
Computation

Visualization

Programming

MATLAB Function Reference
(Volume 1: Language)
Version 5

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Function Reference
 COPYRIGHT 1984 - 1999 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing (for MATLAB 5)
June 1997 Revised for 5.1 (online version)
October 1997 Revised for 5.2 (online version)
January 1999 Revised for Release 11 (online version)

☎PHONE

FAX

✉MAIL

INTERNET

@
E-MAIL

Contents
1
Command Summary

General Purpose Commands . 1-2

Operators and Special Characters . 1-3

Logical Functions . 1-4

Language Constructs and Debugging . 1-4

Elementary Matrices and Matrix Manipulation 1-6

Specialized Matrices . 1-8

Elementary Math Functions . 1-8

Specialized Math Functions . 1-9

Coordinate System Conversion . 1-9

Matrix Functions - Numerical Linear Algebra 1-10

Data Analysis and Fourier Transform Functions 1-11

Polynomial and Interpolation Functions 1-13

Function Functions – Nonlinear Numerical Methods 1-13

Sparse Matrix Functions . 1-14

Sound Processing Functions . 1-15

Character String Functions . 1-16

Low-Level File I/O Functions . 1-17
i

ii Contents
Bitwise Functions . 1-18

Structure Functions . 1-18

Object Functions . 1-18

Cell Array Functions . 1-18

Multidimensional Array Functions . 1-19

Plotting and Data Visualization . 1-19

Graphical User Interface Creation . 1-25

2
Reference

A
List of Commands

Function Names . A–2

1

Command Summary

This chapter lists MATLAB commands by functional area.

help

h

General Purpose Commands

Managing Commands and Functions
addpath Add directories to MATLAB’s search path
doc Display HTML documentation in Web browser
docopt Display location of help file directory for UNIX platforms
help Online help for MATLAB functions and M-files
helpdesk Display Help Desk page in Web browser, giving access to extensive
helpwin Display Help Window, providing access to help for all commands
lasterr Last error message
lastwarn Last warning message
lookfor Keyword search through all help entries
partialpath Partial pathname
path Control MATLAB’s directory search path
pathtool Start Path Browser, a GUI for viewing and modifying MATLAB’s pat
profile Start the M-file profiler, a utility for debugging and optimizing code
profreport Generate a profile report
rmpath Remove directories from MATLAB’s search path
type List file
ver Display version information for MATLAB, Simulink, and toolboxes
version MATLAB version number
web Point Web browser at file or Web site
what Directory listing of M-files, MAT-files, and MEX-files
whatsnew Display README files for MATLAB and toolboxes
which Locate functions and files

Managing Variables and the Workspace
clear Remove items from memory
disp Display text or array
length Length of vector
load Retrieve variables from disk
mlock Prevent M-file clearing
munlock Allow M-file clearing
openvar Open workspace variable in Array Editor, for graphical editing
pack Consolidate workspace memory
save Save workspace variables on disk
saveas Save figure or model using specified format
size Array dimensions
who, whos List directory of variables in memory
workspace Display the Workspace Browser, a GUI for managing the workspace
1-2

Controlling the Command Window
clc Clear command window
echo Echo M-files during execution
format Control the output display format
home Send the cursor home
more Control paged output for the command window

Working with Files and the Operating Environment
cd Change working directory
copyfile Copy file
delete Delete files and graphics objects
diary Save session in a disk file
dir Directory listing
edit Edit an M-file
fileparts Filename parts
fullfile Build full filename from parts
inmem Functions in memory
ls List directory on UNIX
matlabroot Root directory of MATLAB installation
mkdir Make directory
open Open files based on extension
pwd Display current directory
tempdir Return the name of the system’s temporary directory
tempname Unique name for temporary file
! Execute operating system command

Starting and Quitting MATLAB
matlabrc MATLAB startup M-file
quit Terminate MATLAB
startup MATLAB startup M-file

Operators and Special Characters
+ Plus
- Minus
* Matrix multiplication
.* Array multiplication
^ Matrix power
.^ Array power
kron Kronecker tensor product
1-3

\ Backslash or left division
/ Slash or right division
./ and .\ Array division, right and left
: Colon
() Parentheses
[] Brackets
{} Curly braces
. Decimal point
... Continuation
, Comma
; Semicolon
% Comment
! Exclamation point
' Transpose and quote
.' Nonconjugated transpose
= Assignment
== Equality
< > Relational operators
& Logical AND
| Logical OR
~ Logical NOT
xor Logical EXCLUSIVE OR

Logical Functions
all Test to determine if all elements are nonzero
any Test for any nonzeros
exist Check if a variable or file exists
find Find indices and values of nonzero elements
is* Detect state
isa Detect an object of a given class
logical Convert numeric values to logical
mislocked True if M-file cannot be cleared

Language Constructs and Debugging

MATLAB as a Programming Language
builtin Execute builtin function from overloaded method
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
1-4

evalin Evaluate expression in workspace
feval Function evaluation
function Function M-files
global Define global variables
nargchk Check number of input arguments
persistent Define persistent variable
script Script M-files

Control Flow
break Terminate execution offor loop orwhile loop
case Case switch
catch Begin catch block
else Conditionally execute statements
elseif Conditionally execute statements
end Terminatefor, while, switch, try, andif statements or indicate last

index
error Display error messages
for Repeat statements a specific number of times
if Conditionally execute statements
otherwise Default part ofswitch statement
return Return to the invoking function
switch Switch among several cases based on expression
try Begintry block
warning Display warning message
while Repeat statements an indefinite number of times

Interactive Input
input Request user input
keyboard Invoke the keyboard in an M-file
menu Generate a menu of choices for user input
pause Halt execution temporarily

Object-Oriented Programming
class Create object or return class of object
double Convert to double precision
inferiorto Inferior class relationship
inline Construct an inline object
int8, int16, int32

Convert to signed integer
isa Detect an object of a given class
1-5

loadobj Extends theload function for user objects
saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship
uint8, uint16, uint32

Convert to unsigned integer

Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbmex Enable MEX-file debugging
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from a breakpoint
dbstop Set breakpoints in an M-file function
dbtype List M-file with line numbers
dbup Change local workspace context

Elementary Matrices and Matrix Manipulation

Elementary Matrices and Arrays
blkdiag Construct a block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
ones Create an array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create an array of all zeros
: (colon) Regularly spaced vector

Special Variables and Constants
ans The most recent answer
computer Identify the computer on which MATLAB is running
eps Floating-point relative accuracy
flops Count floating-point operations
i Imaginary unit
1-6

Inf Infinity
inputname Input argument name
j Imaginary unit
NaN Not-a-Number
nargin, nargout

Number of function arguments
pi Ratio of a circle’s circumference to its diameter,π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
varargin,
varargout Pass or return variable numbers of arguments

Time and Dates
calendar Calendar
clock Current time as a date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Date string format
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Matrix Manipulation
cat Concatenate arrays
diag Diagonal matrices and diagonals of a matrix
fliplr Flip matrices left-right
flipud Flip matrices up-down
repmat Replicate and tile an array
reshape Reshape array
rot90 Rotate matrix 90 degrees
tril Lower triangular part of a matrix
triu Upper triangular part of a matrix
: (colon) Index into array, rearrange array
1-7

nd
Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of the Hilbert matrix
magic Magic square
pascal Pascal matrix
toeplitz Toeplitz matrix
wilkinson Wilkinson’s eigenvalue test matrix

Elementary Math Functions
abs Absolute value and complex magnitude
acos, acosh Inverse cosine and inverse hyperbolic cosine
acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine
atan, atanh Inverse tangent and inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
ceil Round toward infinity
complex Construct complex data from real and imaginary components
conj Complex conjugate
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic cotangent
csc, csch Cosecant and hyperbolic cosecant
exp Exponential
fix Round towards zero
floor Round towards minus infinity
gcd Greatest common divisor
imag Imaginary part of a complex number
lcm Least common multiple
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into exponent a

mantissa
log10 Common (base 10) logarithm
mod Modulus (signed remainder after division)
nchoosek Binomial coefficient or all combinations
1-8

real Real part of complex number
rem Remainder after division
round Round to nearest integer
sec, sech Secant and hyperbolic secant
sign Signum function
sin, sinh Sine and hyperbolic sine
sqrt Square root
tan, tanh Tangent and hyperbolic tangent

Specialized Math Functions
airy Airy functions
besselh Bessel functions of the third kind (Hankel functions)
besseli, besselk

Modified Bessel functions
besselj, bessely

Bessel functions
beta, betainc, betaln

Beta functions
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of the first and second kind
erf, erfc, erfcx, erfinv

Error functions
expint Exponential integral
factorial Factorial function
gamma, gammainc, gammaln

Gamma functions
legendre Associated Legendre functions
pow2 Base 2 power and scale floating-point numbers
rat, rats Rational fraction approximation

Coordinate System Conversion
cart2pol Transform Cartesian coordinates to polar or cylindrical
cart2sph Transform Cartesian coordinates to spherical
pol2cart Transform polar or cylindrical coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian
1-9

Matrix Functions - Numerical Linear Algebra

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Matrix determinant
norm Vector and matrix norms
null Null space of a matrix
orth Range space of a matrix
rank Rank of a matrix7
rcond Matrix reciprocal condition number estimate
rref, rrefmovie

Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
chol Cholesky factorization
inv Matrix inverse
lscov Least squares solution in the presence of known covariance
lu LU matrix factorization
lsqnonneg Nonnegative least squares
pinv Moore-Penrose pseudoinverse of a matrix
qr Orthogonal-triangular decomposition

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
eig Eigenvalues and eigenvectors
gsvd Generalized singular value decomposition
hess Hessenberg form of a matrix
poly Polynomial with specified roots
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition

Matrix Functions
expm Matrix exponential
1-10

funm Evaluate functions of a matrix
logm Matrix logarithm7
sqrtm Matrix square root

Low Level Functions
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization

Data Analysis and Fourier Transform Functions

Basic Operations
convhull Convex hull
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
delaunay Delaunay triangulation
dsearch Search for nearest point
factor Prime factors
inpolygon Detect points inside a polygonal region
max Maximum elements of an array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of an array
perms All possible permutations
polyarea Area of polygon
primes Generate list of prime numbers
prod Product of array elements
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
tsearch Search for enclosing Delaunay triangle
var Variance
voronoi Voronoi diagram

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
1-11

-

gradient Numerical gradient

Correlation
corrcoef Correlation coefficients
cov Covariance matrix

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
deconv Deconvolution and polynomial division
filter Filter data with an infinite impulse response (IIR) or finite impulse re

sponse (FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
fft One-dimensional fast Fourier transform
fft2 Two-dimensional fast Fourier transform
fftshift Shift DC component of fast Fourier transform to center of spectrum
ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn Inverse multidimensional fast Fourier transform
ifftshift Inverse FFT shift
nextpow2 Next power of two
unwrap Correct phase angles

Vector Functions
cross Vector cross product
intersect Set intersection of two vectors
ismember Detect members of a set
setdiff Return the set difference of two vector
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector
1-12

nts
Polynomial and Interpolation Functions

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficie
roots Polynomial roots

Data Interpolation
griddata Data gridding
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using the FFT method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
spline Cubic spline interpolation

Function Functions – Nonlinear Numerical Methods
dblquad Numerical double integration
fminbnd Minimize a function of one variable
fminsearch Minimize a function of several variables
fzero Zero of a function of one variable
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Solve differential equations
odefile Define a differential equation problem for ODE solvers
odeget Extract properties from options structure created withodeset
odeset Create or alter options structure for input to ODE solvers
quad, quad8 Numerical evaluation of integrals
vectorize Vectorize expression
1-13

Sparse Matrix Functions

Elementary Sparse Matrices
spdiags Extract and create sparse band and diagonal matrices
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse symmetric random matrix

Full to Sparse Conversion
find Find indices and values of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import matrix from sparse matrix external format

Working with Nonzero Entries of Sparse Matrices
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse matrix elements
spones Replace nonzero sparse matrix elements with ones

Visualizing Sparse Matrices
spy Visualize sparsity pattern

Reordering Algorithms
colmmd Sparse column minimum degree permutation
colperm Sparse column permutation based on nonzero count
dmperm Dulmage-Mendelsohn decomposition
randperm Random permutation
symmmd Sparse symmetric minimum degree ordering
symrcm Sparse reverse Cuthill-McKee ordering

Norm, Condition Number, and Rank
condest 1-norm matrix condition number estimate
normest 2-norm estimate
1-14

Sparse Systems of Linear Equations
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
cholinc Sparse Incomplete Cholesky and Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky factorization
gmres Generalized Minimum Residual method (with restarts)
luinc Incomplete LU matrix factorizations
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
qr Orthogonal-triangular decomposition
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
qrupdate Rank 1 update to QR factorization

Sparse Eigenvalues and Singular Values
eigs Find eigenvalues and eigenvectors
svds Find singular values

Miscellaneous
spparms Set parameters for sparse matrix routines

Sound Processing Functions

General Sound Functions
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

.WAV Sound Functions
wavread Read Microsoft WAVE (.wav) sound file
wavwrite Write Microsoft WAVE (.wav) sound file
1-15

Character String Functions

General
abs Absolute value and complex magnitude
eval Interpret strings containing MATLAB expressions
real Real part of complex number
strings MATLAB string handling

String Manipulation
deblank Strip trailing blanks from the end of a string
findstr Find one string within another
lower Convert string to lower case
strcat String concatenation
strcmp Compare strings
strcmpi Compare strings ignoring case
strjust Justify a character array
strmatch Find possible matches for a string
strncmp Compare the firstn characters of two strings
strrep String search and replace
strtok First token in string
strvcat Vertical concatenation of strings
symvar Determine symbolic variables in an expression
texlabel Produce the TeX format from a character string
upper Convert string to upper case

String to Number Conversion
char Create character array (string)
int2str Integer to string conversion
mat2str Convert a matrix into a string
num2str Number to string conversion
sprintf Write formatted data to a string
sscanf Read string under format control
str2double Convert string to double-precision value
str2num String to number conversion

Radix Conversion
bin2dec Binary to decimal number conversion
dec2bin Decimal to binary number conversion
dec2hex Decimal to hexadecimal number conversion
1-16

hex2dec IEEE hexadecimal to decimal number conversion
hex2num Hexadecimal to double number conversion

Low-Level File I/O Functions

File Opening and Closing
fclose Close one or more open files
fopen Open a file or obtain information about open files

Unformatted I/O
fread Read binary data from file
fwrite Write binary data to a file

Formatted I/O
fgetl Return the next line of a file as a string without line terminator(s)
fgets Return the next line of a file as a string with line terminator(s)
fprintf Write formatted data to file
fscanf Read formatted data from file

File Positioning
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
frewind Rewind an open file
fseek Set file position indicator
ftell Get file position indicator

String Conversion
sprintf Write formatted data to a string
sscanf Read string under format control

Specialized File I/O
dlmread Read an ASCII delimited file into a matrix
dlmwrite Write a matrix to an ASCII delimited file
hdf HDF interface
imfinfo Return information about a graphics file
imread Read image from graphics file
1-17

imwrite Write an image to a graphics file
textread Read formatted data from text file
wk1read Read a Lotus123 WK1 spreadsheet file into a matrix
wk1write Write a matrix to a Lotus123 WK1 spreadsheet file

Bitwise Functions
bitand Bit-wise AND
bitcmp Complement bits
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit
bitshift Bit-wise shift
bitget Get bit
bitxor Bit-wise XOR

Structure Functions
fieldnames Field names of a structure
getfield Get field of structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array conversion

Object Functions
class Create object or return class of object
isa Detect an object of a given class

Cell Array Functions
cell Create cell array
cellfun Apply a function to each element in a cell array
cellstr Create cell array of strings from character array
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display the structure of cell arrays
num2cell Convert a numeric array into a cell array
1-18

Multidimensional Array Functions
cat Concatenate arrays
flipdim Flip array along a specified dimension
ind2sub Subscripts from linear index
ipermute Inverse permute the dimensions of a multidimensional array
ndgrid Generate arrays for multidimensional functions and interpolation
ndims Number of array dimensions
permute Rearrange the dimensions of a multidimensional array
reshape Reshape array
shiftdim Shift dimensions
squeeze Remove singleton dimensions
sub2ind Single index from subscripts

Plotting and Data Visualization

Basic Plots and Graphs
bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
hold Hold current graph
loglog Plot using log-log scales
pie Pie plot
plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Three-Dimensional Plotting
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
comet3 3-D comet plot
cylinder Generate cylinder
fill3 Draw filled 3-D polygons in 3-space
plot3 Plot lines and points in 3-D space
quiver3 3-D quiver (or velocity) plot
slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
1-19

waterfall Waterfall plot

Plot Annotation and Grids
clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2-D and 3-D plots
gtext Place text on a 2-D graph using a mouse
legend Graph legend for lines and patches
plotyy Plot graphs with Y tick labels on the left and right
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Surface, Mesh, and Contour Plots
contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
isocaps Compute isosurface end-cap geometry
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce the number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce the size of patch faces
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
1-20

stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
surf2patch Convert srface data to patch data
subvolume Extract subset of volume data set

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Specialized Plotting
area Area plot
box Axis box for 2-D and 3-D plots
comet Comet plot
compass Compass plot
errorbar Plot graph with error bars
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
feather Feather plot
fill Draw filled 2-D polygons
fplot Plot a function
pareto Pareto char
pie3 3-D pie plot
plotmatrix Scatter plot matrix
pcolor Pseudocolor (checkerboard) plot
rose Plot rose or angle histogram
quiver Quiver (or velocity) plot
ribbon Ribbon plot
stairs Stairstep graph
scatter Scatter plot
scatter3 3-D scatter plot
stem Plot discrete sequence data
convhull Convex hull
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
1-21

inpolygon True for points inside a polygonal region
polyarea Area of polygon
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram

View Control
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
xlim Set or get the currentx-axis limits
ylim Set or get the currenty-axis limits
zlim Set or get the currentz-axis limits

Lighting
camlight Cerate or position Light
diffuse Diffuse reflectance
lighting Lighting mode
lightinganglePosition light in sphereical coordinates
material Material reflectance mode
specular Specular reflectance

Color Operations
brighten Brighten or darken color map
bwcontr Contrasting black and/or color
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colorcube Enhanced color-cube color map
colordef Set up color defaults
1-22

colormap Set the color look-up table
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

Printing
orient Hardcopy paper orientation
print Print graph or save graph to file
printopt Configure local printer defaults
saveas Save figure to graphic file

Handle Graphics, General
copyobj Make a copy of a graphics object and its children
findobj Find objects with specified property values
gcbo Return object whose callback is currently executing
gco Return handle of current object
get Get object properties
rotate Rotate objects about specified origin and direction
1-23

ishandle True for graphics objects
set Set object properties

Handle Graphics, Object Creation
axes Create Axes object
figure Create Figure (graph) windows
image Create Image (2-D matrix)
light Create Light object (illuminates Patch and Surface)
line Create Line object (3-D polylines)
patch Create Patch object (polygons)
rectangle Create Rectangle object (2-D rectangle)
surface Create Surface (quadrilaterals)
text Create Text object (character strings)
uicontext Create context menu (popup associated with object)

Handle Graphics, Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure
clg Clear figure (graph window)
close Close specified window
gcf Get current figure handle
newplot Graphics M-file preamble forNextPlot property
refresh Refresh figure
saveas Save figure or model to desired output format

Handle Graphics, Axes
axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle

Object Manipulation
propedit Edit all properties of any selected object
reset Reset axis or figure
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresize Interactively select, move, or resize objects
shg Show graph window
1-24

Interactive User Input
ginput Graphical input from a mouse or cursor
zoom Zoom in and out on a 2-D plot

Region of Interest
dragrect Drag XOR rectangles with mouse
drawnow Complete any pending drawing
rbbox Rubberband box

Graphical User Interface Creation

Dialog Boxes
dialog Create a dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Interactively set aColorSpec using a dialog box
uisetfont Interactively set a font using a dialog box
warndlg Create warning dialog box

User Interface Objects
menu Generate a menu of choices for user input
menuedit Menu editor
uicontextmenu Create context menu
uicontrol Create user interface control
uimenu Create user interface menu

Other Functions
dragrect Drag rectangles with mouse
findfigs Display off-screen visible figure windows
gcbo Return handle of object whose callback is executing
1-25

cts

rbbox Create rubberband box for area selection
selectmoveresize Select, move, resize, or copy Axes and Uicontrol graphics obje
textwrap Return wrapped string matrix for given Uicontrol
uiresume Used withuiwait, controls program execution
uiwait Used withuiresume, controls program execution
waitbar Display wait bar
waitforbuttonpress Wait for key/buttonpress over figure
1-26

2

Reference

This chapter describes all MATLAB operators, commands,
and functions in alphabetical order.

2

2ß
-2

Arithmetic Operators + - * / \ ^ '
2Arithmetic Operators + - * / \ ^ 'Purpose Matrix and array arithmetic

Syntax A+B
A–B
A∗B A.∗B
A/B A./B
A\B A.\B
A^B A.^B
A' A.'

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic
operations are carried out element-by-element. The period character (.)
distinguishes the array operations from the matrix operations. However, since
the matrix and array operations are the same for addition and subtraction, the
character pairs .+ and .– are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any
size.

– Subtraction or unary minus. A–B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

* Matrix multiplication. C = A∗B is the linear algebraic product of the
matrices A and B. More precisely,

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

+

-

*

/

\

^

'

C i j,() A i k,()B k j,()
k 1=

n

∑=
2-3

Arithmetic Operators + - * / \ ^ '
.∗ Array multiplication. A. ∗B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

/ Slash or matrix right division. B/A is roughly the same as B∗inv(A).
More precisely, B/A = (A'\B')'. See \.

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv(A)∗B, except it is computed in a different way. If A is
an n-by-n matrix and B is a column vector with n components, or a
matrix with several such columns, then X = A\B is the solution to the
equation AX = B computed by Gaussian elimination (see “Algorithm”
for details). A warning message prints if A is badly scaled or nearly
singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A, is determined
from the QR decomposition with pivoting (see “Algorithm” for details).
A solution X is computed which has at most k nonzero components per
column. If k < n, this is usually not the same solution as pinv(A)∗B,
which is the least squares solution with the smallest norm, ||X||.

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated multiplication. If the integer is
negative, X is inverted first. For other values of p, the calculation
involves eigenvalues and eigenvectors, such that if [V,D] = eig(X),
then X^p = V∗D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P
using eigenvalues and eigenvectors. X^P, where X and P are both
matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)
power. A and B must have the same size, unless one of them is a scalar.
2-4

Arithmetic Operators + - * / \ ^ '
Remarks The arithmetic operators have M-file function equivalents, as shown:

Examples Here are two vectors, and the results of various matrix and array operations on
them, printed with format rat.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices,
this does not involve conjugation.

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A–B minus(A,B)

Unary minus –A uminus(A)

Matrix multiplication A*B mtimes(A,B)

Array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

Array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

Array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Matrix Operations Array Operations

x 1
2
3

y 4
5
6

x' 1 2 3 y' 4 5 6
2-5

Arithmetic Operators + - * / \ ^ '
x+y 5
7
9

x–y –3
–3
–3

x + 2 3
4
5

x–2 –1
0
1

x ∗ y Error x.∗y 4
10
18

x'∗y 32 x'.∗y Error

x∗y' 4 5 6
8 10 12
12 15 18

x.∗y' Error

x∗2 2
4
6

x.∗2 2
4
6

x\y 16/7 x.\y 4
5/2
2

2\x 1/2
1
3/2

2./x 2
1
2/3

x/y 0 0 1/6
0 0 1/3
0 0 1/2

x./y 1/4
2/5
1/2

x/2 1/2
1
3/2

x./2 1/2
1
3/2

x^y Error x.^y 1
32
729

Matrix Operations Array Operations
2-6

Arithmetic Operators + - * / \ ^ '

pos-
tion
Algorithm The specific algorithm used for solving the simultaneous linear equations
denoted by X = A\B and X = B/A depends upon the structure of the coefficient
matrix A.

• If A is a triangular matrix, or a permutation of a triangular matrix, then X
can be computed quickly by a permuted backsubstitution algorithm. The
check for triangularity is done for full matrices by testing for zero elements
and for sparse matrices by accessing the sparse data structure. Most
nontriangular matrices are detected almost immediately, so this check
requires a negligible amount of time.

• If A is symmetric, or Hermitian, and has positive diagonal elements, then a
Cholesky factorization is attempted (see chol). If A is sparse, a symmetric
minimum degree preordering is applied (see symmmd and spparms). If A is
found to be positive definite, the Cholesky factorization attempt is successful
and requires less than half the time of a general factorization. Nonpositive
definite matrices are usually detected almost immediately, so this check also
requires little time. If successful, the Cholesky factorization is
A = R'∗R

where R is upper triangular. The solution X is computed by solving two
triangular systems,
X = R\(R'\B)

• If A is square, but not a permutation of a triangular matrix, or is not Hermitian with
itive elements, or the Cholesky factorization fails, then a general triangular factoriza
is computed by Gaussian elimination with partial pivoting (seelu). If A is sparse, a non-

x^2 Error x.^2 1
4
9

2^x Error 2.^x 2
4
8

(x+i∗y)' 1 – 4i 2 – 5i 3 – 6i

(x+i∗y).' 1 + 4i 2 + 5i 3 + 6i

Matrix Operations Array Operations
2-7

Arithmetic Operators + - * / \ ^ '

rthog-
symmetric minimum degree preordering is applied (seecolmmd andspparms). This re-
sults in

A = L∗U

where L is a permutation of a lower triangular matrix and U is an upper
triangular matrix. Then X is computed by solving two permuted triangular
systems.
X = U\(L\B)

• If A is not square and is full, then Householder reflections are used to compute an o
onal-triangular factorization.

A∗P = Q∗R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr).
The least squares solution X is computed with
X = P∗(R\(Q'∗B)

• If A is not square and is sparse, then the augmented matrix is formed by:

S = [c∗I A; A' 0]

The default for the residual scaling factor isc = max(max(abs(A)))/1000 (see
spparms). The least squares solutionX and the residualR = B–A∗X are computed by

S ∗ [R/c; X] = [B; 0]

with minimum degree preordering and sparse Gaussian elimination with
numerical pivoting.

The various matrix factorizations are computed by MATLAB implementations
of the algorithms employed by LINPACK routines ZGECO, ZGEFA and ZGESL for
square matrices and ZQRDC and ZQRSL for rectangular matrices. See the
LINPACK Users’ Guide for details.

Diagnostics From matrix division, if a square A is singular:

Matrix is singular to working precision.

From element-wise division, if the divisor has zero elements:

Divide by zero.
2-8

Arithmetic Operators + - * / \ ^ '
On machines without IEEE arithmetic, like the VAX, the above two operations
generate the error messages shown. On machines with IEEE arithmetic, only
warning messages are generated. The matrix division returns a matrix with
each element set to Inf; the element-wise division produces NaNs or Infs where
appropriate.

If the inverse was found, but is not reliable:

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = xxx

From matrix division, if a nonsquare A is rank deficient:

Warning: Rank deficient, rank = xxx tol = xxx

See Also det, inv, lu, orth, permute, ipermute, qr, rref

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.
2-9

Relational Operators < > <= >= == ~=
2Relational Operators < > <= >= == ~=Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, ≤, >, ≥, ==, and ~=. Relational operators perform
element-by-element comparisons between two arrays. They return an array of
the same size, with elements set to logical true (1) where the relation is true,
and elements set to logical false (0) where it is not.

The operators <, ≤, >, and ≥ use only the real part of their operands for the
comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Examples If one of the operands is a scalar and the other a matrix, the scalar expands to
the size of the matrix. For example, the two pairs of statements:

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5∗ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

1 1 1
1 1 0
0 0 0
2-10

Relational Operators < > <= >= == ~=
See Also all, any, find, strcmp

The logical operators &, |, ~
2-11

Logical Operators & | ~
2Logical Operators & | ~Purpose Logical operations

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical operators AND, OR, and NOT. They work
element-wise on arrays, with 0 representing logical false (F), and anything
nonzero representing logical true (T). The & operator does a logical AND, the|
operator does a logical OR, and ~A complements the elements of A. The function
xor(A,B) implements the exclusive OR operation. Truth tables for these
operators and functions follow.

The precedence for the logical operators with respect to each other is:

1 not has the highest precedence.

2 and and or have equal precedence, and are evaluated from left to right.

Remarks The logical operators have M-file function equivalents, as shown:

Precedence of & and |
MATLAB’s left to right execution precedence causes a|b&c to be equivalent to
(a|b)&c. However, in most programming languages, a|b&c is equivalent to

Inputs and or xor NOT

A B A&B A|B xor(A,B) ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

&
|
~

and A&B and(A,B)

or A|B or(A,B)

not ~A not(A)
2-12

Logical Operators & | ~
a|(b&c), that is, & takes precedence over |. To ensure compatibility with
future versions of MATLAB, you should use parentheses to explicity specify the
intended precedence of statements containing combinations of & and |.

Examples Here are two examples that illustrate the precedence of the logical operators to
each other:

1 | 0 & 0 = 0
0 & 0 | 1 = 1

See Also all, any, find, logical, xor

The relational operators: <, <=, >, >=, ==, ~=ì
2-13

Special Characters [] () {} = ' , ; % !
2Special Characters [] () {} = ' , ; % !Purpose Special characters

Syntax [] () {} = ' , ; % !

Description
[] Brackets are used to form vectors and matrices. [6.9 9.64 sqrt(–1)]

is a vector with three elements separated by blanks. [6.9, 9.64, i]
is the same thing. [1+j 2–j 3] and [1 +j 2 –j 3] are not the same.
The first has three elements, the second has five.
[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the
first row.
Vectors and matrices can be used inside [] brackets. [A B;C] is
allowed if the number of rows of A equals the number of rows of B and
the number of columns of A plus the number of columns of B equals the
number of columns of C. This rule generalizes in a hopefully obvious
way to allow fairly complicated constructions.
A = [] stores an empty matrix in A. A(m,:) = [] deletes row m of A.
A(:,n) = [] deletes column n of A. A(n) = [] reshapes A into a
column vector and deletes the third element.
[A1,A2,A3...] = function assigns function output to multiple
variables.
For the use of [and] on the left of an “=” in multiple assignment
statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example.,
A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str'). See help paren
for more information about { }.

[]
()
{}
=
'
.
...
,
;
%
!

2-14

Special Characters [] () {} = ' , ; % !
() Parentheses are used to indicate precedence in arithmetic expressions
in the usual way. They are used to enclose arguments of functions in
the usual way. They are also used to enclose subscripts of vectors and
matrices in a manner somewhat more general than usual. If X and V
are vectors, then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An error
occurs if any such subscript is less than 1 or greater than the size of X.
Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n:–1:1) reverses them. The same indirect
subscripting works in matrices. If V has m components and W has n
components, then A(V,W) is the m-by-n matrix formed from the
elements of A whose subscripts are the elements of V and W. For
example, A([1,5],:) = A([5,1],:) interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A in B.
== is the relational equals operator. See the Relational Operators
page.

' Matrix transpose. X' is the complex conjugate transpose of X. X.' is
the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are the
ASCII codes for the characters. A quotation mark within the text is
indicated by two quotation marks.

. Decimal point. 314/100, 3.14 and .314e1 are all the same.
Element-by-element operations. These are obtained using .∗ , .^ , ./,
or .\. See the Arithmetic Operators page.

. Field access. A.(field) and A(i).field, when A is a structure, access
the contents of field.

.. Parent directory. See cd.

... Continuation. Three or more points at the end of a line indicate
continuation.
2-15

Special Characters [] () {} = ' , ; % !
Remarks Some uses of special characters have M-file function equivalents, as shown:

See Also The arithmetic operators +, –, *, /, \, ^, '

The relational operators: <, <=, >, >=, ==, ~=

The logical operators &, |, ~

, Comma. Used to separate matrix subscripts and function arguments.
Used to separate statements in multistatement lines. For
multi-statement lines, the comma can be replaced by a semicolon to
suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an expression
or statement to suppress printing or to separate statements.

% Percent. The percent symbol denotes a comment; it indicates a logical
end of line. Any following text is ignored. MATLAB displays the first
contiguous comment lines in a M-file in response to a help command.

! Exclamation point. Indicates that the rest of the input line is issued as
a command to the operating system.

Horizontal concatenation [A,B,C...] horzcat(A,B,C...)

Vertical concatenation [A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...) subsref(A,S). See help
subsref.

Subscript assignment A(i,j,k...)= B subsasgn(A,S,B). See help
subsasgn.
2-16

Colon :
2Colon :Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

where i,j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional
arrays:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i > 0 and j > k or if i < 0 and j < k

A(:,j) is the j-th column of A

A(i,:) is the i-th row of A

A(:,:) is the equivalent two-dimensional array. For matrices this is
the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.
2-17

Colon :
Examples Using the colon with integers,

D = 1:4

results in

D =
 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E = 0:.1:.5

results in

E =
 0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,2) =
 1 1 1
 1 2 3
 1 3 6

See Also for, linspace, logspace, reshape
2-18

abs
2absPurpose Absolute value and complex magnitude

Syntax Y = abs(X)

Description abs(X) returns the absolute value, , for each element of X.

If X is complex, abs(X) returns the complex modulus (magnitude):

abs(X) = sqrt(real(X).^2 + imag(X).^2)

Examples abs(–5) = 5
abs(3+4i) = 5

See Also angle, sign, unwrap

X

2-19

acos, acosh

2-2
2acos, acoshPurpose Inverse cosine and inverse hyperbolic cosine

Syntax Y = acos(X)
Y = acosh(X)

Description The acos and acosh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain , acos(X) is real and in the range .
For real elements of X outside the domain , acos(X) is complex.

Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

Examples Graph the inverse cosine function over the domain and the inverse
hyperbolic cosine function over the domain

x = –1:.05:1; plot(x,acos(x))
x = 1:pi/40:pi; plot(x,acosh(x))

Algorithm

See Also cos, cosh

1 1,–[] 0 π,[]
1 1,–[]

1– x 1,≤ ≤
1 x π.≤ ≤

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

x

y=
ac

os
(x

)

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y=
ac

os
h(

x)

z()cos 1– i z i 1 z 2–()
1
2

+log–=

z()cosh 1– z z 2 1–()
1
2

+log=
0

acot, acoth
2acot, acothPurpose Inverse cotangent and inverse hyperbolic cotangent

Syntax Y = acot(X)
Y = acoth(X)

Description The acot and acoth functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.

Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

Examples Graph the inverse cotangent over the domains and and
the inverse hyperbolic cotangent over the domains and

x1 = –2∗pi:pi/30:–0.1; x2 = 0.1:pi/30:2∗pi;
plot(x1,acot(x1),x2,acot(x2))
x1 = –30:0.1:–1.1; x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2))

Algorithm

2π– x 0<≤ 0 x 2π,≤<
30– x 1–<≤

1 x 30.≤<

-8 -6 -4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

x1,x2

y=
ac

ot
(x

)

-30 -20 -10 0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1,x2

y=
ac

ot
h(

x)

z()cot 1– 1
z
--- 

 tan 1–=

z()coth 1– 1
z
--- 

 tanh 1–=
2-21

acot, acoth

2-2
See Also cot, coth
2

acsc, acsch
2acsc, acschPurpose Inverse cosecant and inverse hyperbolic cosecant

Syntax Y = acsc(X)
Y = acsch(X)

Description The acsc and acsch functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.

Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

Examples Graph the inverse cosecant over the domains and and
the inverse hyperbolic cosecant over the domains and

x1 = –10:0.01:–1.01; x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2))
x1 = –20:0.01:–1; x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2))

Algorithm

10– x 1–<≤ 1 x 10,≤<
20– x 1–≤ ≤ 1 x 20.≤ ≤

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

x1,x2

y=
ac

sc
(x

)

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1,x2

y=
ac

sc
h(

x)

z()csc 1– 1
z
--- 

 sin 1–=

z()csch 1– 1
z
--- 

 sinh 1–=
2-23

acsc, acsch
See Also csc, csch
2-24

addpath
2addpathPurpose Add directories to MATLAB’s search path

Syntax addpath('directory')
addpath('dir1','dir2','dir3',...)
addpath(...,'–flag')

Description addpath('directory') prepends the specified directory to MATLAB’s current
search path.

addpath('dir1','dir2','dir3',...) prepends all the specified directories
to the path.

addpath(...,'–flag') either prepends or appends the specified directories
to the path depending the value of flag:

Examples path
MATLABPATH

c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

addpath('c:\matlab\myfiles')

path
MATLABPATH

c:\matlab\myfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

See Also path, rmpath

0 or begin Prepend specified directories

1 or end Append specified directories
2-25

airy
2airyPurpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to:

The relationship between the Airy and modified Bessel functions is:

where,

Description W = airy(Z) returns the Airy function, Ai(Z), for each element of the complex
array Z.

W = airy(k,Z) returns different results depending on the value of k:

Z2

2

d

d W ZW– 0=

Ai Z() 1
π
--- Z 3⁄ K1 3⁄ ζ()=

Bi Z() Z 3⁄ I 1 3⁄– ζ() I1 3⁄ ζ()+[]=

ζ 2
3
---Z3 2⁄

=

k Returns

0 The same result as airy(Z).

1 The derivative, .

2 The Airy function of the second kind, .

3 The derivative, .

Ai′ Z()

Bi Z()

Bi′ Z()
2-26

airy
[W,ierr] = airy(k,Z) also returns an array of error flags.

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z too large.

ierr = 5 No convergence. Return NaN.
2-27

all

2-2
2allPurpose Test to determine if all elements are nonzero

Syntax B = all(A)
B = all(A,dim)

Description B = all(A) tests whether all the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all of the elements are nonzero,
and returns logical false (0) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, all(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

This makes all particularly useful in if statements,

if all(A < 0.5)
do something

end

1 1 1
1 1 0

A

1 1 0

all(A,1)

1
0

all(A,2)
8

all
where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always reduces
it to a scalar condition.

all(all(eye(3)))
ans =
 0

See Also any

The logical operators &, |, ~

The relational operators <, <=, >, >=, ==, ~=

The colon operator :

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz
2-29

angle

2-3
2anglePurpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude and phase angle are given by

R = abs(Z) % magnitude
theta = angle(Z) % phase angle

and the statement

Z = R.∗exp(i∗theta)

converts back to the original complex Z.

Examples Z =
1.0000 – 1.0000i 2.0000 + 1.0000i 3.0000 – 1.0000i 4.0000 + 1.0000i
1.0000 + 2.0000i 2.0000 – 2.0000i 3.0000 + 2.0000i 4.0000 – 2.0000i
1.0000 – 3.0000i 2.0000 + 3.0000i 3.0000 – 3.0000i 4.0000 + 3.0000i
1.0000 + 4.0000i 2.0000 – 4.0000i 3.0000 + 4.0000i 4.0000 – 4.0000i

P = angle(Z)
P =

 –0.7854 0.4636 –0.3218 0.2450

 1.1071 –0.7854 0.5880 –0.4636

 –1.2490 0.9828 –0.7854 0.6435

 1.3258 –1.1071 0.9273 –0.7854

Algorithm angle can be expressed as:

angle(z) = imag(log(z)) = atan2(imag(z),real(z))

See Also abs, unwrap

π±
0

ans
2ansPurpose The most recent answer

Syntax ans

Description The ans variable is created automatically when no output argument is
specified.

Examples The statement

2+2

is the same as

ans = 2+2
2-31

any
2anyPurpose Test for any nonzeros

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, any(A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, any(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements,

if any(A < 0.5)
do something

end

1 0 1
0 0 0

A

1 0 1

any(A,1)

1
0

any(A,2)
2-32

any
where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
 1

See Also all

The logical operators &,|,~

The relational operators <, <=, >, >=, ==, ~=

The colon operator :

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz
2-33

asec, asech
2asec, asechPurpose Inverse secant and inverse hyperbolic secant

Syntax Y = asec(X)
Y = asech(X)

Description The asec and asech functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = asec(X) returns the inverse secant (arcsecant) for each element of X.

Y = asech(X) returns the inverse hyperbolic secant for each element of X.

Examples Graph the inverse secant over the domains and and the
inverse hyperbolic secant over the domain

x1 = –5:0.01:–1; x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2))
x = 0.01:0.001:1; plot(x,asech(x))

Algorithm

See Also sec, sech

1 x 5≤ ≤ 5– x 1,–≤ ≤
0 x 1.≤<

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

x1,x2

y=
as

ec
(x

)

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1,x2

y=
ac

sc
h(

x)

z()sec 1– 1
z
--- 

 cos 1–=

z()sech 1– 1
z
--- 

 cosh 1–=
2-34

asin, asinh
2asin, asinhPurpose Inverse sine and inverse hyperbolic sine

Syntax Y = asin(X)
Y = asinh(X)

Description The asin and asinh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain , asin(X) is in the range . For
real elements of x outside the range , asin(X) is complex.

Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

Examples Graph the inverse sine function over the domain and the inverse
hyperbolic sine function over the domain

x = –1:.01:1; plot(x,asin(x))
x = –5:.01:5; plot(x,asinh(x))

Algorithm

See Also sin, sinh

1 1,–[] π– 2⁄ π 2⁄,[]
1 1,–[]

1– x 1,≤ ≤
5– x 5.≤ ≤

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y=
as

in
(x

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y=
as

in
h(

x)

z()sin 1– i iz 1 z 2–()
1
2

+log–=

z()sinh 1– z z 2 1+()
1
2

+log=
2-35

assignin
2assigninPurpose Assign a value to a workspace variable

Syntax assignin(ws,'var',val)

Description assignin(ws,'var',val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of 'base' or
'caller' to denote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user–entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});
2-36

assignin
See Also evalin
2-37

atan, atanh
2atan, atanhPurpose Inverse tangent and inverse hyperbolic tangent

Syntax Y = atan(X)
Y = atanh(X)

Description The atan and atanh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = atan(X) returns the inverse tangent (arctangent) for each element of X.

For real elements of X, atan(X) is in the range .

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse tangent function over the domain and the
inverse hyperbolic tangent function over the domain

x = –20:0.01:20; plot(x,atan(x))
x = –0.99:0.01:0.99; plot(x,atanh(x))

Algorithm

See Also atan2, tan, tanh

π– 2⁄ π 2⁄,[]

20– x 20,≤ ≤
1– x 1.< <

-20 -15 -10 -5 0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y=
at

an
(x

)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

x

y=
at

an
h(

x)

z()tan 1– i
2
---- i z+

i z–
----------- 

 log=

z()tanh 1– 1
2
---=

1 z+
1 z–
------------ 

 log
2-38

atan2
2atan2Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [–pi,pi], where pi is MATLAB’s
floating- point representation of . The specific quadrant is determined by
sign(Y) and sign(X):

This contrasts with the result of atan(Y/X), which is limited to the interval
, or the right side of this diagram.

Examples Any complex number z = x+iy is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

To convert back to the original complex number:

z = r ∗exp(i ∗theta)

This is a common operation, so MATLAB provides a function, angle(z), that
simply computes atan2(imag(z),real(z)).

See Also atan, atanh, tan, tanh

π

π/2

π
–π 0

x

y

–π/2

π– 2⁄ π 2⁄,[]
2-39

auread
2aureadPurpose Read NeXT/SUN (.au) sound file

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1,N2])
siz = auread('aufile','size')

Description Supports multi-channel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• floating-point

y = auread('aufile') loads a sound file specified by the string aufile,
returning the sampled data in y. The .au extension is appended if no extension
is given. Amplitude values are in the range [–1,+1].

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[...] = auread('aufile',N) returns only the first N samples from each
channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector siz =
[samples channels].

See Also auwrite, wavread
2-40

auwrite
2auwritePurpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite supports multi-channel data for 8-bit mu-law, and 8- and 16-bit linear
formats.

auwrite(y,'aufile') writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [–1,+1] are clipped prior to writing.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must be 8-bit.
By default, method = 'mu'.

See Also auread, wavwrite
2-41

balance
2balancePurpose Improve accuracy of computed eigenvalues

Syntax [D,B] = balance(A)
B = balance(A)

Description [D,B] = balance(A) returns a diagonal matrix D whose elements are integer
powers of two, and a balanced matrix B so that B = D\A∗D. If A is symmetric,
then B == A and D is the identity matrix.

B = balance(A) returns just the balanced matrix B.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The quantity which relates the size of the
matrix perturbation to the size of the eigenvalue perturbation is the condition
number of the eigenvector matrix,

cond(V) = norm(V)∗norm(inv(V))

where

[V,D] = eig(A)

(The condition number of A itself is irrelevant to the eigenvalue problem.)

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column. Furthermore, the diagonal
scale factors are limited to powers of two so they do not introduce any roundoff
error.

MATLAB’s eigenvalue function, eig(A), automatically balances A before
computing its eigenvalues. Turn off the balancing with eig(A,'nobalance').
2-42

balance
Examples This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 ∗
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal D matrix with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[D,B] = balance(A)
D =

1.0e+03 ∗
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7812
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A.

[V,E] = eig(A); V
V =

–1.0000 0.9999 –1.0000
0.0050 0.0100 0.0034
0.0000 0.0001 0.0001

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond(V) is 1.7484e+05. Next, look at the
eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.8919
 0.2839 0.4437 -0.3264
 0.3634 0.5679 -0.3129
2-43

balance
Now the eigenvectors are well behaved and cond(V) is 31.9814. The ill
conditioning is concentrated in the scaling matrix; cond(D) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.

Algorithm balance is built into the MATLAB interpreter. It uses the algorithm in [1]
originally published in Algol, but popularized by the Fortran routines BALANC
and BALBAK from EISPACK.

Successive similarity transformations via diagonal matrices are applied to A to
produce B. The transformations are accumulated in the transformation matrix
D.

The eig function automatically uses balancing to prepare its input matrix.

Limitations Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

Diagnostics If A is not a square matrix:

Matrix must be square.

See Also condeig, eig, hess, schur

References [1] Parlett, B. N. and C. Reinsch, “Balancing a Matrix for Calculation of
Eigenvalues and Eigenvectors,” Handbook for Auto. Comp., Vol. II, Linear
Algebra, 1971,pp. 315-326.
2-44

base2dec
2base2decPurpose Base to decimal number conversion

Syntax d = base2dec('strn',base)

Description d = base2dec('strn',base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If 'strn' is a character array, each row is interpreted as a string in the
specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning 23.

See Also dec2base
2-45

besselh
2besselhPurpose Bessel functions of the third kind (Hankel functions)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,1,Z,1)
H = besselh(nu,2,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where ν is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. and form a fundamental set of
solutions of Bessel’s equation for noninteger ν. is a second solution of
Bessel’s equation—linearly independent of — defined by:

The relationship between the Hankel and Bessel functions is:

Description H = besselh(nu,K,Z) for K = 1 or 2 computes the Hankel functions

 or for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a scalar, it
is expanded to the other input's size. If one input is a row vector and the other
is a column vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,1,Z,1) scales by exp(–i∗z).

H = besselh(nu,2,Z,1) scales by exp(+i∗z).

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

Jν z() J ν– z()
Y ν z()

Jν z()

Y ν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Hν
1() z() Jν z() i Y ν z()+=

Hν
1() z() Hν

2() z()

Hν
1() z()

Hν
2() z()
2-46

besselh
[H,ierr] = besselh(...) also returns an array of error flags:

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.
2-47

besseli, besselk
2besseli, besselkPurpose Modified Bessel functions

Syntax I = besseli(nu,Z) Modified Bessel function of the 1st kind
K = besselk(nu,Z) Modified Bessel function of the 2nd kind
I = besseli(nu,Z,1)
K = besselk(nu,Z,1)
[I,ierr] = besseli(...)
[K,ierr] = besselk(...)

Definitions The differential equation

where ν is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

 and form a fundamental set of solutions of the modified Bessel’s
equation for noninteger ν. is a second solution, independent of .

and are defined by:

Description I = besseli(nu,Z) computes modified Bessel functions of the first kind,
 for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

z2
z2

2

d

d y z dy
dz
------- z2 ν2+() y–+ 0=

Iν z() I ν– z()
K ν z() Iν z()

Iν z() K ν z()

Iν z() z
2
--- 

 ν z2

4
----- 

 
k

k! Γ ν k 1+ +()
--,k 0=

∞∑=

K ν z() π
2
--- 

  I ν– z() Iν z()–

νπ()sin
------------------------------------=

where Γ a() is the gamma function

Iν z(),
2-48

besseli, besselk
K = besselk(nu,Z) computes modified Bessel functions of the second kind,
 for each element of the complex array Z.

I = besseli(nu,Z,1) computes besseli(nu,Z).∗exp(–real(Z)).

K = besselk(nu,Z,1) computes besselk(nu,Z).∗exp(real(Z)).

[I,ierr] = besseli(...) and [K,ierr] = besselk(...) also return an
array of error flags.

Examples format long
z = (0:0.2:1)';

besseli(1,z)

ans =
 0
 0.10050083402813
 0.20402675573357
 0.31370402560492
 0.43286480262064
 0.56515910399249

besselk(1,z)

ans =
 Inf
 4.77597254322047
 2.18435442473269
 1.30283493976350
 0.86178163447218
 0.60190723019723

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.

K ν z(),
2-49

besseli, besselk
besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besseli and besselk functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

See Also airy, besselj, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.
2-50

besselj, bessely
2besselj, besselyPurpose Bessel functions

Syntax J = besselj(nu,Z) Bessel function of the 1st kind
Y = bessely(nu,Z) Bessel function of the 2nd kind
J = besselj(nu,Z,1)
Y = bessely(nu,Z,1)
[J,ierr] = besselj(nu,Z)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where ν is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

 and form a fundamental set of solutions of Bessel’s equation for
noninteger ν. is defined by:

is a second solution of Bessel’s equation that is linearly independent of
 and defined by:

Description J = besselj(nu,Z) computes Bessel functions of the first kind, for each
element of the complex array Z. The order nu need not be an integer, but must
be real. The argument Z can be complex. The result is real where Z is positive.

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

Jν z() J ν– z()
Jν z()

Jν z() z
2
--- 

 ν z2

4
-----– 

 
k

k! Γ ν k 1+ +()
--,k 0=

∞∑=

where Γ a() is the gamma function

Y ν z()
Jν z()

Y ν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Jν z(),
2-51

besselj, bessely
If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z) computes Bessel functions of the second kind, for
real, nonnegative order nu and argument Z.

J = besselj(nu,Z,1) computes besselj(nu,Z).∗exp(–imag(Z)).

Y = bessely(nu,Z,1) computes bessely(nu,Z).∗exp(–imag(Z)).

[J,ierr] = besselj(nu,Z) and [Y,ierr] = bessely(nu,Z) also return an
array of error flags.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind:

where is besselj, and is bessely. The Hankel functions also form
a fundamental set of solutions to Bessel’s equation (see besselh).

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.

Y ν z(),

Hν
1() z() Jν z() i Y ν z()+=

Hν
2() z() Jν z() i Y ν z()–=

Jν z() Y ν z()
2-52

besselj, bessely
Examples format long
z = (0:0.2:1)';

besselj(1,z)

ans =
 0
 0.09950083263924
 0.19602657795532
 0.28670098806392
 0.36884204609417
 0.44005058574493

bessely(1,z)

ans =
 -Inf
 -3.32382498811185
 -1.78087204427005
 -1.26039134717739
 -0.97814417668336
 -0.78121282130029

besselj(3:9,(0:.2,10)') generates the entire table on page 398 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

bessely(3:9,(0:.2,10)') generates the entire table on page 399 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj and bessely functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

See Also airy, besseli, besselk

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.
2-53

besselj, bessely
[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.
2-54

beta, betainc, betaln
2beta, betainc, betalnPurpose Beta functions

Syntax B = beta(Z,W)
I = betainc(X,Z,W)
L = betaln(Z,W)

Definition The beta function is:

where is the gamma function. The incomplete beta function is:

Description B = beta(Z,W) computes the beta function for corresponding elements of the
complex arrays Z and W. The arrays must be the same size (or either can be
scalar).

I = betainc(X,Z,W) computes the incomplete beta function. The elements of
X must be in the closed interval

L = betaln(Z,W) computes the natural logarithm of the beta function,
log(beta(Z,W)), without computing beta(Z,W). Since the beta function can
range over very large or very small values, its logarithm is sometimes more
useful.

B z w,() t z 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

Ix z w,() 1
B z w,()
-------------------- tz 1– 1 t–()w 1– td

0

x

∫=

0 1[,] .
2-55

beta, betainc, betaln
Examples format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252
1/360
1/495
1/660

In this case, with integer arguments,

beta(n,3)
= (n–1)!∗2!/(n+2)!
= 2/(n∗(n+1)∗(n+2))

is the ratio of fairly small integers and the rational format is able to recover the
exact result.

For x = 510, betaln(x,x) = –708.8616, which, on a computer with IEEE
arithmetic, is slightly less than log(realmin). Here beta(x,x) would
underflow (or be denormal).

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)–gammaln(z+w))
betaln(z,w) = gammaln(z)+gammaln(w)–gammaln(z+w)
2-56

bicg
2bicgPurpose BiConjugate Gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
x = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = bicg(A,b,tol,maxit,M1,M2,x0)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The coefficient matrix A must be square and the column vector b must have
length n, where A is n-by-n. When A is not explicitly available as a matrix, you
can express A as an operator afun where afun(x) returns the matrix-vector
product A*x and afun(x,'transp') returns A'*x . This operator can be the
name of an M-file or an inline object. In this case n is taken to be the length of
the column vector b.

bicg will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b–A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e–6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

bicg(A,b,tol) specifies the tolerance of the method, tol.

bicg(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns either M\x or M'\x, depending upon the last
2-57

bicg
argument. If M1 or M2 is given as the empty matrix ([]), it is considered to be
the identity matrix, equivalent to no preconditioning at all. Since systems of
equations of the form M*y = r are solved using backslash within bicg, it is
wise to factor preconditioners into their LU factors first. For example, replace
bicg(A,b,tol,maxit,M) with:

[M1,M2] = lu(M);
bicg(A,b,tol,maxit,M1,M2).

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = bicg(A,b,tol,maxit,M1,M2,x0) returns a solution x. If bicg converged, a
message to that effect is displayed. If bicg failed to converge after the
maximum number of iterations or halted for any reason, a warning message is
printed displaying the relative residual norm(b–A*x)/norm(b) and the
iteration number at which the method stopped or failed.

[x,flag] = bicg(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of bicg.

Flag Convergence

0 bicg converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 bicg iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicg became
too small or too large to continue computing.
2-58

bicg
Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicg(A,b,tol,maxit,M1,M2,x0) also returns the
relative residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = bicg(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies 0 ≤ iter ≤
maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) ≤ tol*norm(b).

Examples Start with A = west0479 and make the true solution the vector of all ones.

load west0479
A = west0479
b = sum(A,2)

We could accurately solve A*x = b using backslash since A is not so large.

x = A \ b
norm(b–A*x) / norm(b) =
6.8476e–18

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)
flag =
1
relres =
1
iter =
0

The value of flag indicates that bicg iterated the default 20 times without
converging. The value of iter shows that the method behaved so badly that the
initial all zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b–A*x)/norm(b) = norm(b)/norm(b) = 1.
2-59

bicg
The plot semilogy(0:20,resvec/norm(b),'–o') below confirms that the
unpreconditioned method oscillated rather wildly.

Try an incomplete LU factorization with a drop tolerance of 1e–5 for the
preconditioner.

[L1,U1] = luinc(A,1e–5)
nnz(A) =
1887
nnz(L1) =
5562
nnz(U1) =
4320

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

iteration number

re
la

tiv
e

re
si

du
al
2-60

bicg
A warning message indicates a zero on the main diagonal of the upper
triangular U1. Thus it is singular. When we try to use it as a preconditioner

[x,flag,relres,iter,resvec] = bicg(A,b,1e–6,20,L1,U1)
flag =
2
relres =
1
iter =
0
resvec =
7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 with backslash. It is forced to return the
initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e–6)
nnz(L2) =
6231
nnz(U2) =
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e–15,10,L2,U2)
flag =
0
relres =
2.8664e-16
iter =
8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation to the
original matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.
2-61

bicg
The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.

This does not give us any idea of the time involved in creating the incomplete
factors and then computing the solution. The following graph plots drop
tolerance of the incomplete LU factors against the time to compute the
preconditioner, the time to iterate once the preconditioner has been computed,
and their sum, the total time to solve the problem. The time to produce the
factors does not increase very quickly with the fill-in, but it does slow down the
average time for an iteration. Since fewer iterations are performed, the total

0 1 2 3 4 5 6 7 8

10
−15

10
−10

10
−5

10
0

1e−61e−8
1e−10

1e−12

1e−14

iteration number

re
la

tiv
e

re
si

du
al
2-62

bicg
time to solve the problem decreases. west0479 is quite a small matrix, only
139-by-139, and preconditioned bicg still takes longer than backslash.

See Also bicgstab, cgs, gmres, luinc, pcg, qmr

The arithmetic operator \

References “Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

drop tolerance of incomplete LU preconditioner

tim
e

to
 p

re
co

nd
iti

on
 a

nd
 c

on
ve

rg
e

to
 1

e−
12

precondition and iterate
iterate
compute preconditioner
2-63

bicgstab
2bicgstabPurpose BiConjugate Gradients Stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
x = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = bicgstab(A,b,tol,maxit,M1,M2,x0)

Description x = bicgstab(A,b) attempts to solve the system of linear equations A*x = b
for x. The coefficient matrix A must be square and the column vector b must
have length n, where A is n-by-n. When A is not explicitly available as a matrix,
you can express A as an operator afun that returns the matrix-vector product
A*x for afun(x). This operator can be the name of an M-file, a string expression,
or an inline object. In this case n is taken to be the length of the column vector b.

bicgstab will start iterating from an initial estimate that, by default, is an all
zero vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b–A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e–6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

bicgstab(A,b,tol) specifies the tolerance of the method, tol.

bicgstab(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
([]), it is considered to be the identity matrix, equivalent to no preconditioning
2-64

bicgstab
at all. Since systems of equations of the form M*y = r are solved using
backslash within bicgstab, it is wise to factor preconditioners into their LU
factors first. For example, replace bicgstab(A,b,tol,maxit,M) with:

[M1,M2] = lu(M);
bicgstab(A,b,tol,maxit,M1,M2).

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is
given as the empty matrix ([]), the default all zero vector is used.

x = bicgstab(A,b,tol,maxit,M1,M2,x0) returns a solution x. If bicgstab
converged, a message to that effect is displayed. If bicgstab failed to converge
after the maximum number of iterations or halted for any reason, a warning
message is printed displaying the relative residual
norm(b–A*x)/norm(b) and the iteration number at which the method stopped
or failed.

[x,flag] = bicgstab(A,b,tol,maxit,M1,M2,x0) returns a solution x and a
flag that describes the convergence of bicgstab.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

Flag Convergence

0 bicgstab converged to the desired tolerance tol within
maxit iterations without failing for any reason.

1 bicgstab iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicgstab
became too small or too large to continue computing.
2-65

bicgstab
[x,flag,relres] = bicgstab(A,b,tol,maxit,M1,M2,x0) also returns the
relative residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = bicgstab(A,b,tol,maxit,M1,M2,x0) also returns
the iteration number at which x was computed. This always satisfies 0 ≤ iter
≤ maxit. iter may be an integer or an integer + 0.5, since bicgstab may
converge halfway through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,tol,maxit,M1,M2,x0)
also returns a vector of the residual norms at each iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0, resvec is of length 2*iter+1, whether
iter is an integer or not. In this case, resvec(end) ≤ tol*norm(b).

Example load west0479
A = west0479
b = sum(A,2)
[x,flag] = bicgstab(A,b)

flag is 1 since bicgstab will not converge to the default tolerance 1e–6 within
the default 20 iterations.

[L1,U1] = luinc(A,1e–5)
[x1,flag1] = bicgstab(A,b,1e–6,20,L1,U1)

flag1 is 2 since the upper triangular U1 has a zero on its diagonal so bicgstab
fails in the first iteration when it tries to solve a system such as U1*y = r with
backslash.

[L2,U2] = luinc(A,1e–6)
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e–15,10,L2,U2)

flag2 is 0 since bicgstab will converge to the tolerance of 2.9e–16 (the value
of relres2) at the sixth iteration (the value of iter2) when preconditioned by
the incomplete LU factorization with a drop tolerance of 1e–6.
resvec2(1) = norm(b) and resvec2(13) = norm(b–A*x2). You can follow the
progress of bicgstab by plotting the relative residuals at the halfway point and
2-66

bicgstab
end of each iteration starting from the intial estimate (iterate number 0) with
semilogy(0:0.5:iter2,resvec2/norm(b),'–o')

See Also bicg, cgs, gmres, luinc, pcg, qmr

The arithmetic operator \

References van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant of
BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al
2-67

bin2dec
2bin2decPurpose Binary to decimal number conversion

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and returns the
equivalent decimal number.

Examples bin2dec('010111') returns 23.

See Also dec2bin
2-68

bitand
2bitandPurpose Bit-wise AND

Syntax C = bitand(A,B)

Description C = bitand(A,B) returns the bit-wise AND of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise AND on these numbers yields
01001, or 9.

C = bitand(13,27)

C =

 9

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor
2-69

bitcmp
2bitcmpPurpose Complement bits

Syntax C = bitcmp(A,n)

Description C = bitcmp(A,n) returns the bit-wise complement of A as an n-bit
floating-point integer (flint).

Example With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).

C = bitcmp(99,8)

C =

 156

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor
2-70

bitget
2bitgetPurpose Get bit

Syntax C = bitget(A,bit)

Description C = bitget(A,bit) returns the value of the bit at position bit in A. Operand
A must be a nonnegative integer, and bit must be a number between 1 and the
number of bits in the floating-point integer (flint) representation of A (52 for
IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and
round functions.

Example The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101
C = bitget(13,4:–1:1)

C =
 1 1 0 1

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor
2-71

bitmax
2bitmaxPurpose Maximum floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned floating-point integer for your
computer. It is the value when all bits are set. On IEEE machines, this is the
value .

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

253 1–
2-72

bitor
2bitorPurpose Bit-wise OR

Syntax C = bitor(A,B)

Description C = bitor(A,B) returns the bit-wise OR of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise OR on these numbers yields 11111,
or 31.

C = bitor(13,27)

C =

 31

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor
2-73

bitset
2bitsetPurpose Set bit

Syntax C = bitset(A,bit)
C = bitset(A,bit,v)

Description C = bitset(A,bit) sets bit position bit in A to 1 (on). A must be a nonnegative
integer and bit must be a number between 1 and the number of bits in the
floating-point integer (flint) representation of A (52 for IEEE flints). To ensure
the operand is an integer, use the ceil, fix, floor, and round functions.

C = bitset(A,bit,v) sets the bit at position bit to the value v, which must be
either 0 or 1.

Examples Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25.

C = bitset(9,5)

C =

 25

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor
2-74

bitshift
2bitshiftPurpose Bit-wise shift

Syntax C = bitshift(A,k,n)
C = bitshift(A,k)

Description C = bitshift(A,k,n) returns the value of A shifted by k bits. If k>0, this is
same as a multiplication by 2k (left shift). If k<0, this is the same as a division
by 2k (right shift). An equivalent computation for this function is
C = fix(A*2^k).

If the shift causes C to overflow n bits, the overflowing bits are dropped. A must
contain nonnegative integers between 0 and BITMAX, which you can ensure by
using the ceil, fix, floor, and round functions.

C = bitshift(A,k) uses the default value of n = 53.

Examples Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).

C = bitshift(12,2)

C =

 48

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix
2-75

bitxor
2bitxorPurpose Bit-wise XOR

Syntax C = bitxor(A,B)

Description C = bitxor(A,B) returns the bit-wise XOR of the two arguments A and B. Both
A and B must be integers. You can ensure this by using the ceil, fix, floor,
and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise XOR on these numbers yields 10110,
or 22.

C = bitxor(13,27)

C =
 22

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift
2-76

blanks
2blanksPurpose A string of blanks

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home
2-77

blkdiag
2blkdiagPurpose Construct a block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...) where a, b, ... are matrices outputs a block
diagonal matrix of the form:

The input matrics do not have to be square, nor do they have to be of equal size.

blkdiag works not only for matrices, but for any MATLAB objects which
support horzcat and vertcat operations.

See Also diag

a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 …
2-78

break
2breakPurpose Terminate execution of a for loop or while loop

Syntax break

Description break terminates the execution of a for loop or while loop. In nested loops,
break exits from the innermost loop only.

Examples The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line), break, end
 s = strvcat(s,line);
end
disp(s)

See Also end, for, return, while
2-79

builtin
2builtinPurpose Execute builtin function from overloaded method

Syntax builtin(function,x1,...,xn)
[y1,..,yn] = builtin(function,x1,...,xn)

Description builtin is used in methods that overload builtin functions to execute the
original builtin function. If function is a string containing the name of a
builtin function,then:

builtin(function,x1,...,xn) evaluates that function at the given
arguments.

[y1,..,yn] = builtin(function,x1,...,xn) returns multiple output
arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original builtin
version of the function even if an overloaded one exists. (For this to work you
must never overload builtin.)

See Also feval
2-80

calendar
2calendarPurpose Calendar

Syntax c = calendar
c = calendar(d)
c = calendar(y,m)

calendar(...)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

c = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.

Examples The command:

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
 S M Tu W Th F S
 0 0 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31 0 0
 0 0 0 0 0 0 0

See Also datenum
2-81

cart2pol
2cart2polPurpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is:

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Three-Dimensional Mapping

Z

Y

X

rho
theta

P

z

Two-Dimensional Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z
2-82

cart2pol
See Also cart2sph, pol2cart, sph2cart
2-83

cart2sph
2cart2sphPurpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is:

See Also cart2pol, pol2cart, sph2cart

Z

Y

X

theta

P

theta = atan2(y,x)
phi = atan2(z, sqrt(x.^2 + y.^2))

r = sqrt(x.^2+y.^2+z.^2)

phi

r

2-84

case
2casePurpose Case switch

Description case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself, followed by a case
expression, and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).

Examples The general form of the switch statement is:

switch switch_expr
case case_expr

statement,...,statement
case {case_expr1,case_expr2,case_expr3,...}

statement,...,statement
...

otherwise
statement,...,statement

end

See switch for more details.

See Also switch
2-85

cat
2catPurpose Concatenate arrays

Syntax C = cat(dim,A,B)
C = cat(dim,A1,A2,A3,A4...)

Description C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4,...) concatenates all the input arrays (A1, A2, A3,
A4, and so on) along dim.

cat(2,A,B) is the same as [A,B] and cat(1,A,B) is the same as [A;B].

Remarks When used with comma separated list syntax, cat(dim,C{:}) or
cat(dim,C.field) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Examples Given,

A = B =
 1 2 5 6
 3 4 7 8

concatenating along different dimensions produces:

The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

5 6
7 8

C = cat(1,A,B) C = cat(2,A,B) C = cat(3,A,B)

1 2
3 4 5 6

7 8
1 2
3 4

5 6
7 8

1 2
3 4
2-86

catch
2catchPurpose Begin catch block

Description The general form of a try statement is:

try statement, ..., statement, catch statement, ..., statement end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also end, eval, evalin, try
2-87

cd
2cdPurpose Change working directory

Syntax cd
cd directory
cd ..

Description cd prints out the current directory.

cd directory sets the current directory to directory. On UNIX platforms, the
character ~ is interpreted as the user’s root directory.

cd .. changes to the directory above the current one.

Examples UNIX: cd /usr/local/matlab/toolbox/demos

DOS: cd C:MATLAB\DEMOS

VMS: cd DISK1:[MATLAB.DEMOS]

See Also dir, path, what
2-88

cdf2rdf
2cdf2rdfPurpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex
pairs originally there. The eigenvectors are transformed so that

X = V∗D/V

continues to hold. The individual columns of V are no longer eigenvectors, but
each pair of vectors associated with a 2-by-2 block in D spans the corresponding
invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 –5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =
1.0000 0.4002 – 0.0191i 0.4002 + 0.0191i

0 0.6479 0.6479
0 0 + 0.6479i 0 – 0.6479i

D =
1.0000 0 0

0 4.0000 + 5.0000i 0
0 0 4.0000 – 5.0000i
2-89

cdf2rdf
Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =
1.0000 0.4002 –0.0191

0 0.6479 0
0 0 0.6479

D =
1 0 0
0 4 5
0 –5 4

Algorithm The real diagonal form for the eigenvalues is obtained from the complex form
using a specially constructed similarity transformation.

See Also eig, rsf2csf
2-90

ceil
2ceilPurpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a =

 Columns 1 through 4

 –1.9000 –0.2000 3.4000 5.6000

 Columns 5 through 6

 7.0000 2.4000 + 3.6000i

ceil(a)

ans =

 Columns 1 through 4

 –1.0000 0 4.0000 6.0000

 Columns 5 through 6

 7.0000 3.0000 + 4.0000i

See Also fix, floor, round
2-91

cell
2cellPurpose Create cell array

Syntax c = cell(n)
c = cell(m,n)
c = cell([m n])
c = cell(m,n,p,...)
c = cell([m n p ...])
c = cell(size(A))

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

c = cell(m,n) or c = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

c = cell(m,n,p,...) or c = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,... must be scalars.

c = cell(size(A)) creates a cell array the same size as A containing all
empty matrices.

Examples A = ones(2,2)

A =
 1 1
 1 1

c = cell(size(A))

c =

 [] []
 [] []

See Also ones, rand, randn, zeros
2-92

cell2struct
2cell2structPurpose Convert cell array to structure array

Syntax s = cell2struct(c,fields,dim)

Description s = cell2struct(c,fields,dim) converts the cell array c into the structure
s by folding the dimension dim of c into fields of s. The length of c along the
specified dimension (size(c,dim)) must match the number of fields names in
fields. Argument fields can be a character array or a cell array of strings.

Examples c = {'tree',37.4,'birch'};
f = {'category','height','name'};
s = cell2struct(c,f,2)

s =

 category: 'tree'
 height: 37.4000
 name: 'birch'

See Also fieldnames, struct2cell
2-93

celldisp
2celldispPurpose Display cell array contents.

Syntax celldisp(C)
celldisp(C,name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).

Example Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] –5 'abc'};
celldisp(C)

C{1,1} =

 1 2

C{2,1} =

 1 2
 3 4

C{1,2} =

Tony

C{2,2} =

 –5

C{1,3} =

 3.0000+ 4.0000i

C{2,3} =

abc
2-94

celldisp
See Also cellplot
2-95

cellfun
2cellfunPurpose Apply a function to each element in a cell array

Syntax D = cellfun('fname',C)
D = cellfun('size',C,k)
D = cellfun('isclass',C,classname)

Description D = cellfun('fname',C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

D = cellfun('size',C,k) returns the size along the k-th dimension of each
element of C.

D = cellfun('isclass',C,'classname') returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

Limitations If the cell array contains objects, cellfun does not call overloaded versions of
the function fname.

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element
2-96

cellfun
Example Consider this 2-by-3 cell array:

C{1,1} = [1 2; 4 5];
C{1,2} = 'Name';
C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun('isreal',C)

D =

 1 1 1
 0 1 1

len = cellfun('length',C)

len =

 2 4 1
 1 1 3

isdbl = cellfun('isclass',C,'double')

isdbl =

 1 0 1
 1 1 1

See Also isempty, islogical, isreal, length, ndims, size
2-97

cellplot
2cellplotPurpose Graphically display the structure of cell arrays

Syntax cellplot(c)
cellplot(c,'legend')
handles = cellplot(...)

Description cellplot(c) displays a figure window that graphically represents the contents
of c. Filled rectangles represent elements of vectors and arrays, while scalars
and short text strings are displayed as text.

cellplot(c,'legend') also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

 The command cellplot(c) produces:

2−by−2
2-98

cellstr
2cellstrPurpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate cells of
c. Use the string function to convert back to a string matrix.

Examples Given the string matrix

S =
abc
defg
hi

The command c = cellstr(S) returns the 3-by-1 cell array:

c =
'abc'

 'defg'
 'hi'

See Also iscellstr, strings
2-99

cgs
2cgsPurpose Conjugate Gradients Squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
x = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = cgs(A,b,tol,maxit,M1,M2,x0)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The coefficient matrix A must be square and the column vector b must have
length n, where A is n-by-n. When A is not explicitly available as a matrix, you
can express A as an operator afun that returns the matrix-vector product A*x
for afun(x). This operator can be the name of an M-file, a string expression, or
an inline object. In this case n is taken to be the length of the column vector b

cgs will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b–A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e–6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

cgs(A,b,tol) specifies the tolerance of the method, tol.

cgs(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
([]), it is considered to be the identity matrix, equivalent to no preconditioning
2-100

cgs
at all. Since systems of equations of the form M*y = r are solved using
backslash within cgs, it is wise to factor preconditioners into their LU factors
first. For example, replace cgs(A,b,tol,maxit,M) with:

[M1,M2] = lu(M);
cgs(A,b,tol,maxit,M1,M2).

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = cgs(A,b,tol,maxit,M1,M2,x0) returns a solution x. If cgs converged, a
message to that effect is displayed. If cgs failed to converge after the maximum
number of iterations or halted for any reason, a warning message is printed
displaying the relative residual norm(b–A*x)/norm(b) and the iteration
number at which the method stopped or failed.

[x,flag] = cgs(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of cgs.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 cgs iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during cgs became
too small or too large to continue computing.
2-101

cgs
[x,flag,relres] = cgs(A,b,tol,maxit,M1,M2,x0) also returns the relative
residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = cgs(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies
0 ≤ iter ≤ maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) ≤ tol*norm(b).

Examples load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 since cgs will not converge to the default tolerance 1e–6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e–5)
[x1,flag1] = cgs(A,b,1e–6,20,L1,U1)

flag1 is 2 since the upper triangular U1 has a zero on its diagonal so cgs fails
in the first iteration when it tries to solve a system such as U1*y = r for y with
backslash.

[L2,U2] = luinc(A,1e–6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e–15,10,L2,U2)

flag2 is 0 since cgs will converge to the tolerance of 7.9e–16 (the value of
relres2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of
1e–6. resvec2(1) = norm(b) and resvec2(6) = norm(b–A*x2). You can
follow the progress of cgs by plotting the relative residuals at each iteration
2-102

cgs
starting from the initial estimate (iterate number 0) with
semilogy(0:iter2,res2/norm(b),'–o').

See Also bicg, bicgstab, gmres, luinc, pcg, qmr

The arithmetic operator \

References Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

0 1 2 3 4 5
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al
2-103

char
2charPurpose Create character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1,t2.t3...)

Description S = char(X) converts the array X that contains positive integers representing
character codes into a MATLAB character array (the first 127 codes are ASCII).
The actual characters displayed depend on the character set encoding for a
given font. The result for any elements of X outside the range from 0 to 65535
is not defined (and may vary from platform to platform). Use double to convert
a character array into its numeric codes.

S = char(C) when C is a cell array of strings, places each element of C into the
rows of the character array s. Use cellstr to convert back.

S = char(t1,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter,Ti, can itself be a character array.
This allows the creation of arbitarily large character arrays. Empty strings are
significant.

Remarks Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix(rem(A,256)).

Examples To print a 3-by-32 display of the printable ASCII characters:

ascii = char(reshape(32:127,32,3)')
ascii =
! ” # $ % & ' () ∗ + , – . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
' a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
2-104

char
See Also cellstr, double, get, set, strings, strvcat, text
2-105

chol
2cholPurpose Cholesky factorization

Syntax R = chol(X)
[R,p] = chol(X)

Description The chol function uses only the diagonal and upper triangle of X. The lower
triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol(X), where X is positive definite produces an upper triangular R so
that R'*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order q = p–1 so that R'*R = X(1:q,1:q).

Examples The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1
2-106

chol
Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)–1
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm chol uses the algorithm from the LINPACK subroutine ZPOFA. For a detailed
description of the use of the Cholesky decomposition, see Chapter 8 of the
LINPACK Users’ Guide.

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

See Also cholinc, cholupdate
2-107

cholinc
2cholincPurpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entries U(i,j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i,j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,i).

Setting droptol = 0 produces the complete Cholesky factorization, which is the
default.

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R
2-108

cholinc
michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size q-by-n where q = p–1. In this latter case,
the sparsity pattern of R is that of the q-by-n upper triangle of X. R'*R agrees
with X over the sparsity pattern of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive
semi-definite so even negative pivots are replaced with a value of Inf.

Remarks The incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only
2-109

cholinc
gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Examples Example 1.
Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid('C',15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (R0'*R0).*spones(S)–S;
D2 = (R'*R).*spones(S2)–S2;
2-110

cholinc
D1 has elements of the order of eps, showing that R0'*R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100,:) and D2(:,1:100).

Example 2.
The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.

0 50 100

0

20

40

60

80

100

120

140

nz = 643

S

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

C= chol(S)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

R0=cholinc(S,’0’)

0 50 100

0

20

40

60

80

100

nz = 290

Partial factor [R,p]=cholinc(S2,’0’)
2-111

cholinc
Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R'*R–S,1)/norm(S,1) in the next figure.

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

cholinc(S,0)

0 50 100

0

20

40

60

80

100

120

140

nz = 1211

cholinc(S,1e−3)

0 50 100

0

20

40

60

80

100

120

140

nz = 671

cholinc(S,1e−2)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

cholinc(S,1e−1)

10
−4

10
−3

10
−2

10
−1

10
0

0

500

1000

1500
Drop tolerance vs nnz(cholinc(S,droptol))

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Drop tolerance vs norm(R’*R−S)/norm(S)
2-112

cholinc
Example 3.
The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =
 1.0000 0.5000 0.3333
 0 0.2887 0.2887
 0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));
[R,p] = chol(H20);
p =
 14

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20,'inf');
2-113

cholinc
In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
 Inf 0 0 0 0 0 0
 0 Inf 0 0 0 0 0
 0 0 Inf 0 0 0 0
 0 0 0 Inf 0 0 0
 0 0 0 0 Inf 0 0
 0 0 0 0 0 Inf 0
 0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0') and
cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the milu option takes the value of
the michol option.

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang ([2]).
2-114

cholinc
See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics and
Statistics, University of Maryland Baltimore County, Technical Report
TR96-01
2-115

cholupdate
2cholupdatePurpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'–')
[R1,p] = cholupdate(R,x,'–')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x',
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'–') returns the Cholesky factor of A – x*x'. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,'–') will not return an error message. If p is 0,
R1 is the Cholesky factor of A – x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20
2-116

cholupdate
R = chol(A)
R =

 1 1 1 1
 0 1 2 3
 0 0 1 3
 0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can
use cholupdate:

R1 = cholupdate(R,x)
R1 =

 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:
2-117

cholupdate
A – x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 19

Compare chol with cholupdate:

R1 = chol(A–x*x')
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,'–')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'–')
R1 =

1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an algorithm, while simply updating the existing factor in this
way is an algorithm.

References Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

See Also chol, qrupdate

O N3()
O N2()
2-118

class
2classPurpose Create object or return class of object

Syntax str = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2...)

Description str = class(object) returns a string specifying the class of object.

The possible object classes are:

obj = class(s,'class_name') creates an object of class 'class_name' using
structure s as a template. This syntax is only valid in a function named
class_name.m in a directory named @class_name (where 'class_name' is the
same as the string passed into class).

NOTE On VMS, the method directory is named #class_name.

obj = class(s,'class_name',parent1,parent2,...) creates an object of
class 'class_name' using structure s as a template, and also ensures that the
newly created object inherits the methods and fields of the parent objects
parent1, parent2, and so on.

See Also inferiorto, isa, superiorto

Limitations clear doesn’t affect the amount of memory allocated to the MATLAB process
under UNIX.

cell Multidimensional cell array

double Multidimensional double precision array

sparse Two-dimensional real (or complex) sparse array

char Array of alphanumeric characters

struct Structure

'class_name' User-defined object class
2-119

clc
2clcPurpose Clear command window

Syntax clc

Description clc clears the command window.

Remarks After using clc, you still can use the up arrow to see the history of the
commands, one at a time.

Examples Display a sequence of random matrices at the same location in the command
window:

clc
for i =1:25

home
A = rand(5)

end

See Also clf, home
2-120

clear
2clearPurpose Remove items from memory

Syntax clear
clear name
clear name1 name2 name3…
clear global name
clear keyword

Description clear clears all variables from the workspace.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. A MATLABPATH relative partial pathname is permitted. If name is
global, it is removed from the current workspace, but left accessible to any
functions declaring it global. If name has been locked by mlock, it will remain in
memory.

clear name1 name2 name3 removes name1, name2, and name3 from the
workspace.

clear global name removes the global variable name.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

functions Clears all the currently compiled M-functions from
memory.

variables Clears all variables from the workspace.

mex Clears all MEX-files from memory.

global Clears all global variables.
2-121

clear
Remarks You can use wildcards (*) to remove items selectively. For instance, clear my*
removes any variables whose names begin with the string “my.” The function
form of the syntax, clear('name'), is also permitted.

Limitations clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

See Also mlock, munlock, pack

all Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty.

classes Works the same as clear all, but also clears class
definitions. If any objects exist outside the workspace
(e.g., in userdata or persistent in a locked m-file), a
warning will be issued and the class definition will not
be cleared. clear classes must be used if the number
or names of fields in a class are changed.
2-122

clock
2clockPurpose Current time as a date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

See Also cputime, datenum, datevec, etime, tic, toc
2-123

colmmd
2colmmdPurpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Description p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and / for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, MATLAB’s
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A'∗A, but does not actually form A'∗A.

Each stage of the algorithm chooses a vertex in the graph of A'∗A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

Examples The Harwell-Boeing collection of sparse matrices includes a test matrix
ABB313. It is a rectangular matrix, of order 313-by-176, associated with least
squares adjustments of geodesic data in the Sudan. Since this is a least squares
problem, form the augmented matrix (see spaugment), which is square and of
order 489. The spy plot shows that the nonzeros in the original matrix are
concentrated in two stripes, which are reflected and supplemented with a
scaled identity in the augmented matrix. The colmmd ordering scrambles this
2-124

colmmd
structure. (Note that this example requires the Harwell-Boeing collection of
software.)

load('abb313.mat')
S = spaugment(A);
p = colmmd(S);
spy(S)
spy(S(:,p))

Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and

0 100 200 300 400

0

100

200

300

400

nz = 3427

S

0 100 200 300 400

0

100

200

300

400

nz = 3427

S(:,p)
2-125

colmmd
storage requirements by better than a factor of 2.6. The nonzero counts are
18813 and 7223, respectively.

spy(lu(S))
spy(lu(S(:,p)))

See Also colperm, lu, spparms, symmmd, symrcm

The arithmetic operator \

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19,.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

0 100 200 300 400

0

100

200

300

400

nz = 18813

lu(S)

0 100 200 300 400

0

100

200

300

400

nz = 7223

lu(S(:,p))
2-126

colperm
2colpermPurpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j,j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n–1,1) speye(n–1,n–1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the bottom
and the rear, and lu(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example, B = bucky,

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

See Also chol, colmmd, lu, symrcm
2-127

compan
2companPurpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose first row is
–u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

Examples The polynomial has a companion matrix
given by

u = [1 0 –7 6]
A = compan(u)
A =

0 7 –6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))
ans =

–3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

x 1–() x 2–() x 3+() x3 7x– 6+=
2-128

complex
2complexPurpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)
c = complex(a)

Description c = complex(a,b) creates a complex output, c, from the two real inputs.

c = a + bi

The output is the same size as the inputs, which must be equally sized vectors,
matrices, or multi-dimensional arrays.

The complex function provides a useful substitute for expressions such as

a + i*b or a + j*b

in cases when the names “i” and “j” may be used for other variables (and do
not equal), or when a and b are not double precision.

c = complex(a) uses input a as the real component of the complex output. The
imaginary component is zero.

c = a + 0i

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])

c = complex(a,b)

c =
 1.0000 + 2.0000i
 2.0000 + 2.0000i
 3.0000 + 7.0000i
 4.0000 + 7.0000i

See Also imag, real

1–
2-129

computer
2computerPurpose Identify the computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer

Description str = computer returns a string with the computer type on which MATLAB is
running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

The list of supported computers changes as new computers are added and
others become obsolete.

String Computer

ALPHA DEC Alpha

AXP_VMSG Alpha VMS G_float

AXP_VMSIEEE Alpha VMS IEEE

HP700 HP 9000/700

IBM_RS IBM RS6000 workstation

LNX86 Linux Intel

PCWIN MS-Windows

SGI Silicon Graphics (R4000)

SGI64 Silicon Graphics (R8000)

SOL2 Solaris 2 SPARC workstation

SUN4 Sun4 SPARC workstation

VAX_VMSD VAX/VMS D_float

VAX_VMSG VAX/VMS G_float
2-130

computer
See Also isieee, isunix, isvms
2-131

cond
2condPurpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond(X) and cond(X,p) near 1 indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

Algorithm The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.

See Also condeig, condest, norm, rank, svd

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

'fro' Frobenius norm condition number

inf Infinity norm condition number
2-132

condeig
2condeigPurpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to: [V,D] = eig(A); s = condeig(A);.

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig
2-133

condest
2condestPurpose 1-norm matrix condition number estimate

Syntax c = condest(A)
[c,v] = condest(A)

Description c = condest(A) uses Higham’s modification of Hager’s method to estimate the
condition number of a matrix. The computed c is a lower bound for the
condition of A in the 1-norm.

[c,v] = condest(A) estimates the condition number and also computes a
vector v such that .

Thus, v is an approximate null vector of A if c is large.

This function handles both real and complex matrices. It is particularly useful
for sparse matrices.

See Also cond, normest

Reference [1] Higham, N.J. “Fortran Codes for Estimating the One-Norm of a Real or
Complex Matrix, with Applications to Condition Estimation.” ACM Trans.
Math. Soft., 14, 1988, pp. 381-396.

Av A v c⁄=
2-134

conj
2conjPurpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) – i∗imag(Z)

See Also i, j, imag, real
2-135

conv
2convPurpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Definition Let m = length(u) and n = length(v). Then w is the vector of length m+n–1
whose kth element is

The sum is over all the values of j which lead to legal subscripts for u(j) and
v(k+1–j), specifically j = max(1,k+1–n): min(k,m). When m = n, this gives

w(1) = u(1)∗v(1)
w(2) = u(1)∗v(2)+u(2)∗v(1)
w(3) = u(1)*v(3)+u(2)∗v(2)+u(3)∗v(1)
...
w(n) = u(1)∗v(n)+u(2)∗v(n–1)+ ... +u(n)∗v(1)
...
w(2∗n–1) = u(n)∗v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it
is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = fft([x zeros(1,length(y)–1)]) and Y = fft([y zeros(1,length(x)–1)])

then conv(x,y) = ifft(X.∗Y)

See Also convmtx and xcorr in the Signal Processing Toolbox, and:

deconv, filter

w k() u j()v k 1 j–+()
j

∑=
2-136

conv2
2conv2Purpose Two-dimensional convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional FIR filter, the other
matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of A is [ma,na]
and the size of B is [mb,nb], then the size of C is [ma+mb–1,na+nb–1].

C = conv2(hcol,hrow,A) convolves A separably with hcol in the column
direction and hrow in the row direction. hcol and hrow should both be vectors.

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

Examples In image processing, the Sobel edge finding operation is a two-dimensional
convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; –1 –2 –1];

These commands extract the horizontal edges from a raised pedestal:

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

full Returns the full two-dimensional convolution (default).
same Returns the central part of the convolution of the same size as A.
valid Returns only those parts of the convolution that are computed

without the zero-padded edges. Using this option, C has size [ma–
mb+1,na–nb+1] when size(A) > size(B).
2-137

conv2
These commands display first the vertical edges of A, then both horizontal and
vertical edges.

V = conv2(A,s');
mesh(V)
mesh(sqrt(H.^2+V.^2))

See Also conv, deconv, filter2
2-138

convhull
2convhullPurpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,TRI)

Description K = convhull(x,y) returns indices into the x and y vectors of the points on the
convex hull.

K = convhull(x,y,TRI) uses the triangulation (as obtained from delaunay)
instead of computing it each time.

Examples xx = –1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r–',x,y,'b+')

See Also delaunay, polyarea, voronoi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2-139

convn
2convnPurpose N-dimensional convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size(A)+size(B)–1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

• 'full' returns the full N-dimensional convolution (default).

• 'same' returns the central part of the result that is the same size as A.

• 'valid' returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the result is

max(size(A)–size(B) + 1, 0).

See Also conv, conv2
2-140

copyfile
2copyfilePurpose Copy file

Syntax copyfile('source','dest')
copyfile('source','dest','writable')
status = copyfile('source','dest')
[status,msg] = copyfile('source','dest')

Description copyfile('source','dest') copies the file source to the new file dest.
source and dest may be absolute pathnames or pathnames relative to the
current directory. The pathname to dest must exist, but dest cannot be an
existing filename in the current directory.

copyfile('source','dest','writable') checks that dest is writable.

status = copyfile('source','dest') returns 1 if the file is copied
successfully and 0 otherwise.

[status,msg] = copyfile('source','dest') returns a nonempty error
message string when an error occurs.

See Also delete, mkdir
2-141

corrcoef
2corrcoefPurpose Correlation coefficients

Syntax S = corrcoef(X)
S = corrcoef(x,y)

Description S = corrcoef(X) returns a matrix of correlation coefficients calculated from
an input matrix whose rows are observations and whose columns are variables.
The matrix S = corrcoef(X) is related to the covariance matrix C = cov(X)
by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x,'coeff') packed into a square array.

S = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

See Also xcorr, xcov in the Signal Processing Toolbox, and:

cov, mean, std

S i j,() C i j,()
C i i,()C j j,()

---------------------------------------=
2-142

cos, cosh
2cos, coshPurpose Cosine and hyperbolic cosine

Syntax Y = cos(X)
Y = cosh(X)

Description The cos and cosh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the cosine function over the domain and the hyperbolic cosine
function over the domain

x = –pi:0.01:pi; plot(x,cos(x))
x = –5:0.01:5; plot(x,cosh(x))

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of π.

Algorithm

See Also acos, acosh

π– x π,≤ ≤
5– x 5.≤ ≤

-3 -2 -1 0 1 2 3 4
x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

x

y=
co

sh
(x

)

x iy+()cos x() y()coshcos i x() y()sinsin–=

z()cos eiz e iz–+
2

-----------------------=

z()cosh ez e z–+
2

-------------------=
2-143

cot, coth
2cot, cothPurpose Cotangent and hyperbolic cotangent

Syntax Y = cot(X)
Y = coth(X)

Description The cot and coth functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the cotangent and hyperbolic cotangent over the domains and

x1 = –pi+0.01:0.01:–0.01; x2 = 0.01:0.01:pi–0.01;
plot(x1,cot(x1),x2,cot(x2))
plot(x1,coth(x1),x2,coth(x2))

Algorithm

See Also acot, acoth

π– x 0< <
0 x π.< <

-4 -3 -2 -1 0 1 2 3 4
-100

-80

-60

-40

-20

0

20

40

60

80

100

x1,x2

y=
co

t(
x)

-4 -3 -2 -1 0 1 2 3 4
-100

-50

0

50

100

150

x1,x2

y=
co

th
(x

)

z()cot 1
z()tan

------------------=

z()coth 1
z()tanh

---------------------=
2-144

cov
2covPurpose Covariance matrix

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(x) where x is a vector returns the variance of the vector elements. For
matrices where each row is an observation and each column a variable, cov(x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each column,
and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(x,y), where x and y are column vectors of equal length, is equivalent
to cov([x y]).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where E is the mathematical expectation and µi= Exi.

Examples Consider A = [–1 1 2 ; –2 3 1 ; 4 0 3]. To obtain a vector of variances for
each column of A:

v = diag(cov(A))'
v =
 10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

C =
 10.3333 –4.1667 3.0000
 –4.1667 2.3333 –1.5000
 3.0000 –1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns of A. The
off-diagonal elements C(i,j) represent the covariances of columns i and j.

See Also xcorr, xcov in the Signal Processing Toolbox, and:

corrcoef, mean, std

cov x1,x2() E x1 µ1–() x2 µ2–()[]=
2-145

cplxpair
2cplxpairPurpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a complex
array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100∗eps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides
the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message:

Complex numbers can't be paired.
2-146

cputime
2cputimePurpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and
wrap around.

Examples For example

t = cputime; surf(peaks(40)); e = cputime–t

e =

0.4667

returns the CPU time used to run surf(peaks(40)).

See Also clock, etime, tic, toc
2-147

cross
2crossPurpose Vector cross product

Syntax W = cross(U,V)
W = cross(U,V,dim)

Description W = cross(U,V) returns the cross product of the vectors U and V. That is,
W = U x V. U and V are usually 3-element vectors. If U and V are
multidimensional arrays, cross returns the cross product of U and V along the
first dimension of length 3.

If U and V are arrays, cross(U,V) treats the first size 3 dimension of U and V as
vectors, returning pages whose columns are cross products.

W = cross(U,V,dim) where U and V are multidimensional arrays, returns the
cross product of U and V in dimension dim . U and V must have the same size,
and both size(U,dim) and size(V,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use:

c = sum(a.*b) or, if a and b are row vectors, c = a.'*b.

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = cross(a,b)

c =

 –3 6 –3

d = sum(a.∗b)

d =

 32
2-148

csc, csch
2csc, cschPurpose Cosecant and hyperbolic cosecant

Syntax Y = csc(x)
Y = csch(x)

Description The csc and csch functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the cosecant and hyperbolic cosecant over the domains and
.

x1 = –pi+0.01:0.01:–0.01; x2 = 0.01:0.01:pi–0.01;
plot(x1,csc(x1),x2,csc(x2))
plot(x1,csch(x1),x2,csch(x2))

Algorithm

See Also acsc, acsch

π– x 0< <
0 x π< <

-4 -3 -2 -1 0 1 2 3 4
-150

-100

-50

0

50

100

150

x1,x2

y=
cs

c(
x)

-4 -3 -2 -1 0 1 2 3 4
-100

-80

-60

-40

-20

0

20

40

60

80

100

x1,x2

y=
cs

ch
(x

)

z()csc 1
z()sin

-----------------=

z()csch 1
z()sinh

--------------------=
2-149

cumprod
2cumprodPurpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different dimensions of
an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative product
of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod(A,1) increments
the first (row) index, thus working along the rows of A.

Examples cumprod(1:5) = [1 2 6 24 120]

A = [1 2 3; 4 5 6];

disp(cumprod(A))
 1 2 3
 4 10 18

disp(cumprod(A,2))
 1 2 6
 4 20 120

See Also cumsum, prod, sum
2-150

cumsum
2cumsumPurpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum(A,1) works across
the first dimension (the rows).

Examples cumsum(1:5) = [1 3 6 10 15]

A = [1 2 3; 4 5 6];

disp(cumsum(A))
 1 2 3
 5 7 9

disp(cumsum(A,2))
 1 3 6
 4 9 15

See Also cumprod, prod, sum
2-151

cumtrapz
2cumtrapzPurpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(... dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y
via the trapezoidal method with unit spacing. (This is similar to cumsum(Y),
except that trapezoidal approximation is used.) To compute the integral with
other than unit spacing, multiply Z by the spacing increment.

For vectors, cumtrapz(Y) is the cumulative integral of Y.

For matrices, cumtrapz(Y) is a row vector with the cumulative integral over
each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(... dim) integrates across the dimension of Y specified by
scalar dim. The length of X must be the same as size(Y,dim).

Example Example: If Y = [0 1 2; 3 4 5]

cumtrapz(Y,1)
ans =

0 1.0000 2.0000
 1.5000 2.5000 3.5000

and

cumtrapz(Y,2)
ans =

0 0.5000 2.0000
 3.0000 3.5000 8.0000
2-152

cumtrapz
See Also cumsum, trapz
2-153

date
2datePurpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now
2-154

datenum
2datenumPurpose Serial date number

Syntax N = datenum(str)
N = datenum(str,P)
N = datenum(Y,M,D)
N = datenum(Y,M,D,H,MI,S)

Description The datenum function converts date strings and date vectors into serial date
numbers. Date numbers are serial days elapsed from some reference date. By
default, the serial day 1 corresponds to 1-Jan-0000.

N = datenum(str) converts the date string str into a serial date number. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

NOTE The string str must be in one of the date formats 0, 1, 2, 6, 13, 14, 15,
or 16 as defined by datestr.

N = datenum(str,P) assumes that two-character years lie within the
100-yearperiod beginning with the pivot year p. The default pivot year is the
current year minus 50 years.

N = datenum(Y,M,D) returns the serial date number for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically “carried” to the next unit.

N = datenum(Y,M,D,H,MI,S) returns the serial date number for corresponding
elements of the Y, M, D, H, MI, and S (year, month, hour, minute, and second)
array values. Y, M, D, H, MI, and S must be arrays of the same size (or any can be
a scalar).
2-155

datenum
Examples Convert a date string to a serial date number.

n = datenum('19-May-1995')

n =

 728798

Specifying year, month, and day, convert a date to a serial date number.

n = datenum(1994,12,19)

n =

 728647

Convert a date string to a serial date number using the default pivot year

n = datenum('12-june-12')

n =

 735032

Convert the same date string to a serial date number using 1900 as the pivot
year.

n = datenum('12-june-12', 1900)

n =

 698507

See Also datestr, datevec, now
2-156

datestr
2datestrPurpose Date string format

Syntax str = datestr(D,dateform)

str = datestr(D,dateform,P)

Description str = datestr(D,dateform) converts each element of the array of serial date
numbers (D) to a string. Date strings with two-character years, e.g.,
12-june-12, are assumed to lie within the 100-year period centered about the
current year.

str = datestr(D,dateform,P) assumes that two-character years lie within
the 100-yearperiod beginning with the pivot year p. The default pivot year is
the current year minus 50 years.

The optional argument dateform specifies the date format of the result.
dateform can be either a number or a string:

dateform (number) dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-1995
03:45

1 'dd-mmm-yyyy' 01-Mar-1995

2 'mm/dd/yy' 03/01/95

3 'mmm' Mar

4 'm' M

5 'mm' 3

6 'mm/dd' 03/01

7 'dd' 1

8 'ddd' Wed

9 'd' W

10 'yyyy' 1995

11 'yy' 95
2-157

datestr
NOTE dateform numbers 0, 1, 2, 6, 13, 14, 15, and 16 produce a string
suitable for input to datenum or datevec. Other date string formats will not
work with these functions.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... may also be part of the
input array D. If you do not specify dateform, the date string format defaults to

• 1, if D contains date information only (01-Mar-1995)

• 16, if D contains time information only (03:45 PM)

• 0, if D contains both date and time information (01-Mar-1995 03:45)

See Also date, datenum, datevec

12 'mmmyy' Mar95

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 03:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 03:45 PM

17 'QQ-YY' Q1–96

18 'QQ' Q1

dateform (number) dateform (string) Example
2-158

datevec
2datevecPurpose Date components

C = datevec(A)
C = datevec(A,P)
[Y,M,D,H,MI,S] = datevec(A)

Description C = datevec(A) splits its input into an n-by-6 array with each row containing
the vector [Y,M,D,H,MI,S]. The first five date vector elements are integers.
Input A can either consist of strings of the sort produced by the datestr
function, or scalars of the sort produced by the datenum and now functions. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

C = datevec(A,P) assumes that two-character years lie within the
100-yearperiod beginning with the pivot year p. The default pivot year is the
current year minus 50 years..

[Y,M,D,H,MI,S] = datevec(A) returns the components of the date vector as
individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

Examples datevec('12/24/1984')

ans =

 1984 12 24 0 0 0

t = '725000.00',

Then datevec(d) and datevec(t) generate [1984 12 24 0 0 0].

See Also clock, datenum, datestr
2-159

dbclear
2dbclearPurpose Clear breakpoints

Syntax dbclear all
dbclear all in mfile
dbclear in mfile
dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if error
dbclear if warning
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as pauses set for
error, warning, and naninf/infnan using dbstop.

dbclear all in mfile removes breakpoints in mfile.

dbclear in mfile removes the breakpoint set at the first executable line in
mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if error removes the pause set using dbstop if error.

dbclear if warning removes the pause set using dbstop if warning.

dbclear if naninf removes the pause set using dbstop if naninf.

dbclear if infnan removes the pause set using dbstop if infnan.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup,
partialpath
2-160

dbcont
2dbcontPurpose Resume execution

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution continues
until either another breakpoint is encountered, an error occurs, or MATLAB
returns to the base workspace prompt.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
2-161

dbdown
2dbdownPurpose Change local workspace context

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
command at least once before you issue this command. dbdown is the opposite
of dbup.

Multiple dbdown commands change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
2-162

dbmex
2dbmexPurpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop
dbmex print

Description dbmex on enables MEX-file debugging for UNIX platforms. To use this option,
first start MATLAB from within a debugger by typing: matlab –Ddebugger,
where debugger is the name of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup
2-163

dbquit
2dbquitPurpose Quit debug mode

Syntax dbquit

Description dbquit immediately terminates the debugger and returns control to the base
workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
2-164

dbstack
2dbstackPurpose Display function call stack

Syntax dbstack
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
In other words, the line number of the most recently executed function call (at
which the current breakpoint occurred) is listed first, followed by its calling
function, which is followed by its calling function, and so on, until the topmost
M-file function is reached.

[ST,I] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields:

The current workspace index is returned in I.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number
2-165

dbstatus
2dbstatusPurpose List all breakpoints

Syntax dbstatus
dbstatus function
s = dbstatus(...)

Description dbstatus lists all breakpoints in effect including error, warning, and naninf.

dbstatus function displays a list of the line numbers for which breakpoints
are set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields:

Use dbstatus class/function or dbstatus private/function or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all of these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number

cond Condition string (error, warning, or
naninf)
2-166

dbstep
2dbstepPurpose Execute one or more lines from a breakpoint

Syntax dbstep
dbstep nlines
dbstep in

Description This command allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep command steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file, execution resumes with the first executable line of the called
file. If there is no call to an M-file on that line, dbstep in is the same as dbstep.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup
2-167

dbstop
2dbstopPurpose Set breakpoints in an M-file function

Syntax dbstop in mfile
dbstop in mfile at lineno
dbstop in mfile at subfun
dbstop if error
dbstop if warning
dbstop if naninf
dbstop if infnan

Description dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. If you have graphical
debugging enabled, the MATLAB Debugger opens with a breakpoint at the
first executable line of mfile. You can then use the debugging utilities, review
the workspace, or issue any valid MATLAB command. Use dbcont or dbstep to
resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is lineno, putting
MATLAB in debug mode. If you have graphical debugging enabled, the
MATLAB Debugger opens mfile with a breakpoint at line lineno. If that line
is not executable, execution stops and the breakpoint is set at the next
executable line following lineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
command. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. If you have graphical debugging enabled, the MATLAB Debugger
opens mfile with a breakpoint at the subfunction specified by subfun. You can
then use the debugging utilities, review the workspace, or issue any valid
MATLAB command. Use dbcont or dbstep to resume execution of mfile. Use
dbquit to exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line
2-168

dbstop
that generated the error. You cannot resume execution after an error. Use
dbquit to exit from the Debugger.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. Use dbcont or dbstep to resume execution.

dbstop if naninf stops execution when any M-file you subsequently run
encounters an infinite value (Inf), putting MATLAB in debug mode, paused at
the line where Inf was encountered. Use dbcont or dbstep to resume
execution. Use dbquit to exit from the Debugger.

dbstop if infnan stops execution when any M-file you subsequently run
encounters a value that is not a number (NaN), putting MATLAB in debug
mode, paused at the line where NaN was encountered. Use dbcont or dbstep to
resume execution. Use dbquit to exit from the Debugger.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Example 1 – Stop at First Executable Line
The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy

n = length(x);

The command

dbstep

advances to the next line, at which point, you can examine the value of n.
2-169

dbstop
Example 2 – Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy(magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K»

and put MATLAB in debug mode.

Example 3 – Stop if Inf
In buggy, if any of the elements of the input x are zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K»

and put MATLAB in debug mode.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype, dbup,
partialpath
2-170

dbtype
2dbtypePurpose List M-file with line numbers

Syntax dbtype function
dbtype function start:end

Description dbtype function displays the contents of the specified M-file function with
line numbers preceding each line. function must be the name of an M-file
function or a MATLABPATH relative partial pathname.

dbtype function start:end displays the portion of the file specified by a
range of line numbers.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath
2-171

dbup
2dbupPurpose Change local workspace context

Syntax dbup

Description This command allows you to examine the calling M-file by using any other
MATLAB command. In this way, you determine what led to the arguments
being passed to the called function.

dbup changes the current workspace context (at a breakpoint) to the workspace
of the calling M-file.

Multiple dbup commands change the workspace context to each previous
calling M-file on the stack until the base workspace context is reached. (It is
not necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype
2-172

dblquad
2dblquadPurpose Numerical double integration

Syntax result = dblquad('fun',inmin,inmax,outmin,outmax)
result = dblquad('fun',inmin,inmax,outmin,outmax,tol,trace)
result = dblquad('fun',inmin,inmax,outmin,outmax,tol,trace,order)

Description result = dblquad('fun',inmin,inmax,outmin,outmax) evaluates the
double integral fun(inner,outer) using the quad quadrature function. inner is
the inner variable, ranging from inmin to inmax, and outer is the outer
variable, ranging from outmin to outmax. The first argument 'fun' is a string
representing the integrand function. This function must be a function of two
variables of the form fout = fun(inner,outer). The function must take a
vector inner and a scalar outer and return a vector fout that is the function
evaluated at outer and each value of inner.

result = dblquad('fun',inmin,inmax,outmin,outmax,tol,trace) passes
tol and trace to the quad function. See the help entry for quad for a description
of the tol and trace parameters.

result = dblquad('fun',inmin,inmax,outmin,outmax,tol,trace,order)
passes tol and trace to the quad or quad8 function depending on the value of
the string order. Valid values for order are 'quad' and 'quad8' or the name
of any user-defined quadrature method with the same calling and return
arguments as quad and quad8.

Example result = dblquad('integrnd',pi,2*pi,0,pi) integrates the function
y*sin(x)+x*cos(y), where x ranges from π to 2π, and y ranges from 0 to π,
assuming:

• x is the inner variable in the integration.

• y is the outer variable.

• the M-file integrnd.m is defined as:

 function out = integrnd(x, y)
 out = y*sin(x)+x*cos(y);

Note that integrnd.m is valid when x is a vector and y is a scalar. Also, x must
be the first argument to integrnd.m since it is the inner variable.
2-173

dblquad
See Also quad, quad8
2-174

ddeadv
2ddeadvPurpose Set up advisory link

Syntax rc = ddeadv(channel,'item','callback')
rc = ddeadv(channel,'item','callback','upmtx')
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)

Description ddeadv sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string specified by
the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

Arguments rc Return code: 0 indicates failure, 1 indicates success.

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

callback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes callback to get passed to the eval function to be
evaluated.

upmtx
(optional)

String specifying the name of a matrix that holds data sent
with an update notification. If upmtx is included, changing
item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.
2-175

ddeadv
Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

format
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.
2-176

ddeexec
2ddeexecPurpose Send string for execution

Syntax rc = ddeexec(channel,'command')
rc = ddeexec(channel,'command','item')
rc = ddeexec(channel,'command','item',timeout)

Description ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

Arguments

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

rc Return code: 0 indicates failure, 1 indicates success.

channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item
(optional)

String specifying the DDE item name for execution. This
argument is not used for many applications. If your application
requires this argument, it provides additional information for
command. Consult your server documentation for more
information.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
2-177

ddeinit
2ddeinitPurpose Initiate DDE conversation

Syntax channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the
conversation. 'topic' is a string specifying the topic for the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv
2-178

ddepoke
2ddepokePurpose Send data to application

Syntax rc = ddepoke(channel,'item',data)
rc = ddepoke(channel,'item',data,format)
rc = ddepoke(channel,'item',data,format,timeout)

Description ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

• String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

Arguments rc Return code: 0 indicates failure, 1 indicates success.

channel Conversation channel from ddeinit.

item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.

data Matrix containing the data to send.

format
(optional)

Scalar specifying the format of the data requested. The value
indicates the Windows clipboard format to use for the data
transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
2-179

ddepoke
Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv
2-180

ddereq
2ddereqPurpose Request data from application

Syntax data = ddereq(channel,'item')
data = ddereq(channel,'item',format)
data = ddereq(channel,'item',format,timeout)

Description ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

Arguments

Examples Assume that we have an Excel spreadsheet stocks.xls. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command:

channel = ddeinit('excel','stocks.xls')

DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3c1:r3c3 and the shares in r6c2:r8c2.

data Matrix containing requested data, empty if function fails.

channel Conversation channel from ddeinit.

item String specifying the server application's DDE item name for
the data requested.

format
(optional)

Two-element array specifying the format of the data requested.
The first element specifies the Windows clipboard format to
use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
2-181

ddereq
To request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50 15.00 78.88

To request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv
2-182

ddeterm
2ddetermPurpose Terminate DDE conversation

Syntax rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates
success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv
2-183

ddeunadv
2ddeunadvPurpose Release advisory link

Syntax rc = ddeunadv(channel,'item')
rc = ddeunadv(channel,'item',format)
rc = ddeunadv(channel,'item',format,timeout)

Description ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

Arguments

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

rc Return code: 0 indicates failure, 1 indicates success.

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

format
(optional)

Two-element array. This must be the same as the format
argument for the corresponding ddeadv call.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
2-184

deal
2dealPurpose Deal inputs to outputs

Syntax [Y1,Y2,Y3,...] = deal(X)
[Y1,Y2,Y3,...] = deal(X1,X2,X3,...)

Description [Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...) is the same as Y1 = X1; Y2 = X2;
Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via comma
separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to
the cell array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...
2-185

deal
Examples Use deal to copy the contents of a 4-element cell array into four separate output
variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

b =

 1
 1
 1

c =

 1 0 0
 0 1 0
 0 0 1

d =

 0
 0
 0
2-186

deal
Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =

Pat

name2 =

Tony
2-187

deblank
2deblankPurpose Strip trailing blanks from the end of a string

Syntax str = deblank(str)
c = deblank(c)

Description Thedeblank function is useful for cleaning up the rows of a character array.

str = deblank(str) removes the trailing blanks from the end of a character
string str.

c = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

Examples A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';

A =

 'MATLAB ' 'SIMULINK '
 'Toolboxes ' 'The MathWorks '

deblank(A)

ans =

 'MATLAB' 'SIMULINK'
 'Toolboxes' 'The MathWorks'
2-188

dec2base
2dec2basePurpose Decimal number to base conversion

Syntax str = dec2base(d,base)
str = dec2base(d,base,n)

Description str = dec2base(d,base) converts the nonnegative integer d to the specified
base.d must be a nonnegative integer smaller than 2^52, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

Examples The expression dec2base(23,2) converts 2310 to base 2, returning the string
'10111'.

See Also base2dec
2-189

dec2bin
2dec2binPurpose Decimal to binary number conversion

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description str = dec2bin(d) returns the binary representation of d as a string. d must be
a nonnegative integer smaller than .

str = dec2bin(d,n) produces a binary representation with at least n bits.

Examples dec2bin(23) returns '10111'.

See Also bin2dec, dec2hex

252
2-190

dec2hex
2dec2hexPurpose Decimal to hexadecimal number conversion

Syntax str = dec2hex(d)
str = dec2hex(d,n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative integer
smaller than .

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

Examples dec2hex(1023) is the string '3ff'.

See Also dec2bin, format, hex2dec, hex2num

252
2-191

deconv
2deconvPurpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector q and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient q and remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

 10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

 10 20 30
r =

 0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also convmtx, conv2, and filter in the Signal Processing Toolbox, and:

conv, residue
2-192

del2
2del2Purpose Discrete Laplacian

Syntax L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function u(x,y) evaluated at the point on a
square grid, then 4∗del2(U) is a finite difference approximation of Laplace’s
differential operator applied to u, that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables u(x,y,z,...), del2(U) is an approximation,

where N is the number of variables in u.

l ∇2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

 
 
 

==

lij
1
4
--- ui 1 j,+ ui 1 j,– ui j 1+, ui j 1–,+ + +() ui j,–=

l ∇2u
2N
----------- 1

2N
--------- d2u

dx2
---------- d2u

d y2
---------- d2u

dz2
---------- …+ + +

 
 
 

==
2-193

del2
Description L = del2(U) where U is a rectangular array is a discrete approximation of

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

L = del2(U) when U is an multidimensional array, returns an approximation
of

where N is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u,1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

l ∇2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

 
 
 

==

∇2u
2N

2-194

del2
Examples The function

has

For this function, 4∗del2(U) is also 4.

[x,y] = meshgrid(–4:4,–3:3);
U = x.∗x+y.∗y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4∗del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

u x y,() x2 y2+=

u∇2 4=
2-195

delaunay
2delaunayPurpose Delaunay triangulation

Syntax TRI = delaunay(x,y)

TRI = delaunay(x,y,'sorted')

Definition Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi polygon.

Description TRI = delaunay(x,y) returns a set of triangles such that no data points are
contained in any triangle's circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into the vectors x and y.

To avoid the degeneracy of collinear data, delaunay adds some random fuzz to
the data. The default fuzz standard deviation 4*sqrt(eps) has been chosen to
maintain about seven digits of accuracy in the data.

tri = delaunay(x,y,fuzz) uses the specified value for the fuzz standard
deviation. It is possible that no value of fuzz produces a correct triangulation.
In this unlikely situation, you need to preprocess your data to avoid collinear
or nearly collinear data.

TRI = delaunay(x,y,'sorted') assumes that the points x and y are sorted
first by y and then by x and that duplicate points have already been eliminated.

Remarks The Delaunay triangulation is used with: griddata (to interpolate scattered
data), convhull, voronoi (to compute the voronoi diagram), and is useful by
itself to create a triangular grid for scattered data points.

Delaunay triangle
Voronoi polygon

x

2-196

delaunay
The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Examples This code plots the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
subplot(1,2,1),...
trimesh(TRI,x,y,zeros(size(x))); view(2),...
axis([0 1 0 1]); hold on;
plot(x,y,'o');
set(gca,'box','on');

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b–'),...
axis([0 1 0 1])
2-197

delaunay
See Also convhull, dsearch, griddata, tsearch, voronoi

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2-198

delete
2deletePurpose Delete files and graphics objects

Syntax delete filename
delete(h)

Description delete filename deletes the named file. Wildcards may be used.

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

Use the functional form of delete, such as delete('filename'), when the
filename is stored in a string.

See Also dir, type
2-199

det
2detPurpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond(X) can check for singular and nearly
singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by Gaussian
elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or –1
det(A) = s∗prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /
2-200

detrend
2detrendPurpose Remove linear trends.

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x,'constant') removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same as
detrend(x).

breakpoints
2-201

detrend
Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend
x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

-0.0000
 1.0000
 -2.0000
 1.0000
 0.0000
 1.0000
 -2.0000
 1.0000
 -0.0000

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit
2-202

diag
2diagPurpose Diagonal matrices and diagonals of a matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square matrix X
of order n+abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

Examples diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement

diag(–m:m)+diag(ones(2∗m,1),1)+diag(ones(2∗m,1),–1)

produces a tridiagonal matrix of order 2∗m+1.

See Also spdiags, tril, triu

k > 0

k < 0

k = 0
2-203

diary
2diaryPurpose Save session in a disk file

Syntax diary
diary filename
diary off
diary on

Description The diary command creates a log of keyboard input and system responses. The
output of diary is an ASCII file, suitable for printing or for inclusion in reports
and other documents.

diary toggles diary mode on and off.

diary filename writes a copy of all subsequent keyboard input and most of
the resulting output (but not graphs) to the named file. If the file already exists,
output is appended to the end of the file.

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

Remarks The function form of the syntax, diary('filename'), is also permitted.

Limitations You cannot put a diary into the files named off and on.
2-204

diff
2diffPurpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)–X(1) X(3)–X(2) ... X(n)–X(n–1)]

If X is a matrix, then diff(X) returns a matrix of column differences:

[X(2:m,:)–X(1:m–1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.
2-205

diff
Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =
 1 1 1 1

z = diff(x,2)
z =
 0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum
2-206

dir
2dirPurpose Directory listing

Syntax dir
dir dirname
names = dir
names = dir('dirname')

Description dir lists the files in the current directory.

dir dirname lists the files in the specified directory. You can use pathnames
and wildcards.

names = dir('dirname') returns the list of files in the specified directory (or
the current directory if dirname is not specified) to an m-by-1 structure with the
fields:

Examples cd /Matlab/Toolbox/Local; dir

Contents.m matlabrc.m siteid.m userpath.m

names = dir

names =

4x1 struct array with fields:
 name
 date
 bytes
 isdir

See Also cd, delete, ls, type, what

name Filename

date Modification date

bytes Number of bytes allocated to the file

isdir 1 if name is a directory; 0 if not
2-207

disp
2dispPurpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X contains a
text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading “X =,” which is not always desirable.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
 0.2113 0.8474 0.2749
 0.0820 0.4524 0.8807
 0.7599 0.8075 0.6538
 0.0087 0.4832 0.4899
 0.8096 0.6135 0.7741

See Also format, int2str, num2str, rats, sprintf
2-208

dlmread
2dlmreadPurpose Read an ASCII delimited file into a matrix

Syntax M = dlmread(filename,delimiter)
M = dlmread(filename,delimiter,r,c)
M = dlmread(filename,delimiter,range)

Description M = dlmread(filename,delimiter) reads data from the ASCII delimited
format filename, using the delimiter delimiter. A comma (,) is the default
delimiter. Use '\t' to specify a tab delimiter.

M = dlmread(filename,delimiter,r,c) reads data from the ASCII delimited
format filename, using the delimiter delimiter, starting at file offset r and c,
where r is the row offset and c is the column offset. r and c are zero based so
that r=0, c=0 specifies the first value in the file, which is the upper left corner.
A comma (,) is the default delimiter. Use '\t' to specify a tab delimiter.

M = dlmread(filename,delimiter,range) imports an indexed or named
range of ASCII-delimited data, using the delimiter delimiter. A comma (,) is
the default delimiter. Use '\t' to specify a tab delimiter. Specify range by

range = [UpperLeftRow UpperLeftColumn LowerRightRow
LowerRightColumn]

or using spreadsheet notation, for example,

range = 'a1..b7'

Remarks dlmread fills empty delimited fields with zero. Data files having lines that end
with a non-space delimiter produce a result that has an additional last column
of zeros.

See Also dlmwrite, textread, wk1read, wk1write
2-209

dlmwrite
2dlmwritePurpose Write a matrix to an ASCII delimited file

Syntax dlmwrite(filename,A,delimiter)
dlmwrite(filename,A,delimiter,r,c)

Description The dlmwrite command a MATLAB matrix.

dlmwrite(filename,A,delimiter) converts matrix A into an ASCII-format
file, readable by spreadsheet programs. The data is written to the upper
left-most cell of the spreadsheet filename, using delimiter to separate matrix
elements. A comma (,) is the default delimiter. Use '\t' to produce
tab-delimited files.

dlmwrite(filename,A,delimiter,r,c) converts matrix A into an
ASCII-format file, readable by spreadsheet programs, using delimiter to
separate matrix elements. The data is written to the spreadsheet filename,
starting at spreadsheet cell r and c, where r is the row offset and c is the
column offset.r and c are zero based so that r=0, c=0 specifies the first value in
the file, which is the upper left corner. A comma (,) is the default delimiter. Use
'\t' to specify a tab delimiter.

Remarks Any elements whose value is 0 will be omitted. For example, the array [1 0 2]
will appear in a file as '1,,2' when the delimiter is a comma.

See Also dlmread, wk1read, wk1write
2-210

dmperm
2dmpermPurpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r] = dmperm(A)
[p,q,r,s] = dmperm(A)

Description If A is a reducible matrix, the linear system Ax = b can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the
diagonal.

p = dmperm(A) returns a row permutation p so that if A has full column rank,
A(p,:) is square with nonzero diagonal. This is also called a maximum
matching.

[p,q,r] = dmperm(A) where A is a square matrix, finds a row permutation p
and a column permutation q so that A(p,q) is in block upper triangular form.
The third output argument r is an integer vector describing the boundaries of
the blocks: The kth block of A(p,q) has indices r(k):r(k+1)–1.

[p,q,r,s] = dmperm(A), where A is not square, finds permutations p and q
and index vectors r and s so that A(p,q) is block upper triangular. The blocks
have indices (r(i):r(i+1)–1, s(i):s(i+1)–1).

In graph theoretic terms, the diagonal blocks correspond to strong Hall
components of the adjacency graph of A.
2-211

doc
2docPurpose Display HTML documentation in a Web browser

Syntax doc
doc function
doc toolbox/function

Description doc launches the Help Desk.

doc function displays the HTML documentation for the MATLAB function
function. If function is overloaded, doc lists the overloaded functions in the
MATLAB command window.

doc toolbox/function displays the HTML documentation for the specified
toolbox function.

See Also help, helpdesk, helpwin, lookfor, type
2-212

docopt
2docoptPurpose Display location of help file directory for UNIX platforms

Syntax docopt
[doccmd,options,docpath]=docopt

Description docopt displays the location of the online help file directory. It is used for UNIX
platforms only. (For the PC, select Preferences from the File menu to view or
change the online help file directory location.) You specify where the online
help information will be located when you install MATLAB. It can be on a disk
or CD-ROM in your local system. If you relocate your online help file directory,
edit the docopt.m file, changing the location in it.

[doccmd,options,docpath]=docopt displays three strings: doccmd, options,
and docpath.

Remarks To globally replace the online help file directory location, update $MATLAB/
toolbox/local/docopt.m.

To override the global setting, copy $MATLAB/toolbox/local/docopt.m to
$HOME/matlab/docopt.m and make changes there. For the changes to take
effect in the current MATLAB session, $HOME/matlab must be on your
MATLAB path.

See Also doc, help, helpdesk, helpwin, lookfor, type

doccmd The command that doc uses to display MATLAB
documentation. The default is netscape.

options Additional configuration options for use with doccmd.

docpath The path to the MATLAB online help files. If docpath is empty,
the DOC command assumes the help files are in the default
location.
2-213

double
2doublePurpose Convert to double precision

Syntax double(X)

Description double(x) returns the double precision value for X. If X is already a double
precision array, double has no effect.

 Remarks double is called for the expressions in for, if, and while loops if the expression
isn't already double precision. double should be overloaded for any object when
it makes sense to convert it to a double precision value.
2-214

dsearch
2dsearchPurpose Search for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index of the nearest (x,y) point to
the point (xi,yi). dsearch requires a triangulation TRI of the points x,y
obtained from delaunay.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi
2-215

echo
2echoPurpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files do not display on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected:

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

See Also function

echo on Turns on the echoing of commands in all script files.

echo off Turns off the echoing of commands in all script files.

echo Toggles the echo state.

echo fcnname on Turns on echoing of the named function file.

echo fcnname off Turns off echoing of the named function file.

echo fcnname Toggles the echo state of the named function file.

echo on all Set echoing on for all function files.

echo off all Set echoing off for all function files.
2-216

edit
2editPurpose Edit an M-file

Syntax edit
edit fun
edit file.ext
edit class/fun
edit private/fun
edit class/private/fun

Description edit opens a new editor window.

edit fun opens the M-file fun.m in the default editor.

edit file.ext opens the specified text file.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

Remarks PC Users
You also can start MATLAB’s Editor/Debugger by selecting New or Open from
the File menu, or by clicking the new (page icon) button or the open (folder
icon) button on the toolbar.

Specify the default editor for MATLAB in the Command Window. Select
Preferences from the File menu. On the General page, select MATLAB’s
Editor/Debugger or specify another.

UNIX Users
At the time when MATLAB is installed, you specify the default editor. To
change the setting, edit your ~home/.Xdefaults file. If the MATLAB Editor is
the default, turn it off in the .Xdefaults file.

matlab*builtInEditor: Off
matlab*graphicalDebugger: Off

Then before starting MATLAB, run

xrdb –merge ~home/.Xdefaults
2-217

edit
If you set the Editor Off, use the option

matlab*externalEditorCommand: $EDITOR $FILE &

to control what the edit command does. MATLAB substitutes $EDITOR with
the name of your default editor and $FILE with the filename. This option can
be modified to any sort of command line you want.

For information about saving Editor options and turning off the Editor during
a MATLAB session, see the “UNIX Handbook” section in Chapter 2 of Using
MATLAB.
2-218

eig
2eigPurpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
d = eig(A,B)
[V,D] = eig(A,B)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that A∗V = V∗D. Matrix D is the canonical form of A—a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

The eigenvectors are scaled so that the norm of each is 1.0. Use
[W,D] = eig(A'); W = W' to compute the left eigenvectors, which satisfy
W∗A = D∗W.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors without a
preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.

d = eig(A,B) returns a vector containing the generalized eigenvalues, if A and
B are square matrices.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
A∗V = B∗V∗D. The eigenvectors are scaled so that the norm of each is 1.0.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the
equation:

Ax λx=
2-219

eig
where A is an n-by-n matrix, x is a length n column vector, and λ is a scalar. The
n values of λ that satisfy the equation are the eigenvalues, and the
corresponding values of x are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues λ, and optionally the eigenvectors x.

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

where both A and B are n-by-n matrices and λ is a scalar. The values of λ that
satisfy the equation are the generalized eigenvalues and the corresponding
values of x are the generalized right eigenvectors.

If B is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

Because B can be singular, an alternative algorithm, called the QZ method, is
necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix V diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies A∗X = X∗D.

Examples The matrix

B = [3 –2 –.9 2*eps;–2 4 –1 –eps;–eps/4 eps/2 –1 0;–.5 –.5 .1 1];

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[VB,DB] = eig(B)
B∗VB – VB∗DB
[VN,DN] = eig(B,'nobalance')
B∗VN – VN∗DN

Ax λBx=

B 1– Ax λx=
2-220

eig
Algorithm For real matrices, eig(X) uses the EISPACK routines BALANC, BALBAK,
ORTHES, ORTRAN, and HQR2. BALANC and BALBAK balance the input matrix.
ORTHES converts a real general matrix to Hessenberg form using orthogonal
similarity transformations. ORTRAN accumulates the transformations used by
ORTHES. HQR2 finds the eigenvalues and eigenvectors of a real upper
Hessenberg matrix by the QR method. The EISPACK subroutine HQR2 is
modified to make computation of eigenvectors optional.

When eig is used with two input arguments, the EISPACK routines QZHES,
QZIT, QZVAL, and QZVEC solve for the generalized eigenvalues via the QZ
algorithm. Modifications handle the complex case.

When eig is used with one complex argument, the solution is computed using
the QZ algorithm as eig(X,eye(X)). Modifications to the QZ routines handle
the special case B = I.

For detailed descriptions of these algorithms, see the EISPACK Guide.

Diagnostics If the limit of 30n iterations is exhausted while seeking an eigenvalue:

Solution will not converge.

See Also balance, condeig, hess, qz, schur

References [1] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines – EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag,
1976.

[2] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines – EISPACK Guide Extension, Lecture Notes in
Computer Science, Vol. 51, Springer-Verlag, 1977.

[3] Moler, C. B. and G.W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems”, SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.
2-221

eigs
2eigsPurpose Find a few eigenvalues and eigenvectors

Syntax d = eigs(A)
d = eigs('Afun',n)
d = eigs(A,B,k,sigma,options)
d = eigs('Afun',n,B,k,sigma,options)
[V,D] = eigs(A,...)
[V,D] = eigs('Afun',n,...)
[V,D,flag] = eigs(A,...)
[V,D,flag] = eigs('Afun',n,...)

Description eigs solves the eigenvalue problem A*v = lambda*v or the generalized
eigenvalue problem A*v = lambda*B*v, where B is symmetric positive definite.
Only a few selected eigenvalues, or eigenvalues and eigenvectors, are
computed, in contrast to eig, which computes all eigenvalues and eigenvectors.

eigs(A) or eigs('Afun',n) solves the eigenvalue problem where the first
input argument is either a square matrix (which can be full or sparse,
symmetric or nonsymmetric, real or complex), or a string containing the name
of an M-file which applies a linear operator to the columns of a given matrix. In
the latter case, the second input argument must be n, the order of the problem.
For example, eigs('fft', ...) is much faster than eigs(F, ...), where F is
the explicit FFT matrix.

With one output argument, d is a vector containing k eigenvalues.With two
output arguments, V is a matrix with k columns and D is a k-by-k diagonal
matrix so that A*V = V*D or A*V = B*V*D. With three output arguments, flag
indicates whether or not the eigenvalues were computed to the desired
tolerance. flag = 0 indicates convergence; flag = 1 indicates no convergence.

The remaining input arguments are optional and can be given in practically
any order:
2-222

eigs
Note 1. If sigma is a scalar with no fractional part, k must be specified first.
For example, eigs(A,2.0) finds the two largest magnitude eigenvalues, not
the six eigenvalues closest to 2.0, as you may have wanted.
Note 2. If sigma is exactly an eigenvalue of A, eigs will encounter problems
when it performs divisions of the form 1/(lambda – sigma), where lambda is
an approximation of an eigenvalue of A. Restart with eigs(A,sigma2), where
sigma2 is close to, but not equal to, sigma.

The options structure specifies certain parameters in the algorithm.

Argument Value

B A matrix the same size as A. If B is not specified,
B = eye(size(A)) is used. B must be a symmetric positive
definite matrix.

k An integer, the number of eigenvalues desired. If k is not
specified, k = min(n,6) eigenvalues are computed.

sigma A scalar shift or a two letter string. If sigma is not specified,
the k eigenvalues largest in magnitude are computed. If
sigma is 0, the k eigenvalues smallest in magnitude are
computed. If sigma is a real or complex scalar, the shift, the
k eigenvalues nearest sigma, are computed. If sigma is one
of the following strings, it specifies the desired eigenvalues:

'lm' Largest Magnitude (the default)

'sm' Smallest Magnitude (same as sigma = 0)

'lr' Largest Real part

'sr' Smallest Real part

'be' Both Ends. Computes k/2 eigenvalues from
each end of the spectrum (one more from the
high end if k is odd.)
2-223

eigs
Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end–k+1:end)

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full(A)).

Parameter Description Default Value

options.tol Convergence tolerance
norm(A*V–V*D) <= tol*norm(A)

1e–10 (symmetric)
1e–6 (nonsymmetric)

options.p Dimension of the Arnoldi basis 2*k

options.maxit Maximum number of iterations 300

options.disp Number of eigenvalues
displayed at each iteration. Set
to 0 for no intermediate output.

20

options.issym Positive if Afun is symmetric 0

options.cheb Positive if A is a string, sigma is
'lr','sr', or a shift, and
polynomial acceleration should
be applied.

0

options.v0 Starting vector for the Arnoldi
factorization

rand(n,1)–.5
2-224

eigs
Examples Example 1:

west0479 is a real 479-by-479 sparse matrix with both real and pairs of
complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs easily
picks out the smallest and largest magnitude eigenvalues.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
dsm = eigs(west0479,'sm')

These plots show the eigenvalues of west0479 as computed by eig and eigs.
The first plot shows the four largest magnitude eigenvalues in the top half of
the complex plane (but not their complex conjugates in the bottom half). The
second subplot shows the six smallest magnitude eigenvalues.

−150 −100 −50 0 50 100 150
10

1

10
2

10
3

10
4

Largest magnitude eigenvalues of west0479

eigs(A,8)
eig(A)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

−0.02

−0.01

0

0.01

0.02
Smallest magnitude eigenvalues of west0479

eigs(A,’SM’)
eig(A)
2-225

eigs
Example 2:

A = delsq(numgrid('C',30)) is a symmetric positive definite matrix of size
632 with eigenvalues reasonably well-distributed in the interval (0 8), but with
18 eigenvalues repeated at 4. eig computes all 632 eigenvalues. eigs computes
the six largest and smallest magnitude eigenvalues of A successfully with:

d = eig(full(A))
dlm = eigs(A)
dsm = eigs(A,'sm')

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A – 4.0*I. This involves divisions of the form 1/(lambda –
4.0), where lambda is an estimate of an eigenvalue of A. As lambda gets closer
to 4.0, eigs fails. We must use sigma near but not equal to 4 to find those 18
eigenvalues.

sigma = 4 – 1e–6
[V,D] = eigs(A,18,sigma)

1 2 3 4 5 6
7.8

7.85

7.9

7.95

8
6 largest magnitude eigenvalues of delsq(numgrid(’C’,30))

eigs(A)
eig(A)

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
6 smallest magnitude eigenvalues of delsq(numgrid(’C’,30))

eigs(A,’SM’)
eig(A)
2-226

eigs
The plot shows the 20 eigenvalues closest to 4 that were computed by eig.

See Also eig, svds

References [1] R. Radke, “A MATLAB Implementation of the Implicitly Restarted Arnoldi
Method for Solving Large-Scale Eigenvalue Problems,” Dept. of Computational
and Applied Math, Rice University, Houston, Texas.

[2] D. C. Sorensen, “Implicit Application of Polynomial Filters in a k-step
Arnoldi Method,” SIAM Journal on Matrix Analysis and Applications,
volume 13, number 1, 1992, pp 357-385.

[3] R. B. Lehoucq and D. C. Sorensen, “Deflation Techniques within an
Implicitly Restarted Iteration,” SIAM Journal on Matrix Analysis and
Applications,
volume 17, 1996, pp 789-821.

2 4 6 8 10 12 14 16 18 20
3.97

3.98

3.99

4

4.01

4.02

4.03
18 repeated eigenvalues of delsq(numgrid(’C’,30)) at 4

eigs(A,18,sigma)
eig(A)
2-227

ellipj
2ellipjPurpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus k instead of the
parameter m. They are related by:

The Jacobi elliptic functions obey many mathematical identities; for a good
sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to
accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

u θd

1 m θsin2–()
1
2

0

φ
∫=

sn u() φsin cn u(), φcos= = dn u(), 1 φsin2–()
1
2

= am u(), φ=

k2 m αsin2= =
2-228

ellipj
Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

ellipj computes successive iterates with:

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:

Limitations The ellipj function is limited to the input domain . Map other
values of M into this range using the transformations described in [1], equations
16.10 and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

a0 1,= b0 1 m–()
1
2

,= c0 m()

1
2

=

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

2φn 1– φn–()sin
cn
an
------ φn()sin=

sn u() φ0sin=

cn u() φ0cos=

dn u() 1 m sn u()2⋅–()
1
2

=

0 m 1≤ ≤
2-229

ellipke
2ellipkePurpose Complete elliptic integrals of the first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is:

where F, the elliptic integral of the first kind, is:

The complete elliptic integral of the second kind,

is:

Some definitions of K and E use the modulus k instead of the parameter m. They
are related by:

K m() F π 2⁄ m(),=

K m() 1 t2–() 1 mt2–()[]
1–
2

0

1

∫ dt 1 m θsin2–()
1–
2

θd
0

π
2

∫= =

E m() E K m()() E π 2⁄ m〈 | 〉,= =

E m() 1 t2–()
1–
2

1 mt2–()
1
2

0

1

∫= dt 1 m θsin2–()
1
2

0

π
2

∫ dθ=

k2 m αsin2= =
2-230

ellipke
Description K = ellipke(M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the Jacobian elliptic functions to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the
triplet of numbers:

ellipke computes successive iterations of ai, bi, and ci with:

stopping at iteration n when cn ≈ 0, within the tolerance specified by eps. The
complete elliptic integral of the first kind is then:

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

a0 1= b0, 1 m–()
1
2

= c0, m()
1
2

=

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

K m() π
2an
----------=

0 m 1≤ ≤
2-231

else
2elsePurpose Conditionally execute statements

Syntax if expression
statements

else
statements

end

Description The else command is used to delineate an alternate block of statements.

if expression
statements

else
statements

end

The second set of statements is executed if the expression has any zero
elements. The expression is usually the result of

expression rop expression

where rop is ==, <, >, <=, >=, or ~=.

See Also break, elseif, end, for, if, return, switch, while
2-232

elseif
2elseifPurpose Conditionally execute statements

Syntax if expression
statements

elseif expression
statements

end

Description The elseif command conditionally executes statements.

if expression
statements

elseif expression
statements

end

The second block of statements executes if the first expression has any zero
elements and the second expression has all nonzero elements. The expression
is usually the result of

expression rop expression

where rop is ==, <, >, <=, >=, or ~=.

else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested, if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only
one terminating end.
2-233

elseif
The two segments

if A if A
x = a x = a

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end
end

end

produce identical results. Exactly one of the four assignments to x is executed,
depending upon the values of the three logical expressions, A, B, and C.

See Also break, else, end, for, if, return, switch, while
2-234

end
2endPurpose Terminate for, while, switch, try, and if statements or indicate last index

Syntax while expression% (or if, for, or try)
statements

end

B = A(index:end,index)

Description end is used to terminate for, while, switch, try, and if statements.
Without an end statement, for, while, switch, try, and if wait for further
input. Each end is paired with the closest previous unpaired for, while,
switch, try, or if and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using end to
grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end
method for the object. The end method should have the calling sequence
end(obj,k,n), where obj is the user object, k is the index in the expression
where the end syntax is used, and n is the total number of indices in the
expression. For example, consider the expression
A(end-1,:)

MATLAB will call the end method defined for A using the syntax
end(A,1,2)

Examples This example shows end used with the for and if statements.

for i = 1:n
if a(i) == 0

a(i) = a(i) + 2;
end

end
2-235

end
In this example, end is used in an indexing expression.

A = magic(5)

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = A(end,2:end)

B =

 18 25 2 9

See Also break, for, if, return, switch, try, while
2-236

eomday
2eomdayPurpose End of month

Syntax E = eomday(Y,M)

Description E = eomday(Y,M) returns the last day of the year and month given by
corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2∗ones(length(y),1)');
y(find(E==29))'

ans =
 Columns 1 through 6
 1904 1908 1912 1916 1920 1924

 Columns 7 through 12
 1928 1932 1936 1940 1944 1948

 Columns 13 through 18
 1952 1956 1960 1964 1968 1972

 Columns 19 through 24
 1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday
2-237

eps
2epsPurpose Floating-point relative accuracy

Syntax eps

Description eps returns the distance from 1.0 to the next largest floating-point number.

The value eps is a default tolerance for pinv and rank, as well as several other
MATLAB functions. On machines with IEEE floating-point arithmetic,
eps = 2^(–52), which is roughly 2.22e–16.

See Also realmax, realmin
2-238

erf, erfc, erfcx, erfinv
2erf, erfc, erfcx, erfinvPurpose Error functions

Syntax Y = erf(X) Error function
Y = erfc(X) Complementary error function
Y = erfcx(X) Scaled complementary error function
X = erfinv(Y) Inverse of the error function

Definition The error function erf(X) is twice the integral of the Gaussian distribution
with 0 mean and variance of :

The complementary error function erfc(X) is defined as:

The scaled complementary error function erfcx(X) is defined as:

For large X, erfcx(X) is approximately .

Description Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. The elements of Y must fall within the domain

Examples erfinv(1) is Inf

erfinv(–1) is –Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

1 2⁄

erf x() 2
π

------- e t2–
0

x

∫ dt=

erfc x() 2
π

------- e t2– td
x

∞
∫ 1 erf x()–= =

erfcx x() ex2erfc x()=

1
π

------- 
 1

x

1– Y 1.< <
2-239

erf, erfc, erfcx, erfinv
Remarks The relationship between the error function and the standard normal
probability distribution is:

x = –5:0.1:5;
standard_normal_cdf = (1 + (erf(x/sqrt(2))))./2;

Algorithms For the error functions, the MATLAB code is a translation of a Fortran program
by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN, March 19,
1990. The main computation evaluates near-minimax rational approximations
from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by two steps of
Newton’s method. The M-file is easily modified to eliminate the Newton
improvement. The resulting code is about three times faster in execution, but
is considerably less accurate.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969
2-240

error
2errorPurpose Display error messages

Syntax error('error_message')

Description error('error_message') displays an error message and returns control to the
keyboard. The error message contains the input string error_message.

The error command has no effect if error_message is a null string.

Examples The error command provides an error return from M-files.

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

The returned error message looks like:

» foo(pi)
??? Error using ==> foo
Wrong number of input arguments

See Also dbstop, disp, lasterr, warning
2-241

errortrap
2errortrapPurpose Continue execution after errors during testing

Syntax errortrap on
errortrap off

Description errortrap on continues execution after errors when they occur. Execution
continues with the next statement in a top level script.

errortrap off (the default) stops execution when an error occurs.
2-242

etime
2etimePurpose Elapsed time

Syntax e = etime(t2,t1)

Description e = etime(t2,t1) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048,1);
t = clock; fft(x); etime(clock,t)
ans =

0.4167

Limitations As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across
these boundaries if needed.

See Also clock, cputime, tic, toc
2-243

eval
2evalPurpose Execute a string containing a MATLAB expression

Syntax eval(expression)
[a1,a2,a3,...] = eval(expression)
eval(expression,catch_expr)

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = eval(expression) executes expression and returns the
results in the specified output variables. Using the eval output argument list
is recommended over including the output arguments in the expression string:

eval('[a1,a2,a3,...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

eval(expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

Examples This example executes a simple MATLAB expression:

A = '1+4';

aval = eval(A)

aval =

 5
2-244

eval
This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

 magic_str = ['M',int2str(n),' = magic(n)'];
 eval(magic_str)

end

See Also assignin, catch, evalin, feval, lasterr, try
2-245

evalc
2evalcPurpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
T = evalc(s1,s2)
[T,X,Y,Z,...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that would normally
be written to the command window is captured and returned in the character
array T (lines in T are separated by \n characters).

T = evalc(s1,s2) is the same as eval(s1,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) is the same as [X,Y,Z,...] = eval(S) except
that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also diary, eval, evalin, input, more
2-246

evalin
2evalinPurpose Execute a string containing a MATLAB expression in a workspace

Syntax evalin(ws,expression)
[a1,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

Description evalin(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base' or 'caller' to denote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws,'[a1,a2,a3,...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin(‘base’,’var’);
2-247

evalin
Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin('caller','evalin(''caller'',''x'')')
doesn't work.

See Also assignin, catch, eval, feval, lasterr, try
2-248

exist
2existPurpose Check if a variable or file exists

Syntax a = exist('item')
ident = exist('item','kind')

Description a = exist('item') returns the status of the variable or file item:

exist('item') returns 2 if item is on the MATLAB search path. item may be
a MATLABPATH relative partial pathname. item may be item.ext, but the
filename extension (ext) cannot be mdl, p, or mex.

ident = exist('item','kind') returns logical true (1) if an item of the
specified kind is found, and returns 0 otherwise. kind may be:

Examples exist can check whether a MATLAB function is built-in or a file:

ident = exist('plot')
ident =

5
plot is a built-in function.

0 If item does not exist.

1 If the variable item exists in the workspace.

2 If item is an M-file or a file of unknown type.

3 If item is a MEX-file.

4 If item is a MDL-file.

5 If item is a built-in MATLAB function.

6 If item is a P-file.

7 If item is a directory.

var Checks only for variables.

builtin Checks only for built-in functions.

file Checks only for files.

dir Checks only for directories.
2-249

exist
See Also dir, help, lookfor, partialpath, what, which, who
2-250

exp
2expPurpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
z = x + i∗y, it returns the complex exponential:

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

ez ex y()cos i y()sin+()=
2-251

expint
2expintPurpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral is defined as:

Another common definition of the exponential integral function is the Cauchy
principal value integral:

which, for real positive x, is related to expint as follows:

expint(–x+i∗0) = –Ei(x) – i∗pi
Ei(x) = real(–expint(–x))

Description Y = expint(X) evaluates the exponential integral for each element of X.

Algorithm For elements of X in the domain , expint uses a series expansion
representation (equation 5.1.11 in [1]):

For all other elements of X, expint uses a continued fraction representation
(equation 5.1.22 in [1]):

e t–

t

x

∞
∫ dt

Ei x() e t– td
∞–

x

∫=

38 2,–[]

Ei x() γ– x 1–()nxn

n n!

n 1=

∞

∑–ln–=
2-252

expint
References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

En z() e z– 1
z+
------ n

1+
------- 1

z+
------ n 1+

1+
------------- 2

z+
------ … 

  angle z() π<,=
2-253

expm
2expmPurpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant e to the matrix power X. Complex results are
produced if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

Algorithm The expm function is built-in, but it uses the Padé approximation with scaling
and squaring algorithm expressed in the file expm1.m.

A second method of calculating the matrix exponential uses a Taylor series
approximation. This method is demonstrated in the file expm2.m. The Taylor
series approximation is not recommended as a general-purpose method. It is
often slow and inaccurate.

A third way of calculating the matrix exponential, found in the file expm3.m, is
to diagonalize the matrix, apply the function to the individual eigenvalues, and
then transform back. This method fails if the input matrix does not have a full
set of linearly independent eigenvectors.

References [1] and [2] describe and compare many algorithms for computing
expm(X). The built-in method, expm1, is essentially method 3 of [2].

Examples Suppose A is the 3-by-3 matrix

1 1 0
0 0 2
0 0 –1

then expm(A) is

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

while exp(A) is

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679
2-254

expm
Notice that the diagonal elements of the two results are equal; this would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

See Also exp, funm, logm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.
2-255

eye
2eyePurpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
Y = eye(size(A))

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros
2-256

factor
2factorPurpose Prime factors

Syntax f = factor(n)
f = factor(symb)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =
 3 41

See Also isprime, primes
2-257

factorial
2factorialPurpose Factorial function

Syntax factorial(n)

Description factorial(n) is the product of all the integers from 1 to n, i.e. prod(1:n).
Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitute,
and is accurate for the first 15 digits.

See Also prod
2-258

fclose
2fclosePurpose Close one or more open files

Syntax status = fclose(fid)
status = fclose('all')

Description status = fclose(fid) closes the specified file, if it is open, returning 0 if
successful and –1 if unsuccessful. Argument fid is a file identifier associated
with an open file (See fopen for a complete description).

status = fclose('all') closes all open files, (except standard input, output,
and error), returning 0 if successful and –1 if unsuccessful.

See Also ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite
2-259

feof
2feofPurpose Test for end-of-file

Syntax eofstat = feof(fid)

Description eofstat = feof(fid) tests whether the end-of-file indicator is set for the file
with identifier fid. It returns 1 if the end-of-file indicator is set, or 0 if it is not.
(See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen
2-260

ferror
2ferrorPurpose Query MATLAB about errors in file input or output

Syntax message = ferror(fid)
message = ferror(fid,'clear')
[message,errnum] = ferror(...)

Description message = ferror(fid) returns the error message message. Argument fid is
a file identifier associated with an open file (See fopen for a complete
description of fid).

message = ferror(fid,'clear') clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file I/O operation associated with the specified file.

If the most recent I/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file I/O
operation. The value of message is a string that may contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

See Also fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite
2-261

feval
2fevalPurpose Function evaluation

Syntax [y1,y2, ...] = feval(function,x1,...,xn)

Description [y1,y2...] = feval(function,x1, ...,xn) If function is a string
containing the name of a function (usually defined by an M-file), then
feval(function,x1,...,xn) evaluates that function at the given arguments.

Examples The statements:

[V,D] = feval('eig',A)
[V,D] = eig(A)

are equivalent. feval is useful in functions that accept string arguments
specifying function names. For example, the function:

function plotf(fun,x)
y = feval(fun,x);
plot(x,y)

can be used to graph other functions.

See Also assignin, builtin, eval, evalin
2-262

fft
2fftPurpose One-dimensional fast Fourier transform

Syntax Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definition The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length N by:

where

is an nth root of unity.

Description Y = fft(X) returns the discrete Fourier transform of vector X, computed with
a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point FFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[],dim) and Y = fft(X,n,dim) apply the FFT operation across
the dimension dim.

X k() x j()ωN
j 1–() k 1–()

j 1=

N

∑=

x j() 1 N⁄() X k()ωN
j 1–() k 1–()–

k 1=

N

∑=

ωN e 2πi–() N⁄=
2-263

fft
Remarks The fft function employs a radix-2 fast Fourier transform algorithm if the
length of the sequence is a power of two, and a slower mixed-radix algorithm if
it is not. See “Algorithm.”

Examples A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t = 0:0.001:0.6;
x = sin(2∗pi∗50∗t)+sin(2∗pi∗120∗t);
y = x + 2∗randn(size(t));
plot(y(1:50))

It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of
the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);

The power spectral density, a measurement of the energy at various
frequencies, is

Pyy = Y.∗ conj(Y) / 512;

Graph the first 257 points (the other 255 points are redundant) on a
meaningful frequency axis.

f = 1000∗(0:256)/512;
plot(f,Pyy(1:257))

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

Algorithm When the sequence length is a power of two, a high-speed radix-2 fast Fourier
transform algorithm is employed. The radix-2 FFT routine is optimized to
perform a real FFT if the input sequence is purely real, otherwise it computes
the complex FFT. This causes a real power-of-two FFT to be about 40% faster
than a complex FFT of the same length.
2-264

fft
When the sequence length is not an exact power of two, an alternate algorithm
finds the prime factors of the sequence length and computes the mixed-radix
discrete Fourier transforms of the shorter sequences.

The time it takes to compute an FFT varies greatly depending upon the
sequence length. The FFT of sequences whose lengths have many prime factors
is computed quickly; the FFT of those that have few is not. Sequences whose
lengths are prime numbers are reduced to the raw (and slow) discrete Fourier
transform (DFT) algorithm. For this reason it is generally better to stay with
power-of-two FFTs unless other circumstances dictate that this cannot be done.
For example, on one machine a 4096-point real FFT takes 2.1 seconds and a
complex FFT of the same length takes 3.7 seconds. The FFTs of neighboring
sequences of length 4095 and 4097, however, take 7 seconds and 58 seconds,
respectively.

See Also dftmtx, filter, and freqz in the Signal Processing Toolbox, and:

fft2, fftshift, ifft
2-265

fft2
2fft2Purpose Two-dimensional fast Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) performs the two-dimensional FFT. The result Y is the same size
as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

Algorithm fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional FFT of each column X, then of each row of
the result. The time required to compute fft2(X) depends strongly on the
number of prime factors in [m,n] = size(X). It is fastest when m and n are
powers of 2.

See Also fft, fftshift, ifft2
2-266

fftn
2fftnPurpose Multidimensional fast Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) performs the N-dimensional fast Fourier transform. The result Y
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

Algorithm fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The time required to compute fftn(X) depends strongly on the
number of prime factors of the dimensions of X. It is fastest when all of the
dimensions are powers of 2.

See Also fft, fft2, ifftn
2-267

fftshift
2fftshiftPurpose Shift DC component of fast Fourier transform to center of spectrum

Syntax Y = fftshift(X)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the
zero frequency component to the center of the array.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps quadrants one and three of X with quadrants two and four.
For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the DC component of the signal is in the upper-left
corner of the two-dimensional FFT. For

Z = fftshift(Y)

this DC component is near the center of the matrix.

See Also fft, fft2, fftn, ifftshift
2-268

fgetl
2fgetlPurpose Return the next line of a file as a string without line terminators

Syntax line = fgetl(fid)

Description line = fgetl(fid) returns the next line of the file with identifier fid. If
fgetl encounters the end of a file, it returns –1. (See fopen for a complete
description of fid.)

The returned string line does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

See Also fgets
2-269

fgets
2fgetsPurpose Return the next line of a file as a string with line terminators

Syntax line = fgets(fid)
line = fgets(fid,nchar)

Description line = fgets(fid) returns the next line for the file with identifier fid. If
fgets encounters the end of a file, it returns –1. (See fopen for a complete
description of fid.)

The returned string line includes the line terminators associated with the text
line. To obtain the string without the line terminators, use fgetl.

line = fgets(fid,nchar) returns at most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

See Also fgetl
2-270

fieldnames
2fieldnamesPurpose Field names of a structure

Syntax names = fieldnames(s)

Description names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

Examples Given the structure:

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command n = fieldnames(mystr) yields

n =

 'name'
 'ID'

See Also getfield, setfield
2-271

fileparts
2filepartsPurpose Return filename parts

Syntax [path,name,ext,ver] = fileparts(file)

Description [path,name,ext,ver] = fileparts(file) returns the path, filename,
extension, and version for the specified file. ver will be nonempty only on VMS
systems. fileparts is platform dependent.

You can reconstruct the file from the parts using

fullfile(path,[name ext ver])

See Also fullfile
2-272

filter
2filterPurpose Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form II transposed
implementation of the standard difference equation (see “Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, filter operates on the first nonsingleton dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
Output zf is a vector of max(size(a),size(b)) or an array of such vectors, one
for each column of X.

[y,zf] = filter(b,a,X,zi) accepts initial conditions and returns the final
conditions, zi and zf respectively, of the filter delays. Input zi is a vector (or
an array of vectors) of length max(length(a),length(b))–1.

y = filter(b,a,X,zi,dim) and

[...] = filter(b,a,X,[],dim) operate across the dimension dim.
2-273

filter
Algorithm The filter function is implemented as a direct form II transposed structure,

or

y(n) = b(1)∗x(n) + b(2)∗x(n–1) + ... + b(nb+1)∗x(n–nb)
– a(2)∗y(n–1) – ... – a(na+1)∗y(n–na)

where n–1 is the filter order, and which handles both FIR and IIR filters [1].

The operation of filter at sample m is given by the time domain difference
equations

The input-output description of this filtering operation in the z-transform
domain is a rational transfer function,

See Also filtfilt in the Signal Processing Toolbox, and:

Σ Z–1

x(m)

–a(n)

Zn–1(m)

. . .

. . .

b(n)

. . . Σ Z–1

Z2(m)

Σ Z–1

Z1(m)

–a(3)

b(3)

–a(2)

b(2)

Σ

b(1)

y(m)

y m() b 1()x m() z1 m 1–()+=

z1 m() b 2()x m() z2 m 1–() a 2() y m()–+=

zn 2– m() b n 1–()x m() zn 1– m 1–() a n 1–() y m()–+=

zn 1– m() b n()x m() a n() y m()–=

...=

Y z() b 1() b 2()z 1– … b nb 1+()z nb–+ ++
1 a 2()z 1– … a na 1+()z na–+ + +

--- X z()=
2-274

filter
filter2

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311–312.
2-275

filter2
2filter2Purpose Two-dimensional digital filtering

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR filter in
the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

• 'full' returns the full two-dimensional correlation. In this case, Y is larger
than X.

• 'same' (the default) returns the central part of the correlation. In this case,
Y is the same size as X.

• 'valid' returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Remarks Two-dimensional correlation is equivalent to two-dimensional convolution with
the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Algorithm Given a matrix X and a two-dimensional FIR filter h, filter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this as
the result. If the shape parameter specifies an alternate part of the convolution
for the result, filter2 returns the appropriate part.

See Also conv2, filter
2-276

find
2findPurpose Find indices and values of nonzero elements

Syntax k = find(x)
[i,j] = find(X)
[i,j,v] = find(X)

Description k = find(X) returns the indices of the array x that point to nonzero elements.
If none is found, find returns an empty matrix.

[i,j] = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This is often used with sparse matrices.

[i,j,v] = find(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

In general, find(X) regards X as X(:), which is the long column vector formed
by concatenating the columns of X.

Examples [i,j,v] = find(X~=0) produces a vector v with all 1s, and returns the row and
column indices.

Some operations on a vector

x = [11 0 33 0 55]';
find(x)

ans =

 1
 3
 5

find(x == 0)

ans =

 2
 4
2-277

find
find(0 < x & x < 10*pi)

ans =

 1

And on a matrix

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

[i,j,v] = find(M > 6)

i = j = v =

 1 1 1
 3 2 1
 2 3 1

See Also nonzeros, sparse

The logical operators &, |, ~

The relational operators <, <=, >, >=, ==, ~=

The colon operator :
2-278

findstr
2findstrPurpose Find one string within another

Syntax k = findstr(str1,str2)

Description k = findstr(str1,str2) finds the starting indices of any occurrences of the
shorter string within the longer.

Examples str1 = 'Find the starting indices of the shorter string.';
str2 = 'the';
findstr(str1,str2)

ans =
 6 30

See Also strcmp, strmatch, strncmp
2-279

fix
2fixPurpose Round towards zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array of
integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a =

 Columns 1 through 4

 –1.9000 –0.2000 3.4000 5.6000

 Columns 5 through 6

 7.0000 2.4000 + 3.6000i

fix(a)

ans =

 Columns 1 through 4

 –1.0000 0 3.0000 5.0000

 Columns 5 through 6

 7.0000 2.0000 + 3.0000i

See Also ceil, floor, round
2-280

flipdim
2flipdimPurpose Flip array along a specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When dim is 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

See Also fliplr, flipud, permute, rot90
2-281

fliplr
2fliplrPurpose Flip matrices left-right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with columns flipped in the left-right direction, that
is, about a vertical axis.

Examples A =
 1 4

2 5
3 6

produces

4 1
5 2
6 3

Limitations Array A must be two dimensional.

See Also flipdim, flipud, rot90
2-282

flipud
2flipudPurpose Flip matrices up-down

Syntax B = flipud(A)

Description B = flipud(A) returns A with rows flipped in the up-down direction, that is,
about a horizontal axis.

Examples A =
 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

Limitations Array A must be two dimensional.

See Also flipdim, fliplr, rot90
2-283

floor
2floorPurpose Round towards minus infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a =

 Columns 1 through 4

 –1.9000 –0.2000 3.4000 5.6000

 Columns 5 through 6

 7.0000 2.4000 + 3.6000i

floor(a)

ans =

 Columns 1 through 4

 –2.0000 –1.0000 3.0000 5.0000

 Columns 5 through 6

 7.0000 2.0000 + 3.0000i

See Also ceil, fix, round
2-284

flops
2flopsPurpose Count floating-point operations

Syntax f = flops
flops(0)

Description f = flops returns the cumulative number of floating-point operations.

flops(0) resets the count to zero.

Examples If A and B are real n-by-n matrices, some typical flop counts for different
operations are:

MATLAB’s version of the LINPACK benchmark is:

n = 100;
A = rand(n,n);
b = rand(n,1);
flops(0)
tic;
x = A\b;
t = toc
megaflops = flops/t/1.e6

Algorithm It is not feasible to count all the floating-point operations, but most of the
important ones are counted. Additions and subtractions are each one flop if real
and two if complex. Multiplications and divisions count one flop each if the
result is real and six flops if it is complex. Elementary functions count one if
real and more if complex.

Operation Flop Count

A+B n^2

A∗B 2∗n^3

A^100 99∗(2∗n^3)

lu(A) (2/3)∗n^3
2-285

fmin
fminPurpose Minimize a function of one variable

NOTE The name of this function has been changed to fminbnd in Release 11
(MATLAB 5.3). While fmin is supported in Release 11, it will be removed in a
future release so please begin using fminbnd.

Syntax x = fmin('fun',x1,x2)
x = fmin('fun',x1,x2,options)
x = fmin('fun',x1,x2,options,P1,P2, ...)
[x,options] = fmin(...)

Description x = fmin('fun',x1,x2) returns a value of x which is a local minimizer of
fun(x) in the interval .

x = fmin('fun',x1,x2,options) does the same as the above, but uses
options control parameters.

x = fmin('fun',x1,x2,options,P1,P2,...) does the same as the above, but
passes arguments to the objective function, fun(x,P1,P2,...). Pass an empty
matrix for options to use the default value.

[x,options] = fmin(...) returns, in options(10), a count of the number of
steps taken.

Arguments

x1 x x2< <

x1,x2 Interval over which function is minimized.

P1,P2... Arguments to be passed to function.
-286

fmin
fun A string containing the name of the function to be minimized.

options A vector of control parameters. Only three of the 18
components of options are referenced by fmin; Optimization
Toolbox functions use the others. The three control options
used by fmin are:

• options(1) — If this is nonzero, intermediate steps in the so-
lution are displayed. The default value of options(1) is 0.

• options(2) — This is the termination tolerance. The default
value is 1.e–4.

• options(14) — This is the maximum number of steps. The
default value is 500.
-287

fmin
Examples fmin('cos',3,4) computes π to a few decimal places.

fmin('cos',3,4,[1,1.e–12]) displays the steps taken to compute π to 12
decimal places.

To find the minimum of the function on the interval (0,2),
write an M-file called f.m.

function y = f(x)
y = x.^3–2∗x–5;

Then invoke fmin with

x = fmin('f', 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 –6.0887

Algorithm The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithms is given in [1].

See Also fmins Minimize a function of several variables
fzero Zero of a function of one variable
foptions in the Optimization Toolbox (or type help foptions).

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

f x() x 3 2x– 5–=
-288

fminbnd
2fminbndPurpose Minimize a function of one variable

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,...)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun (usually an M-file, built-in function, or inline
object) in the interval x1 < x < x2. The function fun should return a scalar
function value f when called with feval: f=feval(fun,x).

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

• Display – Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

• MaxFunEvals – Maximum number of function evaluations allowed.

• MaxIter – Maximum number of iterations allowed.

• TolX – Termination tolerance on x.

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function,
fun(x,P1,P2,...). Use options=[] as a placeholder if no options are set.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes
the exit condition of fminbnd:
2-289

fminbnd
• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations was reached.

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization:

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.

• output.iterations – The number of iterations taken.

Arguments fun is a string containing the name of the function that computes the objective
function to be minimized at the point x. The function returns one argument, a
scalar valued function f to be minimized. For example, if fun='fun', the first
line of the M-file fun.m is

f = fun(x)

fun can also be the name of a built-in function such as fun='sin'.

Alternatively, you can specify an inline object. For example,

fun = inline('sin(x*x)');

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd('cos',3,4) computes π to a few decimal places and gives a
message on termination.

[x,fval,exitflag] =
fminbnd('cos',3,4,optimset('TolX',1e–12,'Display','off'))

computes π to about 12 decimal places, suppresses output, returns the function
value at x, and returns an exitflag of 1.

The argument fun can also be an inline function. To find the minimum of the
function on the interval (0,2), create an inline object f

f = inline('x.^3–2*x–5');

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

f x() x 3 2x– 5–=
2-290

fminbnd
The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 –6.0887

Algorithm The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithm is given in [1].

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.

See Also fminsearch, fzero, optimset, inline

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.
2-291

fmins
fminsPurpose Minimize a function of several variables

NOTE The name of this function has been changed to fminsearch in Release
11 (MATLAB 5.3). While fmins is supported in Release 11, it will be removed
in a future release so please begin using fminsearch.

Syntax x = fmins('fun',x0)
x = fmins('fun',x0,options)
x = fmins('fun',x0,options,[],P1,P2, ...)
[x,options] = fmins(...)

Description x = fmins('fun',x0) returns a vector x which is a local minimizer of
fun(x) near .

x = fmins('fun',x0,options) does the same as the above, but uses options
control parameters.

x = fmins('fun',x0,options,[],P1,P2,...) does the same as above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Pass an empty
matrix for options to use the default value.

[x,options] = fmins(...) returns, in options(10), a count of the number
of steps taken.

Arguments

x0

x0 Starting vector.

P1,P2... Arguments to be passed to fun.

[] Argument needed to provide compatibility with fminu in the
Optimization Toolbox.
-292

fmins
Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function:

The minimum is at (1,1) and has the value 0. The traditional starting point is
(–1.2,1). The M-file banana.m defines the function.

function f = banana(x)
f = 100∗(x(2)–x(1)^2)^2+(1–x(1))^2;

The statements

[x,out] = fmins('banana',[–1.2, 1]);
x
out(10)

fun A string containing the name of the objective function to be
minimized. fun(x) is a scalar valued function of a vector
variable.

options A vector of control parameters. Only four of the 18
components of options are referenced by fmins;
Optimization Toolbox functions use the others. The four
control options used by fmins are:

• options(1) — If this is nonzero, intermediate steps in the
solution are displayed. The default value of options(1) is
0.

• options(2) and options(3) — These are the termination
tolerances for x and function(x), respectively. The de-
fault values are 1.e–4.

• options(14) — This is the maximum number of steps.
The default value is 500.

f x() 100 x2 x1
2–()

2
1 x1–()2+=
-293

fmins
produce

x =

 1.0000 1.0000

ans =

 165

This indicates that the minimizer was found to at least four decimal places in
165 steps.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100∗(x(2)–x(1)^2)^2+(a–x(1))^2;

Then the statement

[x,out] = fmins('banana', [–1.2, 1], [0, 1.e–8], [], sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default.

Algorithm The algorithm is the Nelder-Mead simplex search described in the two refer-
ences. It is a direct search method that does not require gradients or other
derivative information. If n is the length of x, a simplex in n-dimensional space
is characterized by the n+1 distinct vectors which are its vertices. In two-space,
a simplex is a triangle; in three-space, it is a pyramid.

At each step of the search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

See Also fmin Minimize a function of one variable
foptions in the Optimization Toolbox (or type help foptions).
-294

fmins
References [1] Nelder, J. A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer Journal, Vol. 7, p. 308-313.

[2] Dennis, J. E. Jr. and D. J. Woods, “New Computing Environments: Micro-
computers in Large-Scale Computing,” edited by A. Wouk, SIAM, 1987, pp.
116-122.
-295

fminsearch
2fminsearchPurpose Minimize a function of several variables

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) returns a vector x that is a local minimizer of the
function described in fun (usually an M-file, built-in function or an inline
object) near the starting vector x0. fun should return a scalar function value f
evaluated at x when called with feval: f=feval(fun,x).

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

• Display – Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

• MaxFunEvals – Maximum number of function evaluations allowed.

• MaxIter – Maximum number of iterations allowed.

• TolFun – Termination tolerance on the function value.

• TolX – Termination tolerance on x.

x = fminsearch(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun: feval(fun,x,P1,P2,...).
Pass an empty matrix for options to use the default values.

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.
2-296

fminsearch
[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the maximum number of function evaluations was reached.

• < 0 indicates that the function did not converge to a solution.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.

• output.iterations – The number of iterations taken.

Arguments fun is a string containing the name of the function that computes the objective
function to be minimized at the point x. The function returns one argument, a
scalar valued function f to be minimized, given a vector x. For example, if
fun='fun', the first line of the M-file fun.m is

f = fun(x)

fun can also be the name of a built-in function such as fun='norm'.(Note that
norm takes a vector and returns a scalar.)

Alternatively, you can specify an inline object. For example,

fun = inline('sin(x''*x)');

Other arguments are described in the syntax descriptions above.

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function

The minimum is at (1,1) and has the value 0. The traditional starting point is
(–1.2,1). The M-file banana.m defines the function.

function f = banana(x)
f = 100*(x(2)–x(1)^2)^2+(1–x(1))^2;

f x() 100 x2 x1
2–()

2
1 x1–()2+=
2-297

fminsearch
The statement

[x,fval] = fminsearch('banana',[–1.2, 1])

produces

x =

 1.0000 1.0000

fval =

 8.1777e–010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100*(x(2)–x(1)^2)^2+(a–x(1))^2;

Then the statement

[x,fval] = fminsearch('banana', [–1.2, 1], ...
optimset('TolX',1e–8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

Algorithm fminsearch uses the simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,
one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.
2-298

fminsearch
Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only consist
of real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

See Also fminbnd, optimset, inline

References [1] Lagarias, J.C., J. A. Reeds, M.H. Wright, and P.E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions,” May 1,
1997. To appear in the SIAM Journal of Optimization.
2-299

fopen
2fopenPurpose Open a file or obtain information about open files

Syntax fid = fopen(filename,permission)
[fid,message] = fopen(filename,permission,format)
fids = fopen('all')
[filename,permission, format] = fopen(fid)

Description If fopen successfully opens a file, it returns a file identifier fid, and the value
of message is empty. The file identifier can be used as the first argument to
other file input/output routines. If fopen does not successfully open the file, it
returns a –1 value for fid. In that case, the value of message is a string that
helps you determine the type of error that occurred.

Two fids are predefined and cannot be explicitly opened or closed:

fid = fopen(filename,permission) opens the file filename in the mode
specified by permission and returns fid, the file identifier. filename may a
MATLABPATH relative partial pathname. If the file is opened for reading and it is
not found in the current working directory, fopen searches down MATLAB's
search path.

permission can be:

1 Standard output, which is always open for appending (permission
set to 'a')

2 Standard error, which is always open for appending (permission set
to 'a')

'r' Open the file for reading (default).

'r+' Open the file for reading and writing.

'w' Delete the contents of an existing file or create a new file, and
open it for writing.

'w+' Delete the contents of an existing file or create new file, and
open it for reading and writing.

'W' Write without automatic flushing; used with tape drives
2-300

fopen
Files can be opened in binary mode (the default) or in text mode and for some
systems, you must make the distinction when you use fopen. On PC and VMS
systems, you must distinguish between text and binary mode. On UNIX
systems, you do not need to distinguish between binary and text mode. In text
mode, line separators are deleted on input before they reach MATLAB and are
added for output. In binary mode, line separators are not deleted or added. To
open a file in text mode, add a 't' to the permission string, for example, 'rt',
which forces the file to be opened in text mode. Similarly, use a 'b' to force the
file to be opened in binary mode (the default).

[fid,message] = fopen(filename,permission,format) opens a file as
above, returning file identifier and message. In addition, you specify the
numeric format with format, a string defining the numeric format of the file,
allowing you to share files between machines of different formats. If you omit
the format argument, the numeric format of the local machine is used.
Individual calls to fread or fwrite can override the numeric format specified
in a call to fopen.

format can be:

'a' Create and open a new file or open an existing file for writing,
appending to the end of the file.

'a+' Create and open a new file or open an existing file for reading
and writing, appending to the end of the file.

'A' Append without automatic flushing; used with tape drives

'cray' or 'c' Cray floating point with big-endian byte ordering

'ieee–be' or 'b' IEEE floating point with big-endian byte ordering

'ieee–le' or 'l' IEEE floating point with little-endian byte
ordering

'ieee-be.l64' or 's' IEEE floating point with big-endian byte ordering
and 64-bit long data type

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte
ordering and 64-bit long data type
2-301

fopen
fids = fopen('all') returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[filename,permission,format] = fopen(fid) returns the full filename
string, the permission string, and the format string associated with the
specified file. An invalid fid returns empty strings for all output arguments.
Both permission and format are optional.

See Also fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

'native' or 'n' the numeric format of the machine you are
currently running

'vaxd' or 'd' VAX D floating point and VAX ordering

'vaxg' or 'g' VAX G floating point and VAX ordering
2-302

for
2forPurpose Repeat statements a specific number of times

Syntax for variable = expression
statements

end

Description The general format is

for variable = expression
statement

 ...
statement

end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.

Examples Assume n has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(n,n) % Preallocate matrix
for i = 1:n
 for j = 1:n
 a(i,j) = 1/(i+j –1);
 end
end

Step s with increments of –0.1

for s = 1.0: –0.1: 0.0,..., end

Successively set e to the unit n-vectors:

for e = eye(n),..., end

The line

for V = A,..., end
2-303

for
has the same effect as

for j = 1:n, V = A(:,j);..., end

except j is also set here.

See Also break, end, if, return, switch, while

The colon operator :
2-304

format
2formatPurpose Control the output display format

Syntax format
format type

Description MATLAB performs all computations in double precision.The format command
described below changes the display format.

Algorithms The command format + displays +, –, and blank characters for positive,
negative, and zero elements. format hex displays the hexadecimal
representation of a binary double-precision number. format rat uses a

Command Result Example

format Default. Same as short.

format short 5 digit scaled fixed point 3.1416

format long 15 digit scaled fixed point 3.14159265358979

format short e 5 digit floating point 3.1416e+00

format long e 15 digit floating point 3.141592653589793e+
00

format short g Best of 5 digit fixed or
floating

3.1416

format long g Best of 15 digit fixed or
floating

3.14159265358979

format hex Hexadecimal 400921fb54442d18

format bank Fixed dollars and cents 3.14

format rat Ratio of small integers 355/113

format + +,–, blank +

format compact Suppresses excess line feeds

format loose Adds line feeds
2-305

format
continued fraction algorithm to approximate floating-point values by ratios of
small integers. See rat.m for the complete code.

See Also fprintf, num2str, rat, sprintf, spy
2-306

fprintf
2fprintfPurpose Write formatted data to file

Syntax count = fprintf(fid,format,A,...)
fprintf(format,A,...)

Description count = fprintf(fid,format,A,...) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid from fprintf ’s argument list causes output to
appear on the screen, and is the same as writing to standard output (fid = 1).

fprintf(format,A,...) writes to standard output, the screen.

The format string specifies notation, alignment, significant digits, field width,
and other aspects of output format. It can contain ordinary alphanumeric
characters, along with escape characters, conversion specifiers, and other
characters, organized as shown below.

}%–12.5e

Initial % character
Field width and
precision

Conversion
characterFlag
2-307

fprintf
Remarks The fprintf function behaves like its ANSI C language fprintf() namesake
with certain exceptions and extensions, including:

The following tables describe the nonalphanumeric characters found in format
specification strings.

These non-standard subtype
specifiers are supported for
conversion specifiers %o, %u,
%x, and %X.

b The underlying C data type is a
double rather than an unsigned
integer. For example, to print a
double-precision value in
hexadecimal, use a format like
'%bx'.

t The underlying C data type is a
float rather than an unsigned
integer.

When input matrix A is
nonscalar, fprintf is
vectorized.

The format string is cycled through
the elements of A (columnwise)
until all the elements are used up.
It is then cycled in a similar
manner, without reinitializing,
through any additional matrix
arguments.
2-308

fprintf
Escape Characters

Conversion Specifiers
Conversion characters specify the notation of the output.

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

\'' or ''
(two single
quotes)

Single quotation mark

%% Percent character

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2];
insignificant zeros do not print
2-309

fprintf
Other Characters
Other characters can be inserted into the conversion specifier between the %
and the conversion character.

For more information about format strings, refer to the printf() and
fprintf() routines in the documents listed in “References”.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description Example

A minus sign (–) Left-justifies the converted argument in
its field.

%–5.2d

A plus sign (+) Always prints a sign character (+ or –). %+5.2d

Zero (0) Pads with zeros rather than spaces. %05.2d

Digits (field
width)

A digit string that specifies the
minimum number of digits to be printed.

%6f

Digits (precision) A digit string including a period (.) that
specifies the number of digits to be
printed to the right of the decimal point.

%6.2f

Specifier Description
2-310

fprintf
Examples The statements

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

The command

fprintf('A unit circle has circumference %g.\n',2∗pi)

displays a line on the screen:

A unit circle has circumference 6.283186.

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,'It''s Friday.\n')

displays on the screen:

It's Friday.

The commands

B = [8.8 7.7; 8800 7700]
fprintf(1,'X is %6.2f meters or %8.3f mm\n',9.9,9900,B)

display the lines:

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm
2-311

fprintf
Explicitly convert MATLAB double-precision variables to integral values for
use with an integral conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format:

a = [6 10 14 44];
fprintf('%9X\n',a + (a<0)∗2^32)
 6
 A
 E
 2C

See Also fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite

References [1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.
2-312

frameedit
2frameeditPurpose Create and edit print frames for Simulink and Stateflow block diagrams

Syntax frameedit
frameedit filename

Description frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved
using frameedit.

Remarks This illustrates the main features of the PrintFrame Editor.
2-313

frameedit
Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

Use these buttons to create and edit borders.

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add, and
remove cells.

Add and
remove
rows.

Zoom in or
out on
selected cell.

Use these
buttons to align
information
within a cell.

Get help for the PrintFrame Editor.

Use the list box and button to add
information in cells, such as text
or the date.
2-314

frameedit
Printing Simulink Block Diagrams with Print Frames
Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor
For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.
2-315

fread
2freadPurpose Read binary data from file

Syntax [A,count] = fread(fid,size,precision)
[A,count] = fread(fid,size,precision,skip)

Description [A,count] = fread(fid,size,precision) reads binary data from the
specified file and writes it into matrix A. Optional output argument count
returns the number of elements successfully read. fid is an integer file
identifier obtained from fopen.

size is an optional argument that determines how much data is read. If size
is not specified, fread reads to the end of the file. Valid options are:

If fread reaches the end of the file and the current input stream does not
contain enough bits to write out a complete matrix element of the specified
precision, fread pads the last byte or element with zero bits until the full value
is obtained. If an error occurs, reading is done up to the last full value.

precision is a string representing the numeric precision of the values read,
precision controls the number of bits read for each value and the
interpretation of those bits as an integer, a floating-point value, or a character.
The precision string may contain a positive integer repetition factor of the
form 'n*' which prepends one of the strings above, like '40*uchar'. If
precision is not specified, the default 'uchar' (8-bit unsigned character) is
assumed. See “Remarks” for more information.

[A,count] = fread(fid,size,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip after each precision value
is read. With the skip argument present, fread reads in one value and does a
skip of input, reads in another value and does a skip of input, etc. for at most
size times. This is useful for extracting data in noncontiguous fields from fixed

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Reads enough elements to fill an m–by–n matrix, filling in elements
in column order, padding with zeros if the file is too small to fill the
matrix.
2-316

fread
length records. If precision is a bit format like 'bitN' or 'ubitN', skip is
specified in bits.

Remarks Numeric precisions can differ depending on how numbers are represented in
your computer’s architecture, as well as by the type of compiler used to produce
executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision
string formats that you should use whenever you want your code to be portable.

For convenience, MATLAB accepts some C and Fortran data type equivalents
for the MATLAB precisions listed. If you are a C or Fortran programmer, you
may find it more convenient to use the names of the data types in the language
with which you are most familiar.

MATLAB C or Fortran Interpretation

'schar' 'signed char' Signed character; 8 bits

'uchar' 'unsigned char' Unsigned character; 8 bits

'int8' 'integer*1' Integer; 8 bits

'int16' 'integer*2' Integer; 16 bits

'int32' 'integer*4' Integer; 32 bits

'int64' 'integer*8' Integer; 64 bits

'uint8' 'integer*1' Unsigned integer; 8 bits

'uint16' 'integer*2' Unsigned integer; 16 bits

'uint32' 'integer*4' Unsigned integer; 32 bits

'uint64' 'integer*8' Unsigned integer; 64 bits

'float32' 'real*4' Floating-point; 32 bits

'float64' 'real*8' Floating-point; 64 bits

'double' 'real*8' Floating-point; 64 bits
2-317

fread
If you always work on the same platform and do not care about portability,
these platform-dependent numeric precision string formats are also available.

Two formats map to an input stream of bits rather than bytes.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

MATLAB C or Fortran Interpretation

'char' 'char*1' Character; 8 bits

'short' 'short' Integer; 16 bits

'int' 'int' Integer; 32 bits

'long' 'long' Integer; 32 or 64 bits

'ushort' 'unsigned short' Unsigned integer; 16 bits

'uint' 'unsigned int' Unsigned integer; 32 bits

'ulong' 'unsigned long' Unsigned integer; 32 or 64 bits

'float' 'float' Floating-point; 32 bits

MATLAB C or Fortran Interpretation

'bitN' Signed integer; N bits (1 ≤ N ≤ 64)

'ubitN' Unsigned integer; N bits (1 ≤ N ≤ 64)
2-318

freqspace
2freqspacePurpose Determine frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced frequency
responses. freqspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [–n+1:2:n–1]/n.

For n even, both f1 and f2 are [–n:2:n–2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f assuming
N evenly spaced points around the unit circle. For N even or odd, f is (0:2/N:1).
For N even, freqspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the whole
unit circle. In this case, f is 0:2/N:2*(N–1)/N.

See Also meshgrid
2-319

frewind
2frewindPurpose Rewind an open file

Syntax frewind(fid)

Description frewind(fid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device may not work even though
frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite
2-320

fscanf
2fscanfPurpose Read formatted data from file

Syntax A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

Description A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are:

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix
in column order. n can be Inf, but not m.
2-321

fscanf
matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character:

Valid conversion characters are:

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white
space.

An asterisk (*) Skip over the matched value, if the value is matched but
not stored in the output matrix.

A digit string Maximum field width.

A letter The size of the receiving object; for example, h for short as
in %hd for a short integer, or l for long as in %ld for a long
integer or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

}%–12.5e

Initial % character
Field width and
precision

Conversion
characterFlag
2-322

fscanf
Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The example in fprintf generates an ASCII text file called exp.txt that looks
like:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen('exp.txt');
a = fscanf(fid,'%g %g',[2 inf]) % It has two rows now.
a = a';
fclose(fid)

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread
2-323

fseek
2fseekPurpose Set file position indicator

Syntax status = fseek(fid,offset,origin)

Description status = fseek(fid,offset,origin) repositions the file position indicator in
the file with the given fid to the byte with the specified offset relative to
origin.

Arguments

See Also fopen, ftell

fid An integer file identifier obtained from fopen.

offset A value that is interpreted as follows:

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are:

'bof' –1: Beginning of file.

'cof' 0: Current position in file.

'eof' 1: End of file.

status A returned value that is 0 if the fseek operation is successful
and –1 if it fails. If an error occurs, use the function ferror to
get more information.
2-324

ftell
2ftellPurpose Get file position indicator

Syntax position = ftell(fid)

Description position = ftell(fid) returns the location of the file position indicator for
the file specified by fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of –1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite
2-325

full
2fullPurpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization. If S is a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Remarks Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then full(X)
requires space to store m∗n real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than full(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Examples Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and full(S) require about the same number of bytes of storage.

S = sparse(rand(200,200) < 2/3);
A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array (logical)
 S 200X200 318432 sparse array (logical)

See Also sparse
2-326

fullfile
2fullfilePurpose Build full filename from parts

Syntax fullfile(dir1,dir2, ...,filename)

Description fullfile(dir1,dir2, ...,filename) builds a full filename from the
directories and filename specified. This is conceptually equivalent to

f = [dir1 dirsep dir2 dirsep ... dirsep filename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator. Specify the filename as '' to build a pathname
from parts. On VMS, care is taken to handle the cases involving [or].

Examples fullfile(matlabroot,'toolbox/matlab/general/Contents.m') and

fullfile(matlabroot,'toolbox','matlab','general','Contents.m')

produce the same result on UNIX, but only the second one works on all
platforms.
2-327

function
2functionPurpose Function M-files

Description You add new functions to MATLAB’s vocabulary by expressing them in terms
of existing functions. The existing commands and functions that compose the
new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character, and has a filename
extension of .m . The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x–mean).^2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;
2-328

function
Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. In general, if you input the name of something to
MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.

2 Checks to see if the name is an internal function (eig, sin) that was not
overloaded.

3 Checks to see if the name is a local function (local in sense of multifunction
file).

4 Checks to see if the name is a function in a private directory.

5 Locates any and all occurrences of function in method directories and on the
path. Order is of no importance.

At execution, MATLAB:

6 Checks to see if the name is wired to a specific function (2, 3, & 4 above)

7 Uses precedence rules to determine which instance from 5 above to call (we
may default to an internal MATLAB function). Constructors have higher
precedence than anything else.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

See Also nargin, nargout, pcode, varargin, varargout, what
2-329

funm
2funmPurpose Evaluate functions of a matrix

Syntax Y = funm(X,'function')
[Y,esterr] = funm(X,’function’)

Description Y = funm(X,'function') evaluates function using Parlett’s method [1]. X
must be a square matrix, and function any element-wise function.

The commands funm(X,'sqrt') and funm(X,'log') are equivalent to the
commands sqrtm(X) and logm(X). The commands funm(X,'exp') and
expm(X) compute the same function, but by different algorithms. expm(X) is
preferred.

[Y,esterr] = funm(X,’function’) does not print any message, but returns a
very rough estimate of the relative error in the computer result. If X is
symmetric or Hermitian, then its Schur form is diagonal, and funm is able to
produce an accurate result.

Examples The statements

S = funm(X,'sin');
C = funm(X,'cos');

produce the same results to within roundoff error as

E = expm(i∗X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I = eye(size(X)).

Algorithm The matrix functions are evaluated using Parlett’s algorithm, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

See Also expm, logm, sqrtm
2-330

funm
References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.
2-331

fwrite
2fwritePurpose Write binary data to a file

Syntax count = fwrite(fid,A,precision)
count = fwrite(fid,A,precision,skip)

Description count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified numeric precision.
(See “Remarks” for more information.)

The data is written to the file in column order, and a count is kept of the
number of elements written successfully. Argument fid is an integer file
identifier obtained from fopen.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc. until all of A is written. This is useful
for inserting data into noncontiguous fields in fixed-length records. If
precision is a bit format like 'bitN' or 'ubitN', skip is specified in bits.

Remarks Numeric precisions can differ depending on how numbers are represented in
your computer’s architecture, as well as by the type of compiler used to produce
executable code for your computer.

The tables below give C-compliant, platform-independent numeric precision
string formats that you should use whenever you want your code to be portable.

For convenience, MATLAB accepts some C and Fortran data type equivalents
for the MATLAB precisions listed. If you are a C or Fortran programmer, you
may find it more convenient to use the names of the data types in the language
with which you are most familiar.

MATLAB C or Fortran Interpretation

'schar' 'signed char' Signed character; 8 bits

'float32' 'real*4' Floating-point; 32 bits

'float64' 'real*8' Floating-point; 64 bits
2-332

fwrite
If you always work on the same platform and do not care about portability,
these platform-dependent numeric precision string formats are also available.

'int8' 'integer*1' Integer; 8 bits

'int16' 'integer*2' Integer; 16 bits

'int32' 'integer*4' Integer; 32 bits

'int64' 'integer*8' Integer; 64 bits

'uchar' 'unsigned char' Unsigned character; 8 bits

'uint8' 'integer*1' Unsigned integer; 8 bits

'uint16' 'integer*2' Unsigned integer; 16 bits

'uint32' 'integer*4' Unsigned integer; 32 bits

'uint64' 'integer*8' Unsigned integer; 64 bits

'double' 'double' Floating-point; 64 bits

MATLAB C or Fortran Interpretation

'char' 'char*1' Character; 8 bits

'short' 'short' Integer; 16 bits

'int' 'int' Integer; 32 bits

'long' 'long' Integer; 32 or 64 bits

'ushort' 'unsigned short' Unsigned integer; 16 bits

'uint' 'unsigned int' Unsigned integer; 32 bits

'ulong' 'unsigned long' Unsigned integer; 32 or 64 bits

'float' 'float' Floating-point; 32 bits

MATLAB C or Fortran Interpretation
2-333

fwrite
Two formats map to an input stream of bits rather than bytes:

Examples fid = fopen('magic5.bin','wb');
fwrite(fid,magic(5),'integer*4')

creates a 100-byte binary file, containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

MATLAB C or Fortran Interpretation

'bitN' Signed integer; N bits (1 ≤ N ≤ 64)

'ubitN' Unsigned integer; N bits (1 ≤ N ≤ 64)
2-334

fzero
2fzeroPurpose Zero of a function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0. fun (usually an M-file,
built-in function, or an inline object) should take a scalar real value and return
a real scalar value when called with feval: f=feval(fun,x). The value x
returned by fzero is near a point where fun changes sign, or NaN if the search
fails.

x = fzero(fun,x0) where x0 is a vector of length two, assumes x0 is an
interval where the sign of fun(x0(1)) differs from the sign of fun(x0(2)). An
error occurs if this is not true. Calling fzero with such an interval guarantees
fzero will return a value near a point where fun changes sign.

x = fzero(fun,x0) where x0 is a scalar value, uses x0 as a starting guess.
fzero looks for an interval containing a sign change for fun and containing x0.
If no such interval is found, NaN is returned. In this case, the search terminates
when the search interval is expanded until an Inf, NaN, or complex value is
found.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

• Display – Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

• TolX – Termination tolerance on x.

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments
passed to the function, f=feval(fun,x,P1,P2,...). Pass an empty matrix for
options to use the default values.
2-335

fzero
[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

• > 0 indicates that the function found a zero x.

• < 0 then no interval was found with a sign change, or NaN or Inf function
value was encountered during search for an interval containing a sign
change, or a complex function value was encountered during search for an
interval containing a sign change.

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

• output.algorithm – The algorithm used.

• output.funcCount – The number of function evaluations.

• output.iterations – The number of iterations taken.

NOTE For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

Arguments fun is a string containing the name of a file in which an arbitrary function of
one variable is defined. fun can also be an inline object.

Other arguments are described in the syntax descriptions above.

Examples Calculate π by finding the zero of the sine function near 3.

x = fzero('sin',3)
x =
 3.1416

To find the zero of cosine between 1 and 2

x = fzero('cos',[1 2])
x =

1.5708
2-336

fzero
Note that cos(1) and cos(2) differ in sign.

To find a zero of the function

write an M-file called f.m.

function y = f(x)
y = x.^3–2*x–5;

To find the zero near 2

z = fzero('f',2)
z =
 2.0946

Because this function is a polynomial, the statement roots([1 0 –2 –5]) finds
the same real zero, and a complex conjugate pair of zeros.

 2.0946
 –1.0473 + 1.1359i
 –1.0473 – 1.1359i

fzero('abs(x)+1', 1) returns NaN since this function does not change sign
anywhere on the real axis (and does not have a zero as well).

Algorithm The fzero command is an M-file. The algorithm, which was originated by T.
Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

Limitations The fzero command defines a zero as a point where the function crosses the
x-axis. Points where the function touches, but does not cross, the x-axis are not
valid zeros. For example, y = x.^2 is a parabola that touches the x-axis at 0.
Because the function never crosses the x-axis, however, no zero is found. For
functions with no valid zeros, fzero executes until Inf, NaN, or a complex value
is detected.

See Also roots, fminbnd, inline, optimset

f x() x3 2x– 5–=
2-337

fzero
References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.
2-338

gallery
2galleryPurpose Test matrices

Syntax [A,B,C,...] = gallery('tmfun',P1,P2,...)
gallery(3) a badly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

Description [A,B,C,...] = gallery('tmfun',P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2,... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2,... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.
2-339

gallery
cauchy—Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix, C(i,j) = 1/
(x(i)+y(j)). Arguments x and y are vectors of length n. If you pass in scalars
for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x. That is, the
command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

Test Matrices

cauchy chebspec chebvand chow

circul clement compar condex

cycol dorr dramadah fiedler

forsythe frank gearmat grcar

hanowa house invhess invol

ipjfact jordbloc kahan kms

krylov lauchli lehmer lesp

lotkin minij moler neumann

orthog parter pei poisson

prolate rando randhess randsvd

redheff riemann ris rosser

smoke toeppd tridiag triw

vander wathen wilk
2-340

gallery
chebspec—Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (Cn = 0) and has the
null vector ones(n,1). The matrix C is similar to a Jordan block of size n with
eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix V of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev Vandermonde
matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

C = gallery('chebvand',m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If p is a vector, then: where is the Chebyshev
polynomial of degree i–1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that A = H(alpha) +
delta∗eye(n), where and argument n is the order of the
Chow matrix. alpha and delta are scalars with default values 1 and 0,
respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of the
eigenvalues are equal to 4∗alpha∗cos(k∗pi/(n+2))^2, k=1:n–p.

C i j,() Ti 1– p j()()= Ti 1–

Hi j, α() α i j– 1+()
=

2-341

gallery
circul—Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity,
then the inner product of v with w = [1 t t2 ... tn] is an eigenvalue of C and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,sym) returns an n by n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n–1, n–3, n–5, ..., as well as (for odd n) a
final eigenvalue of 1 or 0.

Argument sym determines whether the Clement matrix is symmetric. For
sym = 0 (the default) the matrix is nonsymmetric, while for sym = 1, it is
symmetric.

compar—Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) – tril(B,–1) – triu(B,1), where B = abs(A).
compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as compar(A).
2-342

gallery
condex—Counter-examples to matrix condition number estimators

A = gallery('condex',n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k as follows:

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with cyclically
repeating columns, where one “cycle” consists of randn(m,k). Thus, the rank of
matrix A cannot exceed k. k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining a row
diagonally dominant, tridiagonal order n matrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than the
defining vectors.

k = 1 4-by-4 LINPACK (rcond)

k = 2 3-by-3 LINPACK (rcond)

k = 3 arbitrary LINPACK (rcond) (independent of theta)

k = 4 n ≥ 4 SONEST (Higham 1988) (default)
2-343

gallery
dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s for
which mu(A) = norm(inv(A),'fro') is relatively large, although not necessarily
maximal. An anti-Hadamard matrix A is a matrix with elements 0 or 1 for
which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

fiedler—Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)–n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic Numerical
Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and Academic
Press, New York, 1977, p. 159] and attributed to Fiedler. These indicate that
inv(A) is tridiagonal except for nonzero (1,n) and (n,1) elements.

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse of A has
integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has integer
entries.

k = 3 A has maximal determinant among lower Hessenberg (0,1)
matrices.
det(A) = the nth Fibonacci number. A is Toeplitz. The eigenvalues
have an interesting distribution in the complex plane.
2-344

gallery
forsythe—Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha. The
default values of scalars alpha and lambda are sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A–t∗I) = (lambda–t)^N – alpha∗(–1)^n.

frank—Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the
(n,n+1–abs(j)) position, and zeros everywhere else. Arguments i and j default
to n and –n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2∗cos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2a), ..., sin(w+Na)], where a and w are given in Gear, C.
W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math. Comp.,
Vol. 23 (1969), pp. 119–125.

grcar—Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with –1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.
2-345

gallery
hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix of the form:

[d∗eye(m) –diag(1:m)
diag(1:m) d∗eye(m)]

Argument n is an even integer n=2∗m. Matrix A has complex eigenvalues of the
form d ± k∗i, for 1 <= k <= m. The default value of d is –1.

house—Householder matrix

[v, beta] = gallery('house',x) takes x, a scalar or n-element column
vector, and returns v and beta such that eye(n,n) – beta∗v∗v' is a
Householder matrix. A Householder matrix H satisfies the relationship

H*x = –sign(x(1))*norm(x)*e1

where e1 is the first column of eye(n,n). Note that if x is complex, then
sign(x) = exp(i∗arg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0, then v = 0 and beta = 1.

invhess—Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y a length n–1
vector, returns the matrix whose lower triangle agrees with that of
ones(n,1)∗x' and whose strict upper triangle agrees with that of
[1 y]∗ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to –x(1:n–1).

If x is a scalar, invhess(x) is the same as invhess(1:x).
2-346

gallery
invol—Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A∗A = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)–A)/2 and B = (eye(n)+A)/2 are idempotent (B∗B = B).

ipjfact—Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel matrix, and d,
the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of A are A(i,j) = (i+j)! If k = 1, then the elements of A are
A(i,j) = 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

kahan—Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pert∗eps∗diag([n:–1:1]). The default pert is 25, which ensures no
interchanges for gallery('kahan',n) up to at least n = 90 in IEEE arithmetic.

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho^(abs(i–j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.
2-347

gallery
The KMS matrix A has these properties:

• An LDL' factorization with L = inv(triw(n,–rho,1)'), and
D(i,i) = (1–abs(rho)^2)∗eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov—Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j–1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1), and j = n.

B = gallery('krylov',n) is the same as gallery('krylov',(randn(n)).

lauchli—Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'∗A. Argument mu defaults to
sqrt(eps).

lehmer—Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4∗n∗n.
2-348

gallery
lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [–2∗N–3.5, –4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix
with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with D = diag(1!,2!,...,n!).

lotkin—Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its first row
altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude. Its inverse has integer
entries and is known explicitly.

minij—Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive definite
matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to –1 times the second difference
matrix, except its (n,n) element is 1.

• Givens’ matrix, 2∗A–ones(size(A)), has tridiagonal inverse and eigenvalues
0.5∗sec((2∗r–1)∗pi/(4∗n))^2, where r=1:n.

• (n+1)∗ones(size(A))–A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive definite
n-by-n matrix U'∗U, where U = triw(n,alpha).

For the default alpha = –1, A(i,j) = min(i,j)–2, and A(i,i) = i. One of the
eigenvalues of A is small.
2-349

gallery
neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery('neumann',n) returns the singular, row-diagonally dominant
matrix resulting from discretizing the Neumann problem with the usual
five-point operator on a regular mesh. Argument n is a perfect square integer
n = m2 or a two-element vector. C is sparse and has a one-dimensional null
space with null vector ones(n,1).

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

k = 1 Q(i,j) = sqrt(2/(n+1)) ∗ sin(i∗j∗pi/(n+1))
Symmetric eigenvector matrix for second difference matrix. This
is the default.

k = 2 Q(i,j) = 2/(sqrt(2∗n+1)) ∗ sin(2∗i∗j∗pi/(2∗n+1))
Symmetric.

k = 3 Q(r,s) = exp(2∗pi∗i∗(r–1)∗(s–1)/n) / sqrt(n)
Unitary, the Fourier matrix. Q^4 is the identity. This is
essentially the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2∗pi∗(i–1)∗(j–1)/n) +
cos(2∗pi∗(i–1)∗(j–1)/n)
Symmetric matrix arising in the Hartley transform.

k = –1 Q(i,j) = cos((i–1)∗(j–1)∗pi/(n–1))
Chebyshev Vandermonde-like matrix, based on extrema of
T(n–1).

k = –2 Q(i,j) = cos((i–1)∗(j–1/2)∗pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).
2-350

gallery
parter—Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that
C(i,j) = 1/(i–j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are
very close to pi.

pei—Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the symmetric
matrix alpha∗eye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or –n.

poisson—Block tridiagonal matrix from Poisson's equation (sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse) matrix of
order n^2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

• The default value of w is 0.25.
2-351

gallery
randhess—Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n–1 Givens rotations.

rando—Random matrix composed of elements –1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

randsvd—Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is
n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only kl is
present, ku defaults to kl.

Distribution mode may be:

k = 1 A(i,j) = 0 or 1 with equal probability (default)

k = 2 A(i,j) = –1 or 1 with equal probability

k = 3 A(i,j) = –1, 0 or 1 with equal probability

1 One large singular value

2 One small singular value

3 Geometrically distributed singular values (default)
2-352

gallery
Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, A is a random, full, symmetric, positive definite matrix with
cond(A) = –kappa and eigenvalues distributed according to mode. Arguments kl
and ku, if present, are ignored.

redheff—Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s defined by
A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

• (n–floor(log2(n)))–1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately –sqrt(n)

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if det(A) = O(n^(1/2+epsilon)) for
every epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(Z) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

riemann—Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if det(A) = O(n! n^(–1/2+epsilon)) for every
epsilon > 0.

4 Arithmetically distributed singular values

5 Random singular values with uniformly distributed logarithm

< 0 If mode is –1, –2, –3, –4, or –5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

1 One large singular value
2-353

gallery
The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i–1 if i divides j, and B(i,j) = –1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m–1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m–sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix with
elements

A(i,j) = 0.5/(n–i–j+1.5)

The eigenvalues of A cluster around and . This matrix was invented
by F.N. Ris.

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the Francis QR algorithm, as perfected by
Wilkinson and implemented in EISPACK and MATLAB, has no trouble with it.
The matrix is 8-by-8 with integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

π 2⁄ π 2⁄–
2-354

gallery
A = gallery('smoke',n,1) returns the same except that element A(n,1) is
zero.

The eigenvalues of smoke(n,1) are the nth roots of unity; those of smoke(n) are
the nth roots of unity times 2^(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for
certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)∗T(theta(1)) + ... + w(m)∗T(theta(m))

where T(theta(k)) has (i,j) element cos(2∗pi∗theta(k)∗(i–j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

toeppen—Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b,
P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e are scalars.

By default, (a,b,c,d,e) = (1,–10,0,10,1), yielding a matrix of Rutishauser.
This matrix has eigenvalues lying approximately on the line segment
2∗cos(2∗t) + 20∗i∗sin(t).

tridiag—Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must have
length(d)–1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal
elements d, and superdiagonal elements e. This matrix has eigenvalues

d + 2∗sqrt(c∗e)∗cos(k∗pi/(n+1))

where k = 1:n. (see [1].)
2-355

gallery
A = gallery('tridiag',n) is the same as
A = gallery('tridiag',n,–1,2,–1), which is a symmetric positive definite
M-matrix (the negative of the second difference matrix).

triw—Upper triangular matrix discussed by Wilkinson and others

A = gallery('triw',n,alpha,k) returns the upper triangular matrix with
ones on the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-vector, in which case the matrix is n(1)-by-n(2) and upper
trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices, J. Reine
Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4∗n))^2,

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is approximately
abs(alpha)^n∗sin(pi/(4∗n–2)).

Adding –2^(2–n) to the (n,1) element makes triw(n) singular, as does adding
–2^(1–n) to all the elements in the first column.

vander—Vandermonde matrix

A = gallery('vander',c) returns the Vandermonde matrix whose second to
last column is c. The jth column of a Vandermonde matrix is given by
A(:,j) = C^(n-j).

wathen—Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where

 n = 3∗nx∗ny + 2∗nx + 2∗ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of
8-node (serendipity) elements in two dimensions. A is symmetric, positive
definite for any (positive) values of the “density,” rho(nx,ny), which is chosen
randomly in this routine.
2-356

gallery
A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix such
that

0.25 <= eig(inv(D)∗A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk—Various matrices devised or discussed by Wilkinson

[A,b] = gallery('wilk',n) returns a different matrix or linear system
depending on the value of n:

 n MATLAB Code Result

n = 3 [A,b] =
gallery('wilk',3)

Upper triangular system Ux=b
illustrating inaccurate solution.

n = 4 [A,b] =
gallery('wilk',4)

Lower triangular system Lx=b,
ill-conditioned.

n = 5 A = gallery('wilk',5) hilb(6)(1:5,2:6)∗1.8144. A
symmetric positive definite
matrix.

n = 21 A = gallery('wilk',21) W21+, tridiagonal matrix.
Eigenvalue problem.
2-357

gallery
See Also hadamard, hilb, invhilb, magic, wilkinson

References The MATLAB gallery of test matrices is based upon the work of Nicholas J.
Higham at the Department of Mathematics, University of Manchester,
Manchester, England. Additional detail on these matrices is documented in
The Test Matrix Toolbox for MATLAB (Version 3.0) by N. J. Higham,
September, 1995. To obtain this report in pdf format, enter the doc command
at the MATLAB prompt and select the item Related Papers > Test Matrix
Toolbox under the Full Documentation Set entry on the Help Desk main
screen. This report is also available via anonymous ftp from The MathWorks at
/pub/contrib/linalg/testmatrix/testmatrix.ps or World Wide Web
(ftp://ftp.ma.man.ac.uk/pub/narep or http://www.ma.man.ac.uk/MCCM/
MCCM.html). Further background may be found in the book Accuracy and
Stability of Numerical Algorithms, Nicholas J. Higham, SIAM, 1996.
2-358

gamma, gammainc, gammaln
2gamma, gammainc, gammalnPurpose Gamma functions

Syntax Y = gamma(A) Gamma function
Y = gammainc(X,A) Incomplete gamma function
Y = gammaln(A) Logarithm of gamma function

Definition The gamma function is defined by the integral:

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

The incomplete gamma function is:

Description Y = gamma(A) returns the gamma function at the elements of A. A must be real.

Y = gammainc(X,A) returns the incomplete gamma function of corresponding
elements of X and A. Arguments X and A must be real and the same size (or
either can be scalar).

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the underflow
and overflow that may occur if it is computed directly using log(gamma(A)).

Algorithm The computations of gamma and gammaln are based on algorithms outlined in
[1]. Several different minimax rational approximations are used depending
upon the value of A. Computation of the incomplete gamma function is based
on the algorithm in [2].

Γ a() e t– ta 1– td
0

∞

∫=

P x a,() 1
Γ a()
------------ e t– ta 1– td

0

x

∫=
2-359

gamma, gammainc, gammaln
References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson
(ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sec. 6.5.
2-360

gcd
2gcdPurpose Greatest common divisor

Syntax G = gcd(A,B)
[G,C,D] = gcd(A,B)

Description G = gcd(A,B) returns an array containing the greatest common divisors of the
corresponding elements of integer arrays A and B. By convention, gcd(0,0)
returns a value of 0; all other inputs return positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array G, and
the arrays C and D, which satisfy the equation: A(i).∗C(i) + B(i).∗D(i) =
G(i). These are useful for solving Diophantine equations and computing
elementary Hermite transformations.

Examples The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer entries and
determinant = 1 (a unimodular matrix) such that:

E ∗ [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the command
[g,c,d] = gcd(a,b).

The matrix E equals:

c d
–b/g a/g

In the case where a = 2 and b = 4:

[g,c,d] = gcd(2,4)
g =
 2
c =
 1
d =
 0
2-361

gcd
So that:

E =
1 0
–2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g,c,d] = gcd(30,56)
g =
 2
c =

–13
d =
 7

By the definition, for scalars c and d:

30(–13) + 56(7) = 2,

Multiplying through by 8/2:

30(–13∗4) + 56(7∗4) = 8

Comparing this to the original equation, a solution can be read by inspection:

x = (–13∗4) = –52; y = (7∗4) = 28

See Also lcm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2, Addison-Wesley:
Reading MA, 1973. Section 4.5.2, Algorithm X.
2-362

getfield
2getfieldPurpose Get field of structure array

Syntax f = getfield(s,'field')
f = getfield(s,{i,j},'field',{k})

Description f = getfield(s,'field'), where s is a 1-by-1 structure, returns the contents
of the specified field. This is equivalent to the syntax f = s.field.

f = getfield(s,{i,j},'field',{k}) returns the contents of the specified
field. This is equivalent to the syntax f = s(i,j).field(k). All subscripts
must be passed as cell arrays—that is, they must be enclosed in curly braces
(similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure:

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command f = getfield(mystr,{2,1},'name') yields

f =

gertrude

To list the contents of all name (or other) fields, embed getfield in a loop:

for i = 1:2
 name{i} = getfield(mystr,{i,1},'name');
end
name

name =

 'alice' 'gertrude'

See Also setfield
2-363

global
2globalPurpose Define a global variable

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace and nonfunction scripts. However, if several functions, and
possibly the base workspace, all declare a particular name as global, they all
share a single copy of that variable. Any assignment to that variable, in any
function, is available to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initializied to the empty matrix.

If a variable with the same name as the global variable already exists in the
current workspace, MATLAB issues a warning and changes the value of that
variable to match the global.

Remarks Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the current
workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear the global
link from the workspace. This avoids declaring the global after it has been
referenced. For example:

uicontrol('style','pushbutton',’CallBack’,...

'global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear MY_GLOBAL',...

'string','count')

Examples Here is the code for the functions tic and toc (some comments abridged).
These functions manipulate a stopwatch-like timer. The global variable TICTOC
2-364

global
is shared by the two functions, but it is invisible in the base workspace or in any
other functions that do not declare it.

function tic
% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
 elapsed_time = etime(clock,TICTOC)
else
 t = etime(clock,TICTOC);
end

See Also clear, isglobal, who
2-365

gmres
2gmresPurpose Generalized Minimum Residual method (with restarts)

Syntax x = gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
x = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag] = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag,relres] = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] =

gmres(A,b,restart,tol,maxit,M1,M2,x0)

Description x = gmres(A,b,restart) attempts to solve the system of linear equations
A*x = b for x. The coefficient matrix A must be square and the column vector
b must have length n, where A is n-by-n. When A is not explicitly available as a
matrix, you can express A as an operator afun that returns the matrix-vector
product A*x for afun(x). This operator can be the name of an M-file, a string
expression, or an inline object. In this case n is taken to be the length of the
column vector b.

gmres will start iterating from an initial estimate that, by default, is an all zero
vector of length n. gmres will restart itself every restart iterations using the
last iterate from the previous outer iteration as the initial guess for the next
outer iteration. Iterates are produced until the method either converges, fails,
or has computed the maximum number of iterations. Convergence is achieved
when an iterate x has relative residual norm(b-A*x)/norm(b) less than or
equal to the tolerance of the method. The default tolerance is 1e–6. The default
maximum number of iterations is the minimum of n/restart and 10. No
preconditioning is used.

gmres(A,b,restart,tol) specifies the tolerance of the method, tol.

gmres(A,b,restart,tol,maxit) additionally specifies the maximum number
of iterations, maxit.
2-366

gmres
gmres(A,b,restart,tol,maxit,M) and gmres(A,b,restart,tol,maxit,M1,
M2) use left preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
([]), it is considered to be the identity matrix, equivalent to no preconditioning
at all. Since systems of equations of the form M*y = r are solved using
backslash within gmres, it is wise to factor preconditioners into their LU factors
first. For example, replace gmres(A,b,restart,tol,maxit,M) with:

[M1,M2] = lu(M);
gmres(A,b,restart,tol,maxit,M1,M2).

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial estimate
x0. If x0 is given as the empty matrix ([]), the default all zero vector is used.

x = gmres(A,b,restart,tol,maxit,M1,M2,x0) returns a solution x. If gmres
converged, a message to that effect is displayed. If gmres failed to converge
after the maximum number of iterations or halted for any reason, a warning
message is printed displaying the relative residual
norm(b–A*x)/norm(b) and the iteration number at which the method stopped
or failed.

[x,flag] = gmres(A,b,restart,tol,maxit,M1,M2,x0) returns a solution x
and a flag that describes the convergence of gmres.

Flag Convergence

0 gmres converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 gmres iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)
2-367

gmres
Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmres(A,b,restart,tol,maxit,M1,M2,x0) also returns
the relative residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = gmres(A,b,restart,tol,maxit,M1,M2,x0) also
returns both the outer and inner iteration numbers at which x was computed.
The outer iteration number iter(1) is an integer between 0 and maxit. The
inner iteration number iter(2) is an integer between 0 and restart.

[x,flag,relres,iter,resvec] =
gmres(A,b,restart,tol,maxit,M1,M2,x0) also returns a vector of the
residual norms at each inner iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0 and iter = [i j], resvec is of
length (i–1)*restart+j+1 and resvec(end) ≤ tol*norm(b).

Examples load west0479
A = west0479
b = sum(A,2)
[x,flag] = gmres(A,b,5)

flag is 1 since will not converge to the default tolerance 1e–6 within
the default 10 outer iterations.

[L1,U1] = luinc(A,1e–5);
[x1,flag1] = gmres(A,b,5,1e–6,5,L1,U1);

flag1 is 2 since the upper triangular U1 has a zero on its diagonal so
fails in the first iteration when it tries to solve a system such as U1*y = r for
y with backslash.

[L2,U2] = luinc(A,1e–6);
tol = 1e–15;
[x4,flag4,relres4,iter4,resvec4] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6,iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);
[x8,flag8,relres8,iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 since gmres converged when restarted at
iterations 4, 6, and 8 while preconditioned by the incomplete LU factorization

gmres 5()

gmres 5()
2-368

gmres
with a drop tolerance of 1e–6. This is verified by the plots of outer iteration
number against relative residual. A combined plot of all three clearly shows the
restarting at iterations 4 and 6. The total number of iterations computed may
be more for lower values of restart, but the number of length n vectors stored
is fewer, and the amount of work done in the method decreases proportionally.

See Also bicg, bicgstab, cgs, luinc, pcg, qmr

The arithmetic operator \

References Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

0 1 2 3 4

10
−10

10
0

gmres(4)

number of outer iterations
0 1 2

10
−10

10
0

gmres(6)

number of outer iterations

0 1

10
−10

10
0

gmres(8)

number of outer iterations
0 4 8 12 16 20

10
−10

10
0

number of inner iterations
2-369

gradient
2gradientPurpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definition The gradient of a function of two variables, F(x,y), is defined as:

and can be thought of as a collection of vectors pointing in the direction of
increasing values of In MATLAB, numerical gradients (differences) can be
computed for functions with any number of variables. For a function of N
variables, F(x,y,z,...),

Description FX = gradient(F) where F is a vector returns the one-dimensional numerical
gradient of F. FX corresponds to , the differences in the x direction.

[FX,FY] = gradient(F) where F is a matrix returns the x and y components
of the two-dimensional numerical gradient. FX corresponds to , the
differences in the x (column) direction. FY corresponds to , the differences
in the y (row) direction. The spacing between points in each direction is
assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns the N
components of the gradient of F. There are two ways to control the spacing
between values in F:

• A single spacing value, h, specifies the spacing between points in every
direction.

• N spacing values (h1,h2,...) specifies the spacing for each dimension of F.
Scalar spacing parameters specify a constant spacing for each dimension.

F∇
x∂

∂Fî
y∂

∂F ĵ+=

F .

F∇
x∂

∂Fî
y∂

∂F ĵ
z∂

∂Fk̂ …+ + +=

F∂ x∂⁄

F∂ x∂⁄
F∂ y∂⁄
2-370

gradient
Vector parameters specify the coordinates of the values along corresponding
dimensions of F. In this case, the length of the vector must match the size of
the corresponding dimension.

[...] = gradient(F,h) where h is a scalar uses h as the spacing between
points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters specifies the
spacing for each dimension of F.

Examples The statements

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .∗ exp(–x.^2 – y.^2);
[px,py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(px,py), hold off

produce

Given,

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);
gradient(F) takes dx = dy = dz = 1.
[PX,PY,PZ] = gradient(F,0.2,0.1,0.2) takes dx = 0.2, dy = 0.1, and
dz = 0.2.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2-371

gradient
See Also del2, diff
2-372

griddata
2griddataPurpose Data gridding

Syntax ZI = griddata(x,y,z,XI,YI)
[XI,YI,ZI] = griddata(x,y,z,xi,yi)
[...] = griddata(...,method)

Description ZI = griddata(x,y,z,XI,YI) fits a surface of the form z = f(x,y) to the data
in the (usually) nonuniformly spaced vectors (x,y,z). griddata interpolates
this surface at the points specified by (XI,YI) to produce ZI. The surface
always passes through the data points. XI and YI usually form a uniform grid
(as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix with
constant rows.

[XI,YI,ZI] = griddata(x,y,z,xi,yi) returns the interpolated matrix ZI as
above, and also returns the matrices XI and YI formed from row vector xi and
column vector yi. These latter are the same as the matrices returned by
meshgrid.

[...] = griddata(...,method) uses the specified interpolation method:

The method defines the type of surface fit to the data. The 'cubic' and 'v4'
methods produce smooth surfaces while 'linear' and 'nearest' have
discontinuities in the first and zero’th derivatives, respectively. All the
methods except 'v4' are based on a Delaunay triangulation of the data.

Remarks XI and YI can be matrices, in which case griddata returns the values for the
corresponding points (XI(i,j),YI(i,j)). Alternatively, you can pass in the
row and column vectors xi and yi, respectively. In this case, griddata

'linear' Triangle-based linear interpolation
(default)

'cubic' Triangle-based cubic interpolation

'nearest' Nearest neighbor interpolation

'v4' MATLAB 4 griddata method
2-373

griddata
interprets these vectors as if they were matrices produced by the command
meshgrid(xi,yi).

Algorithm The griddata(...,'v4') command uses the method documented in [1]. The
other methods are based on Delaunay triangulation (see delaunay).

Examples Sample a function at 100 random points between ±2.0:

rand('seed',0)
x = rand(100,1)∗4–2; y = rand(100,1)∗4–2;
z = x.∗exp(–x.^2–y.^2);

x, y, and z are now vectors containing nonuniformly sampled data. Define a
regular grid, and grid the data to it:

ti = –2:.25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x,y,z,XI,YI);

Plot the gridded data along with the nonuniform data points used to generate
it:

mesh(XI,YI,ZI), hold
plot3(x,y,z,'o'), hold off

-2
-1

0
1

2

-2

-1

0

1

2
-0.5

0

0.5
2-374

griddata
See Also delaunay, interp2, meshgrid

References [1] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3 and
SEASAT Altimeter Data”, Geophysical Research Letters, 2, 139-142,1987.

[2] Watson, David E., Contouring: A Guide to the Analysis and Display of
Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.
2-375

gsvd
2gsvdPurpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
[U,V,X,C,S] = gsvd(A,B,0)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually)
square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n and
X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p the
nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag(C,p–m). This allows the diagonal elements to be ordered
so that the generalized singular values are nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p, produces the
“economy-sized” decomposition where the resulting U and V have at most p
columns, and C and S have at most p rows. The generalized singular values are
diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values, gsvd(A,B),
are equal to the ordinary singular values, svd(A/B), but they are sorted in the
opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the individual
ranks of A or B. The matrix X has full rank if and only if the matrix [A;B] has
full rank. In fact, svd(X) and cond(X) are are equal to svd([A;B]) and
cond([A;B]). Other formulations, eg. G. Golub and C. Van Loan [1], require
that null(A) and null(B) do not overlap and replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.
2-376

gsvd
Examples In the first example, the matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)

A =
 1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15

B =
 8 1 6
 3 5 7
 4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3 nonsingular X,

X =
 –2.8284 9.3761 –6.9346
 5.6569 8.3071 –18.3301
 –2.8284 7.2381 –29.7256

and

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807
 0 0 0
 0 0 0

S =
 1.0000 0 0
 0 0.9489 0
 0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.
2-377

gsvd
The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
 –0.3736 –0.6457 –0.4279
 –0.0076 –0.3296 –0.4375
 0.8617 –0.0135 –0.4470
 –0.2063 0.3026 –0.4566
 –0.2743 0.6187 –0.4661

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the
full decomposition.

The generalized singular values are the ratios of the diagonal elements of C and
S.

sigma = gsvd(A,B)

sigma =
 0.0000
 0.3325
 5.0123

These values are a reordering of the ordinary singular values

svd(A/B)

ans =
 5.0123
 0.3325
 0.0000
2-378

gsvd
In the second example, the matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)

A =

1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15

B =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5 nonsingular X
and

C =
 0 0 0.0000 0 0
 0 0 0 0.0439 0
 0 0 0 0 0.7432

S =
 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0 0 1.0000 0 0
 0 0 0 0.9990 0
 0 0 0 0 0.6690
2-379

gsvd
In this situation, the nonzero diagonal of C is diag(C,2). The generalized
singular values include three zeros.

sigma = gsvd(A,B)

sigma =
 0
 0
 0.0000
 0.0439
 1.1109

Reversing the roles of A and B reciprocates these values, producing three
infinities.

gsvd(B,A)

ans =
 0.9001
 22.7610
 Inf
 Inf
 Inf

Algorithm The generalized singular value decomposition uses the C-S decomposition
described in [1], as well as the built-in svd and qr functions. The C-S
decomposition is implemented in a subfunction in the gsvd M-file.

Diagnostics The only warning or error message produced by gsvd itself occurs when the two
input arguments do not have the same number of columns.

Reference [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also svd
2-380

hadamard
2hadamardPurpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definition Hadamard matrices are matrices of 1’s and –1’s whose columns are orthogonal,

H'∗H = n∗I

where [n n] = size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics,
signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 –1 1 –1
1 1 –1 –1
1 –1 –1 1

See Also compan, hankel, toeplitz

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons, 1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.
2-381

hankel
2hankelPurpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is c and
whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose
last row is r. If the last element of c differs from the first element of r, the last
element of c prevails.

Definition A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j–1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =
 1 2 3 8
 2 3 8 9
 3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard, toeplitz
2-382

hdf
2hdfPurpose HDF interface

Syntax hdf*(functstr,param1,param2,...)

Description MATLAB provides a set of functions that enable you to access the HDF library
developed and supported by the National Center for Supercomputing
Applications (NCSA). MATLAB supports all or a portion of these HDF
interfaces: SD, V, VS, AN, DRF8, DF24, H, HE, and HD.

To use these functions you must be familiar with the HDF library.
Documentation for the library is available on the NCSA HDF Web page at
http://hdf.ncsa.uiuc.edu. MATLAB additionally provides extensive
command line help for each of the provided functions.

This table lists the interface-specific HDF functions in MATLAB.

Function Interface

hdfan Multifile annotation

hdfdf24 24-bit raster image

hdfdfr8 8-bit raster image

hdfgd HDF-EOS GD interface

hdfh HDF H interface

hdfhd HDF HD interface

hdfhe HDF HE interface

hdfml Gateway utilities

hdfpt HDF-EOS PT interface

hdfsd Multifile scientific data set

hdfsw HDF-EOS SW interface

hdfv Vgroup

hdfvf Vdata VF functions
2-383

hdf
See Also imfinfo, imread, imwrite, int8, int16, int32, single, uint8, uint16, uint32

Function Interface

hdfvh Vdata VH functions

hdfvs Vdata VS functions
2-384

help
2helpPurpose Display online help for MATLAB functions and M-files

Syntax help
help topic

Description help lists all primary help topics. Each main help topic corresponds to a
directory name on MATLAB’s search path.

help topic gives help on the specified topic. The topic can be a function name,
a directory name, or a MATLABPATH relative partial pathname If it is a function
name, help displays information about that function. If it is a directory name,
help displays the contents file for the specified directory. It is not necessary to
give the full pathname of the directory; the last component, or the last several
components, is sufficient.

It is possible to write help text for your own M-files and toolboxes; see
“Remarks”.

Remarks MATLAB’s help system, like MATLAB itself, is highly extensible. You can
write help descriptions for your own M-files and toolboxes using the same
self-documenting method that MATLAB’s M-files and toolboxes use.

The command help lists all help topics by displaying the first line (the H1 line)
of the contents files in each directory on MATLAB’s search path. The contents
files are the M-files named Contents.m within each directory.

The command help topic, where topic is a directory name, displays the
comment lines in the Contents.m file located in that directory. If a contents file
does not exist, help displays the H1 lines of all the files in the directory.

The command help topic, where topic is a function name, displays help for
the function by listing the first contiguous comment lines in the M-file topic.m.

Creating Online Help for Your Own M-Files
Create self-documenting online help for your own M-files by entering text on
one or more contiguous comment lines, beginning with the second line of the file
2-385

help
(first line if it is a script). For example, an abridged version of the M-file
angle.m provided with MATLAB could contain

function p = angle(h)
% ANGLE Polar angle.
% ANGLE(H) returns the phase angles, in radians, of a matrix
% with complex elements. Use ABS for the magnitudes.
p = atan2(imag(h),real(h));

When you execute help angle, lines 2, 3, and 4 display. These lines are the first
block of contiguous comment lines. The help system ignores comment lines that
appear later in an M-file, after any executable statements or after a blank line.

The first comment line in any M-file (the H1 line) is special. It should contain
the function name and a brief description of the function. The lookfor
command searches and displays this line, and help displays these lines in
directories that do not contain a Contents.m file.

Creating Contents Files for Your Own M-File Directories
A Contents.m file is provided for each M-file directory included with the
MATLAB software. If you create directories in which to store your own M-files,
you should create Contents.m files for them too. To do so, simply follow the
format used in an existing Contents.m file.

Examples The command

help datafun

gives help for the datafun directory.

To prevent long descriptions from scrolling off the screen before you have time
to read them, enter more on; then enter the help command.

See Also dir, doc, helpdesk, helpwin, lookfor, more, partialpath, path, what, which
2-386

helpdesk
2helpdeskPurpose Display Help Desk page in a Web browser, providing access to extensive help

Syntax helpdesk

Description helpdesk displays the Help Desk page in a Web browser. The Help Desk page
provides direct access to a comprehensive library of online help, including
reference pages and manuals.

Remarks On Windows platforms, you can also access the Help Desk by selecting the Help
Desk option under the Help menu.

You specify where the help information will be located when you install
MATLAB. It can be on a disk or CD-ROM in your local system.

• On Windows, you can see the help location by selecting Preferences from the
File menu – see the Help Directory entry under the General tab in the
Preferences dialog box. If you relocate your online help directory, for
example, to a network location, be sure to update the Help Directory
location in the Preferences dialog box.

• On UNIX, the help location is specified in the docopt M-file. If you relocate
your online help directory, be sure to update the location in docopt.m.

HTML Documents
Many of the documents use the HyperText Markup Language (HTML) and are
accessed with an Internet Web browser such as Netscape Navigator or
Microsoft Internet Explorer. All of MATLAB’s operators and functions have
online reference pages in HTML format, which you can access from the Help
Desk. These reference pages often provide more details and examples than the
help command for a function.

Use the search engine provided to query all the online HTML material. To use
this search utility, your browser must support Java and it must be enabled.

PDF-Formatted Documentation
Most MATLAB documentation is available in Portable Document Format
(PDF) through the Help Desk. You view this documentation using Adobe’s
Acrobat Reader. PDF documents reproduce the look and feel of the printed
page, complete with fonts, graphics, formatting, and images. Use links from the
2-387

helpdesk
table of contents or index of a manual, as well as internal links, to go directly
to the page of interest.

Print selected pages within a document using Acrobat. This is the best way to
get printed copies of the online MATLAB Function Reference, which is not
otherwise available in hardcopy form.

Use the Acrobat search tool to query a single document or the entire set of
documents.

MathWorks Web Site
If your computer is connected to the Internet, the Help Desk provides
connections to The MathWorks Web site. Use electronic mail to ask questions,
make suggestions, and report possible bugs. Use the Solution Search Engine to
query an up-to-date data base of technical support information.

Alternatively, you can point your Web browser directly at www.mathworks.com
to access The MathWorks Web site.

See Also doc, docopt, help, helpwin, lookfor, web
2-388

helpwin
2helpwinPurpose Display Help Window, which provides access to help for all commands

Syntax helpwin
helpwin topic

Description helpwin displays the Help Window, which lists all commands, grouped by
topic. From it you can see brief descriptions of commands, as well as get more
help for any command.

helpwin topic displays the Help Window, listing all commands in the
directory topic. If topic is a command, the Help Window displays help for that
command.

Remarks On Windows platforms, you can also access the Help Window by selecting the
Help Window option under the Help menu, or by clicking the question mark
button on the menu bar.

In the Help Window, double-click on a directory. A list of the commands in that
directory appears, along with a brief description for each command.
2-389

helpwin
Double-click on a command in the list of commands; help for that command
appears. This is the same help information you see if you type help for a
specific command.

See Also doc, docopt, help, helpdesk, lookfor, web

Access help for
related commands.

Go to the MATLAB Help Desk for access
to more online information.

Help appears for the
command you specified.

View the list of all
topics.
2-390

hess
2hessPurpose Hessenberg form of a matrix

Syntax [P,H] = hess(A)
H = hess(A)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so
that A = P∗H∗P' and P'∗P = eye(size(A)).

Definition A Hessenberg matrix is zero below the first subdiagonal. If the matrix is
symmetric or Hermitian, the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
 –149 –50 –154
 537 180 546
 –27 –9 –25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
 –149.0000 42.2037 –156.3165
 –537.6783 152.5511 –554.9272
 0 0.0728 2.4489

Algorithm For real matrices, hess uses the EISPACK routines ORTRAN and ORTHES. ORTHES
converts a real general matrix to Hessenberg form using orthogonal similarity
transformations. ORTRAN accumulates the transformations used by ORTHES.

When hess is used with a complex argument, the solution is computed using
the QZ algorithm by the EISPACK routines QZHES. It has been modified for
complex problems and to handle the special case B = I.

For detailed write-ups on these algorithms, see the EISPACK Guide.

See Also eig, qz, schur
2-391

hess
References [1] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines – EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag,
1976.

[2] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines – EISPACK Guide Extension, Lecture Notes in
Computer Science, Vol. 51, Springer-Verlag, 1977.

[3] Moler, C.B. and G. W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems,” SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.
2-392

hex2dec
2hex2decPurpose IEEE hexadecimal to decimal number conversion

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored in a
MATLAB string. If hex_value is a character array, each row is interpreted as a
hexadecimal string.

Examples hex2dec('3ff')

ans =

 1023

For a character array S

S =
0FF
2DE
123

hex2dec(S)

ans =

255
734
291

See Also dec2hex, format, hex2num, sprintf
2-393

hex2num
2hex2numPurpose Hexadecimal to double number conversion

Syntax f = hex2num('hex_value')

Description f = hex2num('hex_value') converts hex_value to the IEEE double
precision floating-point number it represents. NaN, Inf, and denormalized
numbers are all handled correctly. Fewer than 16 characters are padded on the
right with zeros.

Examples f = hex2num('400921fb54442d18')

f =

 3.14159265358979

Limitations hex2num only works for IEEE numbers; it does not work for the floating-point
representation of the VAX or other non-IEEE computers.

See Also format, hex2dec, sprintf
2-394

hilb
2hilbPurpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definition The Hilbert matrix is a notable example of a poorly conditioned matrix [1]. The
elements of the Hilbert matrices are: H(i, j) = 1/(i+j–1).

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

Algorithm See the M-file for a good example of efficient MATLAB programming where
conventional for loops are replaced by vectorized statements.

See Also invhilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.
2-395

home
2homePurpose Send the cursor home

Syntax home

Description home returns the cursor to the upper-left corner of the command window.

Examples Display a sequence of random matrices at the same location in the command
window:

clc
for i =1:25

home
A = rand(5)

end

See Also clc
2-396

i

2iPurpose Imaginary unit

Syntax i
a+bi
x+i∗y

Description As the basic imaginary unit sqrt(–1), i is used to enter complex numbers.
Since i is a function, it can be overridden and used as a variable. This permits
you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in
forming a complex numerical constant.

You can also use the character j as the imaginary unit.

Examples Z = 2+3i
Z = x+i*y
Z = r*exp(i*theta)

See Also conj, imag, j, real
2-397

if
2ifPurpose Conditionally execute statements

Syntax if expression
statements

end
if expression1

statements
elseif expression2

statements
else

statements
end

Description if conditionally executes statements.

The simple form is:

if expression
statements

end

More complicated forms use else or elseif. Each if must be paired with a
matching end.

Arguments expression A MATLAB expression, usually consisting of smaller
expressions or variables joined by relational operators (==, <,
>, <=, >=, or ~=). Two examples are: count < limit and
(height – offset) >= 0.
Expressions may also include logical functions, as in:
isreal(A).
Simple expressions can be combined by logical operators
(&,|,~) into compound expressions such as: (count < limit) &
((height – offset) >= 0).

statements One or more MATLAB statements to be executed only if the
expression is true (or nonzero). See Examples for information
about how nonscalar variables are evaluated.
2-398

if
Examples Here is an example showing if, else, and elseif:

for i = 1:n
 for j = 1:n
 if i == j
 a(i,j) = 2;
 elseif abs([i j]) == 1
 a(i,j) = 1;
 else
 a(i,j) = 0;
 end
 end
end

Such expressions are evaluated as false unless every element-wise comparison
evaluates as true. Thus, given matrices A and B:

A = B =
 1 0 1 1
 2 3 3 4

The expression:

See Also break, else, end, for, return, switch, while

A < B Evaluates as false Since A(1,1) is not less than B(1,1).

A < (B+1) Evaluates as true Since no element of A is greater than
the corresponding element of B.

A & B Evaluates as false Since A(1,2) | B(1,2) is false.

5 > B Evaluates as true Since every element of B is less than
5.
2-399

ifft
2ifftPurpose Inverse one-dimensional fast Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)

Description y = ifft(X) returns the inverse fast Fourier transform of vector X.

If X is a matrix, ifft returns the inverse Fourier transform of each column of
the matrix.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse fast Fourier transform of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse discrete
Fourier transform of X across the dimension dim.

Examples For any x, ifft(fft(x)) equals x to within roundoff error. If x is real,
ifft(fft(x)) may have small imaginary parts.

Algorithm The algorithm for ifft(x) is the same as the algorithm for fft(x), except for
a sign change and a scale factor of n = length(x). So the execution time is
fastest when n is a power of 2 and slowest when n is a large prime.

See Also dftmtx and freqz, in the Signal Processing Toolbox, and:

fft, fft2, fftshift
2-400

ifft2
2ifft2Purpose Inverse two-dimensional fast Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)

Description Y = ifft2(X) returns the two-dimensional inverse fast Fourier transform of
matrix X.

Y = ifft2(X,m,n) returns the m–by–n inverse fast Fourier transform of matrix
X.

Examples For any X, ifft2(fft2(X)) equals X to within roundoff error. If X is real,
ifft2(fft2(X)) may have small imaginary parts.

Algorithm The algorithm for ifft2(X) is the same as the algorithm for fft2(X), except
for a sign change and scale factors of [m,n] = size(X). The execution time is
fastest when m and n are powers of 2 and slowest when they are large primes.

See Also dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, fftshift, ifft
2-401

ifftn
2ifftnPurpose Inverse multidimensional fast Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)

Description Y = ifftn(X) performs the N-dimensional inverse fast Fourier transform. The
result Y is the same size as X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse transform.
The size of the result Y is siz.

Remarks For any X, ifftn(fftn(X)) equals X within roundoff error. If X is real,
ifftn(fftn(X)) may have small imaginary parts.

Algorithm ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = ifft(Y,[],p);
end

This computes in-place the one-dimensional inverse fast Fourier transform
along each dimension of X. The time required to compute ifftn(X) depends
strongly on the number of prime factors of the dimensions of X. It is fastest
when all of the dimensions are powers of 2.

See Also fft, fft2, fftn
2-402

ifftshift
2ifftshiftPurpose Inverse FFT shift

Syntax ifftshift(X)

Description ifftshift undoes the results of fftshift.

If X is a vector, iffshift(X) swaps the left and right halves of X. For matrices,
ifftshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth. If X is a multidimensional array, ifftshift(X) swaps
half-spaces of X along each dimension.

See Also fft, fft2, fftn, fftshift
2-403

imag
2imagPurpose Imaginary part of a complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

 3

See Also conj, i, j, real
2-404

imfinfo
2imfinfoPurpose Return information about a graphics file

Synopsis info = imfinfo(filename,fmt)
info = imfinfo(filename)

Description info = imfinfo(filename,fmt) returns a structure whose fields contain
information about an image in a graphics file. filename is a string that specifies
the name of the graphics file, and fmt is a string that specifies the format of the
file. The file must be in the current directory or in a directory on the MATLAB
path. If imfinfo cannot find a file named filename, it looks for a file named
filename.fmt.

This table lists the possible values for fmt:

If filename is a TIFF or HDF file containing more than one image, info is a
structure array with one element (i.e., an individual structure) for each image
in the file. For example, info(3) would contain information about the third
image in the file.

Format File type

'bmp' Windows Bitmap (BMP)

'hdf' Hierarchical Data Format (HDF)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pcx' Windows Paintbrush (PCX)

‘png’ Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)
2-405

imfinfo
The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these fields and
describes their values:

info = imfinfo(filename) attempts to infer the format of the file from its
content.

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either
'truecolor' for a truecolor RGB image, 'grayscale'
for a grayscale intensity image, or 'indexed' for an
indexed image
2-406

imfinfo
Example info = imfinfo('flowers.bmp')

info =

 Filename: 'flowers.bmp'
 FileModDate: '16-Oct-1996 11:41:38'
 FileSize: 182078
 Format: 'bmp'
 FormatVersion: 'Version 3 (Microsoft Windows 3.x)'
 Width: 500
 Height: 362
 BitDepth: 8
 ColorType: 'indexed'
 FormatSignature: 'BM'
 NumColormapEntries: 256
 Colormap: [256x3 double]
 RedMask: []
 GreenMask: []
 BlueMask: []
 ImageDataOffset: 1078
 BitmapHeaderSize: 40
 NumPlanes: 1
 CompressionType: 'none'
 BitmapSize: 181000
 HorzResolution: 0
 VertResolution: 0
 NumColorsUsed: 256
 NumImportantColors: 0

See Also imread, imwrite
2-407

imread
2imreadPurpose Read image from graphics file

Synopsis A = imread(filename,fmt)
[X,map] = imread(filename,fmt)
[...] = imread(filename)
[...] = imread(...,idx) (TIFF only)
[...] = imread(...,ref) (HDF only)
[...] = imread(...,’BackgroundColor’,BG) (PNG only)
[A,map,alpha] = imread(...) (PNG only)

Description A = imread(filename,fmt) reads a grayscale or truecolor image named
filename into A. If the file contains a grayscale intensity image, A is a
two-dimensional array. If the file contains a truecolor (RGB) image, A is a
three-dimensional (m-by-n-by-3) array.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1]. A and map are two-dimensional arrays.

[...] = imread(filename) attempts to infer the format of the file from its
content.

filename is a string that specifies the name of the graphics file, and fmt is a
string that specifies the format of the file. If the file is not in the current
directory or in a directory in the MATLAB path, specify the full pathname for
a location on your system. If imread cannot find a file named filename, it looks
for a file named filename.fmt. If you do not specify a string for fmt, the toolbox
will try to discern the format of the file by checking the file header.

This table lists the possible values for fmt:

Format File type

'bmp' Windows Bitmap (BMP)

'hdf' Hierarchical Data Format (HDF)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pcx' Windows Paintbrush (PCX)
2-408

imread
Special Case
Syntax

TIFF-Specific Syntax

[...] = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file. To read all ages of
a TIFF file, omit the idx argument.

PNG-Specific Syntax

The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, will be identified by one of two
components: a transparency chunk or an alpha channel. (A PNG file can only
have one of these components, not both.)

The transparency chunk identifies which pixel values will be treated as
transparent, e.g., if the value in the transparency chunk of an 8-bit image is
0.5020, all pixels in the image with the color 0.5020 can be displayed as
transparent. An alpha channel is an array with the same number of pixels as
are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

[a,map] = imread(filename);
a = imread(filename);

‘png’ Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

Format File type
2-409

imread
If the PNG file contains a background color chunk, the transparent pixels will
be composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels will be composited against 0 for grayscale (black), 1 for indexed (first
color in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel but you specify the
background color parameter in your call. For example,

[...] = imread(...,'BackgroundColor',bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should
be an integer in the range [0,1]. If the input image is RGB, bg should be a
3-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to 'none' no compositing will be performed. For
example,

[...] = imread(...,'Back','none');

Note: If you specify a background color, you cannot output the alpha
channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[a,map,alpha] = imread(filename);
[a,map,alpha] = imread(filename,fmt);

No compositing is performed; the alpha channel will be stored separately from
the image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or truecolor, map may be empty.
2-410

imread
HDF-Specific Syntax

[...] = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match up image order with reference number.) If you omit this
argument, imread reads the first image in the file.

This table summarizes the types of images that imread can read:

Class Support In most of the image file formats supported by imread, pixels are stored using
eight or fewer bits per color plane. When reading such a file, the class of the
output (a or x) is uint8. imread also supports reading 16-bit-per-pixel data from
TIFF and PNG files; for such image files, the class of the output (a or x) is

Format Variants

BMP 1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit
and 8-bit run-length encoded (RLE) images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

JPEG Any baseline JPEG image; JPEG images with some
commonly used extensions

PCX 1-bit, 8-bit, and 24-bit images

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and
16-bit grayscale images; 8-bit and 16-bit indexed images;
24-bit and 48-bit RGB images

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbit compression; 1-bit images with CCITT compression;
also 16-bit grayscale, 16-bit indexed, and 48-bit RGB
images.

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps
2-411

imread
uint16. Note that for indexed images, imread always reads the colormap into
an array of class double, even though the image array itself may be of class
uint8 or uint16.

Examples This example reads the sixth image in a TIFF file:

[X,map] = imread('flowers.tif',6);

This example reads the fourth image in an HDF file:

info = imfinfo('skull.hdf');
[X,map] = imread('skull.hdf',info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];
A = imread('image.png','BackgroundColor',bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread('image.png');

See Also double, fread, imfinfo, imwrite, uint8, uint16
2-412

imwrite
2imwritePurpose Write an image to a graphics file

Synopsis imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,Param1,Val1,Param2,Val2...)

Description imwrite(A,filename,fmt) writes the image in A to filename. filename is a
string that specifies the name of the output file, and fmt is a string that
specifies the format of the file. If A is a grayscale intensity image or a truecolor
(RGB) image of class uint8, imwrite writes the actual values in the array to
the file. If A is of class double, imwrite rescales the values in the array before
writing, using uint8(round(255*A)). This operation converts the
floating-point numbers in the range [0, 1] to 8-bit integers in the range [0, 255].

imwrite(X,map,filename,fmt) writes the indexed image in X and its
associated colormap map to filename. If X is of class uint8 or uint16, imwrite
writes the actual values in the array to the file. If X is of class double, imwrite
offsets the values in the array before writing using uint8(X–1). (See note below
for an exception.) map must be a valid MATLAB colormap of class double;
imwrite rescales the values in map using uint8(round(255*map)). Note that
most image file formats do not support colormaps with more than 256 entries.

Note: If the image is double, and you specify PNG as the output format and a
bit depth of 16 bpp, the values in the array will be offset using uint16(X-1).

imwrite(...,filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal values
for fmt.

imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters that
control various characteristics of the output file. Parameter settings can
currently be made for HDF, JPEG, and TIFF files. For example, if you are
writing a JPEG file, you can set the “quality” of the JPEG compression. For the
full list of parameters available per format, see the tables of parameters.

filename is a string that specifies the name of the output file, and fmt is a
string that specifies the format of the file.
2-413

imwrite
This table lists the possible values for fmt:

This table describes the available parameters for HDF files:

Format File type

'bmp' Windows Bitmap (BMP)

'hdf' Hierarchical Data Format (HDF)

'jpg' or 'jpeg' Joint Photographers Expert Group (JPEG)

'pcx' Windows Paintbrush (PCX)

'png' Portable Network Graphics (PNG)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

Parameter Values Default

'Compression' One of these strings: 'none', 'rle',
'jpeg'. 'rle' is valid only for
grayscale and indexed images. 'jpeg'
is valid only for grayscale and RGB
images.

'rle'

'Quality' A number between 0 and 100; this
parameter applies only if
'Compression' is 'jpeg'.
A number between 0 and 100; higher
numbers mean higher quality (less
image degradation due to
compression), but the resulting file
size is larger.

75

'WriteMode' One of these strings: 'overwrite',
'append'

'overwrite'
2-414

imwrite
This table describes the available parameters for JPEG files:

This table describes the available parameters for TIFF files:

This table describes the available parameters for PNG files.

Parameter Values Default

'Quality' A number between 0 and 100; higher
numbers mean quality is better (less
image degradation due to
compression), but the resulting file
size is larger.

75

Parameter Values Default

'Compression' One of these strings: 'none',
'packbits', 'ccitt'; 'ccitt' is
valid for binary images only.
'packbits' is the default for
nonbinary images; 'ccitt' is the
default for binary images.

'ccitt' for
binary images;
'packbits' for all
other images

'Description' Any string; fills in the
ImageDescription field returned
by imfinfo.

empty

'Resolution' A scalar value that is used to set
the resolution of the output file in
both the x and y directions.

72
2-415

imwrite
Parameter Values Default

'Author' A string Empty

'Description' A string Empty

'Copyright' A string Empty

'CreationTime' A string Empty

'Software' A string Empty

'Disclaimer' A string Empty

'Warning' A string Empty

'Source' A string Empty

'Comment' A string Empty

'InterlaceType' Either 'none' or 'adam7' 'none'

'BitDepth' A scalar value indicating desired bit depth. For
grayscale images this can be 1, 2, 4, 8, or 16.
For grayscale images with an alpha channel this
can be 8 or 16. For indexed images this can be 1, 2,
4, or 8. For truecolor images with or without an
alpha channel this can be 8 or 16.

8 bits per pixel if
image is double or
uint8.
16 bits per pixel if
image is uint16.
1 bit per pixel if
image is logical.
2-416

imwrite
'Transparency' This value is used to indicate transparency
information only when no alpha channel is used. Set
to the value that indicates which pixels should be
considered transparent. (If the image uses a
colormap, this value will represent an index number
to the colormap.)

For indexed images: a Q-element vector in the range
[0,1] where Q is no larger than the colormap
length and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q=1.

For grayscale images: a scalar in the range [0,1].
For truecolor images: a 3-element vector in the
range [0,1].

You cannot specify 'Transparency' and 'Alpha' at
the same time.

Empty

'Background' The value specifies background color to be used
when compositing transparent pixels. For indexed
images: an integer in the range [1,P], where P is
the colormap length. For grayscale images: a scalar
in the range [0,1]. For truecolor images: a
3-element vector in the range [0,1].

Empty

'Gamma' A nonnegative scalar indicating the file gamma Empty

Parameter Values Default
2-417

imwrite
In addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords, including only printable
characters, 80 characters or fewer, and no leading or trailing spaces. The value
corresponding to these user-specified parameters must be a string that
contains no control characters other than linefeed.

'Chromaticities' An 8-element vector [wx wy rx ry gx gy bx by]
that specifies the reference white point and the
primary chromaticities

Empty

'XResolution' A scalar indicating the number of pixels/unit in the
horizontal direction

Empty

'YResolution' A scalar indicating the number of pixels/unit in the
vertical direction

Empty

'ResolutionUnit' Either 'unknown' or 'meter' Empty

'Alpha' A matrix specifying the transparency of each pixel
individually. The row and column dimensions must
be the same as the data array; they can be uint8,
uint16, or double, in which case the values should
be in the range [0,1].

Empty

'SignificantBits' A scalar or vector indicating how many bits in the
data array should be regarded as significant; values
must be in the range [1,bitdepth].
For indexed images: a 3-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a 2-element vector. For
truecolor images: a 3-element vector. For truecolor
images with an alpha channel: a 4-element vector

Empty

Parameter Values Default
2-418

imwrite
This table summarizes the types of images that imwrite can write:

Class Support Most of the supported image file formats store uint8 data. PNG and TIFF
additionally support uint16 data. For grayscale and RGB images, if the data
array is double, the assumed dynamic range is [0,1]. The data array is
automatically scaled by 255 before being written out as uint8. If the data array
is uint8 or uint16 (PNG and TIFF only), then it is written out without scaling
as uint8 or uint16, respectively.

Example imwrite(X,map,'flowers.hdf','Compression','none',...
'WriteMode','append')

Format Variants

BMP 8-bit uncompressed images with associated colormap; 24-bit
uncompressed images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

JPEG Baseline JPEG images 8 or 24-bit).
Note: Indexed images are converted to RGB before writing
out JPEG files, because the JPEG format does not support
indexed images.

PCX 8-bit images

PNG 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed images;
24-bit and 48-bit truecolor images with or without alpha
channels

TIFF Baseline TIFF images, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbits compression; 1-bit images with CCITT
compression

XWD 8-bit ZPixmaps
2-419

imwrite
See Also fwrite, imfinfo, imread
2-420

ind2sub
2ind2subPurpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values corre-
sponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the arrays I and J containing the
equivalent row and column subscripts corresponding to the index matrix IND
for a matrix of size siz.

For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same values
as
[I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,..,In containing the equivalent multidimensional array subscripts
equivalent to IND for an array of size siz.

Examples The mapping from linear indexes to subscript equivalents for a 2-by-2-by-2
array is:

See Also sub2ind, find

1,2,21,1,2

2,2,22,1,2

1,2,11,1,1

2,2,12,1,1

75

86

31

42
2-421

Inf
2InfPurpose Infinity

Syntax Inf

Description Inf returns the IEEE arithmetic representation for positive infinity. Infinity
results from operations like division by zero and overflow, which lead to results
too large to represent as conventional floating-point values.

Examples 1/0, 1.e1000, 2^1000, and exp(1000) all produce Inf.

log(0) produces –Inf.

Inf–Inf and Inf/Inf both produce NaN, Not-a-Number.

See Also is*, NaN
2-422

inferiorto
2inferiortoPurpose Inferior class relationship

Syntax inferiorto('class1','class2',...)

Description The inferiorto function establishes a hierarchy which determines the order
in which MATLAB calls object methods.

inferiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should not be invoked
if a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement:
inferiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_a/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object's
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also superiorto
2-423

inline
2inlinePurpose Construct an inline object

Syntax g = inline(expr)
g = inline(expr,arg1,arg2, ...)
g = inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the inline
function is automatically determined by searching expr for an isolated lower
case alphabetic character, other than i or j, that is not part of a word formed
from several alphabetic characters. If no such character exists, x is used. If the
character is not unique, the one closest to x is used. If two characters are found,
the one later in the alphabet is chosen.

inline(expr,arg1,arg2, ...) constructs an inline function whose input
arguments are specified by the strings arg1, arg2,.... Multicharacter symbol
names may be used.

inline(expr,n), where n is a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Remarks Three commands related to inline allow you to examine an inline function
object and determine how it was created.

char(fun) converts the inline function into a character array. This is identical
to formula(fun).

argnames(fun) returns the names of the input arguments of the inline object
fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /' in the
formula for fun. The result is a vectorized version of the inline function.
2-424

inline
Examples This example creates a simple inline function to square a number.

g = inline('t^2')

g =

 Inline function:
 g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

This example creates an inline function to represent the formula
. The resulting inline function can be evaluated with the

argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =

 Inline function:
 f(x) = 3*sin(2*x.^2)

argnames(f)

ans =

 'x'

formula(f)

ans =

3*sin(2*x.^2)ans =

f 3 2x2()sin=
2-425

inline
This call to inline defines the function f to be dependent on two variables,
alpha and x:

f = inline('sin(alpha*x)')

f =

 Inline function:
 f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the function
variables are in the wrong order, you can specify the desired variables
explicitly with the inline argument list.

g = inline('sin(alpha*x)','x','alpha')

g =

 Inline function:
 g(x,alpha) = sin(alpha*x)
2-426

inmem
2inmemPurpose Functions in memory

Syntax M = inmem
[M,X] = inmem

Description M = inmem returns a cell array of strings containing the names of the M-files
that are in the P-code buffer.

[M,X] = inmem returns an additional cell array, X, containing the names of
the MEX-files that have been loaded.

Examples This example lists the M-files that are required to run erf.

clear all; % clear the workspace
erf(0.5);
M = inmem

M =

 'repmat'
 'erfcore'
 'erf'

See Also clear
2-427

inpolygon
2inpolygonPurpose Detect points inside a polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y.
Each element of IN is assigned one of the values 1, 0.5 or 0, depending on
whether the point (X(p,q),Y(p,q)) is inside the polygonal region whose
vertices are specified by the vectors xv and yv. In particular:

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region

IN(p,q) = 0.5 If (X(p,q),Y(p,q)) is on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

2-428

input
2inputPurpose Request user input

Syntax user_entry = input('prompt')
user_entry = input('prompt','s')

Description The response to the input prompt can be any MATLAB expression, which is
evaluated using the variables in the current workspace.

user_entry = input('prompt') displays prompt as a prompt on the screen,
waits for input from the keyboard, and returns the value entered in
user_entry.

user_entry = input('prompt','s') returns the entered string as a text
variable rather than as a variable name or numerical value.

Remarks If you press the Return key without entering anything, input returns an empty
matrix.

The text string for the prompt may contain one or more '\n' characters. The
'\n' means to skip to the next line. This allows the prompt string to span
several lines. To display just a backslash, use '\\'.

Examples Press Return to select a default value by detecting an empty matrix:

i = input('Do you want more? Y/N [Y]: ','s');
if isempty(i)
 i = 'Y';
end

See Also keyboard, menu, ginput, uicontrol
2-429

inputname
2inputnamePurpose Input argument name

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name corresponding to
the argument number argnum. If the input argument has no name (for
example, if it is an expression instead of a variable), the inputname command
returns the empty string ('').

Examples Suppose the function myfun.m is defined as:

function c = myfun(a,b)
disp(sprintf('First calling variable is "%s".',inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1,pi–1)

produces

First calling variable is "".

See Also nargin, nargout, nargchk
2-430

int8, int16, int32
2int8, int16, int32Purpose Convert to signed integer

Syntax i = int8(x)
i = int16(x)
i = int32(x)

Description i = int*(x) converts the vector x into a signed integer. x can be any numeric
object (such as a double). The results of an int* operation are shown in the
next table.

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already a signed integer of the same class, int*
has no effect.

The int* class is primarily meant to store integer values. Most operations that
manipulate arrays without changing their elements are defined (examples are
reshape, size, the logical and relational operators, subscripted assignment,
and subscripted reference). No math operations except for sum are defined for
int* since such operations are ambiguous on the boundary of the set (for
example, they could wrap or truncate there). You can define your own methods
for int* (as you can for any object) by placing the appropriately named method
in an @int* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

See Also double, single, uint8, uint16, uint32

Operatio
n

Output
Range

Output Type Bytes
per
Element

Output Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32768 to
32767

Signed 16-bit
integer

2 int16

int32 -2147483648
to
2147483647

Signed 32-bit
integer

4 int32
2-431

int8, int16, int32
2-432

int2str
2int2strPurpose Integer to string conversion

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format. The
input N can be a single integer or a vector or matrix of integers. Noninteger
inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf, num2str, sprintf
2-433

interp1
2interp1Purpose One-dimensional data interpolation (table lookup)

Syntax yi = interp1(x,Y,xi)
yi = interp1(x,Y,xi,method)

Description yi = interp1(x,Y,xi) returns vector yi containing elements corresponding
to the elements of xi and determined by interpolation within vectors x and Y.
The vector x specifies the points at which the data Y is given. If Y is a matrix,
then the interpolation is performed for each column of Y and yi will be
length(xi)-by-size(Y,2). Out of range values are returned as NaNs.

yi = interp1(x,Y,xi,method) interpolates using alternative methods:

• 'nearest' for nearest neighbor interpolation

• 'linear' for linear interpolation

• 'spline' for cubic spline interpolation

• 'cubic' for cubic interpolation

All the interpolation methods require that x be monotonic. For faster
interpolation when x is equally spaced, use the methods '∗linear', '∗cubic',
'∗nearest', or '∗spline'.

The interp1 command interpolates between data points. It finds values of a
one-dimensional function f(x) underlying the data at intermediate points. This
is shown below, along with the relationship between vectors x, Y, xi, and yi.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [x,y] and interp1 looks up the elements of xi in x,

x

xi

Y yi

f(x)
2-434

interp1
and, based upon their locations, returns values yi interpolated within the
elements of y.

Examples Here are two vectors representing the census years from 1900 to 1990 and the
corresponding United States population in millions of people.

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669...
 150.697 179.323 203.212 226.505 249.633];

The expression interp1(t,p,1975) interpolates within the census data to
estimate the population in 1975. The result is

ans =
 214.8585

Now interpolate within the data at every year from 1900 to 2000, and plot the
result.

 x = 1900:1:2000;
 y = interp1(t,p,x,'spline');
 plot(t,p,'o',x,y)

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
50

100

150

200

250

300
United States Census

Year

P
op

ul
at

io
n

in
 M

ill
io

ns
2-435

interp1
Sometimes it is more convenient to think of interpolation in table lookup terms
where the data are stored in a single table. If a portion of the census data is
stored in a single 5-by-2 table,

tab =
 1950 150.697
 1960 179.323
 1970 203.212
 1980 226.505
 1990 249.633

then the population in 1975, obtained by table lookup within the matrix tab, is

p = interp1(tab(:,1),tab(:,2),1975)
p =
 214.8585

Algorithm The interp1 command is a MATLAB M-file. The 'nearest', 'linear' and
'cubic' methods have fairly straightforward implementations. For the
'spline' method, interp1 calls a function spline that uses the M-files ppval,
mkpp, and unmkpp. These routines form a small suite of functions for working
with piecewise polynomials. spline uses them in a fairly simple fashion to
perform cubic spline interpolation. For access to the more advanced features,
see these M-files and the Spline Toolbox.

See Also interpft, interp2, interp3, interpn, spline

References [1] de Boor, C. A Practical Guide to Splines, Springer-Verlag, 1978.
2-436

interp2
2interp2Purpose Two-dimensional data interpolation (table lookup)

Syntax ZI = interp2(X,Y,Z,XI,YI)
ZI = interp2(Z,XI,YI)
ZI = interp2(Z,ntimes)
ZI = interp2(X,Y,Z,XI,YI,method)

Description ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
corresponding to the elements of XI and YI and determined by interpolation
within the two-dimensional function specified by matrices X, Y, and Z. X and Y
must be monotonic, and have the same format (“plaid”) as if they were
produced by meshgrid. Matrices X and Y specify the points at which the data Z
is given. Out of range values are returned as NaNs.

XI and YI can be matrices, in which case interp2 returns the values of Z
corresponding to the points (XI(i,j),YI(i,j)). Alternatively, you can pass in
the row and column vectors xi and yi, respectively. In this case, interp2
interprets these vectors as if you issued the command meshgrid(xi,yi).

ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where [m,n] =
size(Z).

ZI = interp2(Z,ntimes) expands Z by interleaving interpolates between
every element, working recursively for ntimes. interp2(Z) is the same as
interp2(Z,1).

ZI = interp2(X,Y,Z,XI,YI,method) specifies an alternative interpolation
method:

• 'linear' for bilinear interpolation (default)

• 'nearest' for nearest neighbor interpolation

• 'spline' for cubic spline interpolation

• 'cubic' for bicubic interpolation

All interpolation methods require that X and Y be monotonic, and have the
same format (“plaid”) as if they were produced by meshgrid. Variable spacing
is handled by mapping the given values in X, Y, XI, and YI to an equally spaced
domain before interpolating. For faster interpolation when X and Y are equally
2-437

interp2
spaced and monotonic, use the methods '∗linear', '∗cubic', '∗spline', or
'∗nearest'.

Remarks The interp2 command interpolates between data points. It finds values of a
two-dimensional function f(x,y) underlying the data at intermediate points.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [NaN,Y; X,Z] and interp2 looks up the elements of
XI in X, YI in Y, and, based upon their location, returns values ZI interpolated
within the elements of Z.

f(x,y)
Interpolated points P(XI,YI,ZI)

Grid points P(X,Y,Z)
2-438

interp2
Examples Interpolate the peaks function over a finer grid:

[X,Y] = meshgrid(–3:.25:3);
Z = peaks(X,Y);
[XI,YI] = meshgrid(–3:.125:3);
ZI = interp2(X,Y,Z,XI,YI);
mesh(X,Y,Z), hold, mesh(XI,YI,ZI+15)
hold off
axis([–3 3 –3 3 –5 20])

Given this set of employee data,

years = 1950:10:1990;
service = 10:10:30;
wage = [150.697 199.592 187.625

179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

it is possible to interpolate to find the wage earned in 1975 by an employee with
15 years’ service:

w = interp2(service,years,wage,15,1975)
w =
 190.6287

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

−5

0

5

10

15

20
2-439

interp2
See Also griddata, interp1, interp3, interpn, meshgrid
2-440

interp3
2interp3Purpose Three-dimensional data interpolation (table lookup)

Syntax VI = interp3(X,Y,Z,V,XI,YI,ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)

Description VI = interp3(X,Y,Z,V,XI,YI,ZI) interpolates to find VI, the values of the
underlying three-dimensional function V at the points in matrices XI,YI and ZI.
Matrices X,Y and Z specify the points at which the data V is given. Out of range
values are returned as NaN.

XI, YI, and ZI can be matrices, in which case interp3 returns the values of Z
corresponding to the points (XI(i,j),YI(i,j),ZI(i,j)). Alternatively, you
can pass in the vectors xi, yi, and zi. Vector arguments that are not the same
size are interpreted as if you called meshgrid.

VI = interp3(V,XI,YI,ZI) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).

VI = interp3(V,ntimes) expands V by interleaving interpolates between
every element, working recursively for ntimes iterations. The command
interp3(V,1) is the same as interp3(V).

VI = interp3(...,method) specifies alternative methods:

• 'linear' for linear interpolation (default)

• 'cubic' for cubic interpolation

• 'spline' for cubic spline interpolation

• 'nearest' for nearest neighbor interpolation

Discussion All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were produced by meshgrid. Variable spacing
is handled by mapping the given values in X,Y,Z,XI,YI and ZI to an equally
spaced domain before interpolating. For faster interpolation when X, Y, and Z
are equally spaced and monotonic, use the methods '∗linear', '∗cubic',
'∗spline', or '∗nearest'.
2-441

interp3
Examples To generate a course approximation of flow and interpolate over a finer mesh:

[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(.1:.25:10, –3:.25:3, –3:.25:3);
vi = interp3(x,y,z,v,xi,yi,zi); % V is 31-by-41-by-27
slice(xi,yi,zi,vi,[6 9.5],2,[–2 .2]) shading flat

See Also interp1, interp2, interpn, meshgrid
2-442

interpft
2interpftPurpose One-dimensional interpolation using the FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the periodic
function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample interval
for y is dy = dx∗m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a matrix Y
with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithm The interpft command uses the FFT method. The original vector x is
transformed to the Fourier domain using fft and then transformed back with
more points.

See Also interp1
2-443

interpn
2interpnPurpose Multidimensional data interpolation (table lookup)

Syntax VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
VI = interpn(V,Y1,Y2,Y3,...)
VI = interpn(V,ntimes)
VI = interpn(...,method)

Description VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...) interpolates to find VI, the
values of the underlying multidimensional function V at the points in the
arrays Y1, Y2, Y3, etc. For a multidimensional V, you should call interpn with
2*N+1 arguments, where N is the number of dimensions in V. Arrays X1,X2,X3,...
specify the points at which the data V is given. Out of range values are returned
as NaN.

Y1, Y2, Y3,... can be matrices, in which case interpn returns the values of VI
corresponding to the points (Y1(i,j),Y2(i,j),Y3(i,j),...). Alternatively,
you can pass in the vectors y1, y2, y3,... In this case, interpn interprets these
vectors as if you issued the command ndgrid(y1,y2,y3,...).

VI = interpn(V,Y1,Y2,Y3,...) interpolates as above, assuming X1 =
1:size(V,1), X2 = 1:size(V,2), X3 = 1:size(V,3), and so on.

VI = interpn(V,ntimes) expands V by interleaving interpolates between
each element, working recursively for ntimes iterations. interpn(V,1) is the
same as interpn(V).

VI = interpn(...,method) specifies alternative methods:

• 'linear' for linear interpolation (default)

• 'cubic' for cubic interpolation

• 'spline' for cubic spline interpolation

• 'nearest' for nearest neighbor interpolation

Discussion All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were produced by ndgrid. Variable spacing is
handled by mapping the given values in X1,X2,X3,... and Y1,Y2,Y3,... to an
equally spaced domain before interpolating. For faster interpolation when
X1,X2,Y3, and so on are equally spaced and monotonic, use the methods
'∗linear', '∗cubic', '∗spline', or '∗nearest'.
2-444

interpn
See Also interp1, interp2, ndgrid
2-445

intersect
2intersectPurpose Set intersection of two vectors

Syntax c = intersect(a,b)
c = intersect(A,B,'rows')
[c,ia,ib] = intersect(...)

Description c = intersect(a,b) returns the values common to both a and b. The resulting
vector is sorted in ascending order. In set theoretic terms, this is
a∩ b. a and b can be cell arrays of strings.

c = intersect(A,B,'rows') when A and B are matrices with the same
number of columns returns the rows common to both A and B.

[c,ia,ib] = intersect(a,b) also returns column index vectors ia and ib
such that c = a(ia) and c = b(ib) (or c = a(ia,:) and c = b(ib,:)).

Examples A = [1 2 3 6]; B = [1 2 3 4 6 10 20];
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])
 1 2 3 6
 1 2 3 4
 1 2 3 5

See Also ismember, setdiff, setxor, union, unique
2-446

inv
2invPurpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning message is
printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A
frequent misuse of inv arises when solving the system of linear equations
Ax = b. One way to solve this is with x = inv(A)∗b. A better way, from both an
execution time and numerical accuracy standpoint, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian
elimination, without forming the inverse. See \ and / for further information.

Examples Here is an example demonstrating the difference between solving a linear
system by inverting the matrix with inv(A)∗b and solving it directly with A\b.
A matrix A of order 100 has been constructed so that its condition number,
cond(A), is 1.e10, and its norm, norm(A), is 1. The exact solution x is a random
vector of length 100 and the right-hand side is b = A∗x. Thus the system of
linear equations is badly conditioned, but consistent.

On a 20 MHz 386SX notebook computer, the statements

tic, y = inv(A)*b, toc
err = norm(y–x)
res = norm(A*y–b)

produce

elapsed_time =
 9.6600
err =
 2.4321e–07
res =
 1.8500e–09

while the statements

tic, z = A\b, toc
err = norm(z–x)
res = norm(A*z–b)
2-447

inv
produce

elapsed_time =
 3.9500
err =
 6.6161e–08
res =
 9.1103e–16

It takes almost two and one half times as long to compute the solution with
y = inv(A)∗b as with z = A\b. Both produce computed solutions with about
the same error, 1.e–7, reflecting the condition number of the matrix. But the
size of the residuals, obtained by plugging the computed solution back into the
original equations, differs by several orders of magnitude. The direct solution
produces residuals on the order of the machine accuracy, even though the
system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)∗b is two to
three times as fast and produces residuals on the order of machine accuracy,
relative to the magnitude of the data.

Algorithm The inv command uses the subroutines ZGEDI and ZGEFA from LINPACK. For
more information, see the LINPACK Users’ Guide.

Diagnostics From inv, if the matrix is singular,

Matrix is singular to working precision.

On machines with IEEE arithmetic, this is only a warning message. inv then
returns a matrix with each element set to Inf. On machines without IEEE
arithmetic, like the VAX, this is treated as an error.

If the inverse was found, but is not reliable, this message is displayed.

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = xxx
2-448

inv
See Also det, lu, rref

The arithmetic operators \, /

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.
2-449

invhilb
2invhilbPurpose Inverse of the Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n
less than about 15. For larger n, invhilb(n) generates an approximation to the
inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements are
large integers. These integers may be represented as floating-point numbers
without roundoff error as long as the order of the matrix, n, is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three
sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/
3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

 16 –120 240 –140
 –120 1200 –2700 1680
 240 –2700 6480 –4200
 –140 1680 –4200 2800

See Also hilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.
2-450

ipermute
2ipermutePurpose Inverse permute the dimensions of a multidimensional array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute rearranges the
dimensions of B so that permute(A,order) will produce B. B has the same
values as A but the order of the subscripts needed to access any particular
element are rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
 1 0 2 0
 0 1 0 2

a(:,:,3) =
 3 0
 0 3

Permuting and inverse permuting a in the same fashion restores the array to
its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

 1

See Also permute
2-451

is*
2is*Purpose Detect state

Syntax k = iscell(C) k = islogical(A)
k = iscellstr(S) TF = isnan(A)
k = ischar(S) k = isnumeric(A)
k = isempty(A) k = isobject(A)
k = isequal(A,B,...) TF = isprime(A)
k = isfield(S,’field’) k = isreal(A)
TF = isfinite(A) TF = isspace('str')
k = isglobal(NAME) k = issparse(S)
TF = ishandle(H) k = isstruct(S)
k = ishold k = isstudent
k = isieee k = isunix
TF = isinf(A) k = isvms
TF = isletter('str')

Description k = iscell(C) returns logical true (1) if C is a cell array and logical false (0)
otherwise.

k = iscellstr(S) returns logical true (1) if S is a cell array of strings and
logical false (0) otherwise. A cell array of strings is a cell array where every
element is a character array.

k = ischar(S) returns logical true (1) if S is a character array and logical false
(0) otherwise.

k = isempty(A) returns logical true (1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for
example, 0-by-0 or 0-by-5.

k = isequal(A,B,...) returns logical true (1) if the input arrays are the same
type and size and hold the same contents, and logical false (0) otherwise.

k = isfield(S,’field’) returns logical true (1) if field is the name of a field
in the structure array S.

TF = isfinite(A) returns an array the same size as A containing logical true
(1) where the elements of the array A are finite and logical false (0) where they
are infinite or NaN.
2-452

is*
For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

k = isglobal(NAME) returns logical true (1) if NAME has been declared to be a
global variable, and logical false (0) if it has not been so declared.

TF = ishandle(H) returns an array the same size as H that contains logical
true (1) where the elements of H are valid graphics handles and logical false
(0)where they are not.

k = ishold returns logical true (1) if hold is on, and logical false (0) if it is off.
When hold is on, the current plot and all axis properties are held so that
subsequent graphing commands add to the existing graph. hold on means the
NextPlot property of both figure and axes is set to add.

k = isieee returns logical true (1) on machines with IEEE arithmetic (e.g.,
IBM PC and most UNIX workstations) and logical false (0) on machines
without IEEE arithmetic (e.g., VAX, Cray).

TF = isinf(A) returns an array the same size as A containing logical true (1)
where the elements of A are +Inf or –Inf and logical false (0) where they are
not.

TF = isletter('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are letters of the alphabet and logical
false (0) where they are not.

k = islogical(A) returns logical true (1) if A is a logical array and logical false
(0) otherwise.

TF = isnan(A) returns an array the same size as A containing logical true (1)
where the elements of A are NaNs and logical false (0) where they are not.

k = isnumeric(A) returns logical true (1) if A is a numeric array and logical
false (0) otherwise. For example, sparse arrays, and double precision arrays are
numeric while strings, cell arrays, and structure arrays are not.

k = isobject(A) returns logical true (1) if A is an object and logical false (0)
otherwise.
2-453

is*
TF = isprime(A) returns an array the same size as A containing logical true
(1) for the elements of A which are prime, and logical false (0) otherwise.

k = isreal(A) returns logical true (1) if all elements of A are real numbers,
and logical false (0) if either A is not a numeric array, or if any element of A has
a nonzero imaginary component. Since strings are a subclass of numeric
arrays, isreal always returns 1 for a string input.

Because MATLAB supports complex arithmetic, certain of its functions can
introduce significant imaginary components during the course of calculations
that appear to be limited to real numbers. Thus, you should use isreal with
discretion.

TF = isspace('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are ASCII white spaces and logical
false (0) where they are not. White spaces in ASCII are space, newline, carriage
return, tab, vertical tab, or formfeed characters.

k = issparse(S) returns logical true (1) if the storage class of S is sparse and
logical false (0) otherwise.

k = isstruct(S) returns logical true (1) if S is a structure and logical false (0)
otherwise.

k = isstudent returns logical true (1) for student editions of MATLAB and
logical false (0) for commercial editions.

k = isunix returns logical true (1) for UNIX versions of MATLAB and logical
false (0) otherwise.

k = isvms returns logical true (1) for VMS versions of MATLAB and logical
false (0) otherwise.
2-454

is*
Examples s = 'A1,B2,C3';

isletter(s)
ans =

1 0 0 1 0 0 1 0

B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)
ans =

1

Given,

A = B = C =
 1 0 1 0 1 0
 0 1 0 1 0 0

isequal(A,B,C) returns 0, and isequal(A,B) returns 1.

Let

a = [–2 –1 0 1 2]

Then

isfinite(1./a) = [1 1 0 1 1]
isinf(1./a) = [0 0 1 0 0]
isnan(1./a) = [0 0 0 0 0]

and

isfinite(0./a) = [1 1 0 1 1]
isinf(0./a) = [0 0 0 0 0]
isnan(0./a) = [0 0 1 0 0]
2-455

isa
2isaPurpose Detect an object of a given class

Syntax K = isa(obj,'class_name')

Description K = isa(obj,'class_name') returns logical true (1) if obj is of class (or a
subclass of) class_name, and logical false (0) otherwise.

The argument class_name is the name of a user-defined or pre-defined class of
objects. Predefined MATLAB classes include:

Examples isa(rand(3,4),'double')

ans =

 1

See Also class

cell Multidimensional cell array

double Multidimensional double precision array

sparse Two-dimensional real (or complex) sparse array

char Array of alphanumeric characters

struct Structure

'class_name' User-defined object class
2-456

ismember
2ismemberPurpose Detect members of a set

Syntax k = ismember(a,S)
k = ismember(A,S,'rows')

Description k = ismember(a,S) returns an vector the same length as a containing logical
true (1) where the elements of a are in the set S, and logical false (0) elsewhere.
In set theoretic terms, k is 1 where a ∈ S. a and S can be cell arrays of strings.

k = ismember(A,S,'rows') when A and S are matrices with the same number
of columns returns a vector containing 1 where the rows of A are also rows of S
and 0 otherwise.

Examples set = [0 2 4 6 8 10 12 14 16 18 20];
a = reshape(1:5,[5 1])

a =

 1
 2
 3
 4
 5

ismember(a,set)

ans =

0
1
0
1
0

See Also intersect, setdiff, setxor, union, unique
2-457

isstr
2isstrPurpose Detect strings

Description This MATLAB 4 function has been renamed ischar in MATLAB 5.

See Also is*
2-458

j

2jPurpose Imaginary unit

Syntax j
x+yj
x+j∗y

Description Use the character j in place of the character i, if desired, as the imaginary unit.

As the basic imaginary unit sqrt(–1), j is used to enter complex numbers.
Since j is a function, it can be overridden and used as a variable. This permits
you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in
forming a numerical constant.

Examples Z = 2+3j
Z = x+j∗y
Z = r∗exp(j∗theta)

See Also conj, i, imag, real
2-459

keyboard
2keyboardPurpose Invoke the keyboard in an M-file

Syntax keyboard

Description keyboard , when placed in an M-file, stops execution of the file and gives control
to the keyboard. The special status is indicated by a K appearing before the
prompt. You can examine or change variables; all MATLAB commands are
valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command:

return

then press the Return key.

See Also dbstop, input, quit, return
2-460

kron
2kronPurpose Kronecker tensor product

Syntax K = kron(X,Y)

Description K = kron(X,Y) returns the Kronecker tensor product of X and Y. The result is
a large array formed by taking all possible products between the elements of X
and those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is m∗p-by-n∗q.

Examples If X is 2-by-3, then kron(X,Y) is

[X(1,1)∗Y X(1,2)∗Y X(1,3)∗Y
 X(2,1)∗Y X(2,2)∗Y X(2,3)∗Y]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n^2-by-n^2 sparse matrix. There are at most
five nonzero elements in each row or column. The matrix can be generated as
the Kronecker product of one-dimensional difference operators with these
statements:

 I = speye(n,n);
 E = sparse(2:n,1:n–1,1,n,n);
 D = E+E'–2∗I;
 A = kron(D,I)+kron(I,D);

Plotting this with the spy function for n = 5 yields:

0 5 10 15 20 25

0

5

10

15

20

25

nz = 105
2-461

lasterr
2lasterrPurpose Last error message

Syntax str = lasterr
lasterr('')

Description str = lasterr returns the last error message generated by MATLAB.

lasterr('') resets lasterr so it returns an empty matrix until the next error
occurs.

Examples Here is a function that examines the lasterr string and displays its own
message based on the error that last occurred. This example deals with two
cases, each of which is an error that can result from a matrix multiply.

function catchfcn
l = lasterr;
j = findstr(l,'Inner matrix dimensions');
if j~=[]
 disp('Wrong dimensions for matrix multiply')
else
 k = findstr(l,'Undefined function or variable')
 if (k~=[])
 disp('At least one operand does not exist')
 end
end

The lasterr function is useful in conjunction with the two-argument form of
the eval function:

eval('string','catchstr')

or the try ... catch...end statements. The catch action examines the
lasterr string to determine the cause of the error and takes appropriate
action.
2-462

lasterr
The eval function evaluates string and returns if no error occurs. If an error
occurs, eval executes catchstr. Using eval with the catchfcn function above:

clear
A = [1 2 3; 6 7 2; 0 –1 5];
B = [9 5 6; 0 4 9];
eval('A∗B','catch')

MATLAB responds with Wrong dimensions for matrix multiply.

See Also error, eval
2-463

lastwarn
2lastwarnPurpose Last warning message

Syntax lastwarn
lastwarn('')
lastwarn('string')

Description lastwarn returns a string containing the last warning message issued by
MATLAB.

lastwarn('') resets the lastwarn function so that it will return an empty
string matrix until the next warning is encountered.

lastwarn('string') sets the last warning message to 'string'. The last
warning message is updated regardless of whether warning is on or off.

See Also lasterr, warning
2-464

lcm
2lcmPurpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiple of corresponding elements of
arrays A and B. Inputs A and B must contain positive integer elements and must
be the same size (or either can be scalar).

