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Outline
1. Introduction

“Classic” statistics issues have arisen in ν physics

2. 1980 Reines et al. “neutrino instability” claim
F. James re propagation of large uncertainties

3. νµ mass (π decay)
Issue of limits on bounded physical parameter

4. νe mass, (tritium β decay)
Issue becomes critical with measured mν

2 < 0

5. Karmen: 2.8 expected background, 0 events
The Likelihood Principle

6. ντ mass (τ→5π ντ) and “lucky” events
Statistical Principle of “Conditioning”

7. Summary: The Issues haven’t gone away
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Physical Review Letters
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1 = pure classical
2=truncated classical
3=shifted classical
4=Bayesian
5=Shifted bayesian, 
6=McFarlane loss of confidence

Upper limit on mean of
Gaussian based on one 
sample, x.

Physical values of 
mean are non-negative.

Numbers are in units of
sigma (Gaussian rms).



PDG RPP: 1986, same in 1988 (nothing in 1984)
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^

B.3 Limits in Case of Bounded Physical Regions

If we assume µ is bounded from below by µmin … we may estimate an upper 
limit for µ at the C.L. (e.g., 90%…) by the following procedure: 
1) Renormalize the normal probability distribution …such that the integral of 

[Gaussian] from µmin to infinity to 1.0.
2) Find the value µ1 such that the integral… from µmin to µ1 is equal to the 

desired value of CL.
3) Set µ1 to be the desired upper limit with confidence CL.
…this is conservative…
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mν
2 < 96 eV 2



1995 PDG Review of Particles Properties
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Neutrino-less physics



“Test for θ=θ0” ↔
“Is θ0 in confidence interval for θ”

Using the likelihood ratio hypothesis 
test, this correspondence is the basis 
of intervals/regions F-C advocated. 
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Kendall and Stuart

Phys. Rev. D57 3873 (1998)
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Standard 1-sided 90% UL belt

F-C 90% belt

Bayesian, CLs 90% belt
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http://arxiv.org/abs/hep-ex/0001036

Gary and I felt there was a misunderstanding, 
led to important clarification in PDG.

January 13, 2000

http://arxiv.org/abs/hep-ex/0001036�
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[Recall McFarlane “Loss of Confidence”]



Contributed to 18th International Conference on Neutrino Physics and 
Astrophysics (NEUTRINO 98), Takayama, Japan, 4-9 Jun 1998. 
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Quick reminder of intervals on Poisson mean

Poisson process P(n|µ) = µne-µ/n!  
Measurement of n yields n=3.
Substituting n=3 into P(n|µ) yields the                               
Likelihood function L(µ). 
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0 9 12 153 6

L(µ) = µ3e-µ/3! It is tempting to consider area 
under L, but L(µ) is not a 
probability density in µ:

Area under L is meaningless. 

µ

µML = 3 

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)
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How to get upper (or lower) limit on µ ?
Consider 90% upper and 90% lower limits on µ.
Together they form an 80% central interval for µ.   

1) Frequentist confidence limit method:
Find µu s.t. Poisson P(n≤3 | µu)  = 0.1.  µu = 6.68
Find µ l s.t. Poisson P(n≥3 | µl )  = 0.1.  µ l = 1.10
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2) Likelihood ratio method.
Based on L(µ) /L(µML),  equivalently:
–2lnL(µ) – (–2lnL(µML)) ≤ Z2,  for Z real. 
Asymptotically (note regularity conditions) this interval 
approaches a frequentist central confidence interval with 
C.L. corresponding to ± Z Gaussian standard deviations.

For 80% central interval, Z=1.28.
90% upper and lower limits are:
µu = 5.80
µ l = 1.29
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3) Bayesian method.
Different definition of probability: degree of belief.
With that definition, one can have pdf’s in µ (!)
p(µ|n=3) ∝ L(µ) p(µ), 

p(µ|n=3)  = posterior pdf for µ, given n=3
L(µ)  = Likelihood function from above for n=3
p(µ) = prior pdf for µ, before incorporating n=3.

Vast literature on Bayesian methods and priors. 
This literature has largely been ignored in HEP, 
where most papers use uniform prior for µ.
Bayesian statisticians call this “pseudo-Bayesian”.
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Deep Foundational Issue: Confidence Principle 
(Frequentist Coverage) vs Likelihood Principle 

The Likelihood ratio interval and the Bayesian 
interval use L(µ) given the observed n=3, but 
make no use of P(n|µ) for any n≠3.  This is the 
essence of the Likelihood Principle.

The confidence interval relying on P(n≤3 | µ)  and 
P(n≥3 | µ) used probabilities of data not observed.
This violates the L.P.

