2),

mlfCreateColonIndex()));
mlfAssign(&B, mlfGt(target_row, mlfScalar(9)));

and contains the vector

0 1 1 0
4

Using mlfIndexRef() for Logical Indexing
In MATLAB, B = (X(2,:) > 9) performs the same operation.

Use B as a logical index that selects those elements from matrix X.

mlfAssign(&C, mlfIndexRef(X, "(?,?)", mlfScalar(2), B));

selects these elements:

11 10

Extending Logical Indexing to N-Dimensions
Logical indexing works on n-dimensional arrays just as you’d expect. The
logical filtering happens the same way, and the subscript size governs the
result size in the same manner. For details on the syntax, see ‘‘Extending
Two-Dimensional Indexing to N Dimensions’’ on page 5-29.
5-35

5 Indexing into Arrays

5-3
Using mlfIndexAssign() for Assignments
This section describes how to assign:

• A single element to an array

• Multiple elements to an array

• Values to all the elements in an array

The examples work with matrix A.

A =

1 4 7
2 5 8
3 6 9

There is no functional difference between two-dimensional indexed assignment
and n-dimensional indexed assignment (where N > 2). Because it is easier to
understand two-dimensional arrays, most of the examples in this section deal
with two-dimensional arrays. See ‘‘Extending Two-Dimensional Assignment to
N-Dimensions’’ on page 5-39 to learn how to work with arrays of dimension
greater than two

‘‘Assumptions for the Code Examples’’ on page 5-16 explains the conventions
used in the examples.

Overview
Use the function mlfIndexAssign() to make assignments that involve
indexing. The arguments to mlfIndexAssign() consist of a destination array,
an index string, the index arrays themselves, and the source array. The
subscript specifies the elements that are to be modified in the destination
array. The source array specifies the new values for those elements.

You can use five different kinds of indices:

• Scalar

• Vector

• Matrix
• Colon
• Logical
6

Using mlfIndexAssign() for Assignments
The examples below do not present all possible combinations of these index
types.

Note The size of the destination mxArray (after the subscript has been
applied) and the size of the source mxArray must be the same.

Assigning to a Single Element
Use one or two scalar indices to assign a value to a single element in a matrix.
For example,

mlfIndexAssign(&A, "(?,?)", mlfScalar(2), mlfScalar(1),
mlfScalar(17));

changes the element at row 2 and column 1 to the integer 17. Here, both the
source and destination (after the subscript has been applied) are scalars, and
thus the same size.

Assigning to Multiple Elements
Use a vector index to modify multiple elements in a matrix.

A colon index frequently appears in the subscript of the destination because it
allows you to modify an entire row or column. For example, this code

mlfIndexAssign(&A, "(?,?)", mlfScalar(2), mlfCreateColonIndex(),
mlfColon(mlfScalar(1),mlfScalar(3),NULL));

replaces the second row of an M-by-3 matrix with the vector 1 2 3. If we use
the example matrix A, A is modified to contain:

1 4 7
1 2 3
3 6 9

You can also use a logical index to select multiple elements. For example, the
assignment statement

mlfIndexAssign(&A, "(?)", mlfGt(A,mlfScalar(5)),
mlfHorzcat(mlfScalar(17), mlfScalar(17),

mlfScalar(17), mlfScalar(17),NULL));
5-37

5 Indexing into Arrays

5-3
changes all the elements in A that are greater than 5 to 17:

1 4 17
2 5 17
3 17 17

Assigning to a Subarray
Use two vector indices to generate a matrix destination. For example, let the
vector index B = [1 2], and the vector index C = [2 3]. Then,

mlfAssign(&source, mlfVertcat(mlfHorzcat(mlfScalar(1),
mlfScalar(4),
NULL),

mlfHorzcat(mlfScalar(3),
mlfScalar(2),
NULL),

NULL));
mlfIndexAssign(&A, "(?,?)", B, C, source);

copies a 2-by-2 matrix into the second and third columns of rows 1 and 2: the
upper right corner of A. The example matrix A becomes:

1 1 4
2 3 2
3 6 9

You can also use a logical matrix as an index. For example, let B be the logical
matrix:

0 1 1
0 1 1
0 0 0

Then,

mlfIndexAssign(&A, "(?)", B, source);

changes A to:

1 1 4
2 3 2
3 6 9
8

Using mlfIndexAssign() for Assignments
Assigning to All Elements
You can use the colon index to replace all elements in a matrix with alternate
values. The colon index, however, is infrequently used in this context because
you can accomplish approximately the same result by using assignment
without any indexing. For example, although you can write

mlfIndexAssign(&A, "(?)", mlfCreateColonIndex(),
mlfRand(mlfScalar(3),NULL));

writing

mlfAssign(&A, mlfRand(mlfScalar(3), NULL));

is simpler.

The first statement reuses the storage already allocated for A. The first
statement will be slightly slower, because the elements from the source must
be copied into the destination.

Note mlfRand(mlfScalar(3), NULL) is equivalent to
mlfRand(mlfScalar(3), mlfScalar(3), NULL).

Extending Two-Dimensional Assignment to
N-Dimensions
Two-dimensional assignment extends naturally to N-dimensions; simply use
more index arguments. Let A be a 3-by-3-by-2 three-dimensional array (two
3-by-3 pages):

Page 1:

1 4 7
2 5 8
3 6 9

Page 2:

10 13 16
11 14 17
12 15 18
5-39

5 Indexing into Arrays

5-4
Then the MATLAB expression A(:,:,2) = eye(3) changes page 2 to the 3-by-3
identity matrix; A(1,:,:) = ones(1,3,2) changes row 1 on both pages to be
all ones; A(2,2,2) = 42 changes the element at the middle of page 2 (the
number 14) to the number 42, and so on.

It is very simple to convert these MATLAB indexed assignment expressions
into MATLAB C Math Library indexed assignment expressions.

A(:,:,2) = eye(3) becomes

mlfIndexAssign(&A, "(?,?,?)", mlfCreateColonIndex(),
mlfCreateColonIndex(), mlfScalar(2),
mlfEye(mlfScalar(3), NULL));

As a result of this operation the 3-by-3 array on page 2 of A becomes:

1 0 0
0 1 0
0 0 1

A(1,:,:) = ones(1, 3, 2) becomes

mlfIndexAssign(&A, "(?,?,?)", mlfScalar(1),
mlfCreateColonIndex(),
mlfCreateColonIndex(),
mlfOnes(mlfScalar(1), mlfScalar(3),

mlfScalar(2), NULL));

As a result of this operation row 1 on both pages of A becomes all ones.

Page 1:

1 1 1
2 5 8
3 6 9

Page 2:

1 1 1
11 14 17
12 15 18

Finally, A(2,2,2)= 42 becomes:

mlfIndexAssign(A, "(?,?,?)", mlfScalar(2), mlfScalar(2),
mlfScalar(2), mlfScalar(42));
0

Using mlfIndexAssign() for Assignments
As a result of this operation the element at (2,2,2) changes to the number 42.

Page 2:

10 13 16
11 42 17
12 15 18

If the array A had more than three dimensions, the index strings would have
more than three ?’s in them, and they would be followed by more than three
index values. All of the other types of indexing discussed in this chapter
(assigning to entire rows and columns, etc.) work equally well on
N-dimensional arrays.
5-41

5 Indexing into Arrays

5-4
Using mlfIndexDelete() for Deletion
This section

• Describes how to delete a single element from an array

• Describes how to delete multiple elements from an array

The examples work with matrix A.

A =

1 4 7
2 5 8
3 6 9

‘‘Assumptions for the Code Examples’’ on page 5-16 explains the conventions
used in the examples.

Use the function mlfIndexDelete() to delete elements from an array. This
function is equivalent to the MATLAB statement, A(B) = []. Instead of
specifying a subscript for the elements you want to replace with other values,
specify a subscript for the elements you want removed from the matrix. The
MATLAB C Math Library removes those elements and shrinks the array.

For example, to delete elements from example matrix A, you simply pass the
target array, the index string, and the value of the indices that identify the
elements to be removed.

When you delete a single element from a matrix, the matrix is converted into a
row vector that contains one fewer element than the original matrix. For
example, when element (8) is deleted from matrix A

mlfIndexDelete(&A, "(?)", mlfScalar(8));

matrix A becomes this row vector with element 8 missing:

1 2 3 4 5 6 7 9

You can also delete more than one element from a matrix, shrinking the matrix
by that number of elements. To retain the rectangularity of the matrix,
however, you must delete one or more entire rows or columns. For example,

mlfIndexDelete(&A, "(?,?)", mlfScalar(2),
mlfCreateColonIndex());
2

Using mlfIndexDelete() for Deletion
produces this rectangular result:

1 4 7
3 6 9

Note An N-dimensional subscript used in a deletion operation on the left
side of the assignment statement can contain only one scalar, vector, or matrix
index. The other indices must be colon indices. For example, if an array is
three-dimensional and you delete row 2, you must delete row 2 from all pages.

Similar to reference and assignment, two-dimensional deletion extends to
N-dimensions. If A has more than two dimensions, simply specify more than
two dimensions in the index string and pass more than two index values.
5-43

5 Indexing into Arrays

5-4
Indexing into Cell Arrays
This section describes how to:

• Reference a cell in a cell array

• Reference a subset of a cell array

• Reference the contents of a cell

• Reference a subset of the contents of a cell

• Index nested cell arrays

• Assign values to a cell array

• Delete elements from a cell array

The examples all use the cell array N. N contains four cells: a 2-by-2 double
array, a string array, an array that contains a complex number, and a scalar
array.

This MATLAB code creates the array:

N{1,1} = [1 2; 4 5];
N{1,2} = ’Eric’;
N{2,1} = 2-4i;
N{2,2} = 7;

’Eric’1 2
4 5

2-4i 7

cell 1,2cell 1,1

cell 2,2cell 2,1
4

Indexing into Cell Arrays
This MATLAB C Math Library code creates the array. Note that dbl_array
must already exist.

mlfAssign (&N, mlfVertcat(mlfCellhcat(dbl_array,
mxCreateString("Eric"),NULL),

mlfCellhcat(mlfComplexScalar(2, -4),
mlfScalar(7),NULL),

 NULL));

Note that you can’t just place this single line of code into a function, you need
to follow the conventions for this coding style (using automatic memory
management). See ‘‘Assumptions for the Code Examples’’ on page 5-16 for the
conventions used in the examples.

Overview
A cell array is a regularly shaped N-dimensional array of cells. Each cell is
capable of containing any type of MATLAB data, including another cell arrays.
When using cell arrays, you must be careful to distinguish between the data
values stored in the cells and the cells themselves, which are data values in
their own right.

MATLAB supports two types of indexing on cell arrays. The first, standard
indexing, uses parentheses () and allows you to manipulate the cells in a cell
array. The second, cell array indexing, uses braces {} to manipulate the data
values stored in the cells.

For example, given the cell array N, above, N{2,2} is the scalar 7, but N(2,2) is
a 1-by-1 cell array (a single cell) containing the scalar 7.

Tips for Working with Cell Arrays

• Cell arrays must be regularly shaped. All rows must have the same number
of columns, and all columns the same number of rows. This requirement
extends into dimensions higher than two, as well. For example, all pages
must be the same size in a three-dimensional cell array.

• You can’t do arithmetic on a cell. You cannot, for example, write N(2,2)+1,
which attempts to add one to a cell. However, N{2,2}+1 works perfectly well,
5-45

5 Indexing into Arrays

5-4
since the cell array indexing returns the contents of cell (2,2) rather than
the cell itself.

• Cell array indexing follows the same rules as standard indexing. You can use
the colon index to refer to multiple rows or columns; you can use vector and
matrix indices to extract sub-cell arrays from a cell array, etc.

For simplicity, this documentation focuses on two-dimensional cell arrays. If N
were a cell array of higher dimension, the examples would still work on N if you
added the appropriate number of dimensions to the indexing expressions.

Referencing a Cell in a Cell Array
To obtain a cell from a cell array, use parentheses in the indexing string to
indicate that you are referencing the cell itself, not its contents.

mlfAssign(&c,
mlfIndexRef(N, "(?,?)", mlfScalar(1), mlfScalar(2)));

c is a 1-by-1 cell array containing the string array ’Eric’.

c = N(1,2) performs the same operation in MATLAB.

Referencing a Subset of a Cell Array
To obtain a subset of the cells in a cell array, use the colon index or a vector or
matrix index to access a group of cells. For example, to extract the second row
of the cell array N, write this code:

mlfAssign(&B, mlfIndexRef(N, "(?,?)",
mlfScalar(2),
mlfCreateColonIndex()));

The result, B, is a 1-by-2 cell array containing the complex number 2-4i and
the integer 7.

B = N(2,:) performs the same operation in MATLAB.

Cell arrays support vector-based (one-dimensional) indexing as well. To extract
the first and last elements of N, first make a vector v that contains the integers
1 and 4 (use mlfHorzcat() to construct v). Then call mlfIndexRef() like this:

mlfAssign(&B, mlfIndexRef(N, "(?)", v));
6

Indexing into Cell Arrays
The result, B, is a 1-by-2 cell array that contains a 2-by-2 matrix (element (1,1)
of N) and the scalar 7 (element (2,2) of N).

B = N([1 4]) performs the same operation in MATLAB.

Referencing the Contents of a Cell
To obtain the contents of a single cell, use braces in the indexing string to
indicate that you are referencing the cell contents, not the cell itself.

mlfAssign(&c,
mlfIndexRef(N, "{?,?}", mlfScalar(1), mlfScalar(2)));

c is the string array ’Eric’.

c = N{1,2} performs the same operation in MATLAB.

Referencing a Subset of the Contents of a Cell
To obtain a subset of a cell’s contents, concatenate indexing expressions. For
example, to obtain element (2,2) from the array in cell N{1,1}, use an
indexing string "{?,?}(?,?)" that concatenates an index that references the
entire contents of a cell with an index that references a portion of those
contents.

mlfAssign(&d,
mlfIndexRef(N, "{?,?}(?,?)",

mlfScalar(1), mlfScalar(1),
mlfScalar(2), mlfScalar(2)));

d is 5.

d = N{1,1}(2,2) performs the same operation in MATLAB.

Note that d is a scalar array, not a cell array.

Indexing Nested Cell Arrays
To index nested cells, concatenate subscripts in the indexing string. The first
set of subscripts accesses the top layer of cells, and subsequent sets of braces
access successively deeper layers of cells.
5-47

5 Indexing into Arrays

5-4
For example, array A represented in this diagram has three levels of cell
nesting: the 1-by-2 cell array itself, the 2-by-2 cell array nested in cell (1,2),
and the 1-by-2 cell array nested in cell (2,2).

Indexing the First Level
To access the 2-by-2 cell array in cell (1,2):

mlfIndexRef(A, "{?,?}", mlfScalar(1), mlfScalar(2))

In MATLAB A{1,2} performs the same operation.

Indexing the Second Level
To access the 1-by-2 array in position (2,2) of cell (1,2):

mlfIndexRef(A, "{?,?}{?,?}",
mlfScalar(1), mlfScalar(2),
mlfScalar(2), mlfScalar(2))

A{1,2}{1,1} in MATLAB performs the same operation.

Indexing the Third Level
To access the empty cell in position (2,2) of cell (1,2):

mlfIndexRef(A, "{?,?}{?,?}{?,?}",
mlfScalar(1), mlfScalar(2),
mlfScalar(2), mlfScalar(2),
mlfScalar(1), mlfScalar(2))

A{1,2}{2,2}{1,2} in MATLAB performs the same operation.

cell 1,1 cell 1,2

[2–4i 5+7i]

'Test 1'
5 2 8
7 3 0
6 7 3

17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

17
8

Indexing into Cell Arrays
Assigning Values to a Cell Array
You put a value into a cell array in much the same way that you read a value
out of a cell array. In MATLAB, the only difference between the two operations
is the position of the cell array relative to the assignment operator: left of the
equal sign (=) means assignment, right of the operator means reference. No
matter if you’re reading or writing values, the indexing operations you use to
specify which values to access remain the same.

This is true in the MATLAB C Math Library as well. The only difference
between reading values from a cell array and writing values to a cell array is
the function you call. mlfIndexRef() reads values; mlfIndexAssign() writes
values.

For example, each of the mlfIndexRef() examples presented in the previous
sections will also work with mlfIndexAssign() if you provide a source array of
the correct size as the last argument to mlfIndexAssign().

Like mlfIndexRef(), mlfIndexAssign() distinguishes between cell array
indexing and standard indexing. For example, to assign a vector [1 2 5 7 11]
to the contents of the cell (1,2) of A, you write A{1,2} = [1 2 5 7 11] in
MATLAB and

mlfIndexAssign(&A, "{?,?}", mlfScalar(1), mlfScalar(2), vector);

in C with the MATLAB C Math Library. Assume the array variable vector is
set to the vector of primes above.

You could have written the previous assignment in MATLAB as
A(1,2) = { [1 2 5 7 11] }. The corresponding MATLAB C Math Library
code is:

mlfIndexAssign(&A, "(?,?)", mlfScalar(1), mlfScalar(2),
mlfCellhcat(vector,NULL));

Because this assignment uses parentheses instead of braces, it is an
assignment between cells, which means the source array (on the right-hand
side of the assignment operator) must be a cell array as well. The first line of C
code creates a cell array from our initial vector of primes.

Deleting Elements from a Cell Array
Cell arrays follow the same rules as numeric arrays (and structure arrays, as
you’ll see in the next section) for element deletion. You can delete a single
5-49

5 Indexing into Arrays

5-5
element from a cell array, or an entire dimension element, for example, a row
or column of a two-dimensional cell array or a row, column, or page of a
three-dimensional cell array. In MATLAB, you delete elements by assigning []
to them. In the MATLAB C Math Library, you use mlfIndexDelete(), which
takes exactly the same type of arguments as mlfIndexRef().

Deleting a Single Element
In order to delete a single element from an array of any type, you must use
one-dimensional indexing. Deleting a single element from a two-dimensional
cell array collapses it into a vector cell array. For example, deleting the (2,1)
element of N (the complex number 2-4i), produces a three-element cell array.
N(2) refers to element (2,1) of N using one-dimensional indexing. Therefore,
you’d write

N(2) = []

in MATLAB, and

mlfIndexDelete(&N, "(?)", mlfScalar(2));

in C to remove element 2,1 from N.

Deleting an Entire Dimension
You can delete an entire dimension by using vector subscripting to delete a row
or column of cells. Use parentheses within the indexing string to indicate that
you are deleting the cells themselves.

mlfIndexDelete(&N, "(?,?)",
mlfScalar(2),mlfCreateColonIndex());

N(2,:) = [] performs the same operation in MATLAB. N{2, :} = [] is an
error, because the number of items on the right- and left-hand side of the
assignment operator is not the same. MATLAB does not do scalar expansion on
cell arrays. In MATLAB if you want to set both cells in the second row of N to
[], write N(2,:) = {[] []}, thereby assigning a 1-by-2 cell array to another
1-by-2 cell array.

Note The last subscript in an array deletion must use (), not {}.
0

Indexing into MATLAB Structure Arrays
Indexing into MATLAB Structure Arrays
This section describes how:

• To access a field in a structure array

• To access elements within a field of a structure

• To assign a value to a field in a structure array

• To assign a value to an element of a field

• Cell arrays and structure arrays interact

• To delete a field from a structure

Overview
A MATLAB structure is very much like a structure in C; it is a variable that
contains other variables. Each of the contained variables is called a field of the
structure, and each field has a unique name. For example, imagine you were
building a database of images. You might want to create a structure with three
fields: the image data, a description of the image, and the date the image was
created. The following MATLAB code creates this stucture:

images.image = image1;
images.description = ’Trees at Sunset’;
images.date.year = 1998;
images.date.month = 12;
images.date.day = 17;

The structure images contains three fields: image, description and date. The
date field is itself a structure, and contains three additional fields: year, month
and day. Notice that structures can contain different types of data. images
contains a matrix (the image), a string (the description), and another structure
(the date).

Like standard arrays, structures are inherently array oriented. A single
structure is a 1-by-1 structure array, just as the value 5 is a 1-by-1 numeric
array. You can build structure arrays with any valid size or shape, including
multidimensional structure arrays. Assume you wanted to arrange the images
from the previous example in a series of “pages,” where each page is three
images wide (three colums) and four images tall (four rows). The images might
be arranged this way in a photo album, or for publication in a journal. The
5-51

5 Indexing into Arrays

5-5
following code demonstrates how you use standard MATLAB indexing to
create and access the elements of a 3-by-4-by-n structure array:

images(3,4,2).image = image24;
images(3,4,2).description = ’Greater Bird of Paradise’;
images(3,4,2).date.year = 1993;
images(3,4,2).date.month = 7;
images(3,4,2).day = 15;

For simplicity, the examples in the book focus on two-dimensional structure
arrays, but they’d work just as well with structure arrays of any dimension.

Tips for Working with Structure Arrays

• All the structures in a structure array have the same form: every structure
has the same fields.

• Adding a field to one structure in a structure array adds it to all the
structures in the structure array. Similarly, deleting a field from one
structure in the array deletes it from all the structures in the array.

• You can access and modify data stored in the fields of a structure just as you
would data stored in an ordinary variable.

• Structure fields are analogous to cell array indices, only they are names
rather than numbers. Therefore, structure field access and creation use the
same indexing routines as cell array (and numeric array) element access and
creation do: mlfIndexRef(), mlfIndexAssign(), mlfIndexDelete().

• Each field in a structure array is an array itself. For example, in the
3-by-4-by-2 example above, the array contains 24 structures. There are 24
images, 24 descriptions, etc., and you can treat each field of the structure as
an array of 24 elements. If you typed x.description, for example, you’d get
a 24-by-1 array of strings containing all the image descriptions in the
structure array.

Accessing a Field
The simplest operation on a structure is retrieving data from one of the
structure fields. To extract the image field from the second structure in a
structure array, use

mlfAssign(&str, mlfIndexRef(images, "(?).image", mlfScalar(2)));
2

Indexing into MATLAB Structure Arrays
image = imagelist(2).image performs the same operation in MATLAB.

Accessing the Contents of a Structure Field
A structure field may contain another array. By performing additional
indexing operations, you can access the data stored in that array. You must
specify the field name and the type of indexing to perform on the array stored
in that field:

• Use array subscripting if the field contains an array.

• Use cell array subscripting if the field contains a cell array.

For example, this code retrieves the first row of the image in the third
structure:

mlfAssign(&n, mlfIndexRef(images,
"(?).image(?,?)",
mlfScalar(3),
mlfScalar(1),
mlfCreateColonIndex()));

n = x(3).image(1,:) performs the same operation in MATLAB.

Assigning Values to a Structure Field
To assign an initial value to a field (creating the field if it doesn’t exist) or
modify the value of an existing field, use mlfIndexAssign(). For example, to
change the description field of the seventeenth image, you’d write this code:

mlfIndexAssign(&images,
"(?).description",
mlfScalar(17),
mxCreateString("Cloned sheep embryo #1"));

Note that you must pass the array being modified to mlfIndexAssign() as an
mxArray **, rather than the mxArray * that mlfIndexRef() requires.

images(17).description = ’Cloned sheep embryo #1’ performs the same
operation in MATLAB.
5-53

5 Indexing into Arrays

5-5
Assigning Values to Elements in a Field
By using mlfIndexAssign() you can also modify array data contained in a
structure field. You must specify the field name and the type of indexing to
perform on the contained array. For example, the following call to
mlfIndexAssign() replaces a 3-by-3 subarray of the image data of the ninth
image, with the data in the 3-by-3 array x. (You might do this as part of some
image processing operation.)

mlfIndexAssign(&images,
"(?).image(?,?)",
mlfScalar(9),
mlfColon(mlfScalar(1), mlfScalar(3), NULL),
mlfColon(mlfScalar(2), mlfScalar(4), NULL),
x);

images(9).image(1:3,2:4) = x performs the same operation in MATLAB.

Referencing a Single Structure in a Structure Array
To access a single structure within the structure array, use the standard array
indexing function, mlfIndexRef(). For example, to reference the forty-second
image structure in a structure array, use this code:

mlfAssign(&B, mlfIndexRef(images, "(?)", mlfScalar(42)));

B = images(42) performs the same operation in MATLAB.

Referencing into Nested Structures
Structures can contain other structures. The image structure used in these
examples contains a date structure, for example. To retrieve data from nested
structures, you only need a single call to mlfIndexRef(). Simply specify the
nested structure reference operation in the second argument, as shown here:

mlfAssign(&y, mlfIndexRef(images,"(?).date.year",mlfScalar(2)));

y = images(2).date.year performs the same operation in MATLAB.
4

Indexing into MATLAB Structure Arrays
You can also assign to this location by using mlfIndexAssign() instead of
mlfIndexRef().

Note You can only reference or assign to single instances of nested structures.
Though you might expect this MATLAB code
y = images.date.year to set y to the array of years in the date field of the
images structure array, this code generates an error because the result of
images.date is a structure array rather than a single structure. It is also an
error in the MATLAB C Math Library.

Accessing the Contents of Structures Within Cells
Cell arrays can contain structure arrays and vice-versa. Accessing a structure
stored in a cell array is very similar to accessing a structure stored in a regular
variable; you just need to extract it from the cell array first. You use
mlfIndexRef() to combine all the operations into a single call. Assume the cell
array c contains a three-element structure array of images.

You can combine cell array and standard indexing to access a single field of a
single structure:

mlfAssign(&second_date, mlfIndexRef(c, "{?}(mlfScalar(2)).date",
mlfScalar(1)));

second_date = c{1}(2).date performs the same operation in MATLAB. In
this case, the result is a single date structure.

Deleting Elements from a Structure Array
There are three kinds of deletion operations you can perform on a structure
array.

You can delete:

• An entire structure from the array

• A field from all the structures in the array

• Elements from an array contained by a field
5-55

5 Indexing into Arrays

5-5
Deleting a Structure from the Array
To delete an entire structure from a structure array, use mlfIndexDelete().
For example, if you have a three-element array of image structures, you can
delete the second image structure like this:

mlfIndexDelete(&images, "(?)", mlfScalar(2));

images(2) = [] performs the same operation in MATLAB. The result is a
two-element array of image structures.

Deleting a Field from All the Structures in an Array
To delete a field from all the structures in the array, use mlfRmfield(). For
example, you can remove the description field from an array of image
structures with this code:

mlfAssign(&images, mlfRmfield(images,
mxCreateString("description")));

images = rmfield(images, ’description’) performs the same operation in
MATLAB.

Note that rmfield() does not allow you to remove a field of a nested structure
from a structure array. For example, you cannot remove the day field of the
nested date structure with this MATLAB code:

rmfield(images.date, ’day’)

This is an error in MATLAB, and the corresponding call to mlfRmfield() is an
error in the MATLAB C Math Library.

Deleting an Element from an Array Contained by a Field
To delete an element from an array contained by a field, use
mlfIndexDelete(). For example, to remove the fifth column of the image in the
third image structure, call mlfIndexDelete() like this:

mlfIndexDelete(&images, "(?).image(?,?)",
mlfScalar(3),
mlfCreateColonIndex(),
mlfScalar(5));

images(3).image(:,5) = [] performs the same operation in MATLAB.
6

Comparison of C and MATLAB Indexing Syntax
Comparison of C and MATLAB Indexing Syntax
The table below summarizes the differences between the MATLAB and C
indexing syntax. Although the MATLAB C Math Library provides the same
functionality as the MATLAB interpreter, the syntax is very different. Refer to
‘‘Assumptions for the Code Examples’’ on page 5-16 to look up the conventions
used for the code within the table.

Note For the examples in the table, matrix X is set to the 2-by-2 matrix
[4 5 ; 6 7], a different value from the 3-by-3 matrix A in the previous
sections.

Example Matrix X
4 5
6 7

Table 5-2: MATLAB/C Indexing Expression Equivalence

Description MATLAB Expression C Expression Result

Extract 1,1 element X(1,1) mlfIndexRef(
X,
"(?,?)",
mlfScalar(1),
mlfScalar(1)
)

4

Extract first element X(1) mlfIndexRef(
X,
"(?)",
mlfScalar(1)
)

4

5-57

5 Indexing into Arrays

5-5
Extract third element X(3) mlfIndexRef(
X,
"(?)",
mlfScalar(3)
)

5

Extract all elements into
column vector

X(:) mlfIndexRef(
X,
"(?)",
mlfCreateColonIndex()
)

4
6
5
7

Extract first row X(1,:) mlfIndexRef(
X,
"(?,?)",
mlfScalar(1),
mlfCreateColonIndex()
)

4 5

Extract second row X(2,:) mlfIndexRef(
X,
"(?,?)",
mlfScalar(2),
mlfCreateColonIndex()
)

6 7

Extract first column X(:,1) mlfIndexRef(
X,
"(?,?)",
mlfCreateColonIndex(),
mlfScalar(1)
)

4
6

Table 5-2: MATLAB/C Indexing Expression Equivalence (Continued)

Description MATLAB Expression C Expression Result
8

Comparison of C and MATLAB Indexing Syntax
Extract second column X(:,2) mlfIndexRef(
X,
"(?,?)",
mlfCreateColonIndex(),
mlfScalar(2)
)

5
7

Replace first element
with 9

X(1) = 9 mlfIndexAssign(
&X,
"(?)",
mlfScalar(1),
mlfScalar(9)
);

9 5
6 7

Replace first row with
[11 12]

X(1,:) = [11 12] mlfIndexAssign(
&X,
"(?,?)",
mlfScalar(1),
mlfCreateColonIndex(),
mlfHorzcat(

mlfScalar(11),
mlfScalar(12),
NULL)

);

11 12
 6 7

Table 5-2: MATLAB/C Indexing Expression Equivalence (Continued)

Description MATLAB Expression C Expression Result
5-59

5 Indexing into Arrays

5-6
Replace element 2,1 with 9 X(2,1) = 9 mlfIndexAssign(
&X,
"(?,?)",
mlfScalar(2),
mlfScalar(1),
mlfScalar(9)
);

4 5
9 7

Replace elements 1 and 4
with 8 (one-dimensional
indexing)

X([1 4]) = [8 8] mlfIndexAssign(
&X,
"(?)",
mlfHorzcat(

mlfScalar(1),
mlfScalar(4),
NULL),

mlfHorzcat(
mlfScalar(8),
mlfScalar(8),
NULL)

);

8 5
6 8

Table 5-2: MATLAB/C Indexing Expression Equivalence (Continued)

Description MATLAB Expression C Expression Result
0

How to Call MATLAB Functions 6-3
Returning One Output Argument and Passing

Only Required Input Arguments 6-3
Passing Optional Input Arguments 6-4
Passing Optional Output Arguments 6-4
Passing Optional Input and Output Arguments 6-5
Passing Any Number of Inputs 6-7
Passing Any Number of Outputs 6-9
Summary of Library Calling Conventions 6-13
Example Program: Calling Library Routines (ex3.c) 6-14

How to Call Operators 6-19

Passing Functions As Arguments to Library Routines . 6-20
How Function-Functions Use mlfFeval() 6-20
How mlfFeval() Works 6-21
Extending the mlfFeval() Table 6-21
Example Program: Passing Functions As Arguments (ex4.c) . 6-22

Replacing Argument Lists with a Cell Array 6-32
6

Calling Library Routines

Overview . 6-2

6 Calling Library Routines

6-2
Overview
The MATLAB C Math Library includes over 400 functions. Every routine in
the library works the same way as its corresponding routine in MATLAB. This
chapter describes the calling conventions that apply to the library functions,
including how the C interface to the functions differs from the MATLAB
interface. Once you understand the calling conventions, you can translate any
call to a MATLAB function into a call to a C function.

Chapter 9 contains a listing of all the routines in the MATLAB C Math library.
For complete reference information about the library functions, including the
list of arguments and return value for each function, see the online MATLAB
C Math Library Reference accessible from the Help Desk. Each routine’s
reference page includes a link to the documentation for the MATLAB version
of the function.

This chapter also includes information about passing a function to a MATLAB
function or a function of your own creation.

How to Call MATLAB Functions
How to Call MATLAB Functions
Some MATLAB functions accept optional input arguments and return multiple
output values. Some MATLAB functions can take a varying number of input
and output values; these functions are called varargin and varargout
functions.

C does not allow routine with the same name to accept different calling
sequences nor does it allow a routine to return more than one value.

Thus, to translate MATLAB functions into callable C routines, the MATLAB C
Math Library had to establish certain calling conventions. This chapter
describes these conventions.

Returning One Output Argument and Passing Only
Required Input Arguments
For many functions in the MATLAB C Math Library, the translation from
interpreted MATLAB to C is very simple. For example, in interpreted
MATLAB, you invoke the cosine function, cos, like this

Y = cos(X);

where both X and Y are arrays.

Using the MATLAB C Math Library, you invoke cosine in much the same way

mlfAssign(&Y, mlfCos(X));

where both X and Y are pointers to mxArray structures. Y must be initialized to
NULL. mlfAssign() assigns the return value from mlfCos() to Y.

Note The example above and all the remaining examples in this chapter use
the automated memory management routine mlfAssign() to bind the array
return value to a variable. For information about writing functions that use
mlfAssign() and C Math Library automated memory management, see
Chapter 4.
6-3

6 Calling Library Routines

6-4
Passing Optional Input Arguments
Some MATLAB functions take optional input arguments. tril, for example,
which returns the lower triangular part of a matrix, takes either one input
argument or two. The second input argument, k, if present, indicates which
diagonal to use as the upper bound; k=0 indicates the main diagonal, and is the
default if no k is specified. In interpreted MATLAB you invoke tril either as

L = tril(X)

or

L = tril(X,k)

where L, X, and k are arrays. k is a 1−by−1 array.

Because C does not permit an application to have two functions with the same
name, the MATLAB C Math Library version of the tril function always takes
two arguments. The second argument is optional. The word “optional” means
that the input argument is optional to the working of the function; however,
some value must always appear in that argument’s position in the parameter
list. Therefore, if you do not want to pass the second argument, you must pass
NULL in its place.

The two ways to call the MATLAB C Math library version of tril are

mlfAssign(&L, mlfTril(X,NULL));

and

mlfAssign(&L, mlfTril(X,k));

where L, X, and k are pointers to mxArray structures. L must be initialized to
NULL before being passed to the mlfAssign() routine.

Passing Optional Output Arguments
MATLAB functions may also have optional or multiple output arguments. For
example, you invoke the find function, which locates nonzero entries in arrays,
with one, two, or three output arguments.

k = find(X);
[i,j] = find(X);
[i,j,v] = find(X);

How to Call MATLAB Functions
In interpreted MATLAB, find returns one, two, or three values. In C, a
function cannot return more than one value. Therefore, the additional arrays
must be passed to find in the argument list. They are passed as pointers to
mxArray pointers (mxArray** variables).

Output arguments always appear before input arguments in the parameter
list. In order to accommodate all the combinations of output arguments, the
MATLAB C Math Library mlfFind() function takes three arguments, the first
two of which are mxArray** parameters corresponding to output values.

Using the MATLAB C Math Library, you call mlfFind like this

mlfAssign(&k, mlfFind(NULL,NULL,X));
mlfAssign(&i, mlfFind(&j,NULL,X));
mlfAssign(&i, mlfFind(&j,&v,X));

where i, j, k, v, and X are mxArray* variables. i, j, k, and v are initialized to
NULL.

The general rule for multiple output arguments is that the function return
value, an mxArray*, corresponds to the first output argument. All additional
output arguments are passed into the function as mxArray** parameters.

Passing Optional Input and Output Arguments
MATLAB functions may have both optional input and optional output
arguments. Consider the MATLAB function svd. The svd reference page begins
like this.

Purpose

Singular value decomposition

Syntax

s = svd(X)
[U, S, V] = svd(X)
[U, S, V] = svd(X, 0)

The function prototypes given under the Syntax heading are different from
those in a C language reference guide. Yet they contain enough information to
tell you how to call the corresponding MATLAB C Math Library routine,
mlfSvd, if you know how to interpret them.
6-5

6 Calling Library Routines

6-6
The first thing to notice is that the syntax lists three ways to call svd. The three
calls to svd differ both in the number of arguments passed to svd and in the
number of values returned by svd. Notice that there is one constant among all
three calls – the X input parameter is always present in the parameter list. X is
therefore a required argument; the other four arguments (U, S, V, and 0) are
optional arguments.

The MATLAB C Math Library function mlfSvd has an argument list that
encompasses all the combinations of arguments the MATLAB svd function
accepts. All the arguments to mlfSvd are pointers. The return value is a pointer
as well. Input arguments and return values are always declared as mxArray*,
output arguments as mxArray**.

mxArray *mlfSvd(mxArray **S, mxArray **V, mxArray *X,
mxArray *Zero);

The return value and the parameters S and V represent the output arguments
of the corresponding MATLAB function svd. The parameters X and Zero
correspond to the input arguments of svd. Notice that all the output arguments
are listed before any input argument appears; this is a general rule for
MATLAB C Math Library functions.

mlfSvd has four arguments in its parameter list and one return value for a total
of five arguments. Five is also the maximum number of arguments accepted by
the MATLAB svd function. Clearly, mlfSvd can accept just as many arguments
as svd. But because C does not permit arguments to be left out of a parameter
list, there is still the question of how to specify the various combinations.

The svd reference page from the online MATLAB Function Reference indicates
that there are three valid combinations of arguments for svd: one input and one
output, one input and three outputs, and two inputs and three outputs. All
MATLAB C Math Library functions have the same number of inputs and
outputs as their MATLAB interpreted counterparts. The mlfSvd() reference
page that you find in the online MATLAB C Math Library Reference accessible
from the Help Desk begins like this.

How to Call MATLAB Functions
Purpose

Singular value decomposition

Syntax

mxArray *X;
mxArray *U = NULL, *S = NULL, *V = NULL ;

mlfAssign(&S, mlfSvd(NULL, NULL, X, NULL));
mlfAssign(&U, mlfSvd(&S, &V, X, NULL));
mlfAssign(&U, mlfSvd(&S, &V, X, mlfScalar(0)));

In C, a function can return only one value. To overcome this limitation, the
MATLAB C Math Library places all output parameters in excess of the first in
the function argument list. The MATLAB svd function can have a maximum of
three outputs, therefore the mlfSvd function returns one value and takes two
output parameters, for a total of three outputs.

Notice that where the svd function may be called with differing numbers of
arguments, the mlfSvd function is always called with the same number of
arguments: four; mlfSvd always returns a single value. However, the calls to
mlfSvd are not identical: each has a different number of NULLs in the argument
list. Each NULL argument takes the place of an “optional” argument.

Passing Any Number of Inputs
Some MATLAB functions accept any number of input arguments. In MATLAB
these functions are called varargin functions. When the variable varargin
appears as the last input argument in the definition of a MATLAB function,
you can pass any number of input arguments to the function, starting at that
position in the argument list.

MATLAB takes the arguments you pass and stores them in a cell array, which
can hold any size or kind of data. The varargin function then treats the
elements of that cell array exactly as if they were arguments passed to the
function.

Whenever you see ... (an ellipsis) at the end of the input argument list in a
MATLAB syntax description, the function is a varargin function. For example,
the syntax for the MATLAB function cat includes the following specification in
the online MATLAB Function Reference.

B = cat(dim,A1,A2,A3,A4,...)
6-7

6 Calling Library Routines

6-8
cat accepts any number of arguments. The dim and A1 arguments to cat are
required. You then concatenate any number of additional arrays along the
dimension dim. For example, this call concatenates six arrays along the second
dimension.

B = cat(2,A1,A2,A3,A4,A5,A6)

The C language supports functions that accept variable-length argument lists.
MATLAB varargin functions translate easily into these functions. The
variable number of arguments are always specified at the end of the argument
list and are indicated in the function prototype as an ellipsis (...). For
example, the prototype for the mlfCat() function in the MATLAB C Math
Library is

mxArray *mlfCat(mxArray *dim, mxArray *A1, ...);

Though C uses its own mechanism, different from cell arrays, to process
variable-length argument lists, the translation from a call to a MATLAB
varargin function to a call to the MATLAB C Math Library function is
straightforward. You invoke mlfCat() like this

mlfAssign(&B, mlfCat(mlfScalar(2),A1,A2,A3,A4,A5,A6,NULL));

where B is an mxArray * variable, initialized to NULL. The six A matrices are
also mxArray * variables.

Note Always terminate the argument list to a varargin function with a NULL
argument.

How Pure Varargin Functions Differ
Some MATLAB functions take a varargin argument as their only input
argument, and are therefore called pure varargin functions. For example,

function [output_arg1] = Example_Pure_Varargin(varargin)

declares a pure varargin function in MATLAB.

How to Call MATLAB Functions
Because the C language requires at least one explicit argument in the
definition of a varargin function, this pure varargin function translates to

mxArray *Example_Pure_Varargin(mxArray *input_arg1, ...);

where input_arg1 is the first of the varargin parameters even though it is an
explicit argument.

Passing Any Number of Outputs
Some MATLAB functions return any number of outputs. In MATLAB these
functions are called varargout functions. When the variable varargout
appears as the last output argument in the definition of a MATLAB function,
that function can return any number of outputs, starting at that position in the
argument list.

When you call a varargout function in the interpreted MATLAB environment,
MATLAB takes the arguments you pass and stores them in the cell array called
varargout. A cell array can hold any size or kind of data. The MATLAB
function accesses the varying number of arguments passed to it through the
cell array.

Whenever you see ... (an ellipsis) within the output argument list of a
MATLAB syntax description, the function is a varargout function. For
example, this syntax in the online MATLAB Function Reference specifies a
version of the MATLAB function size that returns a variable number of
outputs depending on the number of dimensions in the array passed to it.

[M1,M2,M3,...,MN] = size(X)

If the input argument X is a two-dimensional array, size returns the length of
the first dimension in the first output value and the length of the second
dimension in a second output value. If the input argument is a four
dimensional array, it returns four lengths.

For example, if the input array, X, has four dimensions, this code retrieves the
length of each dimension.

[d1,d2,d3,d4] = size(X)

In the MATLAB C Math Library you invoke the same call to size like this

mlfSize(mlfVarargout(&d1,&d2,&d3,&d4,NULL),X,NULL));
6-9

6 Calling Library Routines

6-1
where X, d1, d2, d3, and d4 are mxArray * variables. d1, d2, d3, and d4 are each
initialized to NULL. The final input argument to mlfSize() is an optional input
argument; in this version of the function, that argument is not used, and NULL
is passed.

Note mlfSize() is what’s called a pure varargout function. Pure varargout
functions have no required or optional outputs, and no return value. The
variable that would ordinarily be used to store the return value must instead
be passed to the pure varargout function as the first argument of the
mlfVarargout() routine.

Constructing an mlfVarargoutList
You recognize a varargout function prototype in the library by its argument of
type mlfVarargoutList. The MATLAB C Math Library positions an
mlfVarargoutList structure as the last output argument for functions that can
return any number of output values, for example,

mxArray *mlfVarargout_function(mxArray **y,
mlfVarargoutList *varargout,
mxArray *a,
mxArray *b);

An mlfVarargoutList is always the last output argument passed to the
function. Any required and optional arguments precede it.

The MATLAB C Math Library provides two functions that construct an
mlfVarargoutList structure: mlfVarargout() and mlfIndexVarargout().
Whether you pass indexed varargout arguments to the varargout function
determines which function you use:

• Use mlfVarargout() if you’re not applying a subscript to any of your
varargout output arguments.

• Use mlfIndexVarargout() if you are applying a subscript to at least one of
your varargout output arguments.
0

How to Call MATLAB Functions
Forming a List of Non-Indexed varargout Arguments. If you are not indexing into any
of the arrays that you pass as varargout output arguments, you form an
mlfVarargoutList by passing the address of each mxArray* to
mlfVarargout(). Its prototype is

mlfVarargoutList *mlfVarargout(mxArray **pp_array, ...);

Follow these guidelines when you call mlfVarargout():

• Pass any number of mxArray** variables to mlfVarargout()

• Terminate your list of arguments with NULL

For example, if you want to pass three varargout output arguments to the
example varargout function mlfVarargout_Function presented above, embed
a call to mlfVarargout() as the second argument

mlfAssign(&x,
 mlfVarargout_Function(&y,
 mlfVarargout(&z, &m, &n, NULL),
 a,
 b);

where all variables are mxArray* pointers. x is the return value; y is a required
output argument. z, m, and n are varargout output mxArray* variables. a and
b are input variables. Note that this function is not a pure varargout function.

In MATLAB, the function call looks like this.

[x, y, z, m, n] = mlfVarargout_Function (a, b);

Forming a List of Indexed varargout Arguments. If you are indexing into at least one
of the arrays that you pass as a varargout output argument, you must form
your mlfVarargoutList by passing indexed and nonindexed arguments to
mlfIndexVarargout(), follow these guidelines:

• Pass an indexed array as a series of arguments, just as you do when indexing
an array with mlfIndexRef():

- The address of the pointer to the array (mxArray **)

- The index string

- The index subscripts
6-11

6 Calling Library Routines

6-1
• Pass each non-indexed array as:

- The address of the pointer to the array (mxArray **)

- A NULL argument

• Terminate your entire list of arguments with NULL.

For example, if you want to pass three varargout output arguments, two of
which are indexed, to the example varargout function
mlfVarargout_Function presented above, embed a call to
mlfindexVarargout() as the second argument.

In MATLAB, the function call looks like this.

 [x, y, z(1), m, n{:}] = mlfVarargout_Function(a, b)

In C, the function call looks like this.

mxArray *x = NULL, *y = NULL, *z = NULL, *m = NULL, *n = NULL;

mlfAssign(&x, mlfVarargout_Function(&y,
 mlfIndexVarargout(&z, "(?)", mlfScalar(1),
 &m, NULL,
 &n, "{?}", mlfCreateColonIndex(),
 NULL),
 a, b)));

How Pure Varargout Functions Differ
Some MATLAB functions define a varargout argument as their only output
argument, and are, therefore, called pure varargout functions. For example,

function [varargout] = Example_Pure_Varargout(a, b)

declares a pure varargout function in MATLAB.

The MATLAB C Math Library requires that you pass all varargout output
arguments to mlfVarargout() or mlfIndexVarargout(). The variable that
would ordinarily be used to store the return value must instead be passed to
the pure varargout function as the first argument of the mlfVarargout()
routine.

You construct an mlfVarargoutList by passing any number of array
arguments to the function mlfVarargout() or any mix of indexed and
non-indexed array arguments to mlfIndexVarargout().
2

How to Call MATLAB Functions
Summary of Library Calling Conventions
Though this section has focused on just a few functions, the principles
presented apply to the majority of the functions in the MATLAB C Math
Library. In general, a MATLAB C Math Library function call consists of a
function name, a set of input arguments, and a set of output arguments. In
addition to being classified as input or output, each argument is either required
or optional.

The type of an argument determines where it appears in the function argument
list. All output arguments appear before any input argument. Within that
division, all required arguments appear before any optional arguments. The
order, therefore, is: required outputs, optional outputs, varargout or
mlfVarargoutList output (a varargout output list), required inputs, optional
inputs, and variable-length inputs (varargin arguments).

To map a MATLAB function call to a MATLAB C Math Library function call,
follow these steps:

1 Capitalize the first letter of the MATLAB function name that you want to
call, and add the prefix mlf.

2 Examine the MATLAB syntax for the function.

Find the MATLAB call with the largest number of arguments. Determine
which input and output arguments are required and which are optional.

3 Make the first output argument the return value from the function.

4 Pass any other output arguments as the first arguments to the function. If
the function accepts any number of output arguments, pass those arguments
to mlfVarargout() or mlfIndexVarargout() in the last output argument
position.

5 Pass a NULL argument wherever an optional output argument does not apply
to the particular call you’re making.

6 Pass the input arguments to the C function, following the output arguments.
If the function accepts any number of input arguments, pass those
arguments as the last input arguments.
6-13

6 Calling Library Routines

6-1
7 Pass a NULL argument wherever an optional input argument does not apply
to the particular call.

Passing the wrong number of arguments to a function causes compiler errors.
Passing NULL in the place of a required argument causes runtime errors.

Note The online MATLAB C Math Library Reference does the mapping
between MATLAB and C functions for you. Access the Reference from the Help
Desk.

Exceptions to the Calling Conventions
The mlfLoad(), mlfSave() and mlfFeval() functions do not follow the
standard calling conventions for the library. For information about mlfLoad()
and mlfSave(), see Chapter 7. For information about mlfFeval(), see “Passing
Functions As Arguments to Library Routines” on page 6-20.

Example Program: Calling Library Routines (ex3.c)
This example program illustrates how to call library routines that take
multiple, optional arguments. The example uses the singular value
decomposition function mlfSvd.

You can find the code for this example in the
<matlab>/extern/examples/cmath directory on UNIX systems or the
<matlab>\extern\examples\cmath directory on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C
Applications” in Chapter 1 for information on building the examples.
4

How to Call MATLAB Functions
/* ex3.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

static double data[] = { 1, 3, 5, 7, 2, 4, 6, 8 };

main()
{
 /* Initialize pointers to array arguments*/
 mxArray *X = NULL;
 mxArray *U = NULL, *S = NULL, *V = NULL;

 mlfEnterNewContext(0, 0);

 mlfAssign(&X, mlfDoubleMatrix(4, 2, data, NULL));

 /* Compute the singular value decomposition and print it */
mlfAssign(&U, mlfSvd(NULL, NULL, X, NULL));
mlfPrintf("One input, one output:\nU = \n");
mlfPrintMatrix(U);

 /* Multiple output arguments */
 mlfAssign(&U, mlfSvd(&S, &V, X, NULL));

mlfPrintf("One input, three outputs:\n");
mlfPrintf("U = \n"); mlfPrintMatrix(U);
mlfPrintf("S = \n"); mlfPrintMatrix(S);
mlfPrintf("V = \n"); mlfPrintMatrix(V);

/* Multiple input and output arguments */
 mlfAssign(&U, mlfSvd(&S, &V, X, mlfScalar(0.0)));

mlfPrintf("Two inputs, three outputs:\n");
mlfPrintf("U = \n"); mlfPrintMatrix(U);
mlfPrintf("S = \n"); mlfPrintMatrix(S);
mlfPrintf("V = \n"); mlfPrintMatrix(V);

1

2

3

4

5

6

6-15

6 Calling Library Routines

6-1
mxDestroyArray(X);
mxDestroyArray(U);
mxDestroyArray(S);
mxDestroyArray(V);

 mlfRestorePreviousContext(0, 0);
return(EXIT_SUCCESS);

}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare the eight-element static array that subsequently initializes the
mlfSvd input matrix. The elements in this array appear in column-major
order. The MATLAB C Math Library stores its array data in column-major
order, unlike C, which stores array data in row-major order.

3 Declare and initialize the mlfSvd input array, X. Declare and initialize
mxArray* variables, U, S, and V, to be used as output arguments in later calls
to mlfSvd.

4 mlfSvd can be called in three different ways. Call it the first way, with one
input matrix and one output matrix. Note that the optional inputs and
outputs in the parameter list are set to NULL. Optional, in this case, does not
mean that the arguments can be omitted from the parameter list; instead it
means that the argument is optional to the workings of the function and that
it can be set to NULL.

Print the result of the call to mlfSvd().

If you want to know more about the function mlfSvd() or the calling
conventions for the library, refer to the online MATLAB C Math Library
Reference.

5 Call mlfSvd the second way, with three output arguments and one input
argument. The additional output arguments, S and V, appear first in the
argument list. Because the return value from mlfSvd corresponds to the first

7

6

How to Call MATLAB Functions
output argument, U, only two output arguments, S and V, appear in the
argument list, bringing the total number of outputs to three. The next
argument, X, is the required input argument. Only the final argument, the
optional input, is passed as NULL.

Print all of the output matrices.

6 Call mlfSvd the third way, with three output arguments and two input
arguments. Print all of the output matrices.

Notice that in this call, as in the previous one, an ampersand (&) precedes
the two additional output arguments. An ampersand always precedes each
output argument because the address of the mxArray* is passed. The
presence of an & is a reliable way to distinguish between input and output
arguments. Input arguments never have an & in front of them.

7 Last of all, free all of the matrices that have been bound to variables.
6-17

6 Calling Library Routines

6-1
Output
When the program is run, it produces this output.

One input, one output:
U =
 14.2691
 0.6268

One input, three outputs:
U =
 0.1525 0.8226 –0.3945 –0.3800
 0.3499 0.4214 0.2428 0.8007
 0.5474 0.0201 0.6979 –0.4614
 0.7448 –0.3812 –0.5462 0.0407

S =
 14.2691 0
 0 0.6268
 0 0
 0 0

V =
 0.6414 –0.7672
 0.7672 0.6414

Two inputs, three outputs:
U =
 0.1525 0.8226
 0.3499 0.4214
 0.5474 0.0201
 0.7448 –0.3812

S =
 14.2691 0
 0 0.6268

V =
 0.6414 –0.7672
 0.7672 0.6414
8

How to Call Operators
How to Call Operators
Every operator in MATLAB is mapped directly to a function in the MATLAB C
Math Library. Invoking MATLAB operators in C is simply a matter of
determining the name of the function that corresponds to the operator and then
calling the function as explained above. The section ‘‘Operators and Special
Functions’’ on page 9-5 lists the MATLAB operators and the corresponding
MATLAB C Math Library functions.
6-19

6 Calling Library Routines

6-2
Passing Functions As Arguments to Library Routines
The MATLAB C Math Library includes function-functions: functions that
execute a function that you provide. For example, the library function,
mlfOde23(), is a function-function. Other function-functions include
mlfFzeros(), mlfFmin(), mlfFmins(), mlfFunm(), and the other mlfOde
functions.

In this section, you’ll learn:

• How the function-functions use mlfFeval()

• How mlfFeval() works

• How to extend mlfFeval() by writing a “thunk function”

How Function-Functions Use mlfFeval()
A function-function uses mlfFeval() to execute the function passed to it. For
instance, mlfOde23() in ‘‘Example Program: Passing Functions As Arguments
(ex4.c)’’ on page 6-22 calls mlfFeval() to execute the function lorenz(). The
function-function passes the name of the function to be executed to mlfFeval()
along with the arguments required by the function. In this example, the string
array containing "lorenz" is passed to mlfFeval() along with the other
arguments that were passed to mlfOde23().

Because the functions passed to mlfFeval() take different numbers of input
and output arguments, mlfFeval() uses a non-standard calling convention.
Instead of listing each argument explicitly, mlfFeval() works with arrays of
input and output arguments, allowing it to handle every possible combination
of input and output arguments on its own.

The prototype for mlfFeval() is

mxArray *mlfFeval(mlfVarargoutList *varargout,
 void (*mxfn)(int nlhs, mxArray **plhs,
 int nrhs, mxArray **prhs),
 ...);

Each function-function, therefore, constructs an array of input arguments
(prhs) and an array of output arguments (plhs), and then passes those two
arrays, along with the number of arguments in each array (nrhs and nlhs) and
the name of the function (name), to mlfFeval(), which executes the function.
0

Passing Functions As Arguments to Library Routines
How mlfFeval() Works
mlfFeval() uses a built-in table to find out how to execute a particular
function. The built-in table provides mlfFeval() with two pieces of
information: a pointer that points to the function to be executed and a pointer
to what’s called a “thunk function.”

As shipped, mlfFeval()’s built-in table contains each function in the MATLAB
C Math Library. If you want mlfFeval() to know how to execute a function that
you’ve written, you must extend the built-in table by creating a local function
table that identifies your function for mlfFeval().

It’s the thunk function, however, that actually knows how to execute your
function. In ‘‘Example Program: Passing Functions As Arguments (ex4.c)’’ on
page 6-22, the thunk function, _lorenz_thunk_fcn_, executes lorenz(). A
thunk function’s actions are solely determined by the number of input and
output arguments to the function it is calling. Therefore, any functions that
have the same number of input and output arguments can share the same
thunk function. For example, if you wrote three functions that each take two
inputs and produce three outputs, you only need to write one thunk function to
handle all three.

mlfFeval() calls the thunk function through the pointer it retrieves from the
built-in table, passing it a pointer to the function to be executed, the number of
input and output arguments, and the input and output argument arrays.
Thunk functions also use the mlfFeval() calling convention.

The thunk function then translates from the calling convention used by
mlfFeval() (arrays of arguments) to the standard C Math Library calling
convention (an explicit list of arguments), executes the function, and returns
the results to mlfFeval().

Extending the mlfFeval() Table
In order to extend the built-in mlfFeval() table, you must:

1 Write the function that you want a function-function to execute.

2 Write a thunk function that knows how to call your function.
6-21

6 Calling Library Routines

6-2
3 Declare a local function table and add the name of your function, a pointer
to your function, and a pointer to your thunk function to that table.

4 Register the local table with mlfFeval().

Note that your program can’t contain more than 64 local function tables, but
each table can contain an unlimited number of functions.

Writing a Thunk Function
A thunk function must:

1 Ensure that the number of arguments in the input and output arrays
matches the number of arguments required by the function to be executed.
Remember that functions in the MATLAB C Math Library can have optional
arguments.

2 Extract the input arguments from the input argument array.

3 Call the function that was passed to it.

4 Place the results from the function call into the output array.

Note You don’t need to write a thunk function if you want a function-function
to execute a MATLAB C Math Library function. A thunk function and an
entry in the built-in table already exist.

Example Program: Passing Functions As Arguments
(ex4.c)
To illustrate function-functions, this example program uses the ordinary
differential equation (ODE) solver mlfOde23() to compute the trajectory of the
Lorenz equation. Given a function, F, and a set of initial conditions expressing
an ODE, mlfOde23() integrates the system of differential equations, y’ = F(t,y),
over a given time interval. mlfOde23() integrates a system of ordinary
differential equations using second and third order Runge-Kutta formulas. In
this example, the name of the function being integrated is lorenz.
2

Passing Functions As Arguments to Library Routines
For convenience, this example has been divided into three sections; in a
working program, all of the sections would be placed in a single file. The first
code section specifies header files, declares global variables including the local
function table, and defines the lorenz function.

/* ex4.c */

#include <stdlib.h>
#include "matlab.h"

double SIGMA, RHO, BETA;

static mlfFuncTabEnt MFuncTab[] =
{

{"lorenz", (mlfFuncp)lorenz, _lorenz_thunk_fcn_ },
{ 0, 0, 0}

};

mxArray *lorenz(mxArray *tm, mxArray *ym)
{

mxArray *ypm = NULL;
 double *y, *yp;

 mlfEnterNewContext(0, 2, tm, ym);

 mlfAssign(&ypm, mlfDoubleMatrix(3, 1, NULL, NULL));
 y = mxGetPr(ym);
 yp = mxGetPr(ypm);

 yp[0] = –BETA*y[0] + y[1]*y[2];
 yp[1] = –SIGMA*y[1] + SIGMA*y[2];
 yp[2] = –y[0]*y[1] + RHO*y[1] – y[2];

 mlfRestorePreviousContext(0, 2, tm, ym);
 return mlfReturnValue(ypm);
}

1

2

3

4

5

6

6-23

6 Calling Library Routines

6-2
Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare SIGMA, RHO, and BETA, which are the parameters for the Lorenz
equations. The main program sets their values, and the lorenz function
uses them.

3 Declare a static global variable, MFuncTab[], of type mlfFuncTabEnt. This
variable stores a function table entry that identifies the function that
mlfOde23() calls. A table entry contains three parts: a string that names the
function ("lorenz"), a pointer to the function itself ((mlfFuncp)lorenz), and
a pointer to the thunk function that actually calls lorenz,
(_lorenz_thunk_fcn_). The table is terminated with a
{0, 0, 0} entry.

Before you call mlfOde23() in the main program, pass MFuncTab to the
function mlfFevalTableSetup(), which adds your entry to the built-in
function table maintained by the MATLAB C Math Library. Note that a
table can contain more than one entry.

4 Define the Lorenz equations. The input is a 1-by-1 array, tm, containing the
value of t, and a 3-by-1 array, ym, containing the values of y. The result is a
new 3-by-1 array, ypm, containing the values of the three derivatives of the
equation at time = t.

5 Create a 3-by-1 array for the return value from the lorenz function.

6 Calculate the values of the Lorenz equations at the current time step.
(lorenz doesn’t use the input time step, tm, which is provided by mlfOde23.)
Store the values directly in the real part of the array that lorenz returns. yp
points to the real part of ypm, the return value.
4

Passing Functions As Arguments to Library Routines
The next section of this example defines the thunk function that actually calls
lorenz. You must write a thunk function whenever you want to pass a function
that you’ve defined to one of MATLAB’s function-functions.

static int _lorenz_thunk_fcn_(mlfFuncp pFunc, int nlhs,
mxArray **lhs, int nrhs,
mxArray **rhs)

{
typedef mxArray *(*PFCN_1_2)(mxArray * , mxArray *);
mxArray *Out;

if (nlhs > 1 || nrhs > 2)
{

 return(0);
 }

 Out = (*((PFCN_1_2)pFunc))(
 (nrhs > 0 ? rhs[0] : NULL),
 (nrhs > 1 ? rhs[1] : NULL)
);

if (nlhs > 0)
lhs[0] = Out;

return(1);
}

Notes

1 Define the thunk function that calls the lorenz function. A thunk function
acts as a translator between your function’s interface and the interface
needed by the MATLAB C Math Library.

The thunk function takes five arguments that describe any function with
two inputs and one output (in this example the function is always lorenz()):
an mlfFuncp pointer that points to lorenz(), an integer (nlhs) that
indicates the number of output arguments required by lorenz(), an array
of mxArray’s (lhs) that stores the results from lorenz(), an integer (nrhs)
that indicates the number of input arguments required by lorenz(), and an
array of mxArray’s (rhs) that stores the input values. The lhs (left-hand side)

1

2

3

4

5

6

6-25

6 Calling Library Routines

6-2
and rhs (right-hand side) notation refers to the output arguments that
appear on the left-hand side of a MATLAB function call and the input
arguments that appear on the right-hand side.

2 Define the type for the lorenz function pointer. The pointer to lorenz comes
into the thunk function with the type mlfFuncp, a generalized type that
applies to any function.

mlfFuncp is defined as follows:

typedef void (*mlfFuncp)(void)

The function pointer type that you define here must precisely specify the
return type and argument types required by lorenz. The program casts
pFunc to the type you specify here.

The name PFCN_1_2 makes it easy to identify that the function has 1 output
argument (the return) and 2 input arguments. Use a similar naming scheme
when you write other thunk functions that require different numbers of
arguments. For example, use PFCN_2_3 to identify a function that has two
output arguments and three input arguments.

3 Verify that the expected number of input and output arguments have been
passed. lorenz expects two input arguments and one output argument. (The
return value counts as one output argument.) Exit the thunk function if too
many input or output arguments have been provided. Note that the thunk
function relies on the called function to do more precise checking of
arguments.

4 Call lorenz, casting pFunc, which points to the lorenz function, to the type
PFCN_1_2. Verify that the two expected arguments are provided. If at least
one argument is passed, pass the first element from the array of input values
(rhs[0]) as the first input argument; otherwise pass NULL. If at least two
arguments are provided, pass the second element from the array of input
values (rhs[1]) as the second argument; otherwise pass NULL as the second
6

Passing Functions As Arguments to Library Routines
argument. The return from lorenz is stored temporarily in the local variable
Out.

This general calling sequence handles optional arguments. It is technically
unnecessary in this example because lorenz has no optional arguments.
However, it is an essential part of a general purpose thunk function.

Note that you must cast the pointer to lorenz to the function pointer type
that you defined within the thunk function.

5 Assign the value returned by lorenz to the appropriate position in the array
of output values. The return value is always stored at the first position,
lhs[0]. If there were additional output arguments, values would be
returned in lhs[1], lhs[2], and so on.

6 Return success.
6-27

6 Calling Library Routines

6-2
The next section of this example contains the main program. Keep in mind that
in a working program, all parts appear in the same file.

int main()
{

mxArray *tm = NULL, *ym = NULL, *tsm = NULL, *ysm = NULL;
 double tspan[] = { 0.0, 10.0 };
 double y0[] = { 10.0, 10.0, 10.0 };
 double *t, *y1, *y2, *y3;
 int k, n;

 mlfEnterNewContext(0, 0);

mlfFevalTableSetup (MFuncTab);

SIGMA = 10.0;
 RHO = 28.0;
 BETA = 8.0/3.0;

 mlfAssign(&tsm, mlfDoubleMatrix(2, 1, tspan, NULL));
 mlfAssign(&ysm, mlfDoubleMatrix(1, 3, y0, NULL));

 mlfAssign(&tm, mlfOde23(&ym, mlfVarargout(NULL),
 mxCreateString("lorenz"), tsm, ysm, NULL, NULL));

n = mxGetM(tm);
 t = mxGetPr(tm);
 y1 = mxGetPr(ym);
 y2 = y1 + n;
 y3 = y2 + n;

mlfPrintf(" t y1 y2 y3\n");
 for (k = 0; k < n; k++) {

mlfPrintf("%9.3f %9.3f %9.3f %9.3f\n",
 t[k], y1[k], y2[k], y3[k]);

 }

1

2

3

4

5

6

7

8

Passing Functions As Arguments to Library Routines
/* Free the matrices. */
mxDestroyArray(tsm);
mxDestroyArray(ysm);

 mxDestroyArray(tm);
 mxDestroyArray(ym);

 mlfRestorePreviousContext(0,0);
return(EXIT_SUCCESS);

}

Notes

1 Declare and initialize variables. tspan stores the start and end times. y0 is
the initial value for the lorenz iteration and contains the vector 10.0, 10.0,
10.0.

2 Add your function table entry to the MATLAB C Math Library built-in
feval function table by calling mlfFevalTableSetup(). The argument,
MFuncTab, associates the string "lorenz" with a pointer to the lorenz
function and a pointer to the lorenz thunk function. When mlfOde23() calls
mlfFeval(), mlfFeval() accesses the library’s built-in function table to
locate the function pointers that are associated with a given function name,
in this example, the string "lorenz".

3 Assign values to the equation parameters: SIGMA, RHO, and BETA. These
parameters are shared between the main program and the lorenz function.
The lorenz function uses the parameters in its computation of the values of
the Lorenz equations.

4 Create two arrays, tsm and ysm, which are passed as input arguments to the
mlfOde23 function. Initialize tsm to the values stored in tspan. Initialize ysm
to the values stored in y0.

5 Call the library routine mlfOde23(). The return value and the first
argument store results. mlfOde23() is a varargout function;
mlfVarargout(NULL) indicates that you are not interested in supplying any

8

6-29

6 Calling Library Routines

6-3
varargout arguments. Pass the name of the function, two required input
arguments, and NULL values for the two optional input arguments.

mlfOde23() calls mlfFeval() to evaluate the lorenz function. mlfFeval()
searches the function table for a given function name. When it finds a match,
it composes a call to the thunk function that it finds in the table, passing the
thunk function the pointer to the function to be executed, also found in the
table. In addition, mlfFeval() passes the thunk function arrays of input and
output arguments. The thunk function actually executes the target function.

6 Prepare results for printing. The output consists of four columns. The first
column is the time step and the other columns are the value of the function
at that time step. The values are returned in one long column vector. If there
are n time steps, the values in column 1 occupy positions 0 through n-1 in
the result, the values in column 2, positions n through 2n-1, and so on.

7 Print one line for each time step. The number of time steps is determined by
the number of rows in the array tm returned from mlfOde23. The function
mxGetM returned the number of rows in its mxArray argument.

8 Free all bound arrays and exit.
0

Passing Functions As Arguments to Library Routines
Output
The output from this program is several pages long. Here are the last lines of
the output.

t y1 y2 y3
9.390 41.218 12.984 2.951

 9.405 39.828 11.318 0.498
 9.418 38.530 9.995 –0.946
 9.430 37.135 8.678 –2.043
 9.442 35.717 7.404 –2.836
 9.455 34.229 6.117 –3.409
 9.469 32.711 4.852 –3.778
 9.484 31.185 3.632 –3.972
 9.500 29.657 2.477 –4.029
 9.518 28.123 1.402 –3.989
 9.539 26.563 0.415 –3.899
 9.552 25.635 –0.116 –3.845
 9.565 24.764 –0.576 –3.807
 9.580 23.861 –1.014 –3.796
 9.598 22.818 –1.478 –3.833
 9.620 21.682 –1.948 –3.964
 9.645 20.488 –2.429 –4.245
 9.674 19.280 –2.960 –4.761
 9.709 18.143 –3.618 –5.642
 9.750 17.275 –4.545 –7.097
 9.798 17.162 –6.000 –9.461
 9.843 18.378 –7.762 –12.143
 9.873 20.156 –9.147 –13.971
 9.903 22.821 –10.611 –15.464
 9.931 26.021 –11.902 –16.150
 9.960 29.676 –12.943 –15.721
 9.988 32.932 –13.430 –14.014
 10.000 34.012 –13.439 –12.993
6-31

6 Calling Library Routines

6-3
Replacing Argument Lists with a Cell Array
In MATLAB you can substitute a cell array for a comma-separated list of
MATLAB variables when you pass input arguments to a function. MATLAB
treats the contents of each cell as a separate input argument. To trigger this
functionality, you specify multiple values by indexing into the cell array with,
for example, the colon index or a vector index.

For example, the MATLAB expression

T{1:5}

when passed as an input argument is equivalent to a comma-separated list of
the contents of the first five cells of T. Simply passing the cell array T produces
an error.

The MATLAB C Math Library also supports the expansion of the contents of a
cell array into separate input arguments for library functions. For functions
that implement MATLAB varargin functions, you use the indexing function
mlfIndexRef() and a cell array index to obtain an array reference that returns
multiple values.

For example, given the varargin function

void mlfVarargin_Func(mxArray *A, mxArray *B, ...);

you can make the following call:

mlfVarargin_Func(A,
B,
mlfIndexRef(C, "{?}",

 mlfColon(mlfScalar(1), mlfScalar(5), NULL)),
 NULL);

A and B, pointers to existing mxArrays, are passed as explicit arguments. C is a
pointer to a cell array that contains at least five cells. The embedded call to
mlfIndexRef() uses the index {1:5} to return multiple values: the first five
cells of C. The MATLAB C Math Library passes these as individual arguments
to mlfVarargin_Func().
2

Replacing Argument Lists with a Cell Array
Positioning the Indexed Cell Array

• Pass the return from the cell array indexing operation as one of the
variable-length arguments in the input argument list. That reference
identifies multiple arrays.

• Do not pass the return from a cell array indexing operation as an explicit
argument.

For example, you cannot make this call to the example varargin function.
mlfVarargin_Func(mlfIndexRef(C, "{?}",
 mlfColon(mlfScalar(1), mlfScalar(5), NULL)),
 A, B, NULL);

Given the definition of mlfVarargin_Func(), the first argument position is
reserved for an explicit, single argument. The MATLAB C Math Library does
not handle multiple values in an explicit position.

• You can pass other array arguments or other cell array indexing expressions
before or after a cell array indexing expression, all in the ... argument
positions.

See ‘‘Indexing into Cell Arrays’’ on page 5-44 to learn more about indexing into
cell arrays.

Exception for Built-In Library Functions
For built-in MATLAB C Math Library functions that are varargin functions,
for example, mlfCat(), mlfRand(), and mlfOnes()), consider the explicit
argument that immediately precedes the ... as part of the varargin
arguments. This argument can accept an indexed cell array expression.
6-33

6 Calling Library Routines

6-3
For example, in this code the embedded call to mlfIndexRef() is in the position
of the explicit argument that precedes the ... in the signature of the built-in
function mlfCat().

/* In MATLAB:
 * F{1} = pascal(3);
 * F{2} = magic(3);
 * F{3} = ones(3);
 * F{4} = magic(3);
 * G = cat(2,F{:});
 */

mxArray *F = NULL, *G = NULL;

mlfIndexAssign(&F, "{?}", mlfScalar(1),
mlfPascal(mlfScalar(3),NULL));

mlfIndexAssign(&F, "{?}", mlfScalar(2),
mlfMagic(mlfScalar(3)));

mlfIndexAssign(&F, "{?}", mlfScalar(3),
mlfOnes(mlfScalar(3),NULL));

mlfIndexAssign(&F, "{?}", mlfScalar(4),
mlfMagic(mlfScalar(3)));

mlfAssign(&G, mlfCat(mlfScalar(2),
mlfIndexRef(F, "{?}", mlfCreateColonIndex()), NULL));
4

Using mlfSave() to Write Data to a File 7-2
Using mlfLoad() to Read Data from a File 7-3
Example Program: Saving and Loading Data (ex5.c) 7-4
7

Importing and Exporting
Array Data

Overview . 7-2

7 Importing and Exporting Array Data

7-2
Overview
The MATLAB C Math Library provides two routines, mlfLoad() and
mlfSave(), which let you import and export array data in MAT-files. The array
data is stored in a special binary file format that ensures efficient storage and
cross-platform portability. Since MATLAB also reads and writes MAT-files,
you can use mlfLoad() and mlfSave() to share data with MATLAB
applications or with other applications developed with the MATLAB C++ or C
Math Library.

A MAT-file is a binary, machine-dependent file. However, it can be transported
between machines because of a machine signature in its file header. The
MATLAB C Math Library checks the signature when it loads variables from a
MAT-file and, if a signature indicates that a file is foreign, performs the
necessary conversion.

The MATLAB C Math Library functions mlfSave() and mlfLoad() implement
the MATLAB load and save functions. Note, however, that not all the
variations of the MATLAB load and save syntax are implemented for the
MATLAB C Math Library.

Using mlfSave() to Write Data to a File
Using mlfSave(), you can save the data within mxArray variables to disk. The
prototype for mlfSave() is

void mlfSave(mxArray *file, const char* mode, ...);

where file points to an mxArray containing the name of the MAT-file and mode
points to a string that indicates whether you want to overwrite or update the
data in the file. The variable argument list consists of at least one pair of
arguments – the name you want to assign to the variable you’re saving and the
address of the mxArray variable that you want to save. The last argument to
mlfSave() is always a NULL, which terminates the argument list:

• You must name each mxArray variable that you save to disk. A name can
contain up to 32 characters.

• You can save as many variables as you want in a single call to mlfSave().

• There is no call that globally saves all the variables in your program or in a
particular function.

Overview
• The name of a MAT-file must end with the extension .mat. The library
appends the extension .mat to the filename if you do not specify it.

• You can either overwrite or append to existing data in a file. Pass "w" to
overwrite, "u" to update (append), or "w4" to overwrite using V4 format.

• The file created is a binary MAT-file, not an ASCII file.

Using mlfLoad() to Read Data from a File
Using mlfLoad(), you can read in mxArray data from a binary MAT-file. The
prototype for mlfLoad()

void mlfLoad(mxArray *file, ...);

where file points to an mxArray containing the name of the MAT-file and the
variable argument list consists of at least one pair of arguments – the name of
the variable that you want to load and a pointer to the address of an mxArray
variable that will receive the data. The last argument to mlfLoad() is always
a NULL, which terminates the argument list:

• You must indicate the name of each mxArray variable that you want to load.

• You can load as many variables as you want in one call to mlfLoad().

• There is no call that loads all variables from a MAT-file globally.

• You do not have to allocate space for the incoming mxArray. mlfLoad()
allocates the space required based on the size of the variable being read.

• You must specify a full path for the file that contains the data. The library
appends the extension .mat to the filename if you do not specify it.

• You must load data from a binary MAT-file, not an ASCII MAT-file.

Note Be sure to transmit MAT-files in binary file mode when you exchange
data between machines.

For more information on MAT-files, consult the online version of the MATLAB
Application Program Interface Guide.
7-3

7 Importing and Exporting Array Data

7-4
Example Program: Saving and Loading Data (ex5.c)
This example demonstrates how to use the functions mlfSave() and
mlfLoad()to write data to a disk file and read it back again.

You can find the code for this example in the <matlab>/extern/examples/
cmath directory, on UNIX systems, or the <matlab>\extern\examples\cmath
directory, on PCs, where <matlab> represents the top-level directory of your
installation. See “Building C Applications” in Chapter 1 for information on
building the examples.

/* ex5.c */

#include <stdlib.h>
#include "matlab.h"

main()
{

mxArray *x = NULL, *y = NULL, *z = NULL;
 mxArray *a = NULL, *b = NULL, *c = NULL;

 mlfEnterNewContext(0, 0);

mlfAssign(&x, mlfRand(mlfScalar(4),mlfScalar(4),NULL));
mlfAssign(&y, mlfMagic(mlfScalar(7)));
mlfAssign(&z, mlfEig(NULL, x, NULL));

/* Save (and name) the variables */
mlfSave(mxCreateString("ex5.mat"), "w",

 "x", x, "y", y, "z", z, NULL);

/* Load the named variables */
mlfLoad(mxCreateString("ex5.mat"),

 "x", &a, "y", &b, "z", &c, NULL);

1

2

3

4

5

Overview
/* Check to be sure that the variables are equal */
if (mlfTobool(mlfIsequal(a, x, NULL)) &&

mlfTobool(mlfIsequal(b, y, NULL)) &&
mlfTobool(mlfIsequal(c, z, NULL)))

{
mlfPrintf("Success: all variables equal.\n");

}
else
{

mlfPrintf("Failure: loaded values not equal to saved
values.\n");

}

mxDestroyArray(x);
mxDestroyArray(y);
mxDestroyArray(z);
mxDestroyArray(a);
mxDestroyArray(b);
mxDestroyArray(c);

 mlfRestorePreviousContext(0, 0);

return(EXIT_SUCCESS);
}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare and initialize variables. x, y, and z will be written to the MAT-file
using mlfSave(). a, b, and c will store the data read from the MAT-file by
mlfLoad().

3 Assign data to the variables that will be saved to a file. x stores a 4-by-4
array that contains randomly generated numbers. y stores a 7-by-7 magic

7

6

7-5

7 Importing and Exporting Array Data

7-6
square. z contains the eigenvalues of x. Note that mlfRand() is a varargin
function; you must terminate the argument list with NULL.

The MATLAB C Math Library utility function mlfScalar() creates 1-by-1
arrays that hold an integer or double value.

4 Save three variables to the file "ex5.mat". You can save any number of
variables to the file identified by the first argument to mlfSave(). The
second argument specifies the mode for writing to the file. Here "w"
indicates that mlfSave() should overwrite the data. Other values include
"u" to update (append) and "w4" to overwrite using V4 format. Subsequent
arguments come in pairs: the first argument in the pair (a string) labels the
variable in the file; the contents of the second argument is written to the file.
A NULL terminates the argument list.

Note that you must provide a name for each variable you save. When you
retrieve data from a file, you must provide the name of the variable you want
to load. You can choose any name for the variable; it does not have to
correspond to the name of the variable within the program. Unlike
arguments to most MATLAB C Math Library functions, the variable names
and mode are not mxArray arguments; you can pass a C string directly to
mlfSave() and mlfLoad().

5 Load the named variables from the file "ex5.mat". Note that the function
mlfLoad() does not follow the standard C Math Library calling convention
where output arguments precede input arguments. The output arguments,
a, b, and c, are interspersed with the input arguments.

Pass arguments in this order: the array containing the filename, then the
name/variable pairs themselves, and finally a NULL to terminate the
argument list. An important difference between the syntax of mlfLoad()
and mlfSave() is the type of the variable portion of each pair. Because you’re
loading data into a variable, mlfLoad() needs the address of the variable: &a,
&b, &c. a, b, and c are output arguments whereas x, y, and z in the mlfSave()
call were input arguments. Notice how the name of the output argument
does not have to match the name of the variable in the MAT-file.

Overview
Note mlfLoad() is not a type-safe function. It is declared as
mlfLoad(mxArray *file, ...). The compiler will not complain if you forget
to include an & in front of the output arguments. However, your application
will fail at runtime.

6 Compare the data loaded from the file to the original data that was written
to the file. a, b, and c contain the loaded data; x, y, and z contain the original
data. Each call to mlfIsEqual() returns a temporary scalar mxArray
containing TRUE if the compared arrays are the same type and size, with
identical contents. mlfTobool() returns the Boolean value contained in the
array. The calls to mlfTobool() are necessary because C requires that the
condition for an if statement be a scalar Boolean, not a scalar mxArray.

7 Free each of the matrices used in the examples.

Output
When run, the program produces this output:

Success: all variables equal.
7-7

7 Importing and Exporting Array Data

7-8

Handling Errors 8-3
Customizing Error Handling 8-5
Example Program: Defining Try/Catch Blocks (ex6.c) 8-6
Replacing the Default Library Error Handler 8-9

Defining a Print Handler 8-14
Providing Your Own Print Handler 8-14
Output to a GUI 8-15
8

Handling Errors and
Writing a Print Handler

Overview . 8-2

8 Handling Errors and Writing a Print Handler

8-2
Overview
This chapter includes information about two common programming tasks:
error handling and print handling. This chapter describes how you can:

• Customize the default MATLAB C Math Library error handling by using the
mlfTry and mlfCatch macros and by defining your own print handler.

• Customize printing by defining your own print handler. This sectionincludes
information about displaying output to a GUI.

Handling Errors
Handling Errors
The MATLAB C Math library routines handle error conditions in two ways,
depending on the severity of the error:

• For less-severe error conditions, called warnings, the library routines output
a message to the user and then return control to the application. The
application can continue processing.

• For more-severe error conditions, the library routines output a message to
the user and then exits, terminating the application. Control never returns
to the application.

The following example program illustrates this default library error handling.
The program deliberately causes a warning-level error condition, division by
zero, and a more severe error condition, attempting to add two matrices of
unequal size, that causes termination.
8-3

8 Handling Errors and Writing a Print Handler

8-4
#include <stdio.h>
#include <stdlib.h> /* used for EXIT_SUCCESS */
#include <string.h>
#include "matlab.h"

/* Matrix data. Column-major element order */
static double data[] = { 1, 2, 3, 4, 5, 6 };

main()
{

/* Declare matrix variables */
mxArray *mat0 = NULL;
mxArray *mat1 = NULL;
mxArray *mat2 = NULL;

mlfEnterNewContext(0,0);

/* Create two matrices of different sizes */
mlfAssign(&mat0, mlfDoubleMatrix(2, 3, data, NULL));
mlfAssign(&mat1, mlfDoubleMatrix(3, 2, data, NULL));

/* Division by zero will produce a warning */
mlfAssign(&mat2, mlfRdivide(mat1, mlfScalar(0)));
mlfPrintf("Return to application after warning.\n");

/* Adding mismatched matrices produces error */
mlfPrintMatrix(mlfPlus(mat0, mat1));
mlfPrintf("Should not be reached after error.\n");

/* Free any matrices that were assigned to variables */
mxDestroyArray(mat2);
mxDestroyArray(mat0);
mxDestroyArray(mat1);

mlfRestorePreviousContext(0, 0);
return(EXIT_SUCCESS);

}

Handling Errors
This program produces the following output. You can see how this program
continues processing after a warning, but terminates after an error.

WARNING: Divide by zero.
Return to application after warning.
ERROR: Matrix dimensions must agree.

EXITING

Customizing Error Handling
Two aspects of the default error handling behavior of the MATLAB C Math
Library routines may not suit every application:

• Exiting on error conditions

• Displaying error messages to the same display as other application
messages.

You may want control to return to your application when an error occurs,
allowing it to perform clean up processing before exiting. You may also prefer
to direct error and warning messages to a different output stream than the
normal messages output by your application. The following sections describe
how to make these customizations.

Continuing Processing After Errors
To return control to your application after a library routine encounters an error
condition, you must define try and catch blocks in your application.

When you define a try block, the library warning-level processing does not
change. The routines output a warning message and return control back to the
application. The default library error processing, however, does change. When
you define a try block, the library routines do not output an error message to
the user and then exit. Instead, the routines transfer control to your catch
block, which performs the error handling processing.

For example, if you want to output an error message to the user, you must do
so from your catch block. (You can use the mlfLasterr() routine to obtain the
text of the message associated with the most recent error that occurred.)
8-5

8 Handling Errors and Writing a Print Handler

8-6
Defining a Try Block. A try block is a group of one or more statements, enclosed in
braces, introduced by the mlfTry macro:

mlfTry
{

/* your code */
}

Note that the mlfTry macro does not require parentheses; it is not a procedure
call.

Defining a Catch Block. A catch block is a group of one or more routines, enclosed
in braces, introduced by the mlfCatch macro and terminated by the
mlfEndCatch macro:

mlfCatch
{

/* Your code */
}
mlfEndCatch

The catch block contains error processing code. For example, you could put
clean-up code in your catch block to free allocated storage before exiting. The
mlfCatch and mlfEndCatch macros do not require parentheses.

Note While this error handling mechanism is modeled on the C++ exception
handling facility, there is no connection between the two. The MATLAB C
Math Library does not “throw” exceptions, as the MATLAB C++ Math Library
does. The syntax used with the macros is different than the C++ keywords.
The library error handling mechanism is built on the setjmp/longjmp
mechanism. For more information about setjmp/longjmp, see your system
documentation.

Example Program: Defining Try/Catch Blocks
(ex6.c)
The following example adds try and catch blocks to the example program
introduced in the previous section (page 8-4).

Handling Errors
You can find the code for this example in the
<matlab>/extern/examples/cmath directory, on UNIX systems, or the
<matlab>\extern\examples\cmath directory, on PCs, where <matlab>
represents the top-level directory of your installation. See “Building C
Applications” in Chapter 1 for information on building the examples.

#include <stdio.h>
#include <stdlib.h> /* Used for EXIT_SUCCESS */
#include <string.h>
#include "matlab.h"

static double data[] = { 1, 4, 2, 5, 3, 6 };

main()
{

mxArray *mat0 = NULL;
mxArray *mat1 = NULL;
mxArray *volatile mat2 = NULL;

mlfEnterNewContext(0,0);

mlfAssign(&mat0, mlfDoubleMatrix(2, 3, data, NULL));
mlfAssign(&mat1, mlfDoubleMatrix(3, 2, data, NULL));

mlfTry
{

mlfAssign(&mat2, mlfRdivide(mat1, mlfScalar(0)));

mlfPrintf("Return to try block after warning.\n");

mlfPrintMatrix(mlfPlus(mat0, mat1));
}
mlfCatch
{

mlfPrintf("In catch block. Caught an error: ");

mlfPrintMatrix(mlfLasterr(NULL));
}
mlfEndCatch

2

3

4

1

5

6

8-7

8 Handling Errors and Writing a Print Handler

8-8
mlfPrintf("Now in application after catch block.\n");

mxDestroyArray(mat0);
mxDestroyArray(mat1);
mxDestroyArray(mat2);

mlfRestorePreviousContext(0, 0);

return(EXIT_SUCCESS);
}

Notes

1 Variables that will be set within a try block must be declared as volatile.
When a variable is declared as volatile, it is not stored in a register. You
can, therefore, assign a value to the variable inside the try block and still
retrieve the value.

2 mlfTry macro defines the beginning of the try block.

3 The exampe deliberately triggers a warning, by attempting to divide by zero,
and an error, by calling mlfPlus with two input matrices of unequal size.

4 The mlfCatch macro defines the beginning of the catch block.

5 The error handling code in this catch block is quite simple. It displays a
message, In my catch block. Caught an error:, and then prints out the
message associated with the last error by passing the return value of the
mlfLastErr() routine to the mlfPrintMatrix() routine.

6 The mlfEndcatch macro marks the end of the catch block.

7 After the catch block completes executing, the application continues, freeing
the matrices, mat0, mat1, and mat2, which were used as input arguments to
mlfPlus() and mlfRdivide().

7

Handling Errors
The program produces this output.

WARNING: Divide by zero.
Return to try block after warning.
In catch block. Caught an error: Matrix dimensions must agree.
Now in application after catch block.

A more sophisticated error handling mechanism could do much more than
simply print an additional error message. If this statement were in a loop, for
example, the code could discover the cause of the error, correct it, and try the
operation again.

Replacing the Default Library Error Handler
The default error handling behavior of the MATLAB C Math Library routines
is implemented by the default library error handler routine. You can further
customize error handling by replacing the default library error handler routine
with one of your own design.

Note Because of the error handling capabilities provided by the library try/
catch mechanism, applications typically do not need to replace the default
error handler. However, in some instances, it can be useful. For example, you
can write an error handler that directs error messages to a file.

To replace the default error handler you must:

• Write an error handler

• Register your error handler so that library routines call it when they
encounter an error.

Writing an Error Handler
When you write an error handler, you must conform to the library prototype for
error handling routines:

void MyErrorHandler(const char *msg, bool isError)
{

/* Your code */
}

8-9

8 Handling Errors and Writing a Print Handler

8-1
In this prototype, note the following:

• An error handling routine must not return a value (return void).

• An error handling routine accepts two arguments, a const string and a
Boolean value. The string is the text of the error message. When the value of
this Boolean value is TRUE, it indicates an error message. If this value is
FALSE, it indicates a warning message.

Registering Your Error Handler
After writing an error handler, you must register it with the MATLAB C Math
Library so that the library routines can call it when they encounter an error
condition at runtime. You register an error handler using the
mlfSetErrorHandler() routine.

mlfSetErrorHandler(MyErrorHandler);

Example Program
The following example program adds an error handler to the sample program
introduced on page 8-4. This error handler writes error messages to a log file,
identifying each message as an error or warning. An error handler like this
allows a program to run unattended, since any errors produced are recorded in
a file for future examination. More complex error-handling schemes are also
possible. For example, you can use two files, one for the messages sent to the
print handler and one for errors, or you can pipe the error message to an e-mail
program that sends a notification of the error to the user who started the
program.
0

Handling Errors
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

FILE *stream;

void MyErrorHandler(const char *msg, bool isError)
{

if(isError)
{

fprintf(stream, "ERROR: %s \n", msg);
}
else
{

fprintf(stream, "WARNING: %s \n", msg);
}

}
static double data[] = { 1, 2, 3, 4, 5, 6 };

main()
{

mxArray *mat0 = NULL;
mxArray *mat1 = NULL;
mxArray *volatile mat2 = NULL;

mlfSetErrorHandler(MyErrorHandler);

stream = fopen("myerrlog.out","w");

mlfEnterNewContext(0,0);

mlfAssign(&mat0, mlfDoubleMatrix(2, 3, data, NULL));
mlfAssign(&mat1, mlfDoubleMatrix(3, 2, data, NULL));
mlfTry
{

mlfAssign(&mat2, mlfRdivide(mat1, mlfScalar(0)));
printf("Return to try block after warning.\n");

mlfPrintMatrix(mlfPlus(mat0, mat1));

1

2

3

4

8-11

8 Handling Errors and Writing a Print Handler

8-1
mxDestroyArray(mat2);
}
mlfCatch
{

mlfPrintf("In catch block. Caught an error: ");
mlfPrintMatrix(mlfLasterr(NULL));

if (mat2)
mxDestroyArray(mat2);

 }
mlfEndCatch

mlfPrintf("Now in application after catch block.");

mxDestroyArray(mat0);
mxDestroyArray(mat1);
mlfRestorePreviousContext(0, 0);

fclose(stream);
 return(EXIT_SUCCESS);
}

Notes

1 The example program declares a variable, stream, that is a pointer to the
output log file.

2 The error handling routine, MyErrorHandler, determines the type of error
message, and writes warnings and errors to a log file.

3 The main program opens the log file, named myerrlog.out. The program
calls fclose() to close the log file before exiting.

4 Register the error handler with the MATLAB C Math Library with this call
to mlfSetErrorHandler().
2

Handling Errors
Output
The program produces this output.

In MyErrorHandler. WARNING: Divide by zero.
Logging the warning to a file.
Returning to try block after warning.
In MyErrorHandler. Logging the error to a file.
In catch block. Caught an error: Matrix dimensions must agree.
Now in application after catch block.
8-13

8 Handling Errors and Writing a Print Handler

8-1
Defining a Print Handler
In the past, when there were only character-based terminals, input and output
were very simple; programs used scanf for input and printf for output.
Graphical user interfaces (GUIs) and windowed desktops make input and
output routines more complex. The MATLAB C Math Library is designed to
run on both character-based terminals and in graphical, windowed
environments. Simply using printf or a similar routine is fine for
character-terminal output, but insufficient for output in a graphical
environment.

The MATLAB C Math Library performs some output; in particular it displays
error messages and warnings, but performs no input. To support programming
in a graphical environment, the library allows you to determine how the library
displays output.

The MATLAB C Math Library’s output requirements are very simple. The
library formats its output into a character string internally, and then calls a
function that prints the single string. If you want to change where or how the
library’s output appears, you must provide an alternate print handler.

Providing Your Own Print Handler
Instead of calling printf directly, the MATLAB C Math Library calls a print
handler when it needs to display an error message or warning. The default
print handler used by the library takes a single argument, a const char * (the
message to be displayed), and returns void.

The default print handler is

static void DefaultPrintHandler(const char *s)
{
 printf("%s",s);
}

The routine sends its output to C’s stdout, using the printf function.

If you want to perform a different style of output, you can write your own print
handler and register it with the MATLAB C Math Library. Any print handler
that you write must match the prototype of the default print handler: a single
const char * argument and a void return.
4

Defining a Print Handler
To register your function and change which print handler the library uses, you
must call the routine mlfSetPrintHandler.

mlfSetPrintHandler takes a single argument, a pointer to a function that
displays the character string, and returns void.

void mlfSetPrintHandler (void (* PH)(const char *));

Output to a GUI
When you write a program that runs in a graphical windowed environment,
you may want to display printed messages in an informational dialog box. The
next two sections illustrate how to provide an alternate print handler under
the X Window System and Microsoft Windows.

Each example demonstrates the interface between the MATLAB C Math
Library and the windowing system. In particular, the examples do not
demonstrate how to write a complete, working program.

Each example assumes that you know how to write a program for a particular
windowing system. The code contained in each example is incomplete. For
example, application start up and initialization code is missing. Consult your
windowing system’s documentation if you need more information than the
examples provide.

Each example presents a simple alternative output mechanism. There are
other output options as well, for example, sending output to a window or
portion of a window inside an application. The code in these examples should
serve as a solid foundation for writing more complex output routines.

Note If you use an alternate print handler, you must call
mlfSetPrintHandler before calling other library routines. Otherwise the
library uses the default print handler to display messages.

X Windows/Motif Example
The Motif Library provides a MessageDialog widget, which this example uses
to display text messages. The MessageDialog widget consists of a message text
area placed above a row of three buttons labeled OK, Cancel, and Help.
8-15

8 Handling Errors and Writing a Print Handler

8-1
The message box is a modal dialog box; once it displays, you must dismiss it
before the application will accept other input. However, because the
MessageDialog is a child of the application and not the root window, other
applications continue to operate normally.

/* X-Windows/Motif Example */

/* List other X include files here */
#include <Xm/Xm.h>
#include <Xm/X11.h>
#include <Xm/MessageB.h>

static Widget message_dialog = 0;

/* The alternate print handler */
void PopupMessageBox(const char *message)
{

Arg args[1];

XtSetArg(args[0], XmNmessageString, message);
XtSetValues(message_dialog, args, 1);
XtPopup(message_dialog, XtGrabExclusive);

}

main()
{

/* Start X application. Insert your own code here. */
main_window = XtAppInitialize(/* your code */);

/* Create the message box widget as a child of */
/* the main application window. */
message_dialog = XmCreateMessageDialog(main_window,

"MATLAB Message", 0, 0);

/* Set the print handler. */
mlfSetPrintHandler(PopupMessageBox);

/* The rest of your program */
}

6

Defining a Print Handler
This example declares two functions: PopupMessageBox() and main().
PopupMessageBox is the print handler and is called every time the library needs
to display a text message. It places the message text into the MessageDialog
widget and makes the dialog box visible.

The second routine, main, first creates and initializes the X Window System
application. This code is not shown, since it is common to most applications,
and can be found in your X Windows reference guide. main then creates the
MessageDialog object that is used by the print handling routine. Finally, main
calls mlfSetPrintHandler to inform the library that it should use
PopupMessageBox instead of the default print handler. If this were a complete
application, the main routine would also contain calls to other routines or code
to perform computations.

Microsoft Windows Example
This example uses the Microsoft Windows MessageBox dialog box. This dialog
box contains an “information” icon, the message text, and a single OK button.
The MessageBox is a Windows modal dialog box; while it is posted, your
application will not accept other input. You must press the OK button to
dismiss the MessageBox dialog box before you can do anything else.

This example declares two functions. The first, PopupMessageBox, is
responsible for placing the message into the MessageBox and then posting the
box to the screen. The second, main, which in addition to creating and starting
the Microsoft Windows application (that code is not shown) calls
mlfSetPrintHandler to set the print handling routine to PopupMessageBox.
8-17

8 Handling Errors and Writing a Print Handler

8-1
/* Microsoft Windows example */

static HWND window;
static LPCSTR title = "Message from MATLAB";

/* The alternate print handler */
void PopupMessageBox(const char *message)
{

MessageBox(window, (LPCTSTR)message, title,
MB_ICONINFORMATION);

}

main()
{

/* Register window class, provide window procedure */
/* Fill in your own code here. */

/* Create application main window */
window = CreateWindowEx(/* your specification */);

/* Set print handler */
mlfSetPrintHandler(PopupMessageBox);

/* The rest of the program ... */
}

This example does no real processing. If it were a real program, the main
routine would contain calls to other routines or perform computations of its
own.
8

The MATLAB Built-In Library 9-4

MATLAB M-File Math Library 9-24

Array Access and Creation Library 9-46
9

Library Routines

Why Two MATLAB Math Libraries? 9-3

9 Library Routines

9-2
This chapter serves as a reference guide to the more than 400 functions
contained in the MATLAB C Math Library.

The functions are divided into three sections:

• The Built-In Library

• The M-File Math Library

• The Array Access and Creation Library

The tables that group the functions into categories include a short description
of each function. Refer to the online MATLAB C Math Library Reference for a
complete definition of the function syntax and arguments.

Why Two MATLAB Math Libraries?
Why Two MATLAB Math Libraries?
The MATLAB functions within the MATLAB C Math Library are delivered as
two libraries: the MATLAB Built-In Library and the MATLAB M-File Math
Library. The Built-In Library contains the functions that every program using
the MATLAB C Math Library needs, including, for example, the elementary
mathematical functions that perform matrix addition and multiplication. The
M-File Math Library is larger than the Built-In Library and contains more
specialized functions, such as polynomial root finding or the two-dimensional
inverse discrete Fourier transformation. Both libraries follow the same
uniform naming convention and obey the same calling conventions.

MATLAB C Math Library programs link dynamically against both math
libraries, in addition to the Array Access and Creation Library. (See “Building
C Applications” in Chapter 1 for a complete list of the required libraries.)
9-3

9 Library Routines

9-4
The MATLAB Built-In Library
The routines in the MATLAB Built-In Library fall into three categories:

• C callable versions of MATLAB built-in functions

Each MATLAB built-in function is named after its MATLAB equivalent. For
example, the mlfTan function is the C callable version of the MATLAB
built-in tan function.

• C function versions of the MATLAB operators

For example, the C callable version of the MATLAB matrix multiplication
operator (*) is the function named mlfMtimes().

• Routines that initialize and control how the library operates

These routines do not have a MATLAB equivalent. For example, there is no
MATLAB equivalent for the mlfSetPrintHandler() routine.

Note You can recognize routines in the Built-In and M-File libraries by the
mlf prefix at the beginning of each function name.

The MATLAB Built-In Library
General Purpose Commands

Operators and Special Functions

 Managing Variables

Function Purpose

mlfFormat Set output format.

mlfLoad Retrieve variables from disk.

mlfSave Save variables to disk.

 Arithmetic Operator Functions

Function Purpose

mlfLdivide Array left division (.\).

mlfMinus Array subtraction (-).

mlfMldivide Matrix left division (\).

mlfMpower Matrix power (^).

mlfMrdivide Matrix right division (/).

mlfMtimes Matrix multiplication (*).

mlfPlus Array addition (+).

mlfPower Array power (.^).

mlfRdivide Array right division (./).

mlfTimes Array multiplication (.*).

mlfUnaryminus,
mlfUminus

Unary minus.
9-5

9 Library Routines

9-6
Relational Operator Functions

Function Purpose

mlfEq Equality (==).

mlfGe Greater than or equal to (>=).

mlfGt Greater than (>).

mlfLe Less than or equal to (<=).

mlfLt Less than (<).

mlfNeq,
mlfNe

Inequality (~=).

Logical Operator Functions

Function Purpose

mlfAll True if all elements of vector are nonzero.

mlfAnd Logical AND (&).

mlfAny True if any element of vector is nonzero.

mlfNot Logical NOT (~).

mlfOr Logical OR (|).

The MATLAB Built-In Library
Set Operators

Function Purpose

mlfIsmember True for set member.

mlfSetdiff Set difference.

mlfSetxor Set exclusive OR.

mlfUnion Set union.

mlfUnique Set unique.

Special Operator Functions

Function Purpose

mlfColon Create a sequence of indices.

mlfCreateColonIndex Create an array that acts like the colon operator
(:).

mlfCtranspose Complex Conjugate Transpose (’).

mlfEnd Index to the end of an array dimension.

mlfHorzcat Horizontal concatenation.

mlfTranspose Noncomplex conjugate transpose (.’)

mlfVertcat Vertical concatenation.
9-7

9 Library Routines

9-8
 Logical Functions

Function Purpose

mlfFind Find indices of nonzero elements.

mlfFinite Extract only finite elements from array.

mlfIsa True if object is a given class.

mlfIschar True for character arrays (strings).

mlfIsempty True for empty array.

mlfIsequal True for input arrays of the same type, size, and contents.

mlfIsfinite True for finite elements of an array.

mlfIsinf True for infinite elements.

mlfIsletter True for elements of the string that are letters of the
alphabet.

mlfIslogical True for logical arrays.

mlfIsnan True for Not-a-Number.

mlfIsreal True for noncomplex matrices.

mlfIsspace True for whitespace characters in string matrices.

mlfLogical Convert numeric values to logical.

mlfTobool Convert an array to a Boolean value by reducing the rank
of the array to a scalar.

The MATLAB Built-In Library
 MATLAB as a Programming Language

Function Purpose

mlfFeval Function evaluation.

mlfLasterr Last error message.

mlfMfilename Return a NULL array. M-file execution does not apply to
stand-alone applications.

 Message Display

Function Purpose

mlfError Display message and abort function.

mlfLastError Return string that contains the last error message.

mlfWarning Display warning message.
9-9

9 Library Routines

9-1
Elementary Matrices and Matrix Manipulation

 Elementary Matrices

Function Purpose

mlfEye Identity matrix.

mlfOnes Matrix of ones (1s).

mlfRand Uniformly distributed random numbers.

mlfRandn Normally distributed random numbers.

mlfZeros Matrix of zeros (0s).

Basic Array Information

Function Purpose

mlfDisp Display text or array.

mlfIsempty True for empty array.

mlfIsequal True for input arrays of the same type, size, and contents.

mlfIslogical True for logical arrays.

mlfLength Length of vector.

mlfLogical Convert numeric values to logical.

mlfNdims Number of dimensions.

mlfSize Size of array.

 Special Constants

Function Purpose

mlfComputer Computer type.

mlfEps Floating-point relative accuracy.
0

The MATLAB Built-In Library
mlfFlops Floating-point operation count. (Not reliable in
stand-alone applications.)

mlfI Return an array with the value 0+1.0i.

mlfInf Infinity.

mlfJ Return an array with the value 0+1.0i.

mlfNan Not−a−Number.

mlfPi 3.1415926535897....

mlfRealmax Largest floating-point number.

mlfRealmin Smallest floating-point number.

 Matrix Manipulation

Function Purpose

mlfDiag Create or extract diagonals.

mlfPermute Permute array dimensions.

mlfTril Extract lower triangular part.

mlfTriu Extract upper triangular part.

 Specialized Matrices

Function Purpose

mlfMagic Magic square.

 Special Constants (Continued)

Function Purpose
9-11

9 Library Routines

9-1
Elementary Math Functions

 Trigonemetric Functions

Function Purpose

mlfAcos Inverse cosine.

mlfAsin Inverse sine.

mlfAtan Inverse tangent.

mlfAtan2 Four-quadrant inverse tangent.

mlfCos Cosine.

mlfSin Sine.

mlfTan Tangent.

 Exponential Functions

Function Purpose

mlfExp Exponential.

mlfLog Natural logarithm.

mlfLog2 Base 2 logarithm and dissect floating-point numbers.

mlfPow2 Base 2 power and scale floating-point numbers.

mlfSqrt Square root.

 Complex Functions

Function Purpose

mlfAbs Absolute value.

mlfConj Complex conjugate.

mlfImag Imaginary part of a complex array.
2

The MATLAB Built-In Library
Numerical Linear Algebra

mlfIsreal True for noncomplex matrices

mlfReal Real part of a complex array.

 Rounding and Remainder Functions

Function Purpose

mlfCeil Round toward plus infinity.

mlfFix Round toward zero.

mlfFloor Round toward minus infinity.

mlfRem Remainder after division.

mlfRound Round to nearest integer.

mlfSign Signum function.

 Matrix Analysis

Function Purpose

mlfDet Determinant.

mlfNorm Matrix or vector norm.

mlfRcond LINPACK reciprocal condition estimator.

 Linear Equations

Function Purpose

mlfChol Cholesky factorization.

mlfCholupdate Rank 1 update to Cholesky factorization.

 Complex Functions (Continued)

Function Purpose
9-13

9 Library Routines

9-1
mlfInv Matrix inverse.

mlfLu Factors from Gaussian elimination.

mlfQr Orthogonal-triangular decomposition.

 Eigenvalues and Singular Values

Function Purpose

mlfEig Eigenvalues and eigenvectors.

mlfHess Hessenberg form.

mlfQz Generalized eigenvalues.

mlfSchur Schur decomposition.

mlfSvd Singular value decomposition.

 Matrix Functions

Function Purpose

mlfExpm Matrix exponential.

Factorization Utilities

Function Purpose

mlfBalance Diagonal scaling to improve eigenvalue accuracy.

 Linear Equations (Continued)

Function Purpose
4

The MATLAB Built-In Library
Data Analysis and Fourier Transform Functions

 Basic Operations

Function Purpose

mlfCumprod Cumulative product of elements.

mlfCumsum Cumulative sum of elements.

mlfMax Largest component.

mlfMin Smallest component.

mlfProd Product of elements.

mlfSort Sort in ascending order.

mlfSum Sum of elements.

 Filtering and Convolution

Function Purpose

mlfFilter One-dimensional digital filter (see online help).

 Fourier Transforms

Function Purpose

mlfFft Discrete Fourier transform.

mlfFftn Multidimensional fast Fourier transform.
9-15

9 Library Routines

9-1
Character String Functions

 General

Function Purpose

mlfChar Create character array (string).

mlfDouble Convert string to numeric character codes.

String Tests

Function Purpose

mlfIschar True for character arrays.

mlfIsletter True for elements of the string that are letters of the
alphabet.

mlfIsspace True for whitespace characters in strings.

 String Operations

Function Purpose

mlfLower Convert string to lower case.

mlfStrcmp Compare strings.

mlfStrcmpi Compare strings ignoring case.

mlfStrncmp Compare the first n characters of two strings.

mlfStrncmpi Compare first n characters of strings ignoring case.

mlfUpper Convert string to upper case.
6

The MATLAB Built-In Library
File I/O Functions

 String to Number Conversion

Function Purpose

mlfSprintf Convert number to string under format control.

mlfSscanf Convert string to number under format control.

 File Opening and Closing

Function Purpose

mlfFclose Close file.

mlfFopen Open file.

 File Positioning

Function Purpose

mlfFeof Test for end-of-file.

mlfFerror Inquire file I/O error status.

mlfFseek Set file position indicator.

mlfFtell Get file position indicator.

 Formatted I/O

Function Purpose

mlfFprintf Write formatted data to file.

mlfFscanf Read formatted data from file.
9-17

9 Library Routines

9-1
Data Types

 Binary File I/O

Function Purpose

mlfFread Read binary data from file.

mlfFwrite Write binary data to file.

 String Conversion

Function Purpose

mlfSprintf Write formatted data to a string.

mlfSscanf Read string under format control.

File Import/Export Functions

Function Purpose

mlfLoad Retrieve variables from disk.

mlfSave Save variables to disk.

 Data Types

Function Purpose

mlfChar Create character array (string).

mlfDouble Convert to double precision.
8

The MATLAB Built-In Library
Time and Dates

Multidimensional Array Functions

Cell Array Functions

 Object Functions

Function Purpose

mlfClassName Return a string representing an object’s class.

mlfIsa True if object is a given class.

Current Date and Time

Function Purpose

mlfClock Wall clock.

Function Purpose

mlfCat Concatenate arrays.

mlfNdims Number of array dimensions.

mlfPermute Permute array dimensions.

Function Purpose

mlfCell Create cell array.

mlfCell2struct Convert cell array into structure array.

mlfCellhcat Horizontally concatenate cell arrays.

mlfIscell True for cell array.
9-19

9 Library Routines

9-2
Structure Functions

Sparse Matrix Functions

Function Purpose

mlfFieldnames Get structure field names.

mlfGetfield Get structure field contents.

mlfSetfield Set structure field contents.

mlfStruct Create or convert to structure array.

mlfStruct2cell Convert structure array into cell array.

Full to Sparse Conversion

Function Purpose

mlfFind Find indices of nonzero elements.

mlfFull Convert sparse matrix to full matrix.

mlfSparse Create sparse matrix.

Working with NonZero Entries of Sparse Matrices

Function Purpose

mlfIssparse True for sparse matrix.

Linear Algebra

Function Purpose

mlfCholinc Incomplete Cholesky factorization.

mlfLuinc Incomplete LU factorization.
0

The MATLAB Built-In Library
Utility Routines
The MATLAB C Math Library utility routines help you perform indexing,
create scalar arrays, and initialize and control the library environment.

 Error Handling

Function Purpose

void
mlfSetErrorHandler(void (* EH)(const char *,

bool));

Specify pointer to external
application’s error handler function.

 mlfFeval() Support

Function Purpose

void
mlfFevalTableSetup(mlfFuncTab *mlfUfuncTable);

Register a thunk function table with
the MATLAB C Math Library.

 Indexing

Function Purpose

mxArray *
mlfIndexAssign(mxArray * volatile *pa,

const char *index, ...);

Handle assignments that include
indexing.

mxArray *
mlfIndexDelete(mxArray * volatile *pa,

const char *index, ...);

Handle deletions that include
indexing.

mxArray *
mlfIndexRef(mxArray *pa,

const char* index_string, ...);

Perform array references such as
X(5,:).

mxArray *
mlfColon(mxArray *start, mxArray *step,

mxArray *end);

Generate a sequence of indices. Use
this where you’d use the colon operator
(:) operator in MATLAB.
mlfColon(NULL, NULL,NULL) is
equivalent to
mlfCreateColonIndex().
9-21

9 Library Routines

9-2

mxArray *
mlfCreateColonIndex(void);

Create an array that acts like the
colon operator (:) when passed to
mlfArrayRef(), mlfArrayAssign(),
and mlfArrayDelete().

mxArray *
mlfEnd(mxArray *array, mxArray *dim,

mxArray *numindices);

Generate the last index for an array
dimension. Acts like end in the
MATLAB expression A(3,6:end). dim
is the dimension to compute end for.
Use 1 to indicate the row dimension;
use 2 to indicate the column
dimension. numindices is the number
of indices in the subscript.

 Indexing (Continued)

Function Purpose

 Memory Allocation

Function Purpose

void
mlfSetLibraryAllocFcns (calloc_proc
calloc_fcn,

free_proc free_fcn,
realloc_proc realloc_fcn,
malloc_proc malloc_fcn);

Set the MATLAB C Math Library’s
memory management functions. Gives
you complete control over memory
management.

 Printing

Function Purpose

int
mlfPrintf(const char *fmt, ...);

Format output just like printf. Use
the installed print handler to display
the output.
2

The MATLAB Built-In Library

void
mlfPrintMatrix(mxArray *m);

Print contents of matrix.

void
mlfSetPrintHandler(void (* PH)(const char *));

Specify pointer to external
application’s output function.

 Printing (Continued)

Function Purpose

 Scalar Array Creation

Function Purpose

mxArray *
mlfScalar (double v);

Create a 1-by-1 array whose contents
are initialized to the value of v.

mxArray *
mlfComplexScalar(double v, double i);

Create a complex 1-by-1 array whose
contents are initialized to the real part
v and the imaginary part i.
9-23

9 Library Routines

9-2
MATLAB M-File Math Library
The MATLAB M-File Math Library contains callable versions of the M-files in
MATLAB. For example, MATLAB implements the function rank in an M-file
named rank.m. The C callable version of rank is called mlfRank.

Note You can recognize routines in the Built-In and M-File Libraries by the
mlf prefix at the beginning of each function.

Operators and Special Functions

 Arithmetic Operator Functions

Function Purpose

mlfKron Kronecker tensor product.

 Logical Operator Functions

Function Purpose

mlfXor Logical exclusive-or operation.

Set Operators

Function Purpose

mlfIntersect Set intersection of two vectors.

 Logical Functions

Function Purpose

mlfIsieee True for IEEE floating-point arithmetic.

mlfIsspace True for whitespace characters in string matrices.
4

MATLAB M-File Math Library
Elementary Matrices and Matrix Manipulation

mlfIsstudent True for student editions of MATLAB.

mlfIsunix True on UNIX machines.

mlfIsvms True on computers running DEC’s VMS.

 MATLAB As a Programming Language

Function Purpose

mlfNargchk Validate number of input arguments.

mlfXyzchk Check arguments to 3-D data routines.

 Elementary Matrices

Function Purpose

mlfAutomesh True if the inputs require automatic meshgriding.

mlfLinspace Linearly spaced vector.

mlfLogspace Logarithmically spaced vector.

mlfMeshgrid X and Y arrays for 3-D plots.

Basic Array Information

Function Purpose

mlfIsnumeric True for numeric arrays.

 Logical Functions (Continued)

Function Purpose
9-25

9 Library Routines

9-2
 Matrix Manipulation

Function Purpose

mlfCat Concatenate arrays.

mlfFliplr Flip matrix in the left/right direction.

mlfFlipud Flip matrix in the up/down direction.

mlfIpermute Inverse permute array dimensions.

mlfRepmat Replicate and tile an array.

mlfReshape Change size.

mlfRot90 Rotate matrix 90 degrees.

mlfShiftdim Shift dimensions.

 Specialized Matrices

Function Purpose

mlfCompan Companion matrix.

mlfHadamard Hadamard matrix.

mlfHankel Hankel matrix.

mlfHilb Hilbert matrix.

mlfInvhilb Inverse Hilbert matrix.

mlfPascal Pascal matrix.

mlfRosser Classic symmetric eigenvalue test problem.

mlfToeplitz Toeplitz matrix.

mlfVander Vandermonde matrix.

mlfWilkinson Wilkinson’s eigenvalue test matrix.
6

MATLAB M-File Math Library
Elementary Math Functions

 Trignometric Functions

Function Purpose

mlfAcosh Inverse hyperbolic cosine.

mlfAcot Inverse cotangent.

mlfAcoth Inverse hyperbolic cotangent.

mlfAcsc Inverse cosecant.

mlfAcsch Inverse hyperbolic cosecant.

mlfAsec Inverse secant.

mlfAsech Inverse hyperbolic secant.

mlfAsinh Inverse hyperbolic sine.

mlfAtanh Inverse hyperbolic tangent.

mlfCosh Hyperbolic cosine.

mlfCot Cotangent.

mlfCoth Hyperbolic cotangent.

mlfCsc Cosecant.

mlfCsch Hyperbolic cosecant.

mlfSec Secant.

mlfSech Hyperbolic secant.

mlfSinh Hyperbolic sine.

mlfTanh Hyperbolic tangent.
9-27

9 Library Routines

9-2
 Exponential Functions

Function Purpose

mlfLog10 Common (base 10) logarithm.

mlfNextpow2 Next higher power of 2.

 Complex Functions

Function Purpose

mlfAngle Phase angle.

mlfCplxpair Sort numbers into complex conjugate pairs.

mlfUnwrap Remove phase angle jumps across 360° boundaries.

 Rounding and Remainder Functions

Function Purpose

mlfMod Modulus (signed remainder after division).
8

MATLAB M-File Math Library
Specialized Math Functions

 Specialized Math Functions

Function Purpose

mlfBeta Beta function.

mlfBetainc Incomplete beta function.

mlfBetaln Logarithm of beta function.

mlfCross Vector cross product.

mlfEllipj Jacobi elliptic functions.

mlfEllipke Complete elliptic integral.

mlfErf Error function.

mlfErfc Complementary error function.

mlfErfcx Scaled complementary error function.

mlfErfinv Inverse error function.

mlfExpint Exponential integral function.

mlfGamma Gamma function.

mlfGammainc Incomplete gamma function.

mlfGammaln Logarithm of gamma function.

mlfLegendre Legendre functions.

 Number Theoretic Functions

Function Purpose

mlfFactor Prime factors.

mlfGcd Greatest common divisor.

mlfIsprime True for prime numbers.
9-29

9 Library Routines

9-3
mlfLcm Least common multiple.

mlfNchoosek All combinations of n elements taken k at a time.

mlfPerms All possible permutations.

mlfPrimes Generate list of prime numbers.

mlfRat Rational approximation.

mlfRats Rational output.

 Coordinate System Transforms

Function Purpose

mlfCart2pol Transform Cartesian coordinates to polar.

mlfCart2sph Transform Cartesian coordinates to spherical.

mlfPol2cart Transform polar coordinates to Cartesian.

mlfSph2cart Transform spherical coordinates to Cartesian.

 Number Theoretic Functions (Continued)

Function Purpose
0

MATLAB M-File Math Library
Numerical Linear Algebra

 Matrix Analysis

Function Purpose

mlfNormest Estimate the matrix 2-norm.

mlfNull Orthonormal basis for the null space.

mlfOrth Orthonormal basis for the range.

mlfRank Number of linearly independent rows or columns.

mlfRref Reduced row echelon form.

mlfSubspace Angle between two subspaces.

mlfTrace Sum of diagonal elements.

 Linear Equations

Function Purpose

mlfCond Condition number with respect to inversion.

mlfCondest 1-norm condition number estimate.

mlfLscov Least squares in the presence of known covariance.

mlfNnls Nonnegative least-squares.

mlfPinv Pseudoinverse.

Eigenvalues and Singular Values

Function Purpose

mlfCondeig Condition number with respect to eigenvalues.

mlfPoly Characteristic polynomial.

mlfPolyeig Polynomial eigenvalue problem.
9-31

9 Library Routines

9-3
 Matrix Functions

Function Purpose

mlfFunm Evaluate general matrix function.

mlfLogm Matrix logarithm.

mlfSqrtm Matrix square root.

Factorization Utilities

Function Purpose

mlfCdf2rdf Complex diagonal form to real block diagonal form.

mlfPlanerot Generate a Givens plane rotation.

mlfQrdelete Delete a column from a QR factorization.

mlfQrinsert Insert a column into a QR factorization.

mlfRsf2csf Real block diagonal form to complex diagonal form.
2

MATLAB M-File Math Library
Data Analysis and Fourier Transform Functions

 Basic Operations

Function Purpose

mlfCumtrapz Cumulative trapezoidal numerical integration.

mlfMean Average or mean value.

mlfMedian Median value.

mlfSortrows Sort rows in ascending order.

mlfStd Standard deviation.

mlfTrapz Numerical integration using trapezoidal method.

 Finite Differences

Function Purpose

mlfDel2 Five-point discrete Laplacian.

mlfDiff Difference function and approximate derivative.

mlfGradient Approximate gradient (see online help).

 Correlation

Function Purpose

mlfCorrcoef Correlation coefficients.

mlfCov Covariance matrix.

mlfSubspace Angle between two subspaces.
9-33

9 Library Routines

9-3
 Filtering and Convolution

Function Purpose

mlfConv Convolution and polynomial multiplication.

mlfConv2 Two-dimensional convolution (see online help).

mlfDeconv Deconvolution and polynomial division.

mlfFilter2 Two−dimensional digital filter (see online help).

 Fourier Transforms

Function Purpose

mlfFft2 Two-dimensional discrete Fourier transform.

mlfFftshift Shift DC component to center of spectrum.

mlfIfft Inverse discrete Fourier transform.

mlfIfft2 Two-dimensional inverse discrete Fourier transform.

mlfIfftn Inverse multidimensional fast Fourier transform.

Sound and Audio

Function Purpose

mlfFreqspace Frequency spacing for frequency response.

mlfLin2mu Convert linear signal to mu-law encoding.

mlfMu2lin Convert mu-law encoding to linear signal.
4

MATLAB M-File Math Library
Polynomial and Interpolation Functions

 Data Interpolation

Function Purpose

mlfGriddata Data gridding.

mlfIcubic Cubic interpolation of 1-D function.

mlfInterp1 One-dimensional interpolation (1-D table lookup).

mlfInterp1q Quick one-dimensional linear interpolation.

mlfInterp2 Two-dimensional interpolation (2-D table lookup).

mlfInterpft One-dimensional interpolation using FFT method.

Spline Interpolation

Function Purpose

mlfPpval Evaluate piecewise polynomial.

mlfSpline Piecewise polynomial cubic spline interpolant.

Geometric Analysis

Function Purpose

mlfInpolygon Detect points inside a polygonal region.

mlfPolyarea Area of polygon.

mlfRectint Rectangle intersection area.
9-35

9 Library Routines

9-3
 Polynomials

Function Purpose

mlfConv Multiply polynomials.

mlfDeconv Divide polynomials.

mlfMkpp Make piecewise polynomial.

mlfPoly Construct polynomial with specified roots.

mlfPolyder Differentiate polynomial (see online help).

mlfPolyfit Fit polynomial to data.

mlfPolyval Evaluate polynomial.

mlfPolyvalm Evaluate polynomial with matrix argument.

mlfResidue Partial-fraction expansion (residues).

mlfResi2 Residue of a repeated pole.

mlfRoots Find polynomial roots.

mlfUnmkpp Supply information about piecewise polynomial.
6

MATLAB M-File Math Library
Function-Functions and ODE Solvers

Optimization and Root Finding

Function Purpose

mlfFmin Minimize function of one variable.

mlfFmins Minimize function of several variables.

mlfFoptions Set minimization options.

mlfFzero Find zero of function of one variable.

Numerical Integration (Quadrature)

Function Purpose

mlfDblquad Numerical double integration.

mlfQuad Numerically evaluate integral, low order method.

mlfQuad8 Numerically evaluate integral, high order method.

Ordinary Differential Equation Solvers

Function Purpose

mlfOde23 Solve differential equations, low order method.

mlfOde45 Solve differential equations, high order method.

mlfOde113 Solve nonstiff differential equations, variable order
method.

mlfOde15s Solve stiff differential equations, variable order method.

mlfOde23s Solve stiff differential equations, low order method.
9-37

9 Library Routines

9-3
Character String Functions

ODE Option Handling

Function Purpose

mlfOdeget Extract properties from options structure created with
odeset.

mlfOdeset Create or alter options structure for input to ODE
solvers.

 General

Function Purpose

mlfBlanks String of blanks.

mlfDeblank Remove trailing blanks from a string.

mlfStr2mat Form text array from individual strings.

 String Operations

Function Purpose

mlfFindstr Find a substring within a string.

mlfStrcat String concatenation.

mlfStrjust Justify a character array.

mlfStrmatch Find possible matches for a string.

mlfStrrep Replace substrings within a string.

mlfStrtok Extract tokens from a string.

mlfStrvcat Vertical concatenation of strings.
8

MATLAB M-File Math Library
 String to Number Conversion

Function Purpose

mlfInt2str Convert integer to string.

mlfMat2str Convert matrix to string.

mlfNum2str Convert number to string.

mlfStr2double Convert string to double-precision value.

mlfStr2num Convert string to number.

 Base Number Conversion

Function Purpose

mlfBase2dec Base to decimal number conversion.

mlfBin2dec Binary to decimal number conversion.

mlfDec2base Decimal number to base conversion.

mlfDec2bin Decimal to binary number conversion.

mlfDec2hex Decimal to hexadecimal number conversion.

mlfHex2dec IEEE hexadecimal to decimal number conversion.

mlfHex2num Hexadecimal to double number conversion.
9-39

9 Library Routines

9-4
File I/O Functions

Time and Dates

 Formatted I/O

Function Purpose

mlfFgetl Read line from file, discard newline character.

mlfFgets Read line from file, keep newline character.

 File Positioning

Function Purpose

mlfFrewind Rewind file pointer to beginning of file.

Current Date and Time

Function Purpose

mlfDate Current date string.

mlfNow Current date and time.

Basic Functions

Function Purpose

mlfDatenum Serial date number.

mlfDatestr Date string format.

mlfDatevec Date components.
0

MATLAB M-File Math Library
Date Functions

Function Purpose

mlfCalendar Calendar.

mlfEomday End of month.

mlfWeekday Day of the week.

Timing Functions

Function Purpose

mlfEtime Elapsed time function.

mlfTic,
mlfToc

Stopwatch timer functions.
9-41

9 Library Routines

9-4
Multidimensional Array Functions

Cell Array Functions

Structure Functions

Function Purpose

mlfInd2sub Subscript from linear index.

mlfIpermute Inverse permute array dimensions.

mlfShiftdim Shift dimensions.

mlfSub2ind Linear index from multiple subscripts.

Function Purpose

mlfCelldisp Display cell array contents.

mlfCellfun Apply a cell function to a cell array.

mlfCellstr Create cell array of strings from character array.

mlfDeal Deal inputs to outputs.

mlfIscellstr True for a cell array of strings.

mlfNum2cell Convert numeric array into cell array.

Function Purpose

mlfIsfield True if field is in structure array.

mlfIsstruct True for structures.

mlfRmfield Remove structure field.
2

MATLAB M-File Math Library
Sparse Matrix Functions

Elementary Sparse Matrices

Function Purpose

mlfSpdiags Sparse matrix formed from diagonals.

mlfSpeye Sparse identity matrix.

mlfSprand Sparse uniformly distributed random matrix.

mlfSprandn Sparse normally distributed random matrix.

mlfSprandsym Sparse random symmetric matrix.

Full to Sparse Conversion

Function Purpose

mlfSpconvert Import from sparse matrix external format.

Working with NonZero Entries of Sparse Matrices

Function Purpose

mlfNnz Number of nonzero matrix elements.

mlfNonzeros Nonzero matrix elements.

mlfNzmax Amount of storage allocated for nonzero matrix elements.

mlfSpalloc Allocate space for sparse matrix.

mlfSpfun Apply function to nonzero matrix elements.

mlfSpones Replace nonzero sparse matrix elements with ones.
9-43

9 Library Routines

9-4
Reordering Algorithms

Function Purpose

mlfColmmd Column minimum degree permutation.

mlfColperm Column permutation.

mlfDmperm Dulmage-Mendelsohn permutation.

mlfRandperm Random permutation.

mlfSymmmd Symmetric minimum degree permutation.

mlfSymrcm Symmetric reverse Cuthill-McKee permutation.

Linear Algebra

Function Purpose

mlfCondest 1-norm condition number estimate.

mlfEigs A few eigenvalues.

mlfNormest Estimate the matrix 2-norm.

mlfSvds A few singular values.

Linear Equations (iterative methods)

Function Purpose

mlfBicg BiConjugate Gradients Method.

mlfBicgstab BiConjugate Gradients Stabilized Method.

mlfCgs Conjugate Gradients Squared Method.

mlfGmres Generalized Minimum Residual Method.

mlfPcg Preconditioned Conjugate Gradients Method.

mlfQmr Quasi-Minimal Residual Method.
4

MATLAB M-File Math Library
Miscellaneous

Function Purpose

mlfSpaugment Form least squares augmented system.

mlfSpparms Set parameters for sparse matrix routines.

mlfSymbfact Symbolic factorization analysis.
9-45

9 Library Routines

9-4
Array Access and Creation Library
The Array Access and Creation Library contains the array access routines for
the mxArray data type. For example, mxCreateDoubleMatrix() creates an
mxArray; mxDestroyArray() destroys one.

Refer to the online Application Program Interface Reference and the MATLAB
Application Program Interface Guide for a detailed definition of each function.

Note You can recognize an Array Access and Creation Library routine by its
prefix mx. The functions listed are a subset of the Array Access and Creation
Library.

 Array Access Routines

Function Purpose

mxCalloc, mxFree Allocate and free dynamic memory using MATLAB’s
memory manager.

mxClearLogical Clear the logical flag.

mxCreateCellArray Create an unpopulated N-dimensional cell mxArray.

mxCreateCellMatrix Create an unpopulated 2-D cell mxArray.

mxCreateCharArray Create an unpopulated N-dimensional string mxArray.

mxCreateCharMatrixFromStrings Create a populated 2-D string mxArray.

mxCreateDoubleMatrix Create an unpopulated 2-D, double-precision,
floating-point mxArray.

mxCreateNumericArray Create an unpopulated N-dimensional numeric mxArray.

mxCreateSparse Create a 2-D unpopulated sparse mxArray.

mxCreateString Create a 1-by-n string mxArray initialized to the specified
string.

mxCreateStructArray Create an unpopulated N-dimensional structure mxArray.
6

Array Access and Creation Library
mxCreateStructMatrix Create an unpopulated 2-D structure mxArray.

mxDestroyArray Free dynamic memory allocated by an mxCreate routine.

mxDuplicateArray Make a deep copy of an array.

mxGetCell Get a cell’s contents.

mxGetClassID Get (as an enumerated constant) an mxArray’s class.

mxGetClassName Get (as a string) an mxArray’s class.

mxGetData Get pointer to data.

mxGetDimensions Get a pointer to the dimensions array.

mxGetElementSize Get the number of bytes required to store each data
element.

mxGetEps Get value of eps.

mxGetField Get a field value, given a field name and an index in a
structure array.

mxGetFieldByNumber Get a field value, given a field number and an index in a
structure array.

mxGetFieldNameByNumber Get a field name, given a field number in a structure
array.

mxGetFieldNumber Get a field number, given a field name in a structure
array.

mxGetImagData Get pointer to imaginary data of an mxArray.

mxGetInf Get the value of infinity.

mxGetIr Get the ir array of a sparse matrix.

mxGetJc Get the jc array of a sparse matrix.

mxGetM, mxGetN Get the number of rows (M) and columns (N) of an array.

 Array Access Routines (Continued)

Function Purpose
9-47

9 Library Routines

9-4
mxGetName, mxSetName Get and set the name of an mxArray.

mxGetNaN Get the value of Not-a-Number.

mxGetNumberOfDimensions Get the number of dimensions.

mxGetNumberOfElements Get number of elements in an array.

mxGetNumberOfFields Get the number of fields in a structure mxArray.

mxGetNzmax Get the number of elements in the ir, pr, and (if it exists)
pi arrays.

mxGetPi, mxGetPr Get the real and imaginary parts of an mxArray.

mxGetScalar Get the real component from the first data element of an
mxArray.

mxGetString Copy the data from a string mxArray into a C-style string.

mxIsChar True for a character array.

mxIsClass True if mxArray is a member of the specified class.

mxIsComplex True if data is complex.

mxIsDouble True if mxArray represents its data as double-precision,
floating-point numbers.

mxIsEmpty True if mxArray is empty.

mxIsFinite True if value is finite.

mxIsInf True if value is infinite.

mxIsInt8 True if mxArray represents its data as signed 8-bit
integers.

mxIsInt16 True if mxArray represents its data as signed 16-bit
integers.

 Array Access Routines (Continued)

Function Purpose
8

Array Access and Creation Library
mxIsInt32 True if mxArray represents its data as signed 32-bit
integers.

mxIsLogical True if mxArray is Boolean.

mxIsNaN True if value is Not-a-Number.

mxIsNumeric True if mxArray is numeric or a string.

mxIsSingle True if mxArray represents its data as single-precision,
floating-point numbers.

mxIsSparse Inquire if an mxArray is sparse. Always false for the
MATLAB C Math Library.

mxIsStruct True if a structure mxArray.

mxMalloc Allocate dynamic memory using MATLAB’s memory
manager.

mxRealloc Reallocate memory.

mxSetCell Set the value of one cell.

mxSetData Set pointer to data.

mxSetDimensions Modify the number of dimensions and/or the size of each
dimension.

mxSetField Set a field value of a structure array, given a field name
and an index.

mxSetFieldByNumber Set a field value in a structure array, given a field number
and an index.

mxSetImagData Set imaginary data pointer for an mxArray.

mxSetIr Set the ir array of a sparse mxArray.

mxSetJc Set the jc array of a sparse mxArray.

mxSetLogical Set the logical flag.

 Array Access Routines (Continued)

Function Purpose
9-49

9 Library Routines

9-5
mxSetM, mxSetN Set the number of rows (M) and columns (N) of an array.

mxSetNzmax Set the storage space for nonzero elements.

mxSetPi, mxSetPr Set the real and imaginary parts of an mxArray.

 Array Access Routines (Continued)

Function Purpose

 Fortran Interface

Function Purpose

mxCopyCharacterToPtr Copy CHARACTER values from Fortran to C pointer array.

mxCopyPtrToCharacter Copy CHARACTER values from C pointer array to Fortran.

mxCopyComplex16toPtr Copy COMPLEX*16 values from Fortran to C pointer array.

mxCopyPtrToComplex16 Copy COMPLEX*16 values to Fortran from C pointer array.

mxCopyInteger4ToPtr Copy INTEGER*4 values from Fortran to C pointer array.

mxCopyPtrToInteger4 Copy INTEGER*4 values to Fortran from C pointer array.

mxCopyReal8toPtr Copy REAL*8 values from Fortran to C pointer array.

mxCopyPtrToReal8 Copy REAL*8 values to Fortran from C pointer array.
0

<matlab>/bin . A-3
<matlab>/extern/lib/$ARCH A-4
<matlab>/extern/include A-5
<matlab>/extern/examples/cmath A-5

Directory Organization on Microsoft Windows A-7
<matlab>\bin . A-7
<matlab>\extern\include A-8
<matlab>\extern\examples\cmath A-9
A

Directory Organization

Directory Organization on UNIX A-3

A Directory Organization

A-2
This chapter describes the directory organization of the MATLAB C Math
Library on UNIX and Microsoft Windows systems.

The MATLAB C Math Library is part of a family of tools offered by The
MathWorks. All MathWorks products are stored under a single directory
referred to as the MATLAB root directory.

Separate directories for the major product categories are located under the
root. The MATLAB C Math Library is installed in the extern directory where
products external to MATLAB are installed and in the bin directory. If you
have other MathWorks products, there are additional directories directly below
the root.

Directory Organization on UNIX
Directory Organization on UNIX
This figure illustrates the directory structure for the MATLAB C Math Library
files on UNIX. <matlab> symbolizes the top-level directory where MATLAB is
installed on your system. $ARCH specifies a particular UNIX platform.

<matlab>/bin
The <matlab>/bin directory contains the mbuild script and the scripts it uses
to build your code.

mbuild Shell script that controls the building and linking of
your code.

mbuildopts.sh Options file that controls the switches and options for
your C compiler. It is architecture specific. When you
execute mbuild -setup, this file is copied to your
MATLAB root installation directory.

extern

lib

<matlab>

$ARCH

include

examples

cmath

bin
A-3

A Directory Organization

A-4
<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains the binary library files;
$ARCH specifies a particular UNIX platform. For example, on a Sun
SPARCstation running Solaris, the $ARCH directory is sol2. The libraries that
come with the MATLAB C Math Library are shown in this table:

The filename extension .ext is .a on IBM RS/6000; .so on Solaris, Alpha,
Linux, and SGI; and .sl on HP 700. The libraries are shared libraries on all
platforms.

libmat.ext MAT-file access routines to support mlfLoad and
mlfSave.

libmatlb.ext MATLAB Built-In Math Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. Required for building stand-alone
applications.

libmi.ext Internal MAT-file access routines.

libmmfile.ext MATLAB M-File Math Library. Contains stand-alone
versions of the math M-files. Needed for building
stand-alone applications that require MATLAB M-file
math functions.

libmx.ext MATLAB Array Access and Creation Library. Contains
array creation and access routines.

libut.ext MATLAB Utilities Library. Contains the utility routines
used by various components.

Directory Organization on UNIX
<matlab>/extern/include
The <matlab>/extern/include directory contains the header files for
developing MATLAB C Math Library applications. The header files associated
with the MATLAB C Math Library are shown below.

<matlab>/extern/examples/cmath
The <matlab>/extern/examples/cmath directory contains the sample C
programs that are described throughout this book.

matlab.h Header file for the MATLAB C Math Library.

libmatlb.h Header file containing the prototypes for the MATLAB
Built-In Math Library functions.

libmmfile.h Header file containing the prototypes for the MATLAB
M-File Math Library functions.

matrix.h Header file containing the definition of the mxArray type
and function prototypes for array access routines.

intro.c The source code for ‘‘A Simple Example Program’’ on
page 2-2.

ex1.c The source code for ‘‘Example Program: Creating
Numeric Arrays (ex1.c)’’ on page 3-15.

ex2.c The source code for ‘‘Example Program: Managing Array
Memory (ex2.c)’’ on page 4-24.

ex3.c The source code for ‘‘Example Program: Calling Library
Routines (ex3.c)’’ on page 6-14.

ex4.c The source code for ‘‘Example Program: Passing
Functions As Arguments (ex4.c)’’ on page 6-22.

ex5.c The source code for ‘‘Example Program: Saving and
Loading Data (ex5.c)’’ on page 7-4.
A-5

A Directory Organization

A-6
ex6.c The source code for ‘‘Example Program: Defining Try/
Catch Blocks (ex6.c)’’ on page 8-6.

release.txt Release notes for the current release of the MATLAB C
Math Library.

Directory Organization on Microsoft Windows
Directory Organization on Microsoft Windows
This figure illustrates the folders that contain the MATLAB C Math Library
files. <matlab> symbolizes the top-level folder where MATLAB is installed on
your system.

<matlab>\bin
The <matlab>\bin directory contains the Dynamic Link Libraries (DLLs)
required by stand-alone C applications and the batch file mbuild, which
controls the build and link process for you. <matlab>\bin must be on your path
for your applications to run. All DLLs are in WIN32 format.

libmat.dll MAT-file access routines to support mlfLoad() and
mlfSave().

libmatlb.dll MATLAB Built-In Math Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. Required for building stand-alone
applications.

libmi.dll Internal MAT-file access routines.

extern

<matlab>

include

examples

cmath

bin
A-7

A Directory Organization

A-8
<matlab>\extern\include
The <matlab>\extern\include directory contains the header files for
developing MATLAB C Math Library applications and the .def files used by
the Microsoft Visual C and Borland compilers. The lib*.def files are used by
MSVC and the _lib*.def files are used by Borland.

libmmfile.dll MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files. Needed for
building stand-alone applications that require MATLAB
M-file math functions.

libmx.dll MATLAB Array Access and Creation Library. Contains
array creation and access routines.

libut.dll MATLAB Utilities Library. Contains the utility routines
used by various components.

mbuild.bat Batch file that helps you build and link stand-alone
executables.

compopts.bat Default options file for use with mbuild.bat. Created by
mbuild –setup.

Options files
for mbuild.bat

Switches and settings for C compiler to create
stand-alone applications, e.g., msvccomp.bat for use
with Microsoft Visual C.

libmatlb.h Header file containing the prototypes for the MATLAB
Built-In Math Library functions.

libmmfile.h Header file containing the prototypes for the MATLAB
M-File Math Library functions.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray
type and function prototypes for array access routines.

libmat.def
_libmat.def

Contains names of functions exported from the
MAT-file DLL.

Directory Organization on Microsoft Windows
<matlab>\extern\examples\cmath
The <matlab>\extern\examples\cmath directory contains sample C programs
developed with the MATLAB C Math Library. You’ll find explanations for
these examples throughout the book..

libmatlb.def
_libmatlb.def

Contains names of functions exported from the
MATLAB C Math Built-In Library DLL.

libmmfile.def
_libmmfile.def

Contains names of functions exported from the
MATLAB M-File Math Library DLL.

libmx.def
_libmx.def

Contains names of functions exported from libmx.dll.

intro.c The source code for ‘‘A Simple Example Program’’ on
page 2-2.

ex1.c The source code for ‘‘Example Program: Creating
Numeric Arrays (ex1.c)’’ on page 3-15.

ex2.c The source code for ‘‘Example Program: Managing Array
Memory (ex2.c)’’ on page 4-24.

ex3.c The source code for ‘‘Example Program: Calling Library
Routines (ex3.c)’’ on page 6-14.

ex4.c The source code for ‘‘Example Program: Passing
Functions As Arguments (ex4.c)’’ on page 6-22.

ex5.c The source code for ‘‘Example Program: Saving and
Loading Data (ex5.c)’’ on page 7-4.

ex6.c The source code for ‘‘Example Program: Defining Try/
Catch Blocks (ex6.c)’’ on page 8-6.

release.txt Release notes for the current release of the MATLAB C
Math Library.
A-9

A Directory Organization

A-1
0

Warnings . B-8
B

Errors and Warnings

Errors . B-3

B Errors and Warnings

B-2
This section lists the a subset of the error and warning messages issued by the
MATLAB C Math Library. Each type of message is treated in its own section.
Within each section the messages are listed in alphabetical order. Following
each message is a short interpretation of the message and, where applicable,
suggested ways to work around the error.

Errors
Errors
This section lists a subset of the error messages issued by the library. By
default, programs written using the library always exit after an error has
occurred. For information about handling errors so that you can continue
processing after an error occurred, see “Handling Errors” in Chapter 8.

Argument must be a vector

An input argument that must be either 1−by−N or M−by−1, i.e., either a row
or column vector, was an M−by−N matrix where neither M nor N is equal to
1. To correct this, check the documentation for the function that produced the
error and fix the incorrect argument.

Division by zero is not allowed

The MATLAB C Math Library detected an attempt to divide by zero. This
error only occurs on non−IEEE machines (notably DEC VAX machines),
which cannot represent infinity. Division by zero on IEEE machines results
in a warning rather than an error.

Empty matrix is not a valid argument

Some functions, such as mlfSize, accept empty matrices as input arguments.
Others, such as mlfEig, do not. You will see this error message if you call a
function that does not accept NULL matrices with a NULL matrix.

Floating point overflow

A computation generated a floating-point number larger than the maximum
number representable on the current machine. Check your inputs to see if
any are near zero (if dividing) or infinity (if adding or multiplying).

Initial condition vector is not the right length

This error is issued only by the mlfFilter function. The length of the initial
condition vector must be equal to the maximum of the products of the
dimensions of the input filter arguments. Let the input filter arguments be
given by matrices B and A, with dimensions bM−by−bN and aM−by−aN
respectively. Then the length of the initial condition vector must be equal to
the maximum of bM * bN and aM * aN.
B-3

B Errors and Warnings

B-4
Inner matrix dimensions must agree

Given two matrices, A and B, with dimensions aN−by−aM and bN−by−bM, the
inner dimensions referred to by this error message are aM and bN. These
dimensions must be equal. This error occurs, for example, in matrix
multiplication; an N−by−2 matrix can only be multiplied by a scalar or a
2−by−M matrix. Any attempt to multiply it by a matrix with other than two
rows will cause this error.

Log of zero

Taking the log of zero produces negative infinity. On non−IEEE floating
point machines, this is an error, because such machines cannot represent
infinity.

Matrix dimensions must agree

This error occurs when a function expects two or more matrices to be
identical in size and they are not. For example, the inputs to mlfPlus, which
computes the sums of the elements of two matrices, must be of equal size. To
correct this error, make sure the required input matrices are the same size.

Matrix is singular to working precision

A matrix is singular if two or more of its columns are not linearly
independent. Singular matrices cannot be inverted. This error message
indicates that two or more columns of the matrix are linearly dependent to
within the floating-point precision of the machine.

Matrix must be positive definite

A matrix is positive definite if and only if x’Ax > 0 for all nonzero vectors x.
This error message indicates that the input matrix was not positive definite.

Matrix must be square

A function expected a square matrix. For example, mlfQz, which computes
generalized eigenvalues, expects both of its arguments to be square matrices.
An M−by−N matrix is square if and only if M and N are equal.

Errors
Maximum variable size allowed by the program is exceeded

This error occurs when an integer variable is larger than the maximum
representable integer on the machine. This error occurs because all matrices
contain double precision values, yet some routines require integer values;
and the maximum representable double precision value is much larger than
the maximum representable integer. Correct this error by checking the
documentation for the function that produced it. Make sure that all input
arguments that are treated as integers are less than or equal to the
maximum legal value for an integer.

NaN and Inf not allowed

IEEE NaN (Not-A-Number) or Inf (Infinity) was passed to a function that
cannot handle those values, or resulted unexpectedly from computations
internal to a function.

Not enough input arguments

A function expected more input arguments than it was passed. For example,
most functions will issue this error if they receive zero arguments. The
MATLAB C Math Library should never issue this error. Please notify The
MathWorks if you see this error message.

Not enough output arguments

A function expected more output arguments than were passed to it.
Functions in the MATLAB C Math Library will issue this error if any
required output arguments are NULL. If you see this error under any other
conditions, please notify The MathWorks.

Singularity in ATAN

A singularity indicates an input for which the output is undefined. ATAN
(arc tangent) has singularities on the complex plane, particularly at z = .

Singularity in TAN

A singularity indicates an input for which the output is undefined. TAN
(tangent function) has singularities at odd multiples of .

1±

π 2⁄
B-5

B Errors and Warnings

B-6
Solution will not converge

This error occurs when the input to a function is poorly conditioned or
otherwise beyond the capabilities of our iterative algorithms to solve.

String argument is an unknown option

A function received a string matrix (i.e., a matrix with the string property set
to true) when it was not expecting one. For example, most of the matrix
creation functions, for example, mlfEye and mlfZeros, issue this error if any
of their arguments are string matrices.

The only matrix norms available are 1, 2, inf and fro

The function mlfNorm has an optional second argument. This argument must
be either the scalars 1 or 2 or the strings inf or fro. inf indicates the infinity
norm and fro the F−norm. This error occurs when the second argument to
mlfNorm is any value other than one of these four values.

Too many input arguments

This error occurs when a function has more input arguments passed to it
than it expects. The MATLAB C Math Library should never issue this error,
as this condition should be detected by the C compiler. Please notify The
MathWorks if you see this error.

Too many output arguments

This error occurs when a function has more output arguments passed to it
than it expects. The MATLAB C Math Library should never issue this error,
as this condition should be detected by the C compiler. Please notify The
MathWorks if you see this error.

Variable must contain a string

An argument to a function should have been a string matrix (i.e., a matrix
with the string property set to true), but was not.

Zero can’t be raised to a negative power

On machines with non−IEEE floating point format, the library does not
permit you to raise zero to any negative power, as this would result in a

Errors
division by zero, since x^(-y) == 1/(x^y) and 0^n == 0. Non−IEEE
machines cannot represent infinity, so division by zero is an error on those
machines (mostly DEC VAXes).
B-7

B Errors and Warnings

B-8
Warnings
All warnings begin with the string Warning:. By default, programs written
using the library output a message after a warning-level event has occurred
and then continue processing.

For most warning messages there is a corresponding error message. Generally,
warning messages are issued in place of errors on IEEE−floating point
compliant machines when an arithmetic expression results in plus or minus
infinity or a nonrepresentable number. Where this is the case, the error
message explanation has not been reproduced. See the section “Errors” for an
explanation of these messages.

Warning: Divide by zero
Warning: Log of zero
Warning: Matrix is close to singular or badly scaled. Results may
be inaccurate
Warning: Matrix is singular to working precision
Warning: Singularity in ATAN
Warning: Singularity in TAN

Index
Symbols
- 9-5
& 9-6
* 9-5
+ 9-5
.* 9-5
./ 9-5
.\ 9-5
.^ 9-5
.’ 9-7
/ 9-5
: 9-7
< 9-6
<= 9-6
= See mlfAssign()
== 9-6
> 9-6
>= 9-6
\ 9-5
^ 9-5
| 9-6
~ 9-6
~= 9-6
’ 9-7

A
Access members 1-10
allocation of memory for arrays 4-2
ANSI C compiler 1-2
arguments

optional 6-4, 6-5
example 6-14

order of 6-13
to a thunk function 6-25

arithmetic operator functions 9-5, 9-24
arithmetic routines
creating arrays 3-9
array input arguments

and mlfEnterNewContext() 4-17
and mlfRestorePreviousContext() 4-18

array output arguments
and mlfEnterNewContext() 4-17
and mlfRestorePreviousContext() 4-18

array return values
and mlfReturnValue() 4-20

arrays
access routines 9-46
accessing data in 3-12
allocating 3-41
assigning values to 4-9
assignment by value 4-11
basic information functions 9-10, 9-25
bound 4-27
bound vs. temporary 4-14, 4-21, 4-27, 4-30
column-major storage 3-14
common programming tasks 3-41
concatenating 3-9
converting numeric to character 3-27
converting sparse to full format 3-23
converting to sparse matrix 3-19
creating cell arrays 3-30
creating multidimensional arrays 3-10
creating structures 3-37
deleting 4-11
deleting elements from 5-42
determining dimensions 3-46
determining number of nonzero elements 3-23
determining size 3-44
determining type 3-43
displaying 3-41
freeing 3-41
I-1

Index

I-2
full
creation 3-17

indices 5-4
initialization 7-6
initializing with C array 3-14
initializing with data 3-12
input arguments 4-17, 4-19
input via mlfLoad() 7-3, 7-6
manipulation functions 9-11, 9-26
memory allocation 4-2
multidimensional 3-6
multidimensional character arrays 3-27
numeric arrays 3-4
of characters 3-25
output arguments 4-17, 4-19
output via mlfSave() 7-2, 7-6
pointer to data 3-12
preparing function arguments for a new con-

text 4-16
restoring function arguments to previous con-

text 4-18
as return values 4-20, 4-28
returned by arithmetic routines 3-9
rules for using 4-8
scalar 3-5
sparse matrices 3-18
string 6-20, 6-24, 6-28
temporary 4-6, 4-28, 4-30
two-dimensional 3-5

assigning values to arrays
array already has a value 4-10
under automated memory management 4-8,

4-9
under explicit memory management 4-5

assignment
and indexing 5-36
creating cell arrays 3-34
creating structures 3-40
assignment by value 4-11
assignment operator. See mlfAssign()
automated memory management 4-2, 4-3, 4-18,

4-20, 4-22

B
base number conversion 9-39
basic array information functions 9-10, 9-25
binary file I/O 9-18
blank character

used as padding 3-27
bound arrays 4-6, 4-14, 4-21, 4-27, 4-30

behavior of 4-7
build script

location
Microsoft Windows A-8
UNIX A-3

building applications
on Microsoft Windows 1-22
on UNIX 1-13
other methods 1-36
troubleshooting mbuild 1-34

C
C

ANSI compiler 1-2
array and initialization of MATLAB array 3-14
function calling conventions 6-2
indexing 5-57
subscripts 5-57

calling conventions 6-2, 8-9
mapping rules 6-13
overview 6-2
summary 6-13

Index
calling library functions 6-3
calling operators 6-19
cell array functions 9-19, 9-42
cell array indexing

nested cell arrays 5-47
referencing a cell 5-46
referencing the contents of a cell 5-47

cell arrays
concatenating 3-32
converting numeric arrays 3-31
converting to structures 3-39
creating 3-30
creating by assignment 3-34
displaying contents of 3-34
using mlfCell() 3-31

character arrays
accessing elements 3-29
creating 3-25
from numeric arrays 3-27
multidimensional 3-27
using mxCreateString() 3-26

character string functions
base number conversion 9-39
general 9-16, 9-38
string operations 9-16, 9-38
string tests 9-16
string to number conversion 9-17, 9-39

closing files 9-17
coding to automated memory management inter-

face 4-14, 4-22
coding to explicit memory management interface

4-31
column vector

indexing as 5-6
column-major order 3-17

MATLAB array storage 3-14
vs. row-major order 3-14

compatibility between explicit and automated
memory management 4-33

compiler
changing default on PC 1-24
changing default on UNIX 1-14
choosing on UNIX 1-14

complex functions 9-12, 9-28
complex scalar arrays 9-23
compopts.bat 1-23
concatenation

creating arrays 3-9
creating cell arrays 3-32
creating multidimensional arrays 3-10

constants, special 9-10
contexts, for array memory management 4-16,

4-18
conventions

array access routine names 9-46
calling 6-2
math functions 1-3

conversion
base number 9-39
string to number 9-17, 9-39

coordinate system transforms 9-30
correlation 9-33
creating

arrays 5-16
complex scalars 9-23
logical indices 5-31

ctranspose()
use instead of ’ 9-7

D
data

in arrays 3-12
reading with mlfLoad() 7-6
I-3

Index

I-4
writing with mlfSave() 7-6
data analysis and Fourier transform functions

basic operations 9-15, 9-33
correlation 9-33
filtering and convolution 9-15, 9-34
finite differences 9-33
Fourier transforms 9-15, 9-34
sound and audio 9-34

data analysis, basic operations 9-15, 9-33
data interpolation 9-35
data type functions

data types 9-18
object functions 9-19

date and time functions
basic 9-40
current date and time 9-19, 9-40
date 9-41
timing 9-41

dates
basic functions 9-40, 9-41
current 9-19, 9-40

.def files, Microsoft Windows A-8
default handlers

print 8-14
DefaultPrintHandler()

C code 8-14
deleting arrays 4-11
deletion

and indexing 5-42
dialog box, modal 8-16
directory organization

Microsoft Windows A-7
UNIX A-3

displaying arrays 3-41
distributing applications

on Microsoft Windows 1-32
on UNIX 1-21
DLLs
Microsoft Windows A-7

E
efficiency 5-39
eigenvalues 9-14, 9-31
elementary matrix and matrix manipulation

functions
basic array information 9-10, 9-25
elementary matrices 9-10, 9-25
matrix manipulation 9-11, 9-26
special constants 9-10
specialized matrices 9-11, 9-26

elementary sparse matrices 9-43
embedding calls to functions 4-8, 4-11, 4-27
environment variable

library path 1-17
error handling 8-9

mlfSetErrorHandler() 8-8
warnings 8-8

error handling functions 9-21
error messages

printing to GUI 8-15
errors

list of B-3
example

building the examples 1-11
integrating a function 6-20
managing array memory 4-24
mlfLoad() and mlfSave() 7-4
optional arguments 6-14
passing functions as arguments 6-20
print handling

Microsoft Windows 8-17
X Window system 8-15

saving and loading data 7-4

Index
source code location
UNIX A-5, A-9

template for managing array memory 4-15
templates for managing array memory 4-14,

4-16
using explicit memory management 4-31
writing a function 4-24

examples
creating arrays 3-15
ex1.c 3-15

explicit memory management 4-4, 4-31
exponential functions 9-12, 9-28
expression

function call 6-2

F
factorization utilities 9-14, 9-32
file I/O functions

binary 9-18
file positioning 9-17, 9-40
formatted I/O 9-17, 9-40
import and export 9-18
opening and closing 9-17
string conversion 9-18

file opening and closing 9-17
files

binary file I/O 9-18
formatted I/O 9-17, 9-40
import and export functions 9-18
positioning 9-17, 9-40
string conversion 9-18

filtering and convolution 9-15, 9-34
finite differences 9-33
formatted I/O 9-17, 9-40
Fourier transforms 9-15, 9-34
free() 4-35

freeing array memory 4-11
full to sparse conversion 9-20, 9-43
function

calling conventions 6-2, 8-9
integrating 6-20
naming conventions 1-3
passing as argument 6-20
return values, multiple 6-14

function-functions 6-20
how they are called 6-20
mlfFmin() 6-20
mlfFmins() 6-20
mlfFunm() 6-20
mlfFzeros() 6-20
mlfOde functions 6-20
passing function name 6-30

function-functions and ODE solvers
numerical integration 9-37
ODE option handling 9-38
ODE solvers 9-37
optimization and root finding 9-37

functions
compatibility between memory management

styles 4-33
documented in online reference 1-5
embedding calls to 4-8, 4-11, 4-27
nesting calls to 4-8, 4-11, 4-27
order of arguments 6-2
preparing function arguments for a new context

4-16
restoring function arguments to a previous con-

text 4-18
returning an array fromi 4-20
steps for coding 4-22
template for managing array memory 4-14,

4-15, 4-16
using a single return statement 4-21
I-5

Index

I-6
writing your own under automated memory
management 4-14

writing your own under explicit memory man-
agement 4-31

G
geometric analysis 9-35
graphical user interface, output to 8-15
GUI, output to 8-15

H
Handle Graphics 1-3
header files

libmatlb.h location
Microsoft Windows A-8
UNIX A-5

libmmfile.h location
Microsoft Windows A-8
UNIX A-5

matlab.h location
Microsoft Windows A-8
UNIX A-5

matrix.h location
Microsoft Windows A-8
UNIX A-5

I
indexing

and assignment 5-36, 5-49
and deletion 5-42, 5-49, 5-55
array storage 5-5
assumptions for examples 5-16
base 5-4
C vs. MATLAB 5-57
dimensions and subscripts 5-3
logical 5-31
N-dimensional 5-23, 5-29, 5-35, 5-45
one-dimensional 5-18
similar to for-loop 5-5, 5-27
structure array 5-51
table of examples 5-57
terminology 5-3
types of 5-3, 5-45
with mlfCreateColonIndex() 5-5, 5-18, 5-23,

5-27
with mlfEnd() 5-20, 5-26

indexing functions 5-2, 5-10, 9-21
mlfIndexAssign() 5-36
mlfIndexDelete() 5-42
mlfIndexRef() 5-18, 5-23, 5-31
nesting indexing operations 5-13
specifying source array 5-15
specifying target array 5-11
specifying values for indices 5-14
use of index string 5-11

indices
how MATLAB calculates 5-9
logical 5-31

initializing
array output arguments 4-22, 4-29
local array variables 4-22, 4-29
Microsoft Windows 8-18
X Window system 8-17

initializing arrays 3-12
input

arguments
optional 6-4, 6-5

mlfLoad() 7-3, 7-6
input arguments

and mlfEnterNewContext() 4-17
and mlfRestorePreviousContext() 4-19

Index
installing the library
PC details 1-10
UNIX details 1-10
with MATLAB 1-9
without MATLAB 1-10

L
libmat.dll A-7
libmat.ext A-4
libmatlb.dll A-7
libmatlb.ext A-4
libmatlb.h A-5, A-8
libmi.dll A-7
libmi.ext A-4
libmmfile.dll A-8
libmmfile.ext A-4
libmmfile.h A-5, A-8
libmx.dll A-8
libmx.ext A-4
libraries

libmat location
Microsoft Windows A-7
UNIX A-4

libmatlb location
Microsoft Windows A-7
UNIX A-4

libmi location
Microsoft Windows A-7
UNIX A-4

libmmfile location
Microsoft Windows A-8
UNIX A-4

libmx location
Microsoft Windows A-8
UNIX A-4

libut location
Microsoft Windows A-8
UNIX A-4

Microsoft Windows A-7
UNIX A-4

library path 1-17
libut.dll A-8
libut.ext A-4
linear algebra 9-20, 9-44
linear equations 9-13, 9-31, 9-44
link

library order 1-36
local array variables

paradigm for using 4-8
logical flag 5-31
logical functions 9-8, 9-24
logical indexing 5-31
logical operator functions 9-6, 9-24

M
main routine

template for managing array memory 4-16
makefile 1-16
malloc() 4-35
managing array memory 4-2
managing variables 9-5
MAT-files 7-3

.mat extension 7-6
and named variables 7-6
created by mlfLoad() 7-6
created by mlfSave() 7-6
import and export functions 9-18
read by mlfLoad() 7-3
written to with mlfSave() 7-2

math functions, elementary
complex 9-12, 9-28
I-7

Index

I-8
exponential 9-12, 9-28
rounding and remainder 9-13, 9-28
trigonometric 9-12, 9-27

math functions, specialized 9-29
coordinate system transforms 9-30
number theoretic 9-29

MATLAB
as a programming language functions 9-9,

9-25
function calling conventions 6-2
Handle Graphics 1-3
indexing 5-57
sparse matrix 1-3
subscripts 5-57

MATLAB Access 1-10
MATLAB Built-In Library 9-4

calling conventions 6-2, 8-9
functions 9-5
link order 1-36
utility routines 9-21

mlfColon() 9-21
mlfComplexScalar() 9-23
mlfCreateColonIndex() 9-22
mlfEnd() 9-22
mlfFevalTableSetup() 9-21
mlfIndexAssign() 9-21
mlfIndexDelete() 9-21
mlfIndexRef() 9-21
mlfPrintf() 9-22
mlfPrintMatrix() 9-23
mlfScalar() 9-23
mlfSetErrorHandler() 9-21
mlfSetLibraryAllocFcns() 9-22
mlfSetPrintHandler() 9-23

MATLAB C Math Library
conventions 1-3
installing
PC details 1-10
UNIX details 1-10
with MATLAB 1-9
without MATLAB 1-10

number of routines 1-2
MATLAB M-File Math Library 9-24

calling conventions 6-2, 8-9
functions 9-24
link order 1-36

matlab.h 3-17, A-5, A-8
matrices

creating 3-5
matrices, elementary functions 9-10, 9-25
matrices, specialized functions 9-11, 9-26
matrix

analysis functions 9-13, 9-31
creation 3-17
functions 9-14, 9-32
initialization with C array 3-14
output of 8-14
printing 8-14
singular value decomposition 6-14
sparse 1-3

matrix manipulation functions 9-11, 9-26
matrix.h A-5, A-8
mbuild 1-11

Microsoft Windows A-8
–setup option 1-24
–setup option on PC 1-24
–setup option on UNIX 1-14
syntax and options

on Microsoft Windows 1-29
on UNIX 1-18

troubleshooting 1-34
UNIX A-3
verbose option on PC 1-26

Index
verbose option on UNIX 1-16
memory

management 1-3
memory allocation

writing own routines 4-35
memory allocation functions 9-22
memory leakage

avoiding 4-12
memory management 4-2

automated 4-3
automated, benefits of 4-3
choosing automated or explicit 4-3
coding to automated memory management in-

terface 4-14, 4-22
coding to explicit memory management inter-

face 4-31
example 4-24, 4-31
explicit 4-4
mlfSetLibraryAllocFcns() 4-35
prior to Version 2.0 4-3
setting up your own 4-35

message display 9-9
MessageDialog, Motif widget 8-15
Microsoft Windows

building stand-alone applications 1-22
directory organization A-7
DLLs A-7
location

.def files A-8
build script A-8
header files A-8
libraries A-7, A-8

MessageBox 8-17
PopupMessageBox() C code 8-18
print handling 8-17

mlf prefix 1-3
mlfAssign() 4-8, 4-9, 4-14, 4-22, 4-25, 4-27

mlfCat
example 3-11

mlfCelldisp()
using 3-34

mlfCellhcat()
using 3-33

mlfColon() 9-21
mlfComplexScalar() 9-23
mlfCreateColonIndex() 5-5, 5-18, 5-23, 5-27
mlfEnd() 5-20, 5-26
mlfEnterNewContext() 4-14, 4-16, 4-25, 4-26

arguments to 4-17, 4-30
called from main() 4-16, 4-29

mlfFeval() 6-20, 6-30
mlfFeval() function table

built-in table, extending 6-21
mlfFevalTableSetup() 6-24, 6-29
mlfFuncTabEnt type 6-24
setting up 6-24, 6-29

mlfFeval() function table 6-21
mlfFevalTableSetup() 6-24, 6-29, 9-21
mlfFprintf 3-42
mlfFuncp function pointer type 6-24, 6-25, 6-26
mlfHorzcat() 5-16

creating arrays 5-16
number of arguments 5-25

mlfIndexAssign()
for assignments 5-36
how to call 5-10

mlfIndexDelete()
for deletion 5-42
how to call 5-10

mlfIndexRef()
for logical indexing 5-31
for N-dimensional indexing 5-23
for one-dimensional indexing 5-18
how to call 5-10
I-9

Index

I-10
mlfIndexVarargout function
constructing 6-11

mlfLoad() 7-3, 7-6, 9-18
mlfLogical() 5-31
mlfNnz() 3-23
mlfOde23() 6-22, 6-29
mlfPrintf 3-42
mlfPrintf() 9-22
mlfPrintMatrix() 9-23
mlfRestorePreviousContext() 4-14, 4-18,

4-25, 4-28
arguments to 4-19, 4-28, 4-30
called from main() 4-16, 4-29

mlfReturnValue() 4-14, 4-20, 4-28
argument to 4-21
making an array temporary 4-21

mlfSave() 7-2, 7-6, 9-18
mlfScalar() 7-6, 9-23
mlfSetErrorHandler() 8-8, 9-21
mlfSetLibraryAllocFcns() 4-35
mlfSetPrintHandler() 8-15, 9-23

calling first 8-15
mlfSvd() 6-14
mlfTobool() 7-7
mlfVarargoutList

constructing 6-10
mlfVertcat() 5-16

creating arrays 5-16
number of arguments 5-25

Motif
MessageDialog widget 8-15
print handler 8-15

multidimensional array functions 9-19, 9-42
multidimensional arrays

concatenating 3-10
creating 3-6
of characters 3-27
mxArray
array access routines 9-46
as input and output arguments 1-3
creating 3-3
deleting elements from 5-42
indexing

with mlfCreateColonIndex() 5-5, 5-18,
5-23, 5-27

initialization of pointers to 4-8
paradigm for using as local variables 4-8
pointer to data in 3-12
reading from disk 7-3, 7-6
saving to disk 7-2, 7-6
string 6-20, 6-24

mxCreateDoubleMatrix() 3-17
mxCreateString 6-28
mxCreateString() 3-26
mxDestroyArray() 4-2, 4-10, 4-12, 4-13, 4-22

in example 4-25, 4-28, 4-29, 4-30
no reinitialization of pointer 4-12
passing NULL to 4-12
under automated memory management 4-7,

4-8
under explicit memory management 4-4, 4-5

mxMalloc() 4-35

N
naming conventions

array access routines 9-46
math functions 1-3

N-dimensional indexing 5-23, 5-29, 5-35, 5-45
selecting a matrix of elements 5-27
selecting a single element 5-24
selecting a vector of elements 5-24

nesting calls to functions 4-8, 4-11, 4-27
nonzero elements

Index
determining number of 3-23
NULL

initializing output arguments to 4-22, 4-29
passing to mxDestroyArray() 4-12

number theoretic functions 9-29
numeric arrays

converting to cell arrays 3-31
converting to character arrays 3-27
creating 3-4

numerical integration 9-37
numerical linear algebra

eigenvalues and singular values 9-14, 9-31
factorization utilities 9-14, 9-32
linear equations 9-13, 9-31
matrix analysis 9-13, 9-31
matrix functions 9-14, 9-32

O
object functions 9-19
ODE option handling 9-38
ODE solvers 9-37
offsets

for indexing 5-9
one-dimensional indexing 5-18

range for index 5-19
selecting a matrix 5-21
selecting a single element 5-19
selecting a vector 5-19
table of examples 5-57
with a logical index 5-31

online help
accessing 1-5

opening files 9-17
operators

calling conventions 6-19
operators and special functions

arithmetic operator functions 9-5, 9-24
logical functions 9-8, 9-24
logical operator functions 9-6, 9-24
MATLAB as a programming language 9-9,

9-25
message display 9-9
relational operator functions 9-6
set operator functions 9-7, 9-24
special operator functions 9-7

optimization and root finding 9-37
optional input arguments 6-4, 6-5
optional output arguments 6-4, 6-5
options file

combining customized on PC 1-27
locating on PC 1-22
locating on UNIX 1-13
location on UNIX 1-14
making changes persist on

PC 1-27
making changes persist on PC 1-27
making changes persist on UNIX 1-16
modifying on PC 1-26
modifying on UNIX 1-15
purpose 1-12
temporarily changing on PC 1-28
temporarily changing on UNIX 1-16

options files
PC 1-27

options, mbuild
on Microsoft Windows 1-30
on UNIX 1-19

order
link 1-36
of arguments 6-13
of call to mlfSetPrintHandler() 8-15

ordinary differential equations
option handling 9-38
I-11

Index

I-12
solvers 9-37
output

and graphical user interface 8-14
arguments

multiple 6-4
optional 6-4, 6-5

formatted arrays 3-42
mlfSave() 7-2, 7-6
of arrays 3-41
of error messages 8-14
of matrix 8-14
to GUI 8-15

output arguments
and mlfEnterNewContext() 4-17
and mlfRestorePreviousContext() 4-19
initializing before function call 4-8

P
performance 5-39
polynomial and interpolation functions

data interpolation 9-35
geometric analysis 9-35
polynomials 9-36
spline interpolation 9-35

polynomials 9-36
PopupMessageBox()

Microsoft Windows C code 8-18
X Window system C code 8-16

print handler
default

C code 8-14
Microsoft Windows example 8-17
mlfSetPrintHandler() 8-15
providing your own 8-14
X Window system example 8-15

print handling functions 9-22
printing arrays 3-41
pure varargin functions 6-8
pure varargout functions 6-10

Q
quadrature 9-37

R
registering functions with mlfFeval() 6-22
relational operator functions 9-6
release notes A-6, A-9
remainder functions 9-13, 9-28
reordering algorithms 9-44
response file 1-30
restrictions

on calling functions 4-31, 4-33
return values

and mlfReturnValue() 4-20, 4-28
return values, multiple 6-14
returning an array from a function 4-20
rounding functions 9-13, 9-28
row-major C array storage 3-14
Runge-Kutta 6-22

S
saving and loading data

example 7-4
scalar array creation functions 5-16, 9-23
scalar arrays

creating 3-5
scanf() 8-14
set operator functions 9-7, 9-24
settings

compiler 1-12

Index
linker 1-12
shared libraries 1-11, 1-21, 1-32
singular values 9-14, 9-31
sound and audio 9-34
sparse matrix 1-3

converting numeric array 3-19
converting to full matrix format 3-23
creating 3-18
creating from data 3-21

sparse matrix functions
elementary sparse matrices 9-43
full to sparse conversion 9-20, 9-43
linear algebra 9-20, 9-44
linear equations 9-44
miscellaneous 9-45
reordering algorithms 9-44
working with nonzero entries 9-20, 9-43

special constants 9-10
special operator functions 9-7
specialized math functions 9-29
specialized matrix functions 9-11, 9-26
spline interpolation 9-35
stand-alone applications

building on Microsoft Windows 1-22
building on UNIX 1-13
distributing on Microsoft Windows 1-32
distributing on UNIX 1-21
overview 2-2

storage layout
column-major vs. row-major 3-14

string operations 9-16, 9-38
string tests 9-16
string to number conversion 9-17, 9-39
strings

creating 3-25
extracting from array 3-29

structure functions 9-20, 9-42

structure indexing
accessing a field 5-52
accessing the contents of a field 5-53
assigning values to a field 5-53
assigning values to field elements 5-54
referencing a single structure 5-54
referencing nested structures 5-54
within cells 5-55

structures
converting cell arrays 3-39
converting to cell arrays 3-31
creating 3-37
creating by assignment 3-40
indexing 5-51
using mlfStruct() 3-38

subscripting
how MATLAB calculates indices 5-9

subscripts 5-4
logical 5-31

syntax
index string 5-12
indexing 5-57
library functions, documented online 1-5
subscripts 5-57

T
temporary arrays 4-6, 4-14, 4-21, 4-27, 4-28

behavior of 4-7
thunk functions

defining 6-25
how to write 6-22
relationship to mlfFeval() 6-21
when to write 6-22

time, current 9-19, 9-40
timing functions 9-41
transpose()
I-13

Index

I-14
use instead of .’ 9-7
trigonometric functions

list of 9-12, 9-27
two libraries, justification for 9-3
two-dimensional indexing

table of examples 5-57
with logical indices 5-31

U
UNIX

building stand-alone applications 1-13
directory organization A-3
libraries A-4
location

build script A-3
example source code A-5, A-9
header files A-5
libraries A-4

utility functions
error handling 9-21
indexing 9-21
memory allocation 9-22
mlfFeval() support 9-21
print handling 9-22
scalar array creation 9-23

V
varargin functions 6-7

pure 6-8
varargout functions 6-9

pure 6-10

W
warnings
list of B-8
working with nonzero entries of sparse matrices

9-20, 9-43
writing functions 4-14

X
X Window system

initializing 8-17
PopupMessageBox() C code 8-16
print handler 8-15
XtPopup() 8-16
XtSetArg() 8-16
XtSetValues() 8-16

XmCreateMessageDialog() 8-16

	Contents
	Getting Ready
	Introduction
	Who Should Read This Book
	New MATLAB C Math Library Features
	Unsupported MATLAB Features

	Library Routine Naming Convention
	MATLAB C Math Library Documentation
	How This Book Is Organized
	Accessing Online Reference Documentation
	Additional Sources of Information

	MATLAB C Math Library 1.2 Users
	MATLAB C Math Library Version 1.2 Documentation
	Migrating Your Code to Version 2.0

	Installing the MATLAB C Math Library
	Installation with MATLAB
	Installation Without MATLAB
	Verifying a UNIX Workstation Installation
	Verifying a PC Installation

	Building C Applications
	Packaging Stand-Alone Applications
	Overview
	Compiler Options Files

	Building a Stand-Alone Application on UNIX
	Configuring for C or C++
	Locating Options Files
	Using the System Compiler
	Changing the Default Compiler
	Modifying the Options File
	Temporarily Changing the Compiler

	Verifying mbuild
	Locating Shared Libraries
	Running Your Application

	mbuild Options
	Distributing Stand-Alone UNIX Applications

	Building a Stand-Alone Application on Microsoft Wi...
	Configuring for C or C++
	Locating Options Files
	The User Profile Directory Under Windows

	Systems with Exactly One C/C++ Compiler
	Systems with More than One Compiler
	Changing the Default Compiler
	Modifying the Options File
	Combining Customized C and C++ Options Files
	Temporarily Changing the Compiler

	Verifying mbuild
	Shared Libraries (DLLs)
	Running Your Application

	mbuild Options
	Distributing Stand-Alone Microsoft Windows Applica...

	Building Shared Libraries
	Troubleshooting mbuild
	Options File Not Writable
	Directory or File Not Writable
	mbuild Generates Errors
	Compiler and/or Linker Not Found
	mbuild Not a Recognized Command
	Cannot Locate Your Compiler (PC)
	Internal Error When Using mbuild -setup (PC)
	Verification of mbuild Fails

	Building on Your Own

	Writing Programs
	Overview
	A Simple Example Program

	Working with MATLAB Arrays
	Overview
	Supported MATLAB Array Types
	MATLAB Array C Data Type

	Working with MATLAB Numeric Arrays
	Creating Numeric Arrays
	Using Numeric Array Creation Routines
	Creating Scalar Arrays
	Creating Two-Dimensional Arrays (Matrices)
	Creating Multidimensional Numeric Arrays
	Creating Commonly Used Numeric Arrays
	Creating Vectors of Number Sequences.

	Creating Numeric Arrays by Calling Arithmetic Rout...
	Creating Numeric Arrays by Concatenation
	Creating Multidimensional Numeric Arrays by Concat...

	Creating Numeric Arrays by Assignment

	Initializing a Numeric Array with Data
	Column-Major Storage versus Row-Major Storage

	Example Program: Creating Numeric Arrays (ex1.c)

	Working with MATLAB Sparse Matrices
	Creating a Sparse Matrix
	Converting an Existing Matrix into Sparse Format
	Creating a Sparse Matrix from Data

	Converting a Sparse Matrix to Full Matrix Format
	Evaluating Arrays for Sparse Storage

	Working with MATLAB Character Arrays
	Creating MATLAB Character Arrays
	Using Explicit Character Array Creation Routines
	Converting Numeric Arrays to Character Arrays
	Creating Multidimensional Arrays of Strings

	Accessing Individual Strings in an Array of String...

	Working with MATLAB Cell Arrays
	Creating Cell Arrays
	Using the Cell Array Creation Routine
	Using Cell Array Conversion Routines
	Using Concatenation to Create Cell Arrays
	Using Assignment to Create Cell Arrays

	Displaying the Contents of a Cell Array

	Working with MATLAB Structures
	Creating Structures
	Using a Structure Creation Routine
	Creating Multidimensional Arrays of Structures
	Using a Structure Conversion Routine
	Using Assignment to Create Structures

	Performing Common Array Programming Tasks
	Allocating and Freeing MATLAB Arrays
	Displaying MATLAB Arrays
	Formatting Output

	Determining Array Type
	Determining the Size of an Array
	Obtaining the Length of a Single Dimension
	Returning the Dimensions in Separate Arrays

	Determining the Shape of an Array

	Managing Array Memory
	Overview
	Why Choose Automated Memory Management?
	Using Explicit Memory Management

	Using Arrays Under Automated Memory Management
	Definitions
	Definition of a Temporary Array
	Key Behavior for a Temporary Array
	Definition of a Bound Array
	Key Behavior for a Bound array

	Rules for Array Usage
	Paradigm for Working with Local Array Variables

	Assigning Arrays to mxArray* Variables
	Assigning a Value to an Array Destroys Its Previou...
	Exception

	Assignment by Value

	Nesting Calls to Functions that Return Arrays
	Deleting Your Arrays
	Avoiding Memory Leaks in Your Functions

	Writing Functions Under Automated Memory Managemen...
	Using a Function Template As an Example
	Function Template
	Main Routine Template

	Preparing Function Arguments for a New Context
	Arguments to mlfEnterNewContext()
	What Happens to the Array Arguments?
	Purpose of mlfEnterNewContext()

	Restoring Function Arguments to their Previous Con...
	Arguments to mlfRestorePreviousContext()
	What Happens to the Array Arguments?
	Purpose of mlfRestorePreviousContext()

	Returning an Array from Your Function
	Argument and Return for mlfReturnValue()
	What Happens to the Array Argument?
	Purpose of mlfReturnValue()

	Summary of Coding Steps

	Example Program: Managing Array Memory (ex2.c)
	Example Without Automated Memory Management

	Restrictions on Function Calling
	Function Uses Automated Memory Management
	Function Does Not Use Automated Memory Management
	Recommendation

	Setting Up Your Own Allocation and Deallocation Ro...

	Indexing into Arrays
	Overview
	Indexing Functions
	Terminology
	Dimensions and Subscripts
	In MATLAB
	In the MATLAB C Math Library

	Array Storage

	How to Call the Indexing Functions
	Overview
	Specifying the Target Array
	Specifying the Index String
	What an Indexing String Specifies
	What an Indexing String Doesn’t Specify
	Complex Indexing Expressions
	Nesting Indexing Operations

	Specifying the Values for Indices
	Specifying a Source Array for Assignments

	Assumptions for the Code Examples
	Using mlfIndexRef() for One-Dimensional Indexing
	Overview
	Selecting a Single Element
	Selecting a Vector
	Specifying a Vector Index with mlfEnd()

	Selecting a Matrix
	Selecting the Entire Matrix As a Column Vector

	Using mlfIndexRef() for N-Dimensional Indexing
	Overview
	Selecting a Single Element
	Selecting a Vector of Elements
	Specifying a Vector Index with mlfEnd()
	Selecting a Row or Column

	Selecting a Matrix
	Selecting Entire Rows or Columns
	Selecting an Entire Matrix

	Extending Two-Dimensional Indexing to N Dimensions...

	Using mlfIndexRef() for Logical Indexing
	Overview
	Using a Logical Matrix as a One-Dimensional Index
	Using Two Logical Vectors as Indices
	Using One Colon Index and One Logical Vector as In...
	Using a Scalar and a Logical Vector
	Extending Logical Indexing to N-Dimensions

	Using mlfIndexAssign() for Assignments
	Overview
	Assigning to a Single Element
	Assigning to Multiple Elements
	Assigning to a Subarray
	Assigning to All Elements
	Extending Two-Dimensional Assignment to N-Dimensio...

	Using mlfIndexDelete() for Deletion
	Indexing into Cell Arrays
	Overview
	Tips for Working with Cell Arrays

	Referencing a Cell in a Cell Array
	Referencing a Subset of a Cell Array
	Referencing the Contents of a Cell
	Referencing a Subset of the Contents of a Cell
	Indexing Nested Cell Arrays
	Indexing the First Level
	Indexing the Second Level
	Indexing the Third Level

	Assigning Values to a Cell Array
	Deleting Elements from a Cell Array
	Deleting a Single Element
	Deleting an Entire Dimension

	Indexing into MATLAB Structure Arrays
	Overview
	Tips for Working with Structure Arrays

	Accessing a Field
	Accessing the Contents of a Structure Field
	Assigning Values to a Structure Field
	Assigning Values to Elements in a Field
	Referencing a Single Structure in a Structure Arra...
	Referencing into Nested Structures
	Accessing the Contents of Structures Within Cells
	Deleting Elements from a Structure Array
	Deleting a Structure from the Array
	Deleting a Field from All the Structures in an Arr...
	Deleting an Element from an Array Contained by a F...

	Comparison of C and MATLAB Indexing Syntax

	Calling Library Routines
	Overview
	How to Call MATLAB Functions��
	Returning One Output Argument and Passing Only Req...
	Passing Optional Input Arguments
	Passing Optional Output Arguments
	Passing Optional Input and Output Arguments
	Passing Any Number of Inputs
	How Pure Varargin Functions Differ

	Passing Any Number of Outputs
	Constructing an mlfVarargoutList
	Forming a List of Non-Indexed varargout Arguments
	Forming a List of Indexed varargout Arguments

	How Pure Varargout Functions Differ

	Summary of Library Calling Conventions
	Exceptions to the Calling Conventions

	Example Program: Calling Library Routines (ex3.c)

	How to Call Operators���
	Passing Functions As Arguments to Library Routines...
	How Function-Functions Use mlfFeval()
	How mlfFeval() Works
	Extending the mlfFeval() Table
	Writing a Thunk Function

	Example Program: Passing Functions As Arguments (e...
	Output

	Replacing Argument Lists with a Cell Array
	Positioning the Indexed Cell Array
	Exception for Built-In Library Functions

	Importing and Exporting Array Data
	Overview
	Using mlfSave() to Write Data to a File
	Using mlfLoad() to Read Data from a File
	Example Program: Saving and Loading Data (ex5.c)

	Handling Errors and Writing a Print Handler
	Overview
	Handling Errors
	Customizing Error Handling
	Continuing Processing After Errors
	Defining a Try Block
	Defining a Catch Block

	Example Program: Defining Try/Catch Blocks (ex6.c)...
	Replacing the Default Library Error Handler
	Writing an Error Handler
	Registering Your Error Handler
	Example Program

	Defining a Print Handler
	Providing Your Own Print Handler
	Output to a GUI
	X Windows/Motif Example
	Microsoft Windows Example

	Library Routines
	Why Two MATLAB Math Libraries?
	The MATLAB Built-In Library
	General Purpose Commands
	Operators and Special Functions
	Elementary Matrices and Matrix Manipulation
	Elementary Math Functions
	Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Character String Functions
	File I/O Functions
	Data Types
	Time and Dates
	Multidimensional Array Functions
	Cell Array Functions
	Structure Functions
	Sparse Matrix Functions
	Utility Routines

	MATLAB M-File Math Library
	Operators and Special Functions
	Elementary Matrices and Matrix Manipulation
	Elementary Math Functions
	Specialized Math Functions
	Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Polynomial and Interpolation Functions
	Function-Functions and ODE Solvers
	Character String Functions
	File I/O Functions
	Time and Dates
	Multidimensional Array Functions
	Cell Array Functions
	Structure Functions
	Sparse Matrix Functions

	Array Access and Creation Library

	Directory Organization
	Directory Organization on UNIX
	<matlab>/bin
	<matlab>/extern/lib/$ARCH
	<matlab>/extern/include
	<matlab>/extern/examples/cmath

	Directory Organization on Microsoft Windows
	<matlab>\bin
	<matlab>\extern\include
	<matlab>\extern\examples\cmath

	Errors and Warnings
	Errors
	Warnings

	Index