Examples lcm(8,40)

ans =

40

lcm(pascal(3),magic(3))

ans =
 8 1 6
 3 10 21
 4 9 6

See Also gcd
2-465

legendre
2legendrePurpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')

Definition The Legendre functions are defined by:

where

is the Legendre polynomial of degree n:

The Schmidt seminormalized associated Legendre functions are related to the
nonnormalized associated Legendre functions by:

where

Description P = legendre(n,X) computes the associated Legendre functions of degree n
and order m = 0,1,...,n, evaluated at X. Argument n must be a scalar integer
less than 256, and X must contain real values in the domain

The returned array P has one more dimension than X, and each element
P(m+1,d1,d2...) contains the associated Legendre function of degree n and
order m evaluated at X(d1,d2...).

Pn
m x() 1–()m 1 x2–()m 2/

xm

m

d

d Pn x()=

Pn x()

Pn x() 1

2nn!

x

n

d
d x2 1–()

n
=

Pn
m x()

Sn
m x() 1–()m 2 n m–()!

n m+()!
------------------------- Pn

m x()=

m 0.>

1 x 1.≤ ≤–
2-466

legendre
If X is a vector, then P is a matrix of the form:

S = legendre(...,'sch') computes the Schmidt seminormalized associated
Legendre functions .

Examples The statement legendre(2,0:0.1:0.2) returns the matrix:

Note that this matrix is of the form shown at the bottom of the previous page.

Given,

X = rand(2,4,5); N = 2;
P = legendre(N,X)

Then size(P) is 3-by-2-by-4-by-5, and P(:,1,2,3) is the same as
legendre(n,X(1,2,3)).

P2
0 x 1()()

P2
1 x 1()()

P2
2 x 1()()

P2
0 x 2()()

P2
1 x 2()()

P2
2 x 2()()

P2
0 x 3()() ...

P2
1 x 3()() ...

P2
2 x 3()() ...

Sn
m x()

x = 0 x = 0.1 x = 0.2

m = 0 –0.5000 –0.4850 –0.4400

m = 1 0 –0.2985 –0.5879

m = 2 3.0000 2.9700 2.8800
2-467

length
2lengthPurpose Length of vector

Syntax n = length(X)

Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays
and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a vector,
this is the same as its length.

Examples x = ones(1,8);
n = length(x)

n =

 8

x = rand(2,10,3);
n = length(x)

n =

 10

See Also ndims, size
2-468

lin2mu
2lin2muPurpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range –
1 ≤ Y ≤ 1 to mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also auwrite, mu2lin
2-469

linspace
2linspacePurpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to the
colon operator “:”, but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly spaced
between a and b.

y = linspace(a,b,n) generates n points.

See Also logspace

The colon operator :
2-470

load
2loadPurpose Retrieve variables from disk

Syntax load
load filename
load ('filename')
load filename.ext
load filename –ascii
load filename –mat
S = load(...)

Description The load and save commands retrieve and store MATLAB variables on disk.

load loads all the variables saved in the file 'matlab.mat'.

load filename retrieves the variables from filename.mat given a full
pathname or a MATLABPATH relative partial pathname.

load ('filename') loads a file whose name is stored in filename. The
statements

str = 'filename.mat'; load (str)

retrieve the variables from the binary file 'filename.mat'.

load filename.ext reads ASCII files that contain rows of space-separated
values. The resulting data is placed into an variable with the same name as the
file (without the extension). ASCII files may contain MATLAB comments (lines
that begin with %).

load filename –ascii or load filename –mat can be used to force load to
treat the file as either an ASCII file or a MAT-file.

S = load(...) returns the contents of a MAT-file as a structure instead of
directly loading the file into the workspace. The field names in S match the
names of the variables that were retrieved. When the file is ASCII, S is a
double-precision array.

Remarks MAT-files are double-precision binary MATLAB format files created by the
save command and readable by the load command. They can be created on one
machine and later read by MATLAB on another machine with a different
2-471

load
floating-point format, retaining as much accuracy and range as the disparate
formats allow. They can also be manipulated by other programs, external to
MATLAB.

The Application Program Interface Libraries contain C- and Fortran-callable
routines to read and write MAT-files from external programs.

See Also fprintf, fscanf, partialpath, save, spconvert
2-472

loadobj
2loadobjPurpose User-defined extension of the load function for user objects

Syntax b = loadobj(a)

Description b = loadobj(a) extends the load function for user objects. When an object is
loaded from a MAT file, the load function calls the loadobj method for the
object’s class if it is defined. The loadobj method must have the calling
sequence shown; the input argument a is the object as loaded from the MAT file
and the output argument b is the object that the load function will load into the
workspace.

These steps describe how an object is loaded from a MAT file into the
workspace:

1 The load function detects the object a in the MAT file.

2 The load function looks in the current workspace for an object of the same
class as the object a. If there isn’t an object of the same class in the
workspace, load calls the default constructor, registering an object of that
class in the workspace. The default constructor is the constructor function
called with no input arguments.

3 The load function checks to see if the structure of the object a matches the
structure of the object registered in the workspace. If the objects match, a is
loaded. If the objects don’t match, load converts a to a structure variable.

4 The load function calls the loadobj method for the object’s class if it is
defined. load passes the object a to the loadobj method as an input
argument. Note, the format of the object a is dependent on the results of step
3 (object or structure). The output argument of loadobj, b, is loaded into the
workspace in place of the object a.

Remarks loadobj can be overloaded only for user objects. load will not call loadobj for
built-in datatypes (such as double).

loadobj is invoked separately for each object in the MAT file. The load function
recursively descends cell arrays and structures applying the loadobj method
to each object encountered.

See Also load, save, saveobj
2-473

log
2logPurpose Natural logarithm

Syntax Y = log(X)

Description The log function operates element-wise on arrays. Its domain includes
complex and negative numbers, which may lead to unexpected results if used
unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For complex or
negative z, where z= x + y∗i, the complex logarithm is returned:

log(z) = log(abs(z)) + i*atan2(y,x)

Examples The statement abs(log(–1)) is a clever way to generate :

ans =

3.1416

See Also exp, log10, log2, logm

π

2-474

log2
2log2Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of real
values, usually in the range 0.5 ≤ abs(F) < 1. For real X, F satisfies the
equation: X = F.*2.^E. Argument E is an array of integers that, for real X,
satisfy the equation: X = F.*2.^E.

Remarks This function corresponds to the ANSI C function frexp() and the IEEE
floating-point standard function logb(). Any zeros in X produce F = 0 and
E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

See Also log, pow2

X F E

1 1/2 1

pi pi/4 2

–3 –3/4 2

eps 1/2 –51

realmax 1–eps/2 1024

realmin 1/2 –1021
2-475

log10
2log10Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if used
unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples On a computer with IEEE arithmetic

log10(realmax) is 308.2547

and

log10(eps) is –15.6536

See Also exp, log, log2, logm
2-476

logical
2logicalPurpose Convert numeric values to logical

Syntax K = logical(A)

Description K = logical(A) returns an array that can be used for logical indexing or
logical tests.

A(B), where B is a logical array, returns the values of A at the indices where the
real part of B is nonzero. B must be the same size as A.

Remarks Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

Examples Given A = [1 2 3; 4 5 6; 7 8 9], the statement B = logical(eye(3))
returns a logical array

B =
 1 0 0
 0 1 0
 0 0 1

which can be used in logical indexing that returns A’s diagonal elements:

A(B)

ans =
 1
 5
 9

However, attempting to index into A using the numeric array eye(3) results in:

A(eye(3))
??? Index into matrix is negative or zero.

See Also The logical operators &, |, ~
2-477

logm
2logmPurpose Matrix logarithm

Syntax Y = logm(X)
[Y,esterr] = logm(X)

Description Y = logm(X) returns the matrix logarithm: the inverse function of expm(X).
Complex results are produced if X has negative eigenvalues. A warning
message is printed if the computed expm(Y) is not close to X.

[Y,esterr] = logm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(expm(Y)–X)/norm(X).

Remarks If X is real symmetric or complex Hermitian, then so is logm(X).

Some matrices, like X = [0 1; 0 0], do not have any logarithms, real or
complex, and logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(X)) = X = expm(logm(X))

These identities may fail for some X. For example, if the computed eigenvalues
of X include an exact zero, then logm(X) generates infinity. Or, if the elements
of X are too large, expm(X) may overflow.

Examples Suppose A is the 3-by-3 matrix

 1 1 0
 0 0 2
 0 0 –1

and X = expm(A) is

X =

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679
2-478

logm
Then A = logm(X) produces the original matrix A.

A =

 1.0000 1.0000 0.0000
 0 0 2.0000
 0 0 –1.0000

But log(X) involves taking the logarithm of zero, and so produces

ans =

 1.0000 0.5413 0.0826
 –Inf 0 0.2345
 –Inf –Inf –1.0000

Algorithm The matrix functions are evaluated using an algorithm due to Parlett, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

See Also expm, funm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979,pp. 801-836.
2-479

logspace
2logspacePurpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors. Especially
useful for creating frequency vectors, it is a logarithmic equivalent of linspace
and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and 10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which is
useful for digital signal processing where frequencies over this interval go
around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :
2-480

lookfor
2lookforPurpose Search for keyword through all help entries

Syntax lookfor topic
lookfor topic –all

Description lookfor topic searches for the string topic in the first comment line (the H1
line) of the help text in all M-files found on MATLAB’s search path. For all files
in which a match occurs, lookfor displays the H1 line.

lookfor topic –all searches the entire first comment block of an M-file
looking for topic.

Examples For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing “inverse
hyperbolic cosine,” “two-dimensional inverse FFT,” and “pseudoinverse.”
Contrast this with

which inverse

or

what inverse

These commands run more quickly, but probably fail to find anything because
MATLAB does not ordinarily have a function inverse.

In summary, what lists the functions in a given directory, which finds the
directory containing a given function or file, and lookfor finds all functions in
all directories that might have something to do with a given keyword.

See Also dir, doc, help, helpdesk, helpwin, what, which, who
2-481

lower
2lowerPurpose Convert string to lower case

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any upper-case
characters in str to the corresponding lower-case characters and leaving all
other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying lower to each string within A.

Examples lower('MathWorks') is mathworks.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper
2-482

ls
2lsPurpose List directory on UNIX

Syntax ls

Description ls displays the results of the ls command on UNIX. You can pass any flags to
ls that your operating system supports. On UNIX, ls returns a \n delimited
string of filenames. On all other platforms, ls executes dir.

See Also dir
2-483

lscov
2lscovPurpose Least squares solution in the presence of known covariance

Syntax x = lscov(A,b,V)
[x,dx] = lscov(A,b,V)

Description x = lscov(A,b,V) returns the vector x that solves A*x = b + e where e is
normally distributed with zero mean and covariance V. Matrix A must be m-by-n
where m > n. This is the over-determined least squares problem with
covariance V. The solution is found without inverting V.

[x,dx] = lscov(A,b,V) returns the standard errors of x in dx. The standard
statistical formula for the standard error of the coefficients is:

mse = B'*(inv(V)–inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m–n)
dx = sqrt(diag(inv(A'*inv(V)*A)*mse))

Algorithm The vector x minimizes the quantity (A*x–b)'*inv(V)*(A*x–b). The classical
linear algebra solution to this problem is

 x = inv(A'∗inv(V)∗A)∗A'∗inv(V)∗b

but the lscov function instead computes the QR decomposition of A and then
modifies Q by V.

See Also lsqnonneg, qr

The arithmetic operator \

Reference Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge, 1986,
p. 398.
2-484

lsqnonneg
2lsqnonnegPurpose Linear least squares with nonnegativity constraints

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x–d) subject
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is used
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these options
structure fields:

• Display – Level of display. off displays no output; iter displays output at
each iteration; final displays just the final output.

• TolX – Termination tolerance on x.

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x–d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual, C*x–d.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

• > 0 indicates that the function converged to a solution x.

• 0 indicates that the iteration count was exceeded. Increasing the tolerance
(TolX parameter in options) may lead to a solution.

• < 0 indicates that the function did not converge to a solution.
2-485

lsqnonneg
[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a
structure output that contains information about the operation:

• output.iterations – The number of iterations taken.

• output.algorithm – The algorithm used.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the dual vector lambda, where lambda(i)<=0 when x(i) is
(approximately) 0, and lambda(i) is (approximately) 0 when x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg solution
for a 4-by-2 problem:

C =
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170

d =
 0.8587
 0.1781
 0.0747
 0.8405

[C\d lsqnonneg(C,d)] =
–2.5627 0

 3.1108 0.6929

[norm(C*(C\d)–d) norm(C*lsqnonneg(C,d)–d)] =
0.6674 0.9118

The solution from lsqnonneg does not fit as well (has a larger residual), but has
no negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap out of the basis in exchange for another possible candidate. This
continues until lambda <= 0.
2-486

lsqnonneg
See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.
2-487

lu
2luPurpose LU matrix factorization

Syntax [L,U] = lu(X)
[L,U,P] = lu(X)
lu(X)

Description The lu function expresses any square matrix X as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular matrix
and the other an upper triangular matrix. The factorization is often called the
LU, or sometimes the LR, factorization.

[L,U] = lu(X) returns an upper triangular matrix in U and a psychologically
lower triangular matrix (i.e., a product of lower triangular and permutation
matrices) in L, so that X = L*U.

[L,U,P] = lu(X) returns an upper triangular matrix in U, a lower triangular
matrix in L, and a permutation matrix in P, so that L*U = P*X.

lu(X) returns the output from the LINPACK routine ZGEFA.

Remarks Most of the algorithms for computing LU factorization are variants of Gaussian
elimination. The factorization is a key step in obtaining the inverse with inv
and the determinant with det. It is also the basis for the linear equation
solution or matrix division obtained with \ and /.

Arguments

Examples Start with

A =
 1 2 3
 4 5 6
 7 8 0

L A factor of X. Depending on the form of the function, L is either lower
triangular, or else the product of a lower triangular matrix with a
permutation matrix P.

U An upper triangular matrix that is a factor of X.

P The permutation matrix satisfying the equation L*U = P*X.
2-488

lu
To see the LU factorization, call lu with two output arguments:

[L,U] = lu(A)

L =

 0.1429 1.0000 0
 0.5714 0.5000 1.0000
 1.0000 0 0

U =

 7.0000 8.0000 0.0000
 0 0.8571 3.0000
 0 0 4.5000

Notice that L is a permutation of a lower triangular matrix that has 1’s on the
permuted diagonal, and that U is upper triangular. To check that the
factorization does its job, compute the product:

L∗U

which returns the original A. Using three arguments on the left-hand side to
get the permutation matrix as well

[L,U,P] = lu(A)
2-489

lu
returns the same value of U, but L is reordered:

L =

 1.0000 0 0
 0.1429 1.0000 0
 0.5714 0.5000 1.0000

U =

 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

P =

 0 0 1
 1 0 0
 0 1 0

To verify that L∗U is a permuted version of A, compute L∗U and subtract it from
P∗A:

P∗A – L∗U

The inverse of the example matrix, X = inv(A), is actually computed from the
inverses of the triangular factors:

X = inv(U)∗inv(L)

The determinant of the example matrix is

d = det(A)

d =

 27

It is computed from the determinants of the triangular factors:

d = det(L)∗det(U)
2-490

lu
The solution to Ax = b is obtained with matrix division:

x = A\b

The solution is actually computed by solving two triangular systems:

y = L\b, x = U\y

Algorithm lu uses the subroutines ZGEDI and ZGEFA from LINPACK. For more
information, see the LINPACK Users’ Guide.

See Also cond, det, inv, qr, rref

The arithmetic operators \ and /

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK
Users’ Guide, SIAM, Philadelphia, 1979.
2-491

luinc
2luincPurpose Incomplete LU matrix factorizations

Syntax luinc(X,'0')
[L,U] = luinc(X,'0')
[L,U,P] = luinc(X,'0')
luinc(X,droptol)
luinc(X,options)
[L,U] = luinc(X,options)
[L,U] = luinc(X,droptol)
[L,U,P] = luinc(X,options)
[L,U,P] = luinc(X,droptol)

Description luinc produces a unit lower triangular matrix, an upper triangular matrix,
and a permutation matrix.

luinc(X,'0') computes the incomplete LU factorization of level 0 of a square
sparse matrix. The triangular factors have the same sparsity pattern as the
permutation of the original sparse matrix X, and their product agrees with the
permutated X over its sparsity pattern. luinc(X,'0') returns the strict lower
triangular part of the factor and the upper triangular factor embedded within
the same matrix. The permutation information is lost, but
nnz(luinc(X,'0')) = nnz(X), with the possible exception of some zeros due to
cancellation.

[L,U] = luinc(X,'0') returns the product of permutation matrices and a
unit lower triangular matrix in L and an upper triangular matrix in U. The
exact sparsity patterns of L, U, and X are not comparable but the number of
nonzeros is maintained with the possible exception of some zeros in L and U due
to cancellation:

 nnz(L)+nnz(U) = nnz(X)+n, where X is n-by-n.

The product L*U agrees with X over its sparsity pattern. (L*U).*spones(X)–X
has entries of the order of eps.

[L,U,P] = luinc(X,'0') returns a unit lower triangular matrix in L, an
upper triangular matrix in U and a permutation matrix in P. L has the same
sparsity pattern as the lower triangle of the permuted X

 spones(L) = spones(tril(P*X))
2-492

luinc
with the possible exceptions of 1’s on the diagonal of L where P*X may be zero,
and zeros in L due to cancellation where P*X may be nonzero. U has the same
sparsity pattern as the upper triangle of P*X

 spones(U) = spones(triu(P*X))

with the possible exceptions of zeros in U due to cancellation where P*X may be
nonzero. The product L*U agrees within rounding error with the permuted
matrix P*X over its sparsity pattern. (L*U).*spones(P*X)–P*X has entries of
the order of eps.

luinc(X,droptol) computes the incomplete LU factorization of any sparse
matrix using a drop tolerance. droptol must be a non-negative scalar.
luinc(X,droptol) produces an approximation to the complete LU factors
returned by lu(X). For increasingly smaller values of the drop tolerance, this
approximation improves, until the drop tolerance is 0, at which time the
complete LU factorization is produced, as in lu(X).

As each column j of the triangular incomplete factors is being computed, the
entries smaller in magnitude than the local drop tolerance (the product of the
drop tolerance and the norm of the corresponding column of X)

 droptol*norm(X(:,j))

are dropped from the appropriate factor.

The only exceptions to this dropping rule are the diagonal entries of the upper
triangular factor, which are preserved to avoid a singular factor.

luinc(X,options) specifies a structure with up to four fields that may be used
in any combination: droptol, milu, udiag, thresh. Additional fields of options
are ignored.

droptol is the drop tolerance of the incomplete factorization.

If milu is 1, luinc produces the modified incomplete LU factorization that
subtracts the dropped elements in any column from the diagonal element of the
upper triangular factor. The default value is 0.

If udiag is 1, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance. The default is 0.
2-493

luinc
thresh is the pivot threshold between 0 (forces diagonal pivoting) and 1, the
default, which always chooses the maximum magnitude entry in the column to
be the pivot. thresh is desribed in greater detail in lu.

luinc(X,options) is the same as luinc(X,droptol) if options has droptol as
its only field.

[L,U] = luinc(X,options) returns a permutation of a unit lower triangular
matrix in L and an upper trianglar matrix in U. The product L*U is an
approximation to X. luinc(X,options) returns the strict lower triangular part
of the factor and the upper triangular factor embedded within the same matrix.
The permutation information is lost.

[L,U] = luinc(X,options) is the same as luinc(X,droptol) if options has
droptol as its only field.

[L,U,P] = luinc(X,options) returns a unit lower triangular matrix in L, an
upper triangular matrix in U, and a permutation matrix in P. The nonzero
entries of U satisfy

 abs(U(i,j)) >= droptol*norm((X:,j)),

with the possible exception of the diagonal entries which were retained despite
not satisfying the criterion. The entries of L were tested against the local drop
tolerance before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(X(:,j))/U(j,j).

The product L*U is an approximation to the permuted P*X.

[L,U,P] = luinc(X,options) is the same as [L,U,P] = luinc(X,droptol) if
options has droptol as its only field.

Remarks These incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. The lower triangular factors all have
1’s along the main diagonal but a single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the udiag option to replace a zero diagonal only
gets rid of the symptoms of the problem but does not solve it. The
preconditioner may not be singular, but it probably is not useful and a warning
message is printed.
2-494

luinc
Limitations luinc(X,'0') works on square matrices only.

Examples Start with a sparse matrix and compute its LU factorization.

load west0479;
S = west0479;
LU = lu(S);

Compute the incomplete LU factorization of level 0.

[L,U,P] = luinc(S,'0');
D = (L*U).*spones(P*S)–P*S;

spones(U) and spones(triu(P*S)) are identical.

0 100 200 300 400

0

100

200

300

400

nz = 1887

S = west0479

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(S)
2-495

luinc
spones(L) and spones(tril(P*S)) disagree at 73 places on the diagonal,
where L is 1 and P*S is 0, and also at position (206,113), where L is 0 due to
cancellation, and P*S is –1. D has entries of the order of eps.

[IL0,IU0,IP0] = luinc(S,0);
[IL1,IU1,IP1] = luinc(S,1e–10);

.

.

.
A drop tolerance of 0 produces the complete LU factorization. Increasing the
drop tolerance increases the sparsity of the factors (decreases the number of

0 100 200 300 400

0

100

200

300

400

nz = 1244

L: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1121

U: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1887

P*S

0 100 200 300 400

0

100

200

300

400

nz = 3097

L*U
2-496

luinc
nonzeros) but also increases the error in the factors, as seen in the plot of drop
tolerance versus norm(L*U-P*S,1)/norm(S,1) in second figure below.

0 100 200 300 400

0

100

200

300

400

nz = 11679

luinc(S,1e−8)

0 100 200 300 400

0

100

200

300

400

nz = 8004

luinc(S,1e−4)

0 100 200 300 400

0

100

200

300

400

nz = 4229

luinc(S,1e−2)

0 100 200 300 400

0

100

200

300

400

nz = 397

luinc(S,1)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

5000

10000

15000
Drop tolerance vs nnz(luinc(S,droptol))

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

Drop tolerance vs norm(L*U−P*S)/norm(S)
2-497

luinc
Algorithm luinc(X,'0') is based on the “KJI” variant of the LU factorization with partial
pivoting. Updates are made only to positions which are nonzero in X.

luinc(X,droptol) and luinc(X,options) are based on the column-oriented lu
for sparse matrices.

See Also lu, cholinc, bicg

References Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.
2-498

magic
2magicPurpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a scalar
greater than or equal to 3.

Remarks A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

This is called a magic square because the sum of the elements in each column
is the same.

 sum(M) =

 15 15 15

And the sum of the elements in each row, obtained by transposing twice, is the
same.

 sum(M')' =

 15
 15
 15

This is also a special magic square because the diagonal elements have the
same sum.

sum(diag(M)) =

 15
2-499

magic
The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithm There are three different algorithms:

• one for odd n

• one for even n not divisible by four

• one for even n divisible by four.

To make this apparent, type:

for n = 3:20
 A = magic(n);
 plot(A,'–');
 r(n) = rank(A);
end
r

Limitations If you supply n less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].

See Also ones, rand
2-500

mat2str
2mat2strPurpose Convert a matrix into a string

Syntax str = mat2str(A)
str = mat2str(A,n)

Description str = mat2str(A) converts matrix A into a string, suitable for input to the
eval function, using full precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

Limitations The mat2str function is intended to operate on scalar, vector, or rectangular
array inputs only. An error will result if A is a multidimensional array.

Examples Consider the matrix:

A =
 1 2
 3 4

The statement

b = mat2str(A)

produces:

b =
[1 2 ;3 4]

where b is a string of 11 characters, including the square brackets, spaces, and
a semicolon.

eval(mat2str(A)) reproduces A.

See Also int2str, sprintf, str2num
2-501

matlabrc
2matlabrcPurpose MATLAB startup M-file

Syntax matlabrc

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on MATLAB’s search path.

As an individual user, you can create a startup file in your own MATLAB
directory. Use the startup file to define physical constants, engineering
conversion factors, graphics defaults, or anything else you want predefined in
your workspace.

Algorithm Only matlabrc is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements:

if exist('startup') == 2
 startup
end

that invoke startup.m. Extend this process to create additional startup M-files,
if required.

Remarks You can also start MATLAB using options you define at the command line or
in your Windows shortcut for MATLAB. See Chapter 2 of Using MATLAB for
details.

Examples Example 1 – Specifying the Default Editor for UNIX
For UNIX platforms, you can include the system_dependent command in your
startup.m file, or your matlabrc.m file if you have access to it. Then when you
use edit for M-files, your default UNIX editor, for example Emacs, is used
instead of the MATLAB Editor. The sample matlabrc.m file, included with
MATLAB, already contains this command but it is commented out. If you want
2-502

matlabrc
to use your UNIX editor when you use edit, copy these lines to your startup.m
file and remove the comment marks.

%% For the 'edit' command, to use an editor defined in the $EDITOR
%% environment variable, the following line should be uncommented
%% (UNIX only)
%% system_dependent('builtinEditor','off')

Example 2 – Turning Off the Figure Window Toolbar
If you do not want the toolbar to appear in the figure window, remove the
comment marks from the following line in the matlabrc.m file, or create a
similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

See Also exist, path, quit, startup
2-503

matlabroot
2matlabrootPurpose Return root directory of MATLAB installation

Syntax rd = matlabroot

Description rd = matlabroot returns the name of the directory in which the MATLAB
software is installed.

Examples fullfile(matlabroot,'toolbox','matlab','general','')

produces a full path to the toolbox/matlab/general directory that is correct
for the platform it is executed on.
2-504

max
2maxPurpose Maximum elements of an array

Syntax C = max(A)
C = max(A,B)
C = max(A,[],dim)
[C,I] = max(...)

Description C = max(A) returns the largest elements along different dimensions of an
array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row
vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first
non-singleton dimension as vectors, returning the maximum value of each
vector.

C = max(A,B) returns an array the same size as A and B with the largest
elements taken from A or B.

C = max(A,[],dim) returns the largest elements along the dimension of A
specified by scalar dim. For example, max(A,[],1) produces the maximum
values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and returns
them in output vector I. If there are several identical maximum values, the
index of the first one found is returned.

Remarks For complex input A, max returns the complex number with the largest
modulus, computed with max(abs(A)). The max function ignores NaNs.

See Also isnan, mean, median, min, sort
2-505

mean
2meanPurpose Average or mean value of arrays

Syntax M = mean(A)
M = mean(A,dim)

Description M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row
vector of mean values.

If A is a multidimensional array, mean(A) treats the values along the first
non-singleton dimension as vectors, returning an array of mean values.

M = mean(A,dim) returns the mean values for elements along the dimension of
A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
mean(A)
ans =
 3.5000 4.5000 6.5000 6.5000

mean(A,2)
ans =
 2.7500
 4.7500
 6.7500
 6.7500

See Also corrcoef, cov, max, median, min, std
2-506

median
2medianPurpose Median value of arrays

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median values of the elements along different
dimensions of an array.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning a row
vector of median values.

If A is a multidimensional array, median(A) treats the values along the first
nonsingleton dimension as vectors, returning an array of median values.

M = median(A,dim) returns the median values for elements along the
dimension of A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
median(A)

ans =

 4 5 7 7

median(A,2)

ans =

 3
 5
 7
 7

See Also corrcoef, cov, max, mean, min, std
2-507

menu
2menuPurpose Generate a menu of choices for user input

Syntax k = menu('mtitle','opt1','opt2',...,'optn')

Description k = menu('mtitle','opt1','opt2',...,'optn') displays the menu whose
title is in the string variable 'mtitle' and whose choices are string variables
'opt1', 'opt2', and so on. menu returns the value you entered.

Remarks To call menu from another ui-object, set that object’s Interruptible property to
'yes'. For more information, see the MATLAB Graphics Guide.

Examples k = menu('Choose a color','Red','Green','Blue') displays

After input is accepted, use k to control the color of a graph.

color = ['r','g','b']
plot(t,s,color(k))

See Also input, uicontrol
2-508

meshgrid
2meshgridPurpose Generate X and Y matrices for three-dimensional plots

Syntax [X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Description [X,Y] = meshgrid(x,y) transforms the domain specified by vectors x and y
into arrays X and Y, which can be used to evaluate functions of two variables
and three-dimensional mesh/surface plots. The rows of the output array X are
copies of the vector x; columns of the output array Y are copies of the vector y.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays used to
evaluate functions of three variables and three-dimensional volumetric plots.

Remarks The meshgrid function is similar to ndgrid except that the order of the first two
input and output arguments is switched. That is, the statement

[X,Y,Z] = meshgrid(x,y,z)

produces the same result as

[Y,X,Z] = ndgrid(y,x,z)

Because of this, meshgrid is better suited to problems in two- or
three-dimensional Cartesian space, while ndgrid is better suited to
multidimensional problems that aren’t spatially based.

meshgrid is limited to two- or three-dimensional Cartesian space.
2-509

meshgrid
Examples [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

Y =

10 10 10
 11 11 11
 12 12 12
 13 13 13
 14 14 14

See Also griddata, mesh, ndgrid, slice, surf
2-510

methods
2methodsPurpose Display method names

Syntax methods class_name
n = methods('class_name')

Description methods class_name displays the names of the methods for the class with the
name class_name.

n = methods('class_name') returns the method names in a cell array of
strings.

See Also help, what, which
2-511

mexext
2mexextPurpose Return the MEX-filename extension

Syntax ext = mexext

Description ext = mexext returns the filename extension for the current platform.
2-512

mfilename
2mfilenamePurpose The name of the currently running M-file

Syntax mfilename

Description mfilename returns a string containing the name of the most recently invoked
M-file. When called from within an M-file, it returns the name of that M-file,
allowing an M-file to determine its name, even if the filename has been
changed.

When called from the command line, mfilename returns an empty matrix.
2-513

min
2minPurpose Minimum elements of an array

Syntax C = min(A)
C = min(A,B)
C = min(A,[],dim)
[C,I] = min(...)

Description C = min(A) returns the smallest elements along different dimensions of an
array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a row
vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first nonsingleton
dimension.

C = min(A,B) returns an array the same size as A and B with the smallest
elements taken from A or B.

C = min(A,[],dim) returns the smallest elements along the dimension of A
specified by scalar dim. For example, min(A,[],1) produces the minimum
values along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and returns
them in output vector I. If there are several identical minimum values, the
index of the first one found is returned.

Remarks For complex input A, min returns the complex number with the smallest
modulus, computed with min(abs(A)). The min function ignores NaNs.

See Also max, mean, median, sort
2-514

mislocked
2mislockedPurpose True if M-file cannot be cleared

Syntax mislocked
mislocked(fun)

Description mislocked by itself is 1 if the currently running M-file is locked and 0
otherwise.

mislocked(fun) is 1 if the function named fun is locked in memory and 0
otherwise. Locked M-files cannot be removed with the clear function.

See Also mlock, munlock
2-515

mkdir
2mkdirPurpose Make directory

Syntax mkdir('dirname')
mkdir('parentdir','newdir')
status = mkdir('parentdir','newdir')
[status,msg] = mkdir('parentdir','newdir')

Description mkdir('parentdir') creates the directory dirname in the current directory.

mkdir('parentdir','newdir') creates the directory newdir in the existing
directory parentdir.

status = mkdir('parentdir','newdir') returns 1 if the new directory is
created successfully, 2 if it already exists, and 0 otherwise.

[status,msg] = mkdir('parentdir','newdir') returns a non-empty error
message string when an error occurs.

See Also copyfile
2-516

mlock
2mlockPurpose Prevent M-file clearing

Syntax mlock
mlock(fun)

Description mlock locks the currently running M-file so that subsequent clear commands
do not remove it.

mlock(fun) locks the M-file named fun in memory.

Use the command munlock or munlock(fun) to return the M-file to its normal
removable state.

See Also munlock
2-517

mod
2modPurpose Modulus (signed remainder after division)

Syntax M = mod(X,Y)

Definition mod(x,y) is x mod y.

Description M = mod(X,Y) returns the remainder X – Y.*floor(X./Y) for nonzero Y, and
returns X otherwise. mod(X,Y) always differs from X by a multiple of Y.

Remarks So long as operands X and Y are of the same sign, the function mod(X,Y) returns
the same result as does rem(X,Y). However, for positive X and Y,

mod(–x,y) = rem(–x,y)+y

The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).

Examples mod(13,5)

ans =
 3

mod([1:5],3)

ans =
 1 2 0 1 2

mod(magic(3),3)

ans =
 2 1 0
 0 2 1
 1 0 2

Limitations Arguments X and Y should be integers. Due to the inexact representation of
floating-point numbers on a computer, real (or complex) inputs may lead to
unexpected results.

See Also rem
2-518

more
2morePurpose Control paged output for the command window

Syntax more off
more on
more(n)

Description more off disables paging of the output in the MATLAB command window.

more on enables paging of the output in the MATLAB command window.

more(n) displays n lines per page.

When you have enabled more and are examining output, you can do the
following.

By default, more is disabled. When enabled, more defaults to displaying 23 lines
per page.

See Also diary

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

q (for quit) key Terminate display of the text.
2-519

munlock
2munlockPurpose Allow M-file clearing

Syntax munlock
munlock(fun)

Description munlock unlocks the currently running M-file so that subsequent clear
commands can remove it.

munlock(fun) unlocks the M-file named fun from memory. By default, M-files
are unlocked so that changes to the M-file are picked up. Calls to munlock are
needed only to unlock M-files that have been locked with mlock.

See Also mlock
2-520

mu2lin
2mu2linPurpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored as
“flints” in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the range –
s < Y < s where s = 32124/32768 ~= .9803. The input mu is often obtained
using fread(...,'uchar') to read byte-encoded audio files. “Flints” are
MATLAB's integers – floating-point numbers whose values are integers.

See Also auread, lin2mu
2-521

NaN
2NaNPurpose Not-a-Number

Syntax NaN

Description NaN returns the IEEE arithmetic representation for Not-a-Number (NaN).
These result from operations which have undefined numerical results.

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities as
(+Inf)+(–Inf)

• Multiplication, such as 0∗Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

Remarks Logical operations involving NaNs always return false, except ~= (not equal).
Consequently, the statement NaN ~= NaN is true while the statement NaN == NaN
is false.

See Also Inf
2-522

nargchk
2nargchkPurpose Check number of input arguments

Syntax msg = nargchk(low,high,number)

Description The nargchk function often is used inside an M-file to check that the correct
number of arguments have been passed.

msg = nargchk(low,high,number) returns an error message if number is less
than low or greater than high. If number is between low and high (inclusive),
nargchk returns an empty matrix.

Arguments

Examples Given the function foo:

function f = foo(x,y,z)
error(nargchk(2,3,nargin))

Then typing foo(1) produces:

Not enough input arguments.

See Also nargin, nargout

low, high The minimum and maximum number of input arguments that
should be passed.

number The number of arguments actually passed, as determined by the
nargin function.
2-523

nargin, nargout
2nargin, nargoutPurpose Number of function arguments

Syntax n = nargin
n = nargin('fun')
n = nargout
n = nargout('fun')

Description In the body of a function M-file, nargin and nargout indicate how many input
or output arguments, respectively, a user has supplied. Outside the body of a
function M-file, nargin and nargout indicate the number of input or output
arguments, respectively, for a given function. The number of arguments is
negative if the function has a variable number of arguments.

nargin returns the number of input arguments specified for a function.

nargin('fun') returns the number of declared inputs for the M-file function
fun or –1 if the function has a variable of input arguments.

nargout returns the number of output arguments specified for a function.

nargout('fun') returns the number of declared outputs for the M-file function
fun.
2-524

nargin, nargout
Examples This example shows portions of the code for a function called myplot, which
accepts an optional number of input and output arguments:

function [x0,y0] = myplot(fname,lims,npts,angl,subdiv)
% MYPLOT Plot a function.
% MYPLOT(fname,lims,npts,angl,subdiv)
% The first two input arguments are
% required; the other three have default values.
 ...
if nargin < 5, subdiv = 20; end
if nargin < 4, angl = 10; end
if nargin < 3, npts = 25; end
 ...
if nargout == 0
 plot(x,y)
else
 x0 = x;
 y0 = y;
end

See Also inputname, nargchk
2-525

nchoosek
2nchoosekPurpose Binomial coefficient or all combinations

Syntax C = nchoosek(n,k)
C = nchoosek(v,k)

Description C = nchoosek(n,k) where n and k are nonnegative integers, returns
n! / ((n–k)! k!). This is the number of combinations of n things taken k at a
time.

C = nchoosek(v,k), where v is a row vector of length n, creates a matrix whose
rows consist of all possible combinations of the n elements of v taken k at a
time. Matrix C contains n! / ((n–k)! k!) rows and k columns.

Examples The command nchoosek(2:2:10,4) returns the even numbers from two to ten,
taken four at a time:

 2 4 6 8
 2 4 6 10
 2 4 8 10
 2 6 8 10
 4 6 8 10

Limitations This function is only practical for situations where n is less than about 15.

See Also perms
2-526

ndgrid
2ndgridPurpose Generate arrays for multidimensional functions and interpolation

Syntax [X1,X2,X3,...] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)

Description [X1,X2,X3,...] = ndgrid(x1,x2,x3,...) transforms the domain specified
by vectors x1,x2,x3... into arrays X1,X2,X3... that can be used for the
evaluation of functions of multiple variables and multidimensional
interpolation. The ith dimension of the output array Xi are copies of elements
of the vector xi.

[X1,X2,...] = ndgrid(x) is the same as [X1,X2,...] = ndgrid(x,x,...).

Examples Evaluate the function over the range ; .

[X1,X2] = ndgrid(–2:.2:2, –2:.2:2);
Z = X1 .* exp(–X1.^2 – X2.^2);
mesh(Z)

Remarks The ndgrid function is like meshgrid except that the order of the first two input
arguments are switched. That is, the statement

[X1,X2,X3] = ndgrid(x1,x2,x3)

produces the same result as

[X2,X1,X3] = meshgrid(x2,x1,x3).

Because of this, ndgrid is better suited to multidimensional problems that
aren’t spatially based, while meshgrid is better suited to problems in two- or
three-dimensional Cartesian space.

See Also meshgrid, interpn

x1e
x1

2– x2
2–

2– x1 2< < 2– x2 2< <
2-527

ndims
2ndimsPurpose Number of array dimensions

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the array A. The number of
dimensions in an array is always greater than or equal to 2. Trailing singleton
dimensions are ignored. A singleton dimension is any dimension for which
size(A,dim) = 1.

Algorithm ndims(x) is length(size(x)).

See Also size
2-528

nextpow2
2nextpow2Purpose Next power of two

Syntax p = nextpow2(A)

Description p = nextpow2(A) returns the smallest power of two that is greater than or
equal to the absolute value of A. (That is, p that satisfies 2^p ≥ abs(A)).

This function is useful for optimizing FFT operations, which are most efficient
when sequence length is an exact power of two.

If A is non-scalar, nextpow2 returns the smallest power of two greater than or
equal to length(A).

Examples For any integer n in the range from 513 to 1024, nextpow2(n) is 10.

For a 1-by-30 vector A, length(A) is 30 and nextpow2(A) is 5.

See Also fft, log2, pow2
2-529

nnls
nnlsPurpose Nonnegative least squares

NOTE The name of this function has been changed to lsqnonneg in Release
11 (MATLAB 5.3). While nnls is supported in Release 11, it will be removed in
a future release so please begin using lsqnonneg.

Syntax x = nnls(A,b)
x = nnls(A,b,tol)
[x,w] = nnls(A,b)
[x,w] = nnls(A,b,tol)

Description x = nnls(A,b) solves the system of equations in a least squares
sense, subject to the constraint that the solution vector x has nonnegative
elements: . The solution x minimizes subject
to .

x = nnls(A,b,tol) solves the system of equations, and specifies a tolerance
tol. By default, tol is: max(size(A))∗norm(A,1)∗eps.

[x,w] = nnls(A,b) also returns the dual vector w, where
and .

[x,w] = nnls(A,b,tol) solves the system of equations, returns the dual
vector w, and specifies a tolerance tol.

Examples Compare the unconstrained least squares solution to the nnls solution for a
4-by-2 problem:

A =
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170

b =

 0.8587
 0.1781

Ax b=

x j 0 j,≥ 1 2 …n, ,= Ax b=()
x 0≥

wi 0 when xi 0=≤
wi 0 when xi 0>≅
-530

nnls
 0.0747
 0.8405

[A\b nnls(A,b)] =

–2.5627 0
 3.1108 0.6929

[norm(A∗(a\b)–b) norm(A∗nnls(a,b)–b)] =

0.6674 0.9118

The solution from nnls does not fit as well, but has no negative components.

Algorithm The nnls function uses the algorithm described in [1], Chapter 23. The algo-
rithm starts with a set of possible basis vectors, computes the associated dual
vector w, and selects the basis vector corresponding to the maximum value in w
to swap out of the basis in exchange for another possible candidate, until w ≤ 0.

See Also \ Matrix left division (backslash)

References [1] Lawson, C. L. and R. J. Hanson, Solving Least Squares Problems, Pren-
tice-Hall, 1974, Chapter 23.
-531

nnz
2nnzPurpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

 w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals, so
nnz(w) = 60.

See Also find, isa, nonzeros, nzmax, size, whos
2-532

nonzeros
2nonzerosPurpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements in A,
ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A). Generally,

length(s) = nnz(A) ≤ nzmax(A) ≤ prod(size(A))

See Also find, isa, nnz, nzmax, size, whos
2-533

norm
2normPurpose Vector and matrix norms

Syntax n = norm(A)
n = norm(A,p)

Description The norm of a matrix is a scalar that gives some measure of the magnitude of
the elements of the matrix. The norm function calculates several different types
of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).

n = norm(A,p) returns a different kind of norm, depending on the value of p:

When A is a vector, slightly different rules apply:

Remarks To obtain the root-mean-square (RMS) value, use norm(A)/sqrt(n). Note that
norm(A), where A is an n-element vector, is the length of A.

See Also cond, normest, svd

If p is... Then norm returns...

1 The 1-norm, or largest column sum of A,
max(sum(abs((A))).

2 The largest singular value (same as norm(A)).

inf The infinity norm, or largest row sum of A,
max(sum(abs(A'))).

'fro' The Frobenius-norm of matrix A,
sqrt(sum(diag(A'∗A))).

norm(A,p) Returns sum(abs(A).^p)^(1/p), for any .
norm(A) Returns norm(A,2).
norm(A,inf) Returns max(abs(A)).
norm(A,–inf) Returns min(abs(A)).

1 p ∞≤ ≤
2-534

normest
2normestPurpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it works
correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default tolerance
1.e–6. The value of tol determines when the estimate is considered acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and also
gives the number of power iterations used.

Examples The matrix W = gallery('wilkinson',101) is a tridiagonal matrix. Its order,
101, is small enough that norm(full(W)), which involves svd(full(W)), is
feasible. The computation takes 4.13 seconds (on one computer) and produces
the exact norm, 50.7462. On the other hand, normest(sparse(W)) requires
only 1.56 seconds and produces the estimated norm, 50.7458.

Algorithm The power iteration involves repeated multiplication by the matrix S and its
transpose, S'. The iteration is carried out until two successive estimates agree
to within the specified relative tolerance.

See Also cond, condest, norm, svd
2-535

now
2nowPurpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number. To return
the time only, use rem(now,1). To return the date only, use floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

 7.2908e+05

t2 =

 0.4013

See Also clock, date, datenum
2-536

null
2nullPurpose Null space of a matrix

Syntax B = null(A)

Description B = null(A) returns an orthonormal basis for the null space of A.

Remarks B'*B = I, A*B has negligible elements, and (if B is not equal to the empty
matrix) the number of columns of B is the nullity of A.

See Also orth, qr, svd
2-537

num2cell
2num2cellPurpose Convert a numeric array into a cell array

Syntax c = num2cell(A)
c = num2cell(A,dims)

Description c = num2cell(A) converts the matrix A into a cell array by placing each
element of A into a separate cell. Cell array c will be the same size as matrix A.

c = num2cell(A,dims) converts the matrix A into a cell array by placing the
dimensions specified by dims into separate cells. C will be the same size as A
except that the dimensions matching dims will be 1.

Examples The statement

num2cell(A,2)

places the rows of A into separate cells. Similarly

num2cell(A,[1 3])

places the column-depth pages of A into separate cells.

See Also cat
2-538

num2str
2num2strPurpose Number to string conversion

Syntax str = num2str(A)
str = num2str(A,precision)
str = num2str(A,format)

Description The num2str function converts numbers to their string representations. This
function is useful for labeling and titling plots with numeric values.

str = num2str(a) converts array A into a string representation str with
roughly four digits of precision and an exponent if required.

str = num2str(a,precision) converts the array A into a string
representation str with maximum precision specified by precision. Argument
precision specifies the number of digits the output string is to contain. The
default is four.

str = num2str(A,format) converts array A using the supplied format. By
default, this is '%11.4g', which signifies four significant digits in exponential
or fixed-point notation, whichever is shorter. (See fprintf for format string
details).

Examples num2str(pi) is 3.142.

num2str(eps) is 2.22e–16.

num2str(magic(2)) produces the string matrix

1 3
4 2

See Also fprintf, int2str, sprintf
2-539

nzmax
2nzmaxPurpose Amount of storage allocated for nonzero matrix elements

Syntax n = nzmax(S)

Description n = nzmax(S) returns the amount of storage allocated for nonzero elements.

Often, nnz(S) and nzmax(S) are the same. But if S is created by an operation
which produces fill-in matrix elements, such as sparse matrix multiplication or
sparse LU factorization, more storage may be allocated than is actually
required, and nzmax(S) reflects this. Alternatively, sparse(i,j,s,m,n,nzmax)
or its simpler form, spalloc(m,n,nzmax), can set nzmax in anticipation of later
fill-in.

See Also find, isa, nnz, nonzeros, size, whos

If S is a sparse matrix... nzmax(S) is the number of storage locations
allocated for the nonzero elements in S.

If S is a full matrix... nzmax(S) = prod(size(S)).
2-540

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
2ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve differential equations

Syntax [T,Y] = solver('F',tspan,y0)
[T,Y] = solver('F',tspan,y0,options)
[T,Y] = solver('F',tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver('F',tspan,y0,options)

Arguments

Description [T,Y] = solver('F',tspan,y0) with tspan = [t0 tfinal] integrates the
system of differential equations y' = F(t,y) from time t0 to tfinal with initial
conditions y0. 'F' is a string containing the name of an ODE file. Function
F(t,y) must return a column vector. Each row in solution array y corresponds
to a time returned in column vector t. To obtain solutions at the specific times
t0, t1, . . ., tfinal (all increasing or all decreasing), use
tspan = [t0 t1 ... tfinal].

[T,Y] = solver('F',tspan,y0,options) solves as above with default
integration parameters replaced by property values specified in options, an
argument created with the odeset function (see odeset for details). Commonly

F Name of the ODE file, a MATLAB function of t and y returning a
column vector. All solvers can solve systems of equations in the
form . ode15s, ode23s, ode23t, and ode23tb can solve
equations of the form . Of these four solvers all but
ode23s can solve equations in the form . For
information about ODE file syntax, see the odefile reference
page.

tspan A vector specifying the interval of integration [t0 tfinal]. To
obtain solutions at specific times (all increasing or all decreasing),
use tspan = [t0,t1, ..., tfinal].

y0 A vector of initial conditions.

options Optional integration argument created using the odeset function.
See odeset for details.

p1,p2... Optional parameters to be passed to F.

T,Y Solution matrix Y, where each row corresponds to a time returned
in column vector T.

y′ F t y,()=
My′ F t y,()=

M t() y′ F t y,()=
2-541

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
used properties include a scalar relative error tolerance RelTol (1e–3 by
default) and a vector of absolute error tolerances AbsTol (all components 1e–6
by default).

[T,Y] = solver('F',tspan,y0,options,p1,p2...) solves as above, passing
the additional parameters p1,p2... to the M-file F, whenever it is called. Use
options = [] as a place holder if no options are set.

[T,Y,TE,YE,IE] = solver('F',tspan,y0,options) with the Events
property in options set to 'on', solves as above while also locating zero
crossings of an event function defined in the ODE file. The ODE file must be
coded so that F(t,y,'events') returns appropriate information. See odefile
for details. Output TE is a column vector of times at which events occur, rows
of YE are the corresponding solutions, and indices in vector IE specify which
event occurred.

When called with no output arguments, the solvers call the default output
function odeplot to plot the solution as it is computed. An alternate method is
to set the OutputFcn property to 'odeplot'. Set the OutputFcn property to
'odephas2' or 'odephas3' for two- or three-dimensional phase plane plotting.
See odefile for details.

The solvers of the ODE suite can solve problems of the form M(t, y) y' = F(t, y)
with a mass matrix M that is nonsingular and (usually) sparse. Use odeset to
set Mass to 'M', 'M(t)', or 'M(t,y)' if the ODE file F.m is coded so that
F(t,y,'mass') returns a constant, time-dependent, or time-and-state-
dependent mass matrix, respectively. The default value of Mass is 'none'. The
ode23s solver can only solve problems with a constant mass matrix M. For
examples of mass matrix problems, see fem1ode, fem2ode, or batonode.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb the Jacobian matrix
 is critical to reliability and efficiency so there are special options. Set

JConstant to 'on' if is constant. Set Vectorized to 'on' if the ODE file
is coded so that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. Set
JPattern to 'on' if is a sparse matrix and the ODE file is coded so that
F([],[],'jpattern') returns a sparsity pattern matrix of 1’s and 0’s showing
the nonzeros of . Set Jacobian to 'on' if the ODE file is coded so that
F(t,y,'jacobian') returns .

F∂ y∂⁄
F∂ y∂⁄

F∂ y∂⁄

F∂ y∂⁄
F∂ y∂⁄
2-542

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
If M is singular, then M(t) * y' = F(t, y) is a differential algebraic equation
(DAE). DAEs have solutions only when y0 is consistent, that is, if there is a
vector yp0 such that M(t0) * y0 = f(t0, y0). The ode15s and ode23t solvers can
solve DAEs of index 1 provided that M is not state dependent and y0 is
sufficiently close to being consistent. If there is a mass matrix, you can use
odeset to set the MassSingular property to 'yes', 'no', or 'maybe'. The
default value of 'maybe' causes the solver to test whether the problem is a
DAE. If it is, the solver treats y0 as a guess, attempts to compute consistent
initial conditions that are close to y0, and continues to solve the problem. When
solving DAEs, it is very advantageous to formulate the problem so that M is a
diagonal matrix (a semi-explicit DAE). For examples of DAE problems, see
hb1dae or amp1dae.

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low If using crude error tolerances or solving moderately
stiff problems.

ode113 Nonstiff Low to high If using stringent error tolerances or solving a
computationally intensive ODE file.

ode15s Stiff Low to
medium

If ode45 is slow (stiff systems) or there is a mass
matrix.

ode23s Stiff Low If using crude error tolerances to solve stiff systems or
there is a constant mass matrix.

ode23t Moderately
Stiff

Low If the problem is only moderately stiff and you need a
solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems or
there is a mass matrix.
2-543

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
The algorithms used in the ODE solvers vary according to order of accuracy [5]
and the type of systems (stiff or nonstiff) they are designed to solve. See
Algorithms on page 2-547 for more details.

It is possible to specify tspan, y0, and options in the ODE file (see odefile).
If tspan or y0 is empty, then the solver calls the ODE file

[tspan,y0,options] = F([],[],'init')

to obtain any values not supplied in the solver’s argument list. Empty
arguments at the end of the call list may be omitted. This permits you to call
the solvers with other syntaxes such as:

[T,Y] = solver('F')
[T,Y] = solver('F',[],y0)
[T,Y] = solver('F',tspan,[],options)
[T,Y] = solver('F',[],[],options)

Integration parameters (options) can be specified both in the ODE file and on
the command line. If an option is specified in both places, the command line
specification takes precedence. For information about constructing an ODE
file, see odefile.

Options Different solvers accept different parameters in the options list. For more
information, see odeset and Using MATLAB.

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol √ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √
2-544

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
Examples Example 1. An example of a nonstiff system is the system of equations
describing the motion of a rigid body without external forces:

To simulate this system, create a function M-file rigid containing the
equations:

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = –y(1) * y(3);
dy(3) = –0.51 * y(1) * y(2);

In this example we will change the error tolerances with the odeset command
and solve on a time interval of [0 12] with initial condition vector [0 1 1] at
time 0.

options = odeset('RelTol',1e–4,'AbsTol',[1e–4 1e–4 1e–5]);
[t,y] = ode45('rigid',[0 12],[0 1 1],options);

JConstant,
Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MassSingular

√
—

√
—

√
—

√
√

√
—

√
√

√
—

MaxOrder, BDF — — — √ — √ √

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

y′1 y2 y3=

y′2 y1 y3–=

y′3 0.51 y1 y2–=

y1 0() 0=

y2 0() 1=

y3 0() 1=
2-545

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
Plotting the columns of the returned array Y versus T shows the solution:

plot(T,Y(:,1),'–',T,Y(:,2),'–.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol
equations governing relaxation oscillation. The limit cycle has portions where
the solution components change slowly and the problem is quite stiff,
alternating with regions of very sharp change where it is not stiff.

To simulate this system, create a function M-file vdp1000 containing the
equations:

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 – y(1)^2)*y(2) – y(1);

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y′1 y2=

y′2 1000 1 y1
2

–() y2 y1–=

y1 0() 0=

y2 0() 1=
2-546

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
For this problem, we will use the default relative and absolute tolerances
(1e–3 and 1e–6, respectively) and solve on a time interval of [0 3000] with
initial condition vector [2 0] at time 0.

[T,Y] = ode15s('vdp1000',[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution:

plot(T,Y(:,1),'-o'):

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a one-step solver – in computing y(tn), it needs only the solution at
the immediately preceding time point, y(tn–1). In general, ode45 is the best
function to apply as a “first try” for most problems. [1]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE file
function is particularly expensive to evaluate. ode113 is a multistep solver – it
normally needs the solutions at several preceding time points to compute the
current solution. [3]

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2-547

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
The above algorithms are intended to solve non-stiff systems. If they appear to
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas, NDFs. Optionally, it uses the backward differentiation formulas,
BDFs (also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. If you suspect that a problem is stiff or if
ode45 has failed or was very inefficient, try ode15s. [7]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective. [7]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping.

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver may
be more efficient than ode15s at crude tolerances. [8, 9]

See Also odeset, odeget, odefile

References [1] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19–26.

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Letters, Vol. 2, 1989, pp 1–9.

[3] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman, San
Francisco, 1975.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.
2-548

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
[6] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, New Jersey, 1989.

[7] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” (to appear
in SIAM Journal on Scientific Computing, Vol. 18-1, 1997).

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R.
Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans.
CAD, 4 (1985), pp 436-451
2-549

odefile
2odefilePurpose Define a differential equation problem for ODE solvers

Description odefile is not a command or function. It is a help entry that describes how to
create an M-file defining the system of equations to be solved. This definition
is the first step in using any of MATLAB’s ODE solvers. In MATLAB
documentation, this M-file is referred to as odefile, although you can give
your M-file any name you like.

You can use the odefile M-file to define a system of differential equations in
one of these forms

y' = F(t, y)
M(t, y) y' = F(t, y)

where

• t is a scalar independent variable, typically representing time.

• y is a vector of dependent variables.

• F is a function of t and y returning a column vector the same length as y.

• M(t, y) is a time-and-state-dependent mass matrix.

The ODE file must accept the arguments t and y, although it does not have to
use them. By default, the ODE file must return a column vector the same
length as y.

All of the solvers of the ODE Suite can solve M(t, y) y' = F(t, y), except ode23s,
which can only solve problems with constant mass matrices. The ode15s and
ode23t solvers can solve some differential-algebraic equations (DAEs) of the
form M(t) y' = F(t, y).

Beyond defining a system of differential equations, you can specify an entire
initial value problem (IVP) within the ODE M-file, eliminating the need to
supply time and initial value vectors at the command line (see Examples on
page 2-553).

To Use the ODE File Template:

• Enter the command help odefile to display the help entry.

• Cut and paste the ODE file text into a separate file.

• Edit the file to eliminate any cases not applicable to your IVP.
2-550

odefile
• Insert the appropriate information where indicated. The definition of the
ODE system is required information.
switch flag
 case '' % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,p1,p2);
 case 'init' % Return default [tspan,y0,options].
 [varargout{1:3}] = init(p1,p2);
 case 'jacobian' % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,p1,p2);
 case 'jpattern' % Return sparsity pattern matrix S.
 varargout{1} = jpattern(t,y,p1,p2);
 case 'mass' % Return mass matrix.
 varargout{1} = mass(t,y,p1,p2);
 case 'events' % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
 error(['Unknown flag ''' flag '''.']);
 end
% ---
function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >
% ---
function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;
 options = < Insert options = odeset(...) or [] here. >;
% --
function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
% --
function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
% --

function M = mass(t,y,p1,p2)
 M = < Insert mass matrix here. >;
% --
function [value,isterminal,direction] = events(t,y,p1,p2)
 value = < Insert event function vector here. >
2-551

odefile
 isterminal = < Insert logical ISTERMINAL vector here.>;
 direction = < Insert DIRECTION vector here.>;

Notes

1 The ODE file must accept t and y vectors from the ODE solvers and must
return a column vector the same length as y. The optional input argument
flag determines the type of output (mass matrix, Jacobian, etc.) returned
by the ODE file.

2 The solvers repeatedly call the ODE file to evaluate the system of
differential equations at various times. This is required information – you
must define the ODE system to be solved.

3 The switch statement determines the type of output required, so that the
ODE file can pass the appropriate information to the solver. (See steps 4 - 9.)

4 In the default initial conditions ('init') case, the ODE file returns basic
information (time span, initial conditions, options) to the solver. If you omit
this case, you must supply all the basic information on the command line.

5 In the 'jacobian' case, the ODE file returns a Jacobian matrix to the
solver. You need only provide this case when you want to improve the
performance of the stiff solvers ode15s and ode23s.

6 In the 'jpattern' case, the ODE file returns the Jacobian sparsity pattern
matrix to the solver. You need to provide this case only when you want to
generate sparse Jacobian matrices numerically for a stiff solver.

7 In the 'mass' case, the ODE file returns a mass matrix to the solver. You
need to provide this case only when you want to solve a system in the form
M(t, y) y' = F(t, y).

8 In the 'events' case, the ODE file returns to the solver the values that it
needs to perform event location. When the Events property is set to 1, the
ODE solvers examine any elements of the event vector for transitions to,
from, or through zero. If the corresponding element of the logical
isterminal vector is set to 1, integration will halt when a zero-crossing is
detected. The elements of the direction vector are –1, 1, or 0, specifying
that the corresponding event must be decreasing, increasing, or that any
crossing is to be detected. See Using MATLAB and also the examples
ballode and orbitode.

9 An unrecognized flag generates an error.
2-552

odefile
Examples The van der Pol equation, is equivalent to a
system of coupled first-order differential equations:

The M-file

function out1 = vdp1(t,y)
out1 = [y(2); (1–y(1)^2)*y(2) – y(1)];

defines this system of equations (with µ = 1).

To solve the van der Pol system on the time interval [0 20] with initial values
(at time 0) of y(1) = 2 and y(2) = 0, use:

[t,y] = ode45('vdp1',[0 20],[2; 0]);
plot(t,y(:,1),'–',t,y(:,2),'–.')

y″1 µ 1 y1
2

–() y′1– y1 0,=+

y′1 y2=

y′2 µ 1 y1
2

–() y2 y1–=

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

2-553

odefile
To specify the entire initial value problem (IVP) within the M-file, rewrite vdp1
as follows:

function [out1,out2,out3] = vdp1(t,y,flag)
if nargin < 3 | isempty(flag)
 out1 = [y(1).∗(1–y(2).^2)–y(2); y(1)];
else
 switch(flag)
 case 'init' % Return tspan, y0, and options
 out1 = [0 20];
 out2 = [2; 0];
 out3 = [];
 otherwise
 error(['Unknown request ''' flag '''.']);
 end
end

You can now solve the IVP without entering any arguments from the command
line:

[T,Y] = ode23('vdp1')

In this example the ode23 function looks to the vdp1 M-file to supply the
missing arguments. Note that, once you’ve called odeset to define options, the
calling syntax

[T,Y] = ode23('vdp1',[],[],options)

also works, and that any options supplied via the command line override
corresponding options specified in the M-file (see odeset).

Some example ODE files we have provided include b5ode, brussode, vdpode,
orbitode, and rigidode. Use type filename from the MATLAB command
line to see the coding for a specific ODE file.

See Also The Using MATLAB and the reference entries for the ODE solvers and their
associated functions:

ode23, ode45, ode113, ode15s, ode23s, odeget, odeset
2-554

odeget
2odegetPurpose Extract properties from options structure created with odeset

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property specified by
string 'name' from integrator options structure options, returning an empty
matrix if the property value is not specified in options. It is only necessary to
type the leading characters that uniquely identify the property name. Case is
ignored for property names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the named
property is not specified in options.

Example Having constructed an ODE options structure,

options = odeset('RelTol',1e–4,'AbsTol',[1e–3 2e–3 3e–3]);

you can view these property settings with odeget:

odeget(options,'RelTol')
ans =

1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

See Also odeset
2-555

odeset
2odesetPurpose Create or alter options structure for input to ODE solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the ODE
solvers. See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates an
integrator options structure in which the named properties have the specified
values. The odeset function sets any unspecified properties to the empty
matrix [].

It is sufficient to type only the leading characters that uniquely identify the
property name. Case is ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing options
structure with the values supplied.

options = odeset(oldopts,newopts) alters an existing options structure
oldopts by combining it with a new options structure newopts. Any new
options not equal to the empty matrix overwrite corresponding options in
oldopts. For example:

F 1

oldopts

newopts

[] 4 's' 's' []

T 3 F [] '' [] []

T 3 F 4 '' 's' []

odeset(oldopts,newopts)

...

...

...

[]

[]

[]

[]

[]

[]
2-556

odeset
odeset by itself displays all property names and their possible values:

odeset
AbsTol: [positive scalar or vector {1e–6}]
BDF: [on | {off}]
Events: [on | {off}]

 InitialStep: [positive scalar]
Jacobian: [on | {off}]

 JConstant: [on | {off}]
JPattern: [on | {off}]
Mass: [{none} | M | M(t) | M(t,y)]
MassSingular: [yes | no | {maybe}]
MaxOrder: [1 | 2 | 3 | 4 | {5}]
MaxStep: [positive scalar]
OutputFcn: [string]
OutputSel: [vector of integers]
Refine: [positive integer]
RelTol: [positive scalar {1e–3}]
Stats: [on | {off}]
Vectorized: [on | {off}]

Properties The available properties depend on the ODE solver used. There are seven
principal categories of properties:

• Error tolerance

• Solver output

• Jacobian matrix

• Event location

• Mass matrix

• Step size

• ode15s
2-557

odeset
Table 2-1: Error Tolerance Properties

Property Value Description

RelTol Positive scalar
{1e–3}

A relative error tolerance that applies to all
components of the solution vector.

AbsTol Positive scalar
or vector {1e–6}

The absolute error tolerance. If scalar, the
tolerance applies to all components of the
solution vector. Otherwise the tolerances
apply to corresponding components.

Table 2-2: Solver Output Properties

Property Value Description

OutputFcn String The name of an installable output function
(for example, odeplot, odephas2, odephas3,
and odeprint). The ODE solvers call
outputfcn(TSPAN,Y0,'init') before
beginning the integration, to initialize the
output function. Subsequently, the solver
calls status = outputfcn(T,Y) after
computing each output point (T,Y). The
status return value should be 1 if
integration should be halted (e.g., a STOP
button has been pressed) and 0 otherwise.
When the integration is complete, the
solver calls outputfcn([],[],'done').

OutputSel Vector of
indices

Specifies which components of the solution
vector are to be passed to the output
function.
2-558

odeset
Refine Positive
Integer

Produces smoother output, increasing the
number of output points by a factor of n. In
most solvers, the default value is 1.
However, within ode45, Refine is 4 by
default to compensate for the solver’s large
step sizes. To override this and see only the
time steps chosen by ode45, set Refine to 1.

Stats on | {off} Specifies whether statistics about the
computational cost of the integration
should be displayed.

Table 2-3: Jacobian Matrix Properties (for ode15s and ode23s)

Property Value Description

Jacobian on | {off} Informs the solver that the ODE file
responds to the arguments
(t,y,'jacobian') by returning (see
odefile).

JConstant on | {off} Specifies whether the Jacobian matrix
 is constant (see b5ode).

JPattern on | {off} Informs the solver that the ODE file
responds to the arguments
([],[],'jpattern') by returning a sparse
matrix containing 1’s showing the nonzeros
of (see brussode).

Table 2-2: Solver Output Properties

Property Value Description

F∂ y∂⁄

F∂ y∂⁄

F∂ y∂⁄
2-559

odeset
Vectorized on | {off} Informs the solver that the ODE file F(t,y)
has been vectorized so that
F(t,[y1 y2 ...]) returns
[F(t,y1) F(t,y2) ...]. That is, your ODE
file can pass to the solver a whole array of
column vectors at once. Your ODE file will
be called by a stiff solver in a vectorized
manner only if generating Jacobians
numerically (the default behavior) and
odeset has been used to set Vectorized to
'on'.

Table 2-4: Event Location Property

Property Value Description

Events on | {off} Instructs the solver to locate events. The
ODE file must respond to the arguments
(t,y,'events') by returning the
appropriate values. See odefile.

Table 2-5: Mass Matrix Properties (for ode15s and ode23s)

Property Value Description

Mass {none} | M
| M(t) |
M(t,y)

Indicates whether the ODE file returns a
mass matrix.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is
singular.

Table 2-3: Jacobian Matrix Properties (for ode15s and ode23s)

Property Value Description
2-560

odeset
In addition there are two options that apply only to the ode15s solver.

See Also odefile, odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s,ode23s

Table 2-6: Step Size Properties

Property Value Description

MaxStep Positive
scalar

An upper bound on the magnitude of the
step size that the solver uses.

InitialStep Positive
scalar

Suggested initial step size. The solver tries
this first, but if too large an error results,
the solver uses a smaller step size.

Table 2-7: ode15s Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 | {5} The maximum order formula used.

BDF on | {off} Specifies whether the backward
differentiation formulas (BDFs) are to
be used instead of the default
numerical differentiation formulas
(NDFs).
2-561

ones
2onesPurpose Create an array of all ones

Syntax Y = ones(n)
Y = ones(m,n)
Y = ones([m n])
Y = ones(d1,d2,d3...)
Y = ones([d1 d2 d3...])
Y = ones(size(A))

Description Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is
not a scalar.

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y = ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s
with dimensions d1-by-d2-by-d3-by-....

Y = ones(size(A)) returns an array of 1s that is the same size as A.

See Also eye, rand, randn, zeros
2-562

open
2openPurpose Open files based on extension

Syntax open('name')

Description open('name') opens the file name, where the specific action upon opening
depends on the type of file that name is.

Remarks Behavior When name Does Not Have an Extension
If name does not contain a file extension, open opens the object returned by
which(name), where name is a variable, function, or model. If there is no
matching helper function found, open uses the default editor.

If name does not contain a file extension and there is a matching filename
without an extension, open opens the file in the editor. If it does not find a
matching file without an extension, open looks for an M-file with the same
name on the path, and if found, opens it in the editor.

To handle a variable, open calls the function openvar.

name Action

variable open array name in the Array Editor (the array
must be numeric); open calls openvar

figure file (*.fig) open figure in a figure window

M-file (name.m) open M-file name in Editor

model (name.mdl) open model name in Simulink

p-file (name.p) open the corresponding M-file, name.m, if it exists,
in the Editor

other extensions
(name.custom)

open name.custom by calling the helper function
opencustom, where opencustom is a user-defined
function.
2-563

open
Create Custom open
Create your own opencustom functions to change the way standard file types
are handled or to set up handlers for new file types. open calls the opencustom
function it finds on the path.

Examples Example 1 – No File Extension Specified
If testdata exists on the path,

open('testdata')

opens testdata in the editor.

If testdata does not exist, but testdata.m is on the path,

open('testdata')

opens testdata.m in the editor.

Example 2 – No File Extension Specified, M-file and Model Files Present
If testdata.m and testdata.mdl are both present on the search path, and you
type

open('testdata')

testdata.mdl opens in Simulink. This is because model files take precedence
over M-files, which you can see by typing

which('testdata')

It returns the file that takes precedence, in this case

testdata.mdl

Example 3 – Customized open
open('mychart.cht') calls opencht('myfigure.cht'), where opencht is a
user-created function that uses .cht files.

See Also load, openvar, save, saveas
2-564

openvar
2openvarPurpose Open workspace variable in Array Editor, for graphical editing

Syntax openvar('name')

Description openvar('name') opens the workspace variable name in the Array Editor for
graphical debugging. The array must be numeric. For more information about
the Array Editor, see Chapter 2 in Using MATLAB.

See Also open, save
2-565

optimget
2optimgetPurpose Get optimization options structure parameter values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need to type only
enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note
that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous example)
except that if the Display parameter is not defined, it returns the value
'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset, fminbnd, fminsearch, fzero, lsqnonneg
2-566

optimset
2optimsetPurpose Create or edit optimization options parameter structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...) creates an
optimization options structure called options, in which the specified
parameters (param) have specified values. Any unspecified parameters are set
to [] (parameters with value [] indicate to use the default value for that
parameter when options is passed to the optimization function). It is sufficient
to type only enough leading characters to define the parameter name uniquely.
Case is ignored for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options structure
options where all fields are set to [].

options = optimset(optimfun) creates an options structure options with all
parameter names and default values relevant to the optimization function
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.
2-567

optimset
Parameters Optimization parameters used by MATLAB functions and Optimization
Toolbox functions:

Display [off | iter | {final}]

Level of display. none displays no output; iter displays output at each
iteration; final displays just the final output.

MaxFunEvals [positive integer]

Maximum number of function evaluations allowed.

MaxIter [positive integer]

Maximum number of iterations allowed.

TolFun [positive scalar]

Termination tolerance on the function value.

TolX [positive scalar]

Termination tolerance on x.
2-568

optimset
Optimization parameters used by Optimization Toolbox functions (for more
information about individual parameters, see the optimization functions that
use these parameters):

DerivativeCheck [on | {off}]

Diagnostics [on | {off}]

DiffMaxChange [positive scalar | {1e–1}]

DiffMinChange [positive scalar | {1e–8}]

GoalsExactAchieve [positive scalar integer | {0}]

GradConstr [on | {off}]

GradObj [on | {off}]

Hessian [on | {off}]

HessPattern [sparse matrix]

HessUpdate [{bfgs} | dfp | gillmurray | steepdesc]

JacobPattern [sparse matrix]

Jacobian [on | {off}]

LargeScale [{on} | off]

LevenbergMarquardt [on | off]

LineSearchType [cubicpoly | {quadcubic}]

MaxPCGIter [positive integer]

MeritFunction [singleobj | {multiobj}]

MinAbsMax [positive scalar integer | {0}]

PrecondBandWidth [positive integer | Inf]

TolCon [positive scalar]

TolPCG [positive scalar | {0.1}]

TypicalX [vector]

Examples This statement creates an optimization options structure called options in
which the Display parameter is set to 'iter' and the TolFun parameter is set
to 1e–8.

options = optimset('Display','iter','TolFun',1e–8)
2-569

optimset
This statement makes a copy of the options structure called options, changing
the value of the TolX parameter and storing new values in optnew.

optnew = optimset(options,'TolX',1e–4);

This statement returns an optimization options structure that contains all the
parameter names and default values relevant to the function fminbnd.

optimset('fminbnd')

See Also optimget, fminbnd, fminsearch, fzero, lsqnnoneg
2-570

orth
2orthPurpose Range space of a matrix

Syntax B = orth(A)

Description B = orth(A) returns an orthonormal basis for the range of A. The columns of B
span the same space as the columns of A, and the columns of B are orthogonal,
so that B'*B = eye(rank(A)). The number of columns of B is the rank of A.

See Also null, svd, rank
2-571

otherwise
2otherwisePurpose Default part of switch statement

Description otherwise is part of the switch statement syntax, which allows for conditional
execution. The statements following otherwise are executed only if none of the
preceding case expressions (case_expr) match the switch expression
(sw_expr).

Examples The general form of the switch statement is:

switch sw_expr
 case case_expr

statement
statement

 case {case_expr1,case_expr2,case_expr3}
statement
statement

otherwise
statement
statement

end

See switch for more details.

See Also switch
2-572

pack
2packPurpose Consolidate workspace memory

Syntax pack
pack filename

Description pack frees up needed space by compressing information into the minimum
memory required. You must run pack from a directory for which you have write
permission.

pack filename accepts an optional filename for the temporary file used to
hold the variables. Otherwise it uses the file named pack.tmp. You must run
pack from a directory for which you have write permission.

Remarks The pack command does not affect the amount of memory allocated to the
MATLAB process.You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When memory is
fragmented, there may be plenty of free space, but not enough contiguous
memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack command may
find you some free memory without forcing you to delete variables.

The pack command frees space by:

• Saving all variables on disk in a temporary file called pack.tmp.

• Clearing all variables and functions from memory.

• Reloading the variables back from pack.tmp.

• Deleting the temporary file pack.tmp.

If you use pack and there is still not enough free memory to proceed, you must
clear some variables. If you run out of memory often, you can allocate larger
matrices earlier in the MATLAB session and use these system-specific tips:
2-573

pack
• UNIX: Ask your system manager to increase your swap space.

• VAX/VMS: Ask your system manager to increase your working set and/or
pagefile quota.

• Windows: Increase virtual memory by using System Properties for
Performance, which you can access from the Control Panel.

Examples Change the current directory to one that is writeable, run pack, and return to
the previous directory.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

See Also clear
2-574

partialpath
2partialpathPurpose Partial pathname

Description A partial pathname is a MATLABPATH relative pathname used to locate private
and method files, which are usually hidden, or to restrict the search for files
when more than one file with the given name exists.

A partial pathname contains the last component, or last several components, of
the full pathname separated by /. For example, matfun/trace, private/
children, inline/formula, and demos/clown.mat are valid partial
pathnames. Specifying the @ in method directory names is optional, so funfun/
inline/formula is also a valid partial pathname.

Partial pathnames make it easy to find toolbox or MATLAB relative files on
your path in a portable way, independent of the location where MATLAB is
installed.

See Also path
2-575

pascal
2pascalPurpose Pascal matrix

Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A = pascal(n) returns the Pascal matrix of order n: a symmetric positive
definite matrix with integer entries taken from Pascal’s triangle. The inverse
of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to the signs
of the columns) of the Pascal matrix. It is involutary, that is, it is its own
inverse.

A = pascal(n,2) returns a transposed and permuted version of pascal(n,1).
A is a cube root of the identity matrix.

Examples pascal(4) returns

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
 0 0 –1
 0 –1 2
 –1 –1 1

See Also chol
2-576

path
2pathPurpose Control MATLAB’s directory search path

Syntax path
p = path
path('newpath')
path(path,'newpath')
path('newpath',path)

Description path prints out the current setting of MATLAB’s search path. The path resides
in pathdef.m (in toolbox/local).

p = path returns the current search path in string variable p.

path('newpath') changes the path to the string 'newpath'.

path(path,'newpath') appends a new directory to the current path.

path('newpath',path) prepends a new directory to the current path.

Remarks MATLAB has a search path. If you enter a name, such as fox, the MATLAB
interpreter:

1 Looks for fox as a variable.

2 Checks for fox as a built-in function.

3 Looks in the current directory for fox.mex and fox.m.

4 Searches the directories specified by path for fox.mex and fox.m.

Note Save any M-files you create or any MATLAB-supplied M-files that you
edit in a directory that is not in the MATLAB directory tree. If you keep your
files in the MATLAB directory tree, they might be overwritten when you install a
new version of MATLAB. Another consideration is that files in the MATLAB/
toolbox directory tree are loaded and cached into memory at the beginning of
each MATLAB session to improve performance. This cache is not updated
until MATLAB is restarted. If you add any files or make changes to any files in
the toolbox directory, you will not be able to see the changes until you restart
MATLAB.
2-577

path
Examples Add a new directory to the search path on various operating systems.

See Also addpath, cd, dir, partialpath, rmpath, what

UNIX path(path,'/home/myfriend/goodstuff')

VMS path(path,'DISKS1:[MYFRIEND.GOODSTUFF]')

Windows path(path,'TOOLS\GOODSTUFF')
2-578

pathtool
2pathtoolPurpose Start the Path Browser, a GUI for viewing and modifying MATLAB’s path

Syntax pathtool

Description pathtool opens the Path Browser, which is a graphical interface you use to
view and modify the MATLAB search path, as well as see all of the files on the
path.

Remarks On Windows platforms, you can also open the Path Browser by selecting the
Path Browser button on the toolbar, or by selecting Set Path from the File
menu. From the Editor/Debugger, to open the Path Browser, select Path
Browser from the View menu.

Directories
on search
path.

Contents of the directory selected in the Path list.
Double-click on a directory or file to open it.

To move a directory in the search path, drag it to the desired position.
2-579

pathtool
Use the menus in the Path Browser to:

• Add a directory to the front of the path.

• Remove a selected directory from the path.

• Save settings to the pathdef.m file.

• Restore default settings.

See Also addpath, edit, path, rmpath, workspace
2-580

pause
2pausePurpose Halt execution temporarily

Syntax pause
pause(n)
pause on
pause off

Description pause, by itself, causes M-files to stop and wait for you to press any key before
continuing.

pause(n) pauses execution for n seconds before continuing, where n can be any
real number. The resolution of the clock is platform specific. A fractional pause
of 0.01 seconds should be supported on most platforms.

pause on allows subsequent pause commands to pause execution.

pause off ensures that any subsequent pause or pause(n) statements do not
pause execution. This allows normally interactive scripts to run unattended.

See Also drawnow
2-581

pcg
2pcgPurpose Preconditioned Conjugate Gradients method

Syntax x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
x = pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0)

Description x = pcg(A,b) attempts to solve the system of linear equations A*x = b for x.
The coefficient matrix A must be symmetric and positive definite and the
column vector b must have length n, where A is n-by-n. When A is not explicitly
available as a matrix, you can express A as an operator afun that returns the
matrix-vector product A*x for afun(x). This operator can be the name of an
M-file, a string expression, or an inline object. In this case n is taken to be the
length of the column vector b.

pcg will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has relative residual norm(b–A*x)/norm(b) less
than or equal to the tolerance of the method.The default tolerance is 1e–6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

pcg(A,b,tol) specifies the tolerance of the method, tol.

pcg(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use left
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. You can replace the matrix M with a function
mfun such that mfun(x) returns M\x. If M1 or M2 is given as the empty matrix
2-582

pcg
([]), it is considered to be the identity matrix, equivalent to no preconditioning
at all. Since systems of equations of the form M*y = r are solved using
backslash within pcg, it is wise to factor preconditioners into their Cholesky
factors first. For example, replace pcg(A,b,tol,maxit,M) with:

R = chol(M);
pcg(A,b,tol,maxit,R',R).

The preconditioner M must be symmetric and positive definite.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = pcg(A,b,tol,maxit,M1,M2,x0) returns a solution x. If pcg converged, a
message to that effect is displayed. If pcg failed to converge after the maximum
number of iterations or halted for any reason, a warning message is printed
displaying the relative residual norm(b–A*x)/norm(b) and the iteration
number at which the method stopped or failed.

[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of pcg.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 pcg iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving the preconditioner was ill-conditioned and did not
return a useable result when solved by \ (backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during pcg became
too small or too large to continue computing
2-583

pcg
Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the relative
residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies 0 ≤ iter ≤
maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) ≤ tol*norm(b).

Examples A = delsq(numgrid('C',25))
b = ones(length(A),1)
[x,flag] = pcg(A,b)

flag is 1 since pcg will not converge to the default tolerance of 1e–6 within the
default 20 iterations.

R = cholinc(A,1e–3)
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e–8,10,R',R)

flag2 is 0 since pcg will converge to the tolerance of 1.2e–9 (the value of
relres2) at the sixth iteration (the value of iter2) when preconditioned by the
incomplete Cholesky factorization with a drop tolerance of 1e–3.
resvec2(1) = norm(b) and resvec2(7) = norm(b–A*x2).You can follow the
progress of pcg by plotting the relative residuals at each iteration starting from
2-584

pcg
the initial estimate (iterate number 0) with
semilogy(0:iter2,resvec2/norm(b),'–o').

See Also bicg, bicgstab, cgs, cholinc, gmres, qmr

The arithmetic operator \

References “Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
la

tiv
e

re
si

du
al
2-585

pcode
2pcodePurpose Create preparsed pseudocode file (P-file)

Syntax pcode fun
pcode *.m
pcode fun1 fun2 ...
pcode... -inplace

Description pcode fun parses the M-file fun.m into the P-file fun.p and puts it into the
current directory. The original M-file can be anywhere on the search path.

pcode *.m creates P-files for all the M-files in the current directory.

pcode fun1 fun2 ... creates P-files for the listed functions.

pcode... -inplace creates P-files in the same directory as the M-files. An
error occurs if the files can’t be created.
2-586

perms
2permsPurpose All possible permutations

Syntax P = perms(v)

Description P = perms(v), where v is a row vector of length n, creates a matrix whose rows
consist of all possible permutations of the n elements of v. Matrix P contains n!
rows and n columns.

Examples The command perms(2:2:6) returns all the permutations of the numbers 2, 4,
and 6:

6 4 2
4 6 2
6 2 4
2 6 4
4 2 6
2 4 6

Limitations This function is only practical for situations where n is less than about 15.

See Also nchoosek, permute, randperm
2-587

permute
2permutePurpose Rearrange the dimensions of a multidimensional array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of A so that they are in the
order specified by the vector order. B has the same values of A but the order of
the subscripts needed to access any particular element is rearranged as
specified by order. All the elements of order must be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Given any matrix A, the statement

permute(A,[2 1])

is the same as A'.

For example:

A = [1 2; 3 4]; permute(A,[2 1])
ans =
 1 3
 2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =
 13 14 12

See Also ipermute
2-588

persistent
2persistentPurpose Define persistent variable

Syntax persistent X Y Z

Description persistent X Y Z defines X, Y, and Z as persistent in scope, so that X, Y, and
Z maintain their values from one call to the next. persistent can be used
within a function only.

Persistent variables are cleared when the M-file is cleared from memory or
when the M-file is changed. To keep an M-file in memory until MATLAB quits,
use mlock. If the persistent variable does not exist the first time you issue the
persistent statement, it is initializied to the empty matrix.

It is an error to declare a variable persistent if a variable with the same name
exists in the current workspace.

 By convention, persistent variable names are often long with all capital letters
(not required).

See Also clear, global, mislocked, mlock, munlock
2-589

pi
2piPurpose Ratio of a circle’s circumference to its diameter, π

Syntax pi

Description pi returns the floating-point number nearest the value of π. The expressions
4∗atan(1) and imag(log(–1)) provide the same value.

Examples The expression sin(pi) is not exactly zero because pi is not exactly π:

sin(pi)

ans =

 1.2246e–16

See Also ans, eps, i, Inf, j, NaN
2-590

pinv
2pinvPurpose Moore-Penrose pseudoinverse of a matrix

Syntax B = pinv(A)
B = pinv(A,tol)

Definition The Moore-Penrose pseudoinverse is a matrix B of the same dimensions as A'
satisfying four conditions:

A∗B∗A = A
B∗A∗B = B
A∗B is Hermitian
B∗A is Hermitian

The computation is based on svd(A) and any singular values less than tol are
treated as zero.

Description B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and overrides the
default tolerance, max(size(A))*norm(A)*eps.

Examples If A is square and not singular, then pinv(A) is an expensive way to compute
inv(A). If A is not square, or is square and singular, then inv(A) does not exist.
In these cases, pinv(A) has some of, but not all, the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A∗x–b)

does not have a unique solution. Two of the infinitely many solutions are

x = pinv(A)∗b

and

y = A\b

These two are distinguished by the facts that norm(x) is smaller than the norm
of any other solution and that y has the fewest possible nonzero components.
2-591

pinv
For example, the matrix generated by

A = magic(8); A = A(:,1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

The right-hand side is b = 260∗ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns, one
solution to A∗x = b would be a vector of all 1’s. With only six columns, the
equations are still consistent, so a solution exists, but it is not all 1’s. Since the
matrix is rank deficient, there are infinitely many solutions. Two of them are

x = pinv(A)∗b
2-592

pinv
which is

x =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

and

y = A\b

which is

y =
3.0000
4.0000

0
0

1.0000
0

Both of these are exact solutions in the sense that norm(A∗x–b) and
norm(A∗y–b) are on the order of roundoff error. The solution x is special because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 5.0990

On the other hand, the solution y is special because it has only three nonzero
components.

See Also inv, qr, rank, svd
2-593

plotedit
2ploteditPurpose Start plot edit mode to allow editing and annotation of plots

Syntax plotedit on
plotedit off
plotedit
plotedit(h)
plotedit(h,'state')

Description plotedit on starts plot edit mode for the current figure, allowing you to use a
graphical interface to annotate and edit plots easily. The Plot Editor interface
provides an intuitive way to perform functions such as labeling axes, changing
line styles, and adding text, line, and arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure handle
h.

plotedit(h,'state') specifies the plotedit state for figure handle h. Values
for state can be as shown.

hidetoolsmenu is intended for GUI developers who do not want the Tools
menu to appear in applications that use the figure window.

Value for state Description

on starts plot edit mode

off ends plot edit mode

showtoolsmenu displays the Tools menu in the menu bar

hidetoolsmenu does not display the Tools menu in the menu bar
2-594

plotedit
Remarks Main Features of the Plot Editor

Help
For more information about using the Plot Editor, select Editing Plots from
the Plot Editor Help menu. For help with other graphics features, select Using
MATLAB Graphics.

To start plot edit mode, click this button.

Use these toolbar buttons to add text, arrows, and lines quickly.

Use the Tools menu to add objects (axes, legend,
text, arrow, and lines) and to modify selected objects.

Get instructions by selecting Editing Plots from the Help menu.
For help with other graphics features, select Using MATLAB Graphics.

To modify an object, right-click
on it and then use the
context-sensitive pop-up menu.

Drag the legend, labels, text,
arrows, and lines to move them.
2-595

plotedit
Examples Start plot edit mode for the current figure, if the mode is not currently on for
that figure:

plotedit

End plot edit mode for the current figure:

plotedit off

End plot edit mode for the current figure if it is currently on for that figure:

plotedit

Start plot edit mode for figure 2:

plotedit(2)

End plot edit mode for figure 2:

plotedit(2, 'off')

Hide the Tools menu for the current figure:

plotedit('hidetoolsmenu')

See Also axes, line, open, plot, print, saveas, text
2-596

pol2cart
2pol2cartPurpose Transform polar or cylindrical coordinates to Cartesian

Syntax [X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

Description [X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data stored in
corresponding elements of THETA and RHO to two-dimensional Cartesian, or xy,
coordinates. The arrays THETA and RHO must be the same size (or either can be
scalar). The values in THETA must be in radians.

[X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical coordinate
data stored in corresponding elements of THETA, RHO, and Z to
three-dimensional Cartesian, or xyz, coordinates. The arrays THETA , RHO, and
Z must be the same size (or any can be scalar). The values in THETA must be in
radians.

Algorithm The mapping from polar and cylindrical coordinates to Cartesian coordinates
is:

See Also cart2pol, cart2sph, sph2cart

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Cylindrical to Cartesian Mapping

Z

Y

X

rho
theta

P

z

Polar to Cartesian Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z
2-597

poly
2polyPurpose Polynomial with specified roots

Syntax p = poly(A)
p = poly(r)

Description p = poly(A) where A is an n-by-n matrix returns an n+1 element row vector
whose elements are the coefficients of the characteristic polynomial, det(sI –A).
The coefficients are ordered in descending powers: if a vector c has n+1
components, the polynomial it represents is

p = poly(r) where r is a vector returns a row vector whose elements are the
coefficients of the polynomial whose roots are the elements of r.

Remarks Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the polynomial
specified by the coefficients row vector p. For vectors, roots and poly are
inverse functions of each other, up to ordering, scaling, and roundoff error.

Examples MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =

1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =

1 –6 –72 –27

c1sn … cns cn 1++ + +
2-598

poly
The roots of this polynomial (eigenvalues of matrix A) are returned in a column
vector by roots:

r = roots(p)

r =

12.1229
–5.7345
–0.3884

Algorithm The algorithms employed for poly and roots illustrate an interesting aspect of
the modern approach to eigenvalue computation. poly(A) generates the
characteristic polynomial of A, and roots(poly(A)) finds the roots of that
polynomial, which are the eigenvalues of A. But both poly and roots use
EISPACK eigenvalue subroutines, which are based on similarity
transformations. The classical approach, which characterizes eigenvalues as
roots of the characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients c(1) through
c(n+1), with c(1) = 1, in

The algorithm is expressed in an M-file:

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n

c(2:j+1) = c(2:j+1)–z(j)∗c(1:j);
end

This recursion is easily derived by expanding the product.

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is true
even if the eigenvalues of A are badly conditioned. The traditional algorithms
for obtaining the characteristic polynomial, which do not use the eigenvalues,
do not have such satisfactory numerical properties.

det λI A–() c1λn … cnλ cn 1++ + +=

λ λ1–() λ λ2–()… λ λn–()
2-599

poly
See Also conv, polyval, residue, roots
2-600

polyarea
2polyareaPurpose Area of polygon

Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description A = polyarea(X,Y) returns the area of the polygon specified by the vertices in
the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area of
polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of the
polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by scalar dim.

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

See Also convhull, inpolygon

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Area = 2.378
2-601

polyder
2polyderPurpose Polynomial derivative

Syntax k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(b,a)

Description The polyder function calculates the derivative of polynomials, polynomial
products, and polynomial quotients. The operands a, b, and p are vectors whose
elements are the coefficients of a polynomial in descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the polynomials a
and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of the
derivative of the polynomial quotient b/a.

Examples The derivative of the product

is obtained with

a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =

12 36 42 18

This result represents the polynomial

See Also conv, deconv

3x2 6x 9+ +() x2 2x+()

12x3 36x2 42x 18+ + +
2-602

polyeig
2polyeigPurpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,A1,...Ap)

Description [X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue problem of
degree p:

where polynomial degree p is a non-negative integer, and A0,A1,...Ap are
input matrices of order n. Output matrix X, of size n-by-n∗p, contains
eigenvectors in its columns. Output vector e, of length n*p, contains
eigenvalues.

Remarks Based on the values of p and n, polyeig handles several special cases:

• p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

• p = 1, or polyeig(A,B) is the generalized eigenvalue problem: eig(A,–B).

• n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1 a0]).

Algorithm If both A0 and Ap are singular, the problem is potentially ill posed; solutions
might not exist or they might not be unique. In this case, the computed
solutions may be inaccurate. polyeig attempts to detect this situation and
display an appropriate warning message. If either one, but not both, of A0 and
Ap is singular, the problem is well posed but some of the eigenvalues may be
zero or infinite (Inf).

The polyeig function uses the QZ factorization to find intermediate results in
the computation of generalized eigenvalues. It uses these intermediate results
to determine if the eigenvalues are well-determined. See the descriptions of eig
and qz for more on this, as well as the EISPACK Guide.

See Also eig, qz

A0 λ A1 … λP Ap+ + +()x 0=
2-603

polyfit
2polyfitPurpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,s] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a
row vector of length n+1 containing the polynomial coefficients in descending
powers:

[p,s] = polyfit(x,y,n) returns the polynomial coefficients p and a
structure S for use with polyval to obtain error estimates or predictions. If the
errors in the data Y are independent normal with constant variance; polyval
will produce error bounds that contain at least 50% of the predictions.

Examples This example involves fitting the error function, erf(x), by a polynomial in x.
This is a risky project because erf(x) is a bounded function, while polynomials
are unbounded, so the fit might not be very good.

First generate a vector of x-points, equally spaced in the interval ; then
evaluate erf(x) at those points.

x = (0: 0.1: 2.5)';
y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p =

0.0084 –0.0983 0.4217 –0.7435 0.1471 1.1064 0.0004

There are seven coefficients and the polynomial is

p x() p1xn p2xn 1– … pnx pn 1++ + + +=

0 2.5,[]

0.0084x6 0.0983x5
– 0.4217x4 0.7435x3

– 0.1471x2 1.1064x 0.0004+ + + +
2-604

polyfit
To see how good the fit is, evaluate the polynomial at the data points with

f = polyval(p,x);

A table showing the data, fit, and error is

table = [x y f y–f]

table =

0 0 0.0004 –0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 –0.0001
0.4000 0.4284 0.4288 –0.0004
...
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 –0.0001
2.3000 0.9989 0.9991 –0.0003
2.4000 0.9993 0.9995 –0.0002
2.5000 0.9996 0.9994 0.0002
2-605

polyfit
So, on this interval, the fit is good to between three and four digits. Beyond this
interval the graph shows that the polynomial behavior takes over and the
approximation quickly deteriorates.

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'–')
axis([0 5 0 2])

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
o

o

o

o

o

o

o
o

o
o

o
o o
2-606

polyfit
Algorithm The M-file forms the Vandermonde matrix, V, whose elements are powers of x.

It then uses the backslash operator, \, to solve the least squares problem

The M-file can be modified to use other functions of x as the basis functions.

See Also polyval, roots

vi j, xi
n j–=

V p y≅
2-607

polyval
2polyvalPurpose Polynomial evaluation

Syntax y = polyval(p,x)
[y,delta] = polyval(p,x,S)

Description y = polyval(p,x) returns the value of the polynomial p evaluated at x.
Polynomial p is a vector whose elements are the coefficients of a polynomial in
descending powers.

x can be a matrix or a vector. In either case, polyval evaluates p at each
element of x.

[y,delta] = polyval(p,x,S) uses the optional output structure S generated
by polyfit to generate error estimates, y±delta. If the errors in the data input
to polyfit are independent normal with constant variance, y±delta contains
at least 50% of the predictions.

Remarks The polyvalm(p,x) function, with x a matrix, evaluates the polynomial in a
matrix sense. See polyvalm for more information.

Examples The polynomial is evaluated at x = 5, 7, and 9 with

p = [3 2 1];
polyval(p,[5 7 9])

which results in

ans =

 86 162 262

For another example, see polyfit.

See Also polyfit, polyvalm

p x() 3x2 2x 1+ +=
2-608

polyvalm
2polyvalmPurpose Matrix polynomial evaluation

Syntax Y = polyvalm(p,X)

Description Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is the same
as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a polynomial in
descending powers, and X must be a square matrix.

Examples The Pascal matrices are formed from Pascal’s triangle of binomial coefficients.
Here is the Pascal matrix of order 4.

X = pascal(4)
X =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)
p =

1 –29 72 –29 1

This represents the polynomial .

Pascal matrices have the curious property that the vector of coefficients of the
characteristic polynomial is palindromic; it is the same forward and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)
ans =

16 16 16 16
16 15 –140 –563
16 –140 –2549 –12089
16 –563 –12089 –43779

x4 29x3– 72x2 29x– 1+ +
2-609

polyvalm
But evaluating it in a matrix sense is interesting.

polyvalm(p,X)
ans =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval
2-610

pow2
2pow2Purpose Base 2 power and scale floating-point numbers

Syntax X = pow2(Y)
X = pow2(F,E)

Description X = pow2(Y) returns an array X whose elements are 2 raised to the power Y.

X = pow2(F,E) computes for corresponding elements of F and E. The
result is computed quickly by simply adding E to the floating-point exponent of
F. Arguments F and E are real and integer arrays, respectively.

Remarks This function corresponds to the ANSI C function ldexp() and the IEEE
floating-point standard function scalbn().

Examples For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X
1/2 1 1
pi/4 2 pi
–3/4 2 –3
1/2 –51 eps
1–eps/2 1024 realmax
1/2 –1021 realmin

See Also log2, exp, hex2num, realmax, realmin

The arithmetic operators ^ and .^

x f 2e⋅=
2-611

primes
2primesPurpose Generate list of prime numbers

Syntax p = primes(n)

Description p = primes(n) returns a row vector of the prime numbers less than or equal
to n. A prime number is one that has no factors other than 1 and itself.

Examples p = primes(37)

p =

 2 3 5 7 11 13 17 19 23 29 31 37

See Also factor
2-612

prod
2prodPurpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)

Description B = prod(A) returns the products along different dimensions of an array.

If A is a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning a row
vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = prod(A,dim) takes the products along the dimension of A specified by
scalar dim.

Examples The magic square of order 3 is

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =

96 45 84

The product of the elements in each row can be obtained by:

prod(M,2) =

48
105
72

See Also cumprod, diff, sum
2-613

profile
2profilePurpose Start the M-file profiler, a utility for debugging and optimizing M-file code

Syntax profile on
profile on -detail level
profile on -history
profile off
profile resume
profile clear
profile report
profile report basename
profile plot
profile status
stats = profile('info')

Description The profiler utility helps you debug and optimize M-files by tracking their
execution time. For each function, the profiler records information about
execution time, number of calls, parent functions, child functions, code line hit
count, and code line execution time.

profile on starts the profiler, clearing previously recorded profile statistics.

profile on -detail level starts the profiler for the set of functions specified
by level, clearing previously recorded profile statistics.

profile on -history starts the profiler, clearing previously recorded profile
statistics, and recording the exact sequence of function calls. The profiler
records up to 10,000 function entry and exit events. For more than 10,000

Value for level Functions Profiler Gathers Information
About

mmex M-functions, M-subfunctions, and
MEX-functions; mmex is the default value

builtin Same functions as for mmex plus built-in
functions such as eig

operator Same functions as for builtin plus built-in
operators such as +
2-614

profile
events, the profiler continues to record other profile statistics, but not the
sequence of calls.

profile off suspends the profiler.

profile resume restarts the profiler without clearing previously recorded
statistics.

profile clear clears the statistics recorded by the profiler.

profile report suspends the profiler, generates a profile report in HTML
format, and displays the report in your Web browser.

profile report basename suspends the profiler, generates a profile report in
HTML format, saves the report in the file basename in the current directory,
and displays the report in your Web browser. Because the report consists of
several files, do not provide an extension for basename.

profile plot suspends the profiler and displays in a figure window a bar
graph of the functions using the most execution time.

profile status displays a structure containing the current profiler status.
The structure’s fields are shown below.

stats = profile('info') suspends the profiler and displays a structure
containing profiler results.Use this command to access the data generated by
the profiler. The structure’s fields are

Field Values

ProfilerStatus 'on' or 'off'

DetailLevel 'mmex', 'builtin', or 'operator'

HistoryTracking 'on' or 'off'

FunctionTable Array containing list of all functions called.

FunctionHistory Array containing function call history.

ClockPrecision Precision of profiler’s time measurement.
2-615

profile
Remarks To see an example of a profile report and profile plot, as well as to learn more
about the results and how to use profiling, see Chapter 3 of Using MATLAB.

Examples Example

1 Run the profiler for code that computes the Lotka-Volterra predator-prey
population model.
profile on -detail builtin -history
[t,y] = ode23('lotka',[0 2],[20;20]);
profile report

The profile report appears in a Web browser, providing information for all
M-functions, M-subfunctions, MEX-functions, and built-in functions. The
report includes the function call history.

2 Generate the profile plot.
profile plot

The profile plot appears in a figure window.

3 Because the report and plot features suspend the profiler, resume its
operation without clearing the statistics already gathered.

profile resume

The profiler will continue gathering statistics when you execute the next
M-file.

See Also profreport
2-616

profreport
2profreportPurpose Generate a profile report

Syntax profreport
profreport(basename)
profreport(stats)
profreport(basename,stats)

Description profreport suspends the profiler, generates a profile report in HTML format
using the current profiler results, and displays the report in your Web browser.

profreport(basename) suspends the profiler, generates a profile report in
HTML format using the current profiler results, saves the report using the
basename you supply, and displays the report in your Web browser. Because the
report consists of several files, do not provide an extension for basename.

profreport(stats) suspends the profiler, generates a profile report in HTML
format using the profiler results info, and displays the report in your Web
browser. stats is the profiler information structure returned by stats =
profile('info').

profreport(basename,stats) suspends the profiler, generates a profile report
in HTML format using the profiler results stats, saves the report using the
basename you supply, and displays the report in your Web browser. stats is the
profiler information structure returned by stats = profile('info'). Because
the report consists of several files, do not provide an extension for basename.

Examples 1 Run the profiler for code that computes the Lotka-Volterra predator-prey
population model.
profile on -detail builtin -history
[t,y] = ode23('lotka',[0 2],[20;20]);
2-617

profreport
2 View the structure containing the profile results.
stats = profile('info')

MATLAB returns

stats =
FunctionTable: [28x1 struct]
 FunctionHistory: [2x774 double]
 ClockPrecision: 0.01000000000022

3 View the contents of the second element in the FunctionTable structure.
stats.FunctionTable(2)

MATLAB returns

ans =
 FunctionName: 'ode23'
 MfileName: [1x56 char]
 Type: 'M-function'
 NumCalls: 1
 TotalTime: 0.42100000000028
 TotalRecursiveTime: 0.42100000000028
 Children: [21x1 struct]
 Parents: [0x1 struct]
 ExecutedLines: [159x3 double]

4 Display the profile report from the structure.

profreport(stats)

MATLAB displays the profile report in your Web browser.

See Also profile
2-618

pwd
2pwdPurpose Display current directory

Syntax s = pwd

Description s = pwd returns the current directory to the variable s.

See Also cd, dir, path, what
2-619

quit
2quitPurpose Terminate MATLAB

Syntax quit
quit cancel
quit force

Description quit terminates MATLAB after running finish.m, if finish.m exists. The
workspace is not automatically saved by quit. To save the workspace or
perform other actions when quitting, create a finish.m file to perform those
actions. If an error occurs while finish.m is running, quit is canceled so that
you can correct your finish.m file without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to override
finish.m, for example, if an errant finish.m will not let you quit.

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these commands for more
information.

Examples Two sample finish.m files are included with MATLAB. Use them to help you
create your own finish.m, or rename one of the files to finish.m to use it.

• finishsav.m – saves the workspace to a MAT-file when MATLAB quits

• finishdlg.m – displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code.

button = questdlg('Ready to quit?', ...
 'Exit Dialog','Yes','No','No');
switch button
 case 'Yes',
 disp('Exiting MATLAB');
 %Save variables to matlab.mat
 save
 case 'No',
 quit cancel;
end
2-620

quit
See Also save, startup
2-621

qmr
2qmrPurpose Quasi-Minimal Residual method

Syntax x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M1)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
x = qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = qmr(A,b,tol,maxit,M1,M2,x0)

Description x = qmr(A,b) attempts to solve the system of linear equations A*x=b for x.
The coefficient matrix A must be square and the column vector b must have
length n, where A is n-by-n. When A is not explicitly available as a matrix, you
can express A as an operator afun where afun(x) returns the matrix-vector
product A*x and afun(x,'transp') returns A'*x . This operator can be the
name of an M-file or an inline object. In this case n is taken to be the length of
the column vector b.

qmr will start iterating from an initial estimate that, by default, is an all zero
vector of length n. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations. Convergence is
achieved when an iterate x has a relative residual norm(b–A*x)/norm(b) less
than or equal to the tolerance of the method. The default tolerance is 1e–6. The
default maximum number of iterations is the minimum of n and 20. No
preconditioning is used.

qmr(A,b,tol) specifies the tolerance of the method, tol.

qmr(A,b,tol,maxit) additionally specifies the maximum number of
iterations, maxit.

qmr(A,b,tol,maxit,M1) and qmr(A,b,tol,maxit,M1,M2) use left and right
preconditioners M1 and M2 and effectively solve the system
inv(M1)*A*inv(M2)*y = inv(M1)*b for y, where x = inv(M2)*y. You can
replace the matrix M with a function mfun such that mfun(x) returns either M\x
2-622

qmr
or M'\x, depending upon the last argument. If M1 or M2 is given as the empty
matrix ([]), it is considered to be the identity matrix, equivalent to no
preconditioning at all. Since systems of equations of the form
M1*y = r are solved using backslash within qmr, it is wise to factor
preconditioners into their LU factorizations first. For example, replace
qmr(A,b,tol,maxit,M,[]) or qmr(A,b,tol,maxit,[],M) with:

[M1,M2] = lu(M);
qmr(A,b,tol,maxit,M1,M2).

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial estimate x0. If x0 is given
as the empty matrix ([]), the default all zero vector is used.

x = qmr(A,b,tol,maxit,M1,M2,x0) returns a solution x. If qmr converged, a
message to that effect is displayed. If qmr failed to converge after the maximum
number of iterations or halted for any reason, a warning message is printed
displaying the relative residual norm(b–A*x)/norm(b) and the iteration
number at which the method stopped or failed.

[x,flag] = qmr(A,b,tol,maxit,M1,M2,x0) returns a solution x and a flag
that describes the convergence of qmr:

Flag Convergence

0 qmr converged to the desired tolerance tol within maxit
iterations without failing for any reason.

1 qmr iterated maxit times but did not converge.

2 One of the systems of equations of the form M*y = r
involving one of the preconditioners was ill-conditioned and
did not return a useable result when solved by \
(backslash).

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during qmr became
too small or too large to continue computing.
2-623

qmr
Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = qmr(A,b,tol,maxit,M1,M2,x0) also returns the
relative residual norm(b–A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = qmr(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed. This always satisfies
0 ≤ iter ≤ maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration, starting from
resvec(1) = norm(b–A*x0). If flag is 0, resvec is of length iter+1 and
resvec(end) ≤ tol*norm(b).

Examples load west0479
A = west0479
b = sum(A,2)
[x,flag] = qmr(A,b)

flag is 1 since qmr will not converge to the default tolerance 1e–6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e–5)
[x1,flag1] = qmr(A,b,1e–6,20,L1,U1)

flag1 is 2 since the upper triangular U1 has a zero on its diagonal so qmr fails
in the first iteration when it tries to solve a system such as U1*y = r for y with
backslash.

[L2,U2] = luinc(A,1e–6)
[x2,flag2,relres2,iter2,resvec2] = qmr(A,b,1e–15,10,L2,U2)

flag2 is 0 since qmr will converge to the tolerance of 1.9e–16 (the value of
relres2) at the eighth iteration (the value of iter2) when preconditioned by
the incomplete LU factorization with a drop tolerance of 1e–6. resvec2(1) =
norm(b) and resvec2(9) = norm(b–A*x2). You can follow the progress of qmr
2-624

qmr
by plotting the relative residuals at each iteration starting from the initial
estimate (iterate number 0) with semilogy(0:iter2,resvec2/norm(b),'–o').

See Also bicg, bicgstab, cgs, gmres, luinc, pcg

The arithmetic operator \

References Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal residual
method for non-Hermitian linear systems”, Journal: Numer. Math. 60, 1991,
pp. 315-339

“Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods”, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6 7 8

10
−15

10
−10

10
−5

10
0

iteration number

re
la

tiv
e

re
si

du
al
2-625

qr
2qrPurpose Orthogonal-triangular decomposition

Syntax [Q,R] = qr(X)
[Q,R,E] = qr(X)
[Q,R] = qr(X,0)
[Q,R,E] = qr(X,0)
A = qr(X)

Description The qr function performs the orthogonal-triangular decomposition of a matrix.
This factorization is useful for both square and rectangular matrices. It
expresses the matrix as the product of a real orthonormal or complex unitary
matrix and an upper triangular matrix.

[Q,R] = qr(X) produces an upper triangular matrix R of the same dimension
as X and a unitary matrix Q so that X = Q∗R.

[Q,R,E] = qr(X) produces a permutation matrix E, an upper triangular
matrix R with decreasing diagonal elements, and a unitary matrix Q so that
X∗E = Q∗R. The column permutation E is chosen so that abs(diag(R)) is
decreasing.

[Q,R] = qr(X,0) and [Q,R,E] = qr(X,0) produce “economy-size”
decompositions in which E is a permutation vector, so that Q*R = X(:,E). The
column permutation E is chosen so that abs(diag(R)) is decreasing.

A = qr(X) returns the output of the LINPACK subroutine ZQRDC. triu(qr(X))
is R.

Examples Start with

A =
1 2 3
4 5 6
7 8 9

10 11 12
2-626

qr
This is a rank-deficient matrix; the middle column is the average of the other
two columns. The rank deficiency is revealed by the factorization:

[Q,R] = qr(A)

Q =

–0.0776 –0.8331 0.5444 0.0605
–0.3105 –0.4512 –0.7709 0.3251
–0.5433 –0.0694 –0.0913 –0.8317
–0.7762 0.3124 0.3178 0.4461

R =

–12.8841 –14.5916 –16.2992
0 –1.0413 –2.0826
0 0 0.0000
0 0 0

The triangular structure of R gives it zeros below the diagonal; the zero on the
diagonal in R(3,3) implies that R, and consequently A, does not have full rank.

The QR factorization is used to solve linear systems with more equations than
unknowns. For example

b =

1
3
5
7

The linear system Ax = brepresents four equations in only three unknowns.
The best solution in a least squares sense is computed by

x = A\b
2-627

qr
which produces

Warning: Rank deficient, rank = 2, tol = 1.4594E–014
x =

0.5000
0

0.1667

The quantity tol is a tolerance used to decide if a diagonal element of R is
negligible. If [Q,R,E] = qr(A), then

tol = max(size(A))∗eps∗abs(R(1,1))

The solution x was computed using the factorization and the two steps

y = Q'∗b;
x = R\y

The computed solution can be checked by forming Ax. This equals b to within
roundoff error, which indicates that even though the simultaneous equations
Ax= b are overdetermined and rank deficient, they happen to be consistent.
There are infinitely many solution vectors x; the QR factorization has found
just one of them.

Algorithm The qr function uses the LINPACK routines ZQRDC and ZQRSL. ZQRDC computes
the QR decomposition, while ZQRSL applies the decomposition.

See Also lu, null, orth, qrdelete, qrinsert

The arithmetic operators \ and /

References Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.
2-628

qrdelete
2qrdeletePurpose Delete column from QR factorization

Syntax [Q,R] = qrdelete(Q,R,j)

Description [Q,R] = qrdelete(Q,R,j) changes Q and R to be the factorization of the
matrix A with its jth column, A(:,j), removed.

Inputs Q and R represent the original QR factorization of matrix A, as returned
by the statement [Q,R] = qr(A). Argument j specifies the column to be
removed from matrix A.

Algorithm The qrdelete function uses a series of Givens rotations to zero out the
appropriate elements of the factorization.

See Also qr, qrinsert
2-629

qrinsert
2qrinsertPurpose Insert column in QR factorization

Syntax [Q,R] = qrinsert(Q,R,j,x)

Description [Q,R] = qrinsert(Q,R,j,x) changes Q and R to be the factorization of the
matrix obtained by inserting an extra column, x, before A(:,j). If A has n
columns and j = n+1, then qrinsert inserts x after the last column of A.

Inputs Q and R represent the original QR factorization of matrix A, as returned
by the statement [Q,R] = qr(A). Argument x is the column vector to be
inserted into matrix A. Argument j specifies the column before which x is
inserted.

Algorithm The qrinsert function inserts the values of x into the jth column of R. It then
uses a series of Givens rotations to zero out the nonzero elements of R on and
below the diagonal in the jth column.

See Also qr, qrdelete
2-630

qrupdate
2qrupdateDescription Rank 1 update to QR factorization

Syntax [Q1,R1] = qrupdate(Q,R,u,v)

Description [Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original QR
factorization of A, returns the QR factorization of A + u*v', where u and v are
column vectors of appropriate lengths.

Remarks qrupdate works only for full matrices.

Examples The matrix

mu = sqrt(eps)

mu =

 1.4901e–08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of forming
A'*A. Instead, we work with the QR factorization – orthonormal Q and upper
triangular R.

 [Q,R] = qr(A);

As we expect, R is upper triangular.

R =

 –1.0000 –1.0000 –1.0000 –1.0000
 0 0.0000 0.0000 0.0000
 0 0 0.0000 0.0000
 0 0 0 0.0000
 0 0 0 0

In this case, the upper triangular entries of R, excluding the first row, are on
the order of sqrt(eps).

Consider the update vectors

 u = [–1 0 0 0 0]'; v = ones(4,1);
2-631

qrupdate
Instead of computing the rather trivial QR factorization of this rank one update
to A from scratch with

[QT,RT] = qr(A + u*v')

QT =

 0 0 0 0 1
 –1 0 0 0 0
 0 –1 0 0 0
 0 0 –1 0 0
 0 0 0 –1 0

RT =

 1.0e–07 *
 –0.1490 0 0 0
 0 –0.1490 0 0
 0 0 –0.1490 0
 0 0 0 –0.1490
 0 0 0 0
2-632

qrupdate
we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

 –0.0000 –0.0000 –0.0000 –0.0000 1.0000
 1.0000 –0.0000 –0.0000 –0.0000 0.0000
 –0.0000 1.0000 –0.0000 –0.0000 0.0000
 –0.0000 –0.0000 1.0000 –0.0000 0.0000
 0 0 0 1.0000 0.0000

R1 =

 1.0e–07 *
 0.1490 0.0000 0.0000 0.0000
 0 0.1490 –0.0000 –0.0000
 0 0 0.1490 –0.0000
 0 0 0 0.1490
 0 0 0 0

Note that both factorizations are correct, even though they are different.

Algorithm qrupdate uses the algorithm in section 12.5.1 of the third edition of Matrix
Computations by Golub and van Loan. qrupdate is useful since, if we take
N = max(m,n), then computing the new QR factorization from scratch is
roughly an algorithm, while simply updating the existing factors in this
way is an algorithm.

References Golub, Gene H. and Charles Van Loan, Matrix Computations, Third Edition,
Johns Hopkins University Press, Baltimore, 1996

See Also cholupdate, qr

O N3()
O N2()
2-633

quad, quad8
2quad, quad8Purpose Numerical evaluation of integrals

Syntax q = quad('fun',a,b)
q = quad('fun',a,b,tol)
q = quad('fun',a,b,tol,trace)
q = quad('fun',a,b,tol,trace,P1,P2,...)
q = quad8(...)

Description Quadrature is a numerical method of finding the area under the graph of a
function, that is, computing a definite integral.

q = quad('fun',a,b) returns the result of numerically integrating 'fun'
between the limits a and b. 'fun' must return a vector of output values when
given a vector of input values.

q = quad('fun',a,b,tol) iterates until the relative error is less than tol.
The default value for tol is 1.e–3. Use a two element tolerance vector, tol =
[rel_tol abs_tol], to specify a combination of relative and absolute error.

q = quad('fun',a,b,tol,trace) integrates to a relative error of tol, and for
non-zero trace, plots a graph showing the progress of the integration.

q = quad('fun',a,b,tol,trace,P1,P2,...) allows coefficients P1, P2, ... to
be passed directly to the specified function: G = fun(X,P1,P2,...). To use
default values for tol or trace, pass in the empty matrix, for example:
quad('fun',a,b,[],[],P1).

Remarks quad8, a higher-order method, has the same calling sequence as quad.

Examples Integrate the sine function from 0 to π:

a = quad('sin',0,pi)

a =

2.0000

q f x() xd
a

b

∫=
2-634

quad, quad8
Algorithm quad and quad8 implement two different quadrature algorithms. quad
implements a low order method using an adaptive recursive Simpson’s rule.
quad8 implements a higher order method using an adaptive recursive
Newton-Cotes 8 panel rule. quad8 is better than quad at handling functions
with soft singularities, for example:

Diagnostics quad and quad8 have recursion level limits of 10 to prevent infinite recursion
for a singular integral. Reaching this limit in one of the integration intervals
produces the warning message:

Recursion level limit reached in quad. Singularity likely.

and sets q = inf.

Limitations Neither quad nor quad8 is set up to handle integrable singularities, such as:

If you need to evaluate an integral with such a singularity, recast the problem
by transforming the problem into one in which you can explicitly evaluate the
integrable singularities and let quad or quad8 take care of the remainder.

References [1] Forsythe, G.E., M.A. Malcolm and C.B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1977.

x xd
0

1

∫

1
x

------- xd
0

1

∫

2-635

qz
2qzPurpose QZ factorization for generalized eigenvalues

Syntax [AA,BB,Q,Z,V] = qz(A,B)

Description The qz function gives access to what are normally only intermediate results in
the computation of generalized eigenvalues.

[AA,BB,Q,Z,V] = qz(A,B) produces upper triangular matrices AA and BB, and
matrices Q and Z containing the products of the left and right transformations,
such that

Q∗A∗Z = AA
Q∗B∗Z = BB

The qz function also returns the generalized eigenvector matrix V.

The generalized eigenvalues are the diagonal elements of AA and BB so that

A∗V∗diag(BB) = B∗V∗diag(AA)

Arguments

Algorithm Complex generalizations of the EISPACK routines QZHES, QZIT, QZVAL, and
QZVEC implement the QZ algorithm.

See Also eig

References [1] Moler, C. B. and G.W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems”, SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

A,B Square matrices.

AA,BB Upper triangular matrices.

Q,Z Transformation matrices.

V Matrix whose columns are eigenvectors.
2-636

rand
2randPurpose Uniformly distributed random numbers and arrays

Syntax Y = rand(n)
Y = rand(m,n)
Y = rand([m n])
Y = rand(m,n,p,...)
Y = rand([m n p...])
Y = rand(size(A))
rand
s = rand('state')

Description The rand function generates arrays of random numbers whose elements are
uniformly distributed in the interval (0,1).

Y = rand(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of random
entries.

Y = rand(m,n,p,...) or Y = rand([m n p...]) generates random arrays.

Y = rand(size(A)) returns an array of random entries that is the same size
as A.

rand, by itself, returns a scalar whose value changes each time it’s referenced.

s = rand('state') returns a 35-element vector containing the current state
of the uniform generator. To change the state of the generator:

rand('state',s) Resets the state to s.

rand('state',0) Resets the generator to its initial
state.

rand('state',j) For integer j, resets the generator to
its j-th state.

rand('state',sum(100*clock)) Resets it to a different state each
time.
2-637

rand

2-6
Remarks MATLAB 5 uses a new multiseed random number generator that can generate
all the floating-point numbers in the closed interval
Theoretically, it can generate over values before repeating itself.
MATLAB 4 used random number generators with a single seed.
rand('seed',0)and rand('seed',j) use the MATLAB 4 generator.
rand('seed') returns the current seed of the MATLAB 4 uniform generator.
rand('state',j) and rand('state',s) use the MATLAB 5 generator.

Examples R = rand(3,4) may produce

 R =
 0.2190 0.6793 0.5194 0.0535
 0.0470 0.9347 0.8310 0.5297
 0.6789 0.3835 0.0346 0.6711

This code makes a random choice between two equally probable alternatives.

 if rand < .5
 'heads'
 else
 'tails'
 end

See Also randn, randperm, sprand, sprandn

2 53– 1 2 53––,[].
21492
38

randn
2randnPurpose Normally distributed random numbers and arrays

Syntax Y = randn(n)
Y = randn(m,n)
Y = randn([m n])
Y = randn(m,n,p,...)
Y = randn([m n p...])
Y = randn(size(A))
randn
s = randn('state')

Description The randn function generates arrays of random numbers whose elements are
normally distributed with mean 0 and variance 1.

Y = randn(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = randn(m,n) or Y = randn([m n]) returns an m-by-n matrix of random
entries.

Y = randn(m,n,p,...) or Y = randn([m n p...]) generates random arrays.

Y = randn(size(A)) returns an array of random entries that is the same size
as A.

randn, by itself, returns a scalar whose value changes each time it’s referenced.

s = randn('state') returns a 2-element vector containing the current state of
the normal generator. To change the state of the generator:

randn('state',s) Resets the state to s.

randn('state',0) Resets the generator to its initial
state.

randn('state',j) For integer j, resets the generator to
its jth state.

randn('state',sum(100*clock)) Resets it to a different state each
time.
2-639

randn

2-6
Remarks MATLAB 5 uses a new multiseed random number generator that can generate
all the floating-point numbers in the closed interval
Theoretically, it can generate over values before repeating itself.
MATLAB 4 used random number generators with a single seed.
randn('seed',0)and randn('seed',j) use the MATLAB 4 generator.
randn('seed') returns the current seed of the MATLAB 4 normal generator.
randn('state',j) and randn('state',s) use the MATLAB 5 generator.

Examples R = randn(3,4) may produce

 R =
 1.1650 0.3516 0.0591 0.8717
 0.6268 –0.6965 1.7971 –1.4462
 0.0751 1.6961 0.2641 –0.7012

For a histogram of the randn distribution, see hist.

See Also rand, randperm, sprand, sprandn

2 53– 1 2 53––,[].
21492
40

randperm
2randpermPurpose Random permutation

Syntax p = randperm(n)

Description p = randperm(n) returns a random permutation of the integers 1:n.

Remarks The randperm function calls rand and therefore changes rand’s seed value.

Examples randperm(6) might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of 1:6.

See Also permute
2-641

rank

2-6
2rankPurpose Rank of a matrix

Syntax k = rank(A)
k = rank(A,tol)

Description The rank function provides an estimate of the number of linearly independent
rows or columns of a matrix.

k = rank(A) returns the number of singular values of A that are larger than
the default tolerance, max(size(A))∗norm(A)∗eps.

k = rank(A,tol) returns the number of singular values of A that are larger
than tol.

Algorithm There are a number of ways to compute the rank of a matrix. MATLAB uses
the method based on the singular value decomposition, or SVD, described in
Chapter 11 of the LINPACK Users’ Guide. The SVD algorithm is the most time
consuming, but also the most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))∗s(1)∗eps;
r = sum(s > tol);

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.
42

rat, rats
2rat, ratsPurpose Rational fraction approximation

Syntax [N,D] = rat(X)
[N,D] = rat(X,tol)
rat(...)
S = rats(X,strlen)
S = rats(X)

Description Even though all floating-point numbers are rational numbers, it is sometimes
desirable to approximate them by simple rational numbers, which are fractions
whose numerator and denominator are small integers. The rat function
attempts to do this. Rational approximations are generated by truncating
continued fraction expansions. The rats function calls rat, and returns strings.

[N,D] = rat(X) returns arrays N and D so that N./D approximates X to within
the default tolerance, 1.e–6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.

rat(X), with no output arguments, simply displays the continued fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements that
cannot be printed in the allotted space, but are not negligible compared to the
other elements in X. strlen is the length of each string element returned by the
rats function. The default is strlen = 13, which allows 6 elements in 78
spaces.

S = rats(X) returns the same results as those printed by MATLAB with
format rat.

Examples Ordinarily, the statement

 s = 1 – 1/2 + 1/3 – 1/4 + 1/5 – 1/6 + 1/7

produces

 s =
 0.7595
2-643

rat, rats

2-6
However, with

 format rat

or with

 rats(s)

the printed result is

 s =
 319/420

This is a simple rational number. Its denominator is 420, the least common
multiple of the denominators of the terms involved in the original expression.
Even though the quantity s is stored internally as a binary floating-point
number, the desired rational form can be reconstructed.

To see how the rational approximation is generated, the statement rat(s)

produces

 1 + 1/(–4 + 1/(–6 + 1/(–3 + 1/(–5))))

And the statement

 [n,d] = rat(s)

produces

n = 319, d = 420

The mathematical quantity π is certainly not a rational number, but the
MATLAB quantity pi that approximates it is a rational number. With IEEE
floating-point arithmetic, pi is the ratio of a large integer and 252:

 14148475504056880/4503599627370496

However, this is not a simple rational number. The value printed for pi with
format rat, or with rats(pi), is

 355/113

This approximation was known in Euclid’s time. Its decimal representation is

 3.14159292035398
44

rat, rats
and so it agrees with pi to seven significant figures. The statement

 rat(pi)

produces

 3 + 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more familiar
approximation 22/7 is obtained from the first two terms of this continued
fraction.

Algorithm The rat(X) function approximates each element of X by a continued fraction of
the form:

The d’s are obtained by repeatedly picking off the integer part and then taking
the reciprocal of the fractional part. The accuracy of the approximation
increases exponentially with the number of terms and is worst when
X = sqrt(2). For x = sqrt(2), the error with k terms is about 2.68∗(.173)^k,
so each additional term increases the accuracy by less than one decimal digit.
It takes 21 terms to get full floating-point accuracy.

See Also format

n
d
--- d1

1

d2
1

d3 … 1
dk
------+ + 

 
-------------------------------------+

--+=
2-645

rcond

2-6
2rcondPurpose Matrix reciprocal condition number estimate

Syntax c = rcond(A)

Description c = rcond(A) returns an estimate for the reciprocal of the condition ofA in
1-norm using the LINPACK condition estimator. IfA is well conditioned,rcond(A) is
near 1.0. IfA is badly conditioned,rcond(A) is near 0.0. Compared tocond, rcond is a
more efficient, but less reliable, method of estimating the condition of a matrix.

Algorithm Thercond function uses the condition estimator from the LINPACK routineZGECO.

See Also cond, condest, norm, normest, rank, svd

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart,LINPACK
Users’ Guide, SIAM, Philadelphia, 1979.
46

real
2realPurpose Real part of complex number

Syntax X = real(Z)

Description X = real(Z) returns the real part of the elements of the complex array Z.

Examples real(2+3*i) is 2.

See Also abs, angle, conj, i, j, imag
2-647

realmax
2realmaxPurpose Largest positive floating-point number

Syntax n = realmax

Description n = realmax returns the largest floating-point number representable on a
particular computer. Anything larger overflows.

Examples On machines with IEEE floating-point format, realmax is one bit less than
21024 or about 1.7977e+308.

Algorithm The realmax function is equivalent to pow2(2–eps,maxexp), where maxexp is
the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

See Also eps, realmin
2-648

realmin
2realminPurpose Smallest positive floating-point number

Syntax n = realmin

Description n = realmin returns the smallest positive normalized floating-point number
on a particular computer. Anything smaller underflows or is an IEEE
“denormal.”

Examples On machines with IEEE floating-point format, realmin is 2^(–1022) or about
2.2251e–308.

Algorithm The realmin function is equivalent to pow2(1,minexp) where minexp is the
smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

See Also eps, realmax
2-649

rem

2-6
2remPurpose Remainder after division

Syntax R = rem(X,Y)

Description R = rem(X,Y) returns X – fix(X./Y).∗Y, where fix(X./Y) is the integer part
of the quotient, X./Y.

Remarks So long as operands X and Y are of the same sign, the statement rem(X,Y)
returns the same result as does mod(X,Y). However, for positive X and Y,

rem(–x,y) = mod(–x,y)–y

The rem function returns a result that is between 0 and sign(X)*abs(Y). If Y
is zero, rem returns NaN.

Limitations Arguments X and Y should be integers. Due to the inexact representation of
floating-point numbers on a computer, real (or complex) inputs may lead to
unexpected results.

See Also mod
50

repmat
2repmatPurpose Replicate and tile an array

Syntax B = repmat(A,m,n)
B = repmat(A,[m n])
B = repmat(A,[m n p...])
repmat(A,m,n)

Description B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n tiling of
copies of A. The statement repmat(A,n) creates an n-by-n tiling.

B = repmat(A,[m n]) accomplishes the same result as repmat(A,m,n).

B = repmat(A,[m n p...]) produces a multidimensional (m-by-n-by-p-by-...)
array composed of copies of A. A may be multidimensional.

repmat(A,m,n) when A is a scalar, produces an m-by-n matrix filled with A’s
value. This can be much faster than a*ones(m,n) when m or n is large.

Examples In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

B =
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

The statement N = repmat(NaN,[2 3]) creates a 2-by-3 matrix of NaNs.
2-651

reshape

2-6
2reshapePurpose Reshape array

Syntax B = reshape(A,m,n)
B = reshape(A,m,n,p,...)
B = reshape(A,[m n p...])
B = reshape(A,siz)

Description B = reshape(A,m,n) returns the m-by-n matrix B whose elements are taken
column-wise from A. An error results if A does not have m∗n elements.

B = reshape(A,m,n,p,...) or B = reshape(A,[m n p...]) returns an N-D
array with the same elements as X but reshaped to have the size
m-by-n-by-p-by-... . m*n*p*... must be the same as prod(size(x)).

B = reshape(A,siz) returns an N-D array with the same elements as A, but
reshaped to siz, a vector representing the dimensions of the reshaped array.
The quantity prod(siz) must be the same as prod(size(A)).

Examples Reshape a 3-by-4 matrix into a 2-by-6 matrix:

A =
 1 4 7 10
 2 5 8 11
 3 6 9 12

B = reshape(A,2,6)

B =
 1 3 5 7 9 11
 2 4 6 8 10 12

See Also shiftdim, squeeze

The colon operator :
52

residue
2residuePurpose Convert between partial fraction expansion and polynomial coefficients

Syntax [r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a partial
fraction expansion of the ratio of two polynomials, b(s) and a(s), of the form:

[b,a] = residue(r,p,k) converts the partial fraction expansion back to the
polynomials with coefficients in b and a.

Definition If there are no multiple roots, then:

The number of poles n is

n = length(a)–1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)–length(a)+1

If p(j) = ... = p(j+m–1) is a pole of multiplicity m, then the expansion
includes terms of the form

b s()
a s()

b1 b2s 1– b3s 2– … bm 1+ s m–
+ + + +

a1 a2s 1– a3s 2– … an 1+ s n–
+ + + +

---=

b s()
a s()

r1
s p1–

r2
s p2–
--------------- …

rn
s pn–
--------------- k s()+ + + +=

r j
s p j–

r j 1+

s p j–()2
----------------------- …

r j m 1–+

s p j–()m
------------------------+ + +
2-653

residue

2-6
Arguments

Algorithm The residue function is an M-file. It first obtains the poles with roots. Next, if
the fraction is nonproper, the direct term k is found using deconv, which
performs polynomial long division. Finally, the residues are determined by
evaluating the polynomial with individual roots removed. For repeated roots,
the M-file resi2 computes the residues at the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials represents
an ill-posed problem. If the denominator polynomial, a(s), is near a polynomial
with multiple roots, then small changes in the data, including roundoff errors,
can make arbitrarily large changes in the resulting poles and residues.
Problem formulations making use of state-space or zero-pole representations
are preferable.

See Also deconv, poly, roots

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

b,a Vectors that specify the coefficients of the polynomials in descending
powers of s

r Column vector of residues

p Column vector of poles

k Row vector of direct terms
54

return
2returnPurpose Return to the invoking function

Syntax return

Description return causes a normal return to the invoking function or to the keyboard. It
also terminates keyboard mode.

Examples If the determinant function were an M-file, it might use a return statement in
handling the special case of an empty matrix as follows:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)
 d = 1;
 return
else
 ...
end

See Also break, disp, end, error, for, if, keyboard, switch, while
2-655

rmfield

2-6
2rmfieldPurpose Remove structure fields

Syntax s = rmfield(s,'field')
s = rmfield(s,FIELDS)

Description s = rmfield(s,'field') removes the specified field from the structure array
s.

s = rmfield(s,FIELDS) removes more than one field at a time when FIELDS is
a character array of field names or cell array of strings.

See Also getfield, setfield, strvcat
56

rmpath
2rmpathPurpose Remove directories from MATLAB’s search path

Syntax rmpath directory

Description rmpath directory removes the specified directory from MATLAB’s current
search path.

The function syntax form is also acceptable

rmpath('directory')

Examples rmpath /usr/local/matlab/mytools

See Also addpath, path
2-657

roots
2rootsPurpose Polynomial roots

Syntax r = roots(c)

Description r = roots(c) returns a column vector whose elements are the roots of the
polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in descending
powers. If c has n+1 components, the polynomial it represents is

.

Remarks Note the relationship of this function to p = poly(r), which returns a row
vector whose elements are the coefficients of the polynomial. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling, and
roundoff error.

Examples The polynomial is represented in MATLAB as

p = [1 –6 –72 –27]

The roots of this polynomial are returned in a column vector by

r = roots(p)
r =
 12.1229
 –5.7345
 –0.3884

Algorithm The algorithm simply involves computing the eigenvalues of the companion
matrix:

A = diag(ones(n–2,1),–1);
A(1,:) = –c(2:n–1)./c(1);
eig(A)

It is possible to prove that the results produced are the exact eigenvalues of a
matrix within roundoff error of the companion matrix A, but this does not mean
that they are the exact roots of a polynomial with coefficients within roundoff
error of those in c.

c1sn … cns cn 1++ + +

s3 6s2– 72s– 27–
2-658

roots
See Also fzero, poly, residue
2-659

rot90
2rot90Purpose Rotate matrix 90˚

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A,k) rotates matrix A counterclockwise by k∗90 degrees, where k is
an integer.

Examples The matrix

X =
 1 2 3
 4 5 6
 7 8 9

rotated by 90 degrees is

Y = rot90(X)
Y =
 3 6 9
 2 5 8
 1 4 7

See Also flipdim, fliplr, flipud
2-660

round
2roundPurpose Round to nearest integer

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. For complex X,
the imaginary and real parts are rounded independently.

Examples a =
 Columns 1 through 4
 –1.9000 –0.2000 3.4000 5.6000
 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

round(a)

ans =
 Columns 1 through 4
 –2.0000 0 3.0000 6.0000
 Columns 5 through 6
 7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor
2-661

rref, rrefmovie

2-6
2rref, rrefmoviePurpose Reduced row echelon form

Syntax R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)
rrefmovie(A)

Description R = rref(A) produces the reduced row echelon form of A using Gauss Jordan
elimination with partial pivoting. A default tolerance of
(max(size(A))*eps *norm(A,inf)) tests for negligible column elements.

[R,jb] = rref(A) also returns a vector jb so that:

• r = length(jb) is this algorithm's idea of the rank of A,

• x(jb) are the bound variables in a linear system Ax = b,

• A(:,jb) is a basis for the range of A,

• R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value for the
rank than rank, orth and null.

rrefmovie(A) shows a movie of the algorithm working.

Examples Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
R =
 1 0 0 1
 0 1 0 3
 0 0 1 –3
 0 0 0 0
62

rref, rrefmovie
See Also inv, lu, rank
2-663

rsf2csf

2-6
2rsf2csfPurpose Convert real Schur form to complex Schur form

Syntax [U,T] = rsf2csf(U,T)

Description The complex Schur form of a matrix is upper triangular with the eigenvalues
of the matrix on the diagonal. The real Schur form has the real eigenvalues on
the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex form.

Arguments U and T represent the unitary and Schur forms of a matrix A,
respectively, that satisfy the relationships: A = U∗T∗U' and U'∗U =
eye(size(A)). See schur for details.

Examples Given matrix A,

 1 1 1 3
 1 2 1 1
 1 1 3 1
–2 1 1 4

with the eigenvalues

1.9202 – 1.4742i 1.9202 + 1.4742i 4.8121 1.3474

Generating the Schur form of A and converting to the complex Schur form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal consists of the eigenvalues of A.

U =

–0.4576 + 0.3044i 0.5802 – 0.4934i –0.0197 –0.3428
 0.1616 + 0.3556i 0.4235 + 0.0051i 0.1666 0.8001
 0.3963 + 0.2333i 0.1718 + 0.2458i 0.7191 –0.4260
–0.4759 – 0.3278i –0.2709 – 0.2778i 0.6743 0.2466
64

rsf2csf
T =
1.9202 + 1.4742i 0.7691 – 1.0772i –1.5895 – 0.9940i –1.3798 + 0.1864i

0 1.9202 – 1.4742i 1.9296 + 1.6909i 0.2511 + 1.0844i

0 0 4.8121 1.1314

0 0 0 1.3474

See Also schur
2-665

save
2savePurpose Save workspace variables on disk

Syntax save
save filename
save filename variables
save filename options
save filename variables options

Description save stores all workspace variables in a binary format in the file named
matlab.mat. The data can be retrieved with load.

save filename stores all workspace variables in filename.mat instead of the
default matlab.mat. If filename is the special string stdio, the save command
sends the data as standard output.

save filename variables saves only the workspace variables you list after
the filename. For example, save myfile x y z saves only the variables x, y,
and z to myfile.mat.

The function form of the syntax, save('filename'), is also permitted. So, for
example, to save variables x and y to the filename myfile, use

save ('myfile', 'x', 'y')

These forms of the save command use options:

save filename options

save filename variables options

Valid option combinations are shown in the table below.

With these options: Data is:

–ascii stored in 8-digit ASCII format

–ascii –double stored in 16-digit ASCII format

–ascii –tabs stored in 8-digit ASCII format,
tab-separated
2-666

save
Limitations Saving complex data with the –ascii option causes the imaginary part of the
data to be lost, as MATLAB cannot load nonnumeric data ('i').

Remarks The save and load commands retrieve and store MATLAB variables on disk.
They can also import and export numeric matrices as ASCII data files.

MAT-files are double-precision binary MATLAB format files created by the
save command and readable by the load command. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the disparate
formats allow. They can also be manipulated by other programs, external to
MATLAB.

Notes on Options
Variables saved in ASCII format merge into a single variable that takes the
name of the ASCII file. Therefore, loading the file filename shown above
results in a single workspace variable named filename. Use the colon operator
to access individual variables.

If you save MATLAB version 5 data with the -V4 option, you must use a
filename that MATLAB version 4 supports. In addition, you can only save data
constructs that are compatible with MATLAB version 4; therefore, you cannot
save structures, cell arrays, multidimensional arrays, or objects.

Algorithm The binary formats used by save depend on the size and type of each array.
Arrays with any noninteger entries and arrays with 10,000 or fewer elements
are saved in floating-point formats requiring eight bytes per real element.

–ascii –double –tabs stored in 16-digit ASCII format,
tab-separated

-V4 stored in a format that MATLAB
version 4 can load

-append added to an existing specified MAT-file

With these options: Data is:
2-667

save
Arrays with all integer entries and more than 10,000 elements are saved in the
formats shown, requiring fewer bytes per element.

The Application Program Interface Libraries contain C and Fortran routines to
read and write MAT-files from external programs. It is important to use
recommended access methods, rather than rely upon the specific file format,
which is likely to change in the future.

See Also fprintf, fwrite, load, quit

Element Range Bytes per Element

0 to 255 1

0 to 65535 2

–32767 to 32767 2

–231+1 to 231–1 4

other 8
2-668

saveas
2saveasPurpose Save figure or model using specified format

Syntax saveas(h,'filename.ext')
saveas(h,'filename','format')

Description saveas(h,'filename.ext') saves the figure or model with the handle h to the
file filename.ext. The format of the file is determined by the extension, ext.
Allowable values for ext are listed in this table.

saveas(h,'filename','format') saves the figure or model with the handle h
to the file called filename using the specified format. The filename can have
an extension but the extension is not used to define the file format. If no
extension is specified, the standard extension corresponding to the specified
format is automatically appended to the filename.

ext Values Format

ai Adobe Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for MATLAB models)

jpg JPEG image (invalid for MATLAB models)

m MATLAB M-file (invalid for MATLAB models)

pbm Portable bitmap

pcx Paintbrush 24-bit

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed
2-669

saveas
Allowable values for format are the extensions in the table above and the
device types supported by print. The print device types include the formats
listed in the table of extensions above as well as additional file formats. Use an
extension from the table above or from the list of device types supported by
print. When using the print device type to specify format for saveas, do not
use the prepended -d.

Remarks You can use open to open files saved using saveas with an m or fig extension.
Other formats are not supported by open. The Save As dialog box you access
from the figure window’s File menu uses saveas, limiting the file extensions to
m and fig. The Export dialog box you access from the figure window’s File
menu uses saveas with the format argument.

Examples Example 1 – Specify File Extension
Save the current figure that you annotated using the Plot Editor to a file named
pred_prey using the MATLAB fig format. This allows you to open the file
pred_prey.fig at a later time and continue editing it with the Plot Editor.

saveas(gcf,'pred_prey.fig')

Example 2 – Specify File Format but No Extension
Save the current figure, using Adobe Illustrator format, to the file logo. Use
the ai extension from the above table to specify the format. The file created is
logo.ai.

saveas(gcf,'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print devices
table, which is -dill; use doc print or help print to see the table for print
device types. The file created is logo.ai. MATLAB automatically appends the
ai extension, for an Illustrator format file, because no extension was specified.

saveas(gcf,'logo', 'ill')

Example 3 – Specify File Format and Extension
Save the current figure to the file star.eps using the Level 2 Color PostScript
format. If you use doc print or help print, you can see from the table for print
2-670

saveas
device types that the device type for this format is -dpsc2. The file created is
star.eps.

saveas(gcf,'star.eps', 'psc2')

In another example, save the current model to the file trans.tiff using the
TIFF format with no compression. From the table for print device types, you
can see the device type for this format is -dtiffn. The file created is
trans.tiff.

saveas(gcf,'trans.tiff', 'tiffn')

See Also open, print
2-671

saveobj
2saveobjPurpose User-defined extension of the save function for user objects

Syntax b = saveobj(a)

Description b = saveobj(a) extends the save function for user objects. When an object is
saved to a MAT file, the save function calls the saveobj method for the object’s
class if it is defined. The saveobj method must have the calling sequence
shown; the input argument a is the object in the workspace and the output
argument b is the object that the save function saves to the MAT file.

These steps describe how an object is saved from the workspace to a MAT file:

1 The save function detects the object a in the workspace.

2 If there is no saveobj method defined for the object’s class, the object a is
saved directly to the MAT file.

3 If there is a saveobj method defined for the object’s class, the save function
calls the method passing the workspace object a as an input argument. The
save function saves the return object, b, to the MAT file.

Remarks saveobj can be overloaded only for user objects. save will not call saveobj for
built-in datatypes (such as double).

saveobj is invoked separately for each object in the MAT file. The save
function recursively descends cell arrays and structures applying the saveobj
method to each object encountered.

See Also load, loadobj, save
2-672

schur
2schurPurpose Schur decomposition

Syntax [U,T] = schur(A)
T = schur(A)

Description The schur command computes the Schur form of a matrix.

[U,T] = schur(A) produces a Schur matrix T, and a unitary matrix U so that
A = U∗T∗U' and U'∗U = eye(size(A)). A must be square.

T = schur(A) returns just the Schur matrix T.

Remarks The complex Schur form of a matrix is upper triangular with the eigenvalues
of the matrix on the diagonal. The real Schur form has the real eigenvalues on
the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

If the matrix A is real, schur returns the real Schur form. If A is complex, schur
returns the complex Schur form. The function rsf2csf converts the real form
to the complex form.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
–149 –50 –154
537 180 546
–27 –9 –25

Its Schur form is

schur(H) =
1.0000 7.1119 815.8706

0 2.0000 –55.0236
0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal. The fact
that the off-diagonal elements are so large indicates that this matrix has poorly
conditioned eigenvalues; small changes in the matrix elements produce
relatively large changes in its eigenvalues.

Algorithm For real matrices, schur uses the EISPACK routines ORTRAN, ORTHES, and HQR2.
ORTHES converts a real general matrix to Hessenberg form using orthogonal
2-673

schur
similarity transformations. ORTRAN accumulates the transformations used by
ORTHES. HQR2 finds the eigenvalues of a real upper Hessenberg matrix by the
QR method.

The EISPACK subroutine HQR2 has been modified to allow access to the Schur
form, ordinarily just an intermediate result, and to make the computation of
eigenvectors optional.

When schur is used with a complex argument, the solution is computed using
the QZ algorithm by the EISPACK routines QZHES, QZIT, QZVAL, and QZVEC.
They have been modified for complex problems and to handle the special case
B = I.

For detailed descriptions of these algorithms, see the EISPACK Guide.

See Also eig, hess, qz, rsf2csf

References [1] Garbow, B. S., J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix
Eigensystem Routines – EISPACK Guide Extension, Lecture Notes in
Computer Science, Vol. 51, Springer-Verlag, 1977.

[2] Moler, C.B. and G. W. Stewart, “An Algorithm for Generalized Matrix
Eigenvalue Problems,” SIAM J. Numer. Anal., Vol. 10, No. 2, April 1973.

[3] Smith, B. T., J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines – EISPACK Guide,
Lecture Notes in Computer Science, Vol. 6, second edition, Springer-Verlag,
1976.
2-674

script
2scriptPurpose Script M-files

Description A script file is an external file that contains a sequence of MATLAB statements.
By typing the filename, subsequent MATLAB input is obtained from the file.
Script files have a filename extension of .m and are often called M-files.

Scripts are the simplest kind of M-file. They are useful for automating blocks
of MATLAB commands, such as computations you have to perform repeatedly
from the command line. Scripts can operate on existing data in the workspace,
or they can create new data on which to operate. Although scripts do not return
output arguments, any variables that they create remain in the workspace so
you can use them in further computations. In addition, scripts can produce
graphical output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any M-file, scripts can contain comments. Any text following a percent
sign (%) on a given line is comment text. Comments can appear on lines by
themselves, or you can append them to the end of any executable line.

See Also echo, function, type
2-675

sec, sech
2sec, sechPurpose Secant and hyperbolic secant

Syntax Y = sec(X)
Y = sech(X)

Description The sec and sech commands operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = sec(X) returns an array the same size as X containing the secant of the
elements of X.

Y = sech(X) returns an array the same size as X containing the hyperbolic
secant of the elements of X.

Examples Graph the secant over the domains and and
the hyperbolic secant over the domain

x1 = –pi/2+0.01:0.01:pi/2–0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)–0.01;
plot(x1,sec(x1),x2,sec(x2))
x = –2*pi:0.01:2*pi; plot(x,sech(x))

π– 2⁄ x π 2⁄< < π 2⁄ x 3π 2⁄ ,< <
2π– x 2π.≤ ≤

-2 -1 0 1 2 3 4 5
-150

-100

-50

0

50

100

150

x1 x2

y=
se

c(
x)

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y=
se

ch
(x

)

2-676

sec, sech
The expression sec(pi/2) does not evaluate as infinite but as the reciprocal of
the floating-point accuracy eps, because pi is a floating-point approximation to
the exact value of π.

Algorithm

See Also asec, asech

z()sec 1
z()cos

----------------- z()sech 1
z()cosh

--------------------==
2-677

setdiff
2setdiffPurpose Return the set difference of two vectors

Syntax c = setdiff(a,b)
c = setdiff(A,B,'rows')
[c,i] = setdiff(...)

Description c = setdiff(a,b) returns the values in a that are not in b. The resulting
vector is sorted is ascending order. In set theoretic terms, c = a – b. a and b
can be cell arrays of strings.

c = (A,B,'rows') when A and B are matrices with the same number of
columns returns the rows from A that are not in B.

[c,i] = setdiff(...) also returns an index vector index such that c = a(i)
or c = a(i,:).

Examples A = magic(5);
B = magic(4);
[c,i] = setdiff(A,B);
c' = 17 18 19 20 21 22 23 24 25
i' = 1 10 14 18 19 23 2 6 15

See Also intersect, ismember, setxor, union, unique
2-678

setfield
2setfieldPurpose Set field of structure array

Syntax s = setfield(s,'field',v)
s = setfield(s,{i,j},'field',{k},v)

Description s = setfield(s,'field',v), where s is a 1-by-1 structure, sets the contents
of the specified field to the value v. This is equivalent to the syntax
s.field = v.

s = setfield(s,{i,j},'field',{k},v) sets the contents of the specified
field to the value v. This is equivalent to the syntax s(i,j).field(k) = v. All
subscripts must be passed as cell arrays—that is, they must be enclosed in
curly braces (similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure:

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command mystr = setfield(mystr,{2,1},'name','ted') yields

mystr =

2x1 struct array with fields:
 name
 ID

See Also getfield
2-679

setstr
2setstrPurpose Set string flag

Description This MATLAB 4 function has been renamed char in MATLAB 5.

See Also char
2-680

setxor
2setxorPurpose Set exclusive-or of two vectors

Syntax c = setxor(a,b)
c = setxor(A,B,'rows')
[c,ia,ib] = setxor(...)

Description c = setxor(a,b) returns the values that are not in the intersection of a and b.
The resulting vector is sorted. a and b can be cell arrays of strings.

c = setxor(A,B,'rows') when A and B are matrices with the same number
of columns returns the rows that are not in the intersection of A and B.

[c,ia,ib] = setxor(...) also returns index vectors ia and ib such that c is
a sorted combination of the elements c = a(ia) and c = b(ib) or, for row
combinations, c = a(ia,:) and c = b(ib,:).

Examples a = [–1 0 1 Inf –Inf NaN];
b = [–2 pi 0 Inf];
c = setxor(a,b)

c =
 –Inf –2.0000 –1.0000 1.0000 3.1416 NaN

See Also intersect, ismember, setdiff, union, unique
2-681

shiftdim
2shiftdimPurpose Shift dimensions

Syntax B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

Description B = shiftdim(X,n) shifts the dimensions of X by n. When n is positive,
shiftdim shifts the dimensions to the left and wraps the n leading dimensions
to the end. When n is negative, shiftdim shifts the dimensions to the right and
pads with singletons.

[B,nshifts] = shiftdim(X) returns the array B with the same number of
elements as X but with any leading singleton dimensions removed. A singleton
dimension is any dimension for which size(A,dim) = 1. nshifts is the number
of dimensions that are removed.

If X is a scalar, shiftdim has no effect.

Examples The shiftdim command is handy for creating functions that, like sum or diff,
work along the first nonsingleton dimension.

a = rand(1,1,3,1,2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

See Also reshape, squeeze
2-682

sign
2signPurpose Signum function

Syntax Y = sign(X)

Description Y = sign(X) returns an array Y the same size as X, where each element of Y is:

• 1 if the corresponding element of X is greater than zero

• 0 if the corresponding element of X equals zero

• –1 if the corresponding element of X is less than zero

For nonzero complex X, sign(X) = X./abs(X).

See Also abs, conj, imag, real
2-683

sin, sinh
2sin, sinhPurpose Sine and hyperbolic sine

Syntax Y = sin(X)
Y = sinh(X)

Description The sin and sinh commands operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = sin(X) returns the circular sine of the elements of X.

Y = sinh(X) returns the hyperbolic sine of the elements of X.

Examples Graph the sine function over the domain and the hyperbolic sine
function over the domain

x = –pi:0.01:pi; plot(x,sin(x))
x = –5:0.01:5; plot(x,sinh(x))

The expression sin(pi) is not exactly zero, but rather a value the size of the
floating-point accuracy eps, because pi is only a floating-point approximation
to the exact value of π.

π– x π,≤ ≤
5– x 5.≤ ≤

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y=
si

n(
x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-80

-60

-40

-20

0

20

40

60

80

x

y=
si

nh
(x

)

2-684

sin, sinh
Algorithm

See Also asin, asinh

x iy+()sin x() y()cossin i x() y()sincos+=

z()sin eiz e iz––
2i

----------------------=

z()sinh ez e z––
2

-------------------=
2-685

single
2singlePurpose Convert to single precision

Syntax Y = single(X)

Description Y = single(X) converts the vector X to single precision. X can be any numeric
object (such as a double). If X is already single precision, single has no effect.
Single precison quantities require less storage than double precision quantities
but have less precision and a smaller range.

The single class is primarily meant for storing single-precision values. Most
operations that manipulate arrays without changing their elements are
defined (e.g., reshape, size, the relational operators, subscripted assignment
and subscripted reference). No math operations are defined for the single.

You can define your own methods for the single (as you can for any object) by
placing the appropriately named method in an @single directory within a
directory on your path.

See Also double,int8, int16, int32, uint8, uint16, uint32
2-686

size
2sizePurpose Array dimensions

Syntax d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X)

Description d = size(X) returns the sizes of each dimension of array X in a vector d with
ndims(X) elements.

[m,n] = size(X) returns the size of matrix X in variables m and n.

m = size(X,dim) returns the size of the dimension of X specified by scalar dim.

[d1,d2,d3,...,dn] = size(X) returns the sizes of the various dimensions of
array X in separate variables.

If the number of output arguments n does not equal ndims(X), then:

Examples The size of the second dimension of rand(2,3,4) is 3.

m = size(rand(2,3,4),2)

m =
 3

Here the size is output as a single vector.

d = size(rand(2,3,4))

d =
 2 3 4

If n > ndims(X) Ones are returned in the “extra” variables dndims(X)+1
through dn.

If n < ndims(X) The final variable dn contains the product of the sizes of
all the “remaining” dimensions of X, that is, dimensions
n+1 through ndims(X).
2-687

size
Here the size of each dimension is assigned to a separate variable.

[m,n,p] = size(rand(2,3,4))
m =
 2

n =
 3

p =
 4

If X = ones(3,4,5), then

[d1,d2,d3] = size(X)

d1 = d2 = d3 =
3 4 5

but when the number of output variables is less than ndims(X):

[d1,d2] = size(X)

d1 = d2 =
3 20

The “extra” dimensions are collapsed into a single product.

If n > ndims(X), the “extra” variables all represent singleton dimensions:

[d1,d2,d3,d4,d5,d6] = size(X)

d1 = d2 = d3 =
3 4 5

d4 = d5 = d6 =
 1 1 1

See Also exist, length, whos
2-688

sort
2sortPurpose Sort elements in ascending order

Syntax B = sort(A)
[B,INDEX] = sort(A)
B = sort(A,dim)

Description B = sort(A) sorts the elements along different dimensions of an array, and
arranges those elements in ascending order. a can be a cell array of strings.

Real, complex, and string elements are permitted. For identical values in A, the
location in the input array determines location in the sorted list. When A is
complex, the elements are sorted by magnitude, and where magnitudes are
equal, further sorted by phase angle on the interval . If A includes any
NaN elements, sort places these at the end.

If A is a vector, sort(A) arranges those elements in ascending order.

If A is a matrix, sort(A) treats the columns of A as vectors, returning sorted
columns.

If A is a multidimensional array, sort(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted vectors.

[B,INDEX] = sort(A) also returns an array of indices. INDEX is an array of
size(A), each column of which is a permutation vector of the corresponding
column of A. If A has repeated elements of equal value, indices are returned that
preserve the original relative ordering.

B = sort(A,dim) sorts the elements along the dimension of A specified by
scalar dim.

If dim is a vector, sort works iteratively on the specified dimensions. Thus,
sort(A,[1 2]) is equivalent to sort(sort(A,2),1).

See Also max, mean, median, min, sortrows

π π,–[]
2-689

sortrows
2sortrowsPurpose Sort rows in ascending order

Syntax B = sortrows(A)
B = sortrows(A,column)
[B,index] = sortrows(A)

Description B = sortrows(A) sorts the rows of A as a group in ascending order. Argument
A must be either a matrix or a column vector.

For strings, this is the familiar dictionary sort. When A is complex, the
elements are sorted by magnitude, and, where magnitudes are equal, further
sorted by phase angle on the interval .

B = sortrows(A,column) sorts the matrix based on the columns specified in
the vector column. For example, sortrows(A,[2 3]) sorts the rows of A by the
second column, and where these are equal, further sorts by the third column.

[B,index] = sortrows(A) also returns an index vector index.

If A is a column vector, then B = A(index).

If A is an m-by-n matrix, then B = A(index,:).

Examples Given the 5-by-5 string matrix,

A = ['one ';'two ';'three';'four ';'five '];

The commands B = sortrows(A) and C = sortrows(A,1) yield

B = C =
five four
four five
one one
three two
two three

See Also sort

π π,–[]
2-690

sound
2soundPurpose Convert vector into sound

Syntax sound(y,Fs)
sound(y)
sound(y,Fs,bits)

Description sound(y,Fs), sends the signal in vector y (with sample frequency Fs) to the
speaker on the PC and most UNIX platforms. Values in y are assumed to be in
the range -1.0 ≤ y ≤ 1.0. Values outside that range are clipped. Stereo sound is
played on platforms that support it when y is an n-by-2 matrix.

sound(y) plays the sound at the default sample rate or 8192 Hz.

sound(y,Fs,bits) plays the sound using bits bits/sample if possible. Most
platforms support bits = 8 or bits = 16.

Remarks MATLAB supports all Windows-compatible sound devices.

See Also auread, auwrite, soundsc, wavread, wavwrite
2-691

soundsc
2soundscPurpose Scale data and play as sound

Syntax soundsc(y,Fs)
soundsc(y)
soundsc(y,Fs,bits)
soundsc(y,...,slim)

Description soundsc(y,Fs) sends the signal in vector y (with sample frequency Fs) to the
speaker on the PC and most UNIX platforms. The signal y is scaled to the range
-1.0 ≤ y ≤ 1.0 before it is played, resulting in a sound that is played as loud as
possible without clipping.

soundsc(y) plays the sound at the default sample rate or 8192 Hz.

soundsc(y,Fs,bits) plays the sound using bits bits/sample if possible. Most
platforms support bits = 8 or bits = 16.

soundsc(y,...,slim) where slim = [slow shigh] maps the values in y
between slow and shigh to the full sound range. The default value is
slim = [min(y) max(y)].

Remarks MATLAB supports all Windows-compatible sound devices.

See Also auread, auwrite, sound, wavread, wavwrite
2-692

spalloc
2spallocPurpose Allocate space for sparse matrix

Syntax S = spalloc(m,n,nzmax)

Description S = spalloc(m,n,nzmax) creates an all zero sparse matrix S of size m-by-n with
room to hold nzmax nonzeros. The matrix can then be generated column by
column without requiring repeated storage allocation as the number of
nonzeros grows.

spalloc(m,n,nzmax) is shorthand for

sparse([],[],[],m,n,nzmax)

Examples To generate efficiently a sparse matrix that has an average of at most three
nonzero elements per column

S = spalloc(n,n,3∗n);
for j = 1:n

S(:,j) = [zeros(n–3,1)' round(rand(3,1))']';
end

See Also sparse
2-693

sparse
2sparsePurpose Create sparse matrix

Syntax S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)

Description The sparse function generates matrices in MATLAB’s sparse storage
organization.

S = sparse(A) converts a full matrix to sparse form by squeezing out any zero
elements. If S is already sparse, sparse(S) returns S.

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n
sparse matrix with space allocated for nzmax nonzeros. Any elements of s that
are zero are ignored, along with the corresponding values of i and j. Vectors i,
j, and s are all the same length. Any elements of s that have duplicate values
of i and j are added together.

To simplify this six-argument call, you can pass scalars for the argument s and
one of the arguments i or j—in which case they are expanded so that i, j, and
s all have the same length.

S = sparse(i,j,s,m,n) uses nzmax = length(s).

S = sparse(i,j,s) uses m = max(i) and n = max(j). The maxima are
computed before any zeros in s are removed, so one of the rows of [i j s]
might be [m n 0].

S = sparse(m,n) abbreviates sparse([],[],[],m,n,0). This generates the
ultimate sparse matrix, an m-by-n all zero matrix.

Remarks All of MATLAB’s built-in arithmetic, logical, and indexing operations can be
applied to sparse matrices, or to mixtures of sparse and full matrices.
Operations on sparse matrices return sparse matrices and operations on full
matrices return full matrices.
2-694

sparse
In most cases, operations on mixtures of sparse and full matrices return full
matrices. The exceptions include situations where the result of a mixed
operation is structurally sparse, for example, A.∗S is at least as sparse as S.

Examples S = sparse(1:n,1:n,1) generates a sparse representation of the n-by-n
identity matrix. The same S results from S = sparse(eye(n,n)), but this
would also temporarily generate a full n-by-n matrix with most of its elements
equal to zero.

B = sparse(10000,10000,pi) is probably not very useful, but is legal and
works; it sets up a 10000-by-10000 matrix with only one nonzero element. Don’t
try full(B); it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

See Also The sparfun directory, and:
diag, find, full, nnz, nonzeros, nzmax, spalloc, spones, sprandn, sprandsym,
spy
2-695

spconvert
2spconvertPurpose Import matrix from sparse matrix external format

Syntax S = spconvert(D)

Description spconvert is used to create sparse matrices from a simple sparse format easily
produced by non-MATLAB sparse programs. spconvert is the second step in
the process:

1 Load an ASCII data file containing [i,j,v] or [i,j,re,im] as rows into a
MATLAB variable.

2 Convert that variable into a MATLAB sparse matrix.

S = spconvert(D) converts a matrix D with rows containing [i,j,s] or
[i,j,r,s] to the corresponding sparse matrix. D must have an nnz or nnz+1
row and three or four columns. Three elements per row generate a real matrix
and four elements per row generate a complex matrix. A row of the form
[m n 0] or [m n 0 0] anywhere in D can be used to specify size(S). If D is
already sparse, no conversion is done, so spconvert can be used after D is
loaded from either a MAT-file or an ASCII file.

Examples Suppose the ASCII file uphill.dat contains

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

Then the statements

load uphill.dat
H = spconvert(uphill)
2-696

spconvert
recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this case,
the last line of the input file is not necessary because the earlier lines already
specify that the matrix is at least 4-by-4.
2-697

spdiags
2spdiagsPurpose Extract and create sparse band and diagonal matrices

Syntax [B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description The spdiags function generalizes the function diag. Four different operations,
distinguished by the number of input arguments, are possible:

[B,d] = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix A.
B is a min(m,n)-by-p matrix whose columns are the p nonzero diagonals of A. d
is a vector of length p whose integer components specify the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the columns of
B. The output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the columns
of B and placing them along the diagonals specified by d.

Remarks If a column of B is longer than the diagonal it’s replacing, spdiags takes
elements from B’s tail.

Arguments The spdiags function deals with three matrices, in various combinations, as
both input and output:

A An m-by-n matrix, usually (but not necessarily) sparse, with its nonzero
or specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full, whose
columns are the diagonals of A.

d A vector of length p whose integer components specify the diagonals in
A.
2-698

spdiags
Roughly, A, B, and d are related by

for k = 1:p
B(:,k) = diag(A,d(k))

end

Some elements of B, corresponding to positions outside of A, are not defined by
these loops. They are not referenced when B is input and are set to zero when B
is output.

Examples This example generates a sparse tridiagonal representation of the classic
second difference operator on n points.

e = ones(n,1);
A = spdiags([e –2∗e e], –1:1, n, n)

Turn it into Wilkinson’s test matrix (see gallery):

A = spdiags(abs(–(n–1)/2:(n–1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

The second example is not square.

A = [11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74]

Here m = 7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [–3 0 2]' and

B = [41 11 0
52 22 0
63 33 13
74 44 24]
2-699

spdiags
Conversely, with the above B and d, the expression spdiags(B,d,7,4)
reproduces the original A.

See Also diag
2-700

speye
2speyePurpose Sparse identity matrix

Syntax S = speye(m,n)
S = speye(n)

Description S = speye(m,n) forms an m-by-n sparse matrix with 1s on the main diagonal.

S = speye(n) abbreviates speye(n,n).

Examples I = speye(1000) forms the sparse representation of the 1000-by-1000 identity
matrix, which requires only about 16 kilobytes of storage. This is the same final
result as I = sparse(eye(1000,1000)), but the latter requires eight
megabytes for temporary storage for the full representation.

See Also spalloc, spdiags, spones, sprand, sprandn
2-701

spfun
2spfunPurpose Apply function to nonzero sparse matrix elements

Syntax f = spfun('function',S)

Description The spfun function selectively applies a function to only the nonzero elements
of a sparse matrix, preserving the sparsity pattern of the original matrix
(except for underflow).

f = spfun('function',S) evaluates function(S) on the nonzero elements of
S. function must be the name of a function, usually defined in an M-file, which
can accept a matrix argument, S, and evaluate the function at each element of
S.

Remarks Functions that operate element-by-element, like those in the elfun directory,
are the most appropriate functions to use with spfun.

Examples Given the 4-by-4 sparse diagonal matrix

S =
 (1,1) 1
 (2,2) 2
 (3,3) 3
 (4,4) 4

f = spfun('exp',S) has the same sparsity pattern as S:

f =
 (1,1) 2.7183
 (2,2) 7.3891
 (3,3) 20.0855
 (4,4) 54.5982

whereas exp(S) has 1s where S has 0s.

full(exp(S))

ans =
 2.7183 1.0000 1.0000 1.0000
 1.0000 7.3891 1.0000 1.0000
 1.0000 1.0000 20.0855 1.0000
 1.0000 1.0000 1.0000 54.5982
2-702

sph2cart
2sph2cartPurpose Transform spherical coordinates to Cartesian

Syntax [x,y,z] = sph2cart(THETA,PHI,R)

Description [x,y,z] = sph2cart(THETA,PHI,R) transforms the corresponding elements of
spherical coordinate arrays to Cartesian, or xyz, coordinates. THETA, PHI, and R
must all be the same size. THETA and PHI are angular displacements in radians
from the positive x-axis and from the x-y plane, respectively.

Algorithm The mapping from spherical coordinates to three-dimensional Cartesian
coordinates is:

See Also cart2pol, cart2sph, pol2cart

x = r .* cos(phi) .* cos(theta)
y = r .* cos(phi) .* sin(theta)

z = r .* sin(phi)

Z

Y

X

theta

P

phi

r

2-703

spline
2splinePurpose Cubic spline interpolation

Syntax yy = spline(x,y,xx)
pp = spline(x,y)

Description The spline function constructs a spline function which takes the value y(:,j)
at the point x(j), all j. In particular, the given values may be vectors, in which
case the spline function describes a curve that passes through the point
sequence y(:,1),y(:,