This turns out to be very important: 
In general, cannot have both coverage and L.P.
Whole approach of tail probabilities violates L.P. !



The Karmen Problem is a Classic L.P. Issue!
• The “Karmen Problem”

– You expect background events sampled from a Poisson 
mean b=2.8, assumed known precisely.  

– For signal mean µ, the total number of events n is then 
sampled from Poisson mean µ+b.

– So P(n) = (µ+b)n exp(-µ-b)/n! 
– Observe n=0.
– L(µ) = (µ+b)0 exp(-µ-b)/0!  = exp(-µ) exp(-b)

• Changing b from 0 to 2.8 changes L(µ) only by the constant 
factor exp(-b).  This gets renormalized away in any Bayesian 
calculation, and is irrelevant for likelihood ratios.  

• So for observed n=0, likelihood-based inference about signal 
mean µ is independent of expected b.

• For essentially all frequentist confidence interval 
constructions, the fact that n=0 is less likely for b=2.8 than 
for b=0 results in narrower confidence intervals for µ as b 
increases.  Clear violation of the L.P.
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Likelihood Principle Discussion
We will not resolve this issue, but should 

be aware of it.
• See book by Berger & Wolpert, but be 

prepared for the “Stopping Rule 
Principle” to set your head spinning.

• When frequentist intervals and limits 
badly violate the L.P., use great caution 
in interpreting them!

• And when Bayesian inferences badly 
violate the Confidence Principle 
(frequentist coverage), again use great 
caution!
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“Lucky” Data: Events with high power
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1987 limit with 12 events was 
so “lucky” that 1992 limit with 
20 events was the same.

(Event through in both cases, 
highest 5π mass was removed 
in order to account for 
possible uncertainties in 
background.)

mντ
2 < 35 MeV 2

(<31 MeV 2 with new τ mass)
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Conditioning
• “Ancillary statistic”: a function of your data which carries 

information about the precision of your measurement, but no 
info about parameter’s value.

• E.g.: branching ratio measurement in which the total number 
of events N can fluctuate if the experimental design is to run 
for a fixed length of time.                                                                  
Then N is an ancillary statistic.

• You perform an experiment and obtain N total events, and 
then do a toy M.C. of repetitions of the experiment. Do you 
let N fluctuate, or do you fix it to the value observed? 

• It may seem that the toy M.C. should include your complete
procedure, including fluctuations in N.

• But there are strong arguments, going back to Fisher, that 
inference should be based on probabilities conditional on 
the value of the ancillary statistic actually obtained!
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• 1958 thought experiment of David R. Cox focused the issue:
– Your procedure for weighing an object consists of 

flipping a coin to decide whether to use a weighing 
machine with a 10% error or one with a 1% error; and then 
measuring the weight. (Coin flip result is ancillary stat.)

– Then “surely” the error you quote for your measurement 
should reflect which weighing machine you actually used, 
and not the average error of the “whole space” of all 
measurements!

– But classical most powerful Neyman-Pearson hypothesis 
test uses the whole space!

• In more complicated situations, ancillary statistics do not 
exist, and it is not at all clear how to restrict the “whole 
space” to the relevant part for frequentist coverage.
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Conditioning (cont.)



Conclusion

Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010 28

Some of the statistics controversies in 
neutrino physics are “classic” cases of 
foundational issues in the professional 
statistics literature…

Procedures pioneered by neutrino 
physicists have had large impact on the 
greater HEP community…

…and problematic data sets still arise:
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arXiv:1010.4439

From Abstract: 



Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010 30



31

Standard central 90% belt Standard 1-sided 90% UL belt

F-C 90% belt
Discussion on next page.
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Summary of Three Ways to Make Intervals
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Bayesian 
Credible

Frequentist 
Confidence 

Likelihood
Ratio

Requires prior pdf? Yes No No

Obeys likelihood
principle?

Yes (exception 
re Jeffreys prior)

No Yes

Random variable in 
“P(µt ∈ [µ1, µ2])”:

µ t µ 1, µ 2 µ 1, µ 2

Coverage 
guaranteed?

No Yes (but over-
coverage…)

No

Provides
P(parameter|data)?

Yes No No



P, Conditional P, and Derivation of Bayes’ Theorem       
in Pictures

A B
Whole space

P(B) × P(A|B) = × =

P(A) = P(B)  = 

P(A ∩ B) = 

P(B|A) = P(A|B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

⇒ P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, Journée Jacques Bouchez, 19 Nov 2010 33



2010 RPP
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Tau Neutrino Mass
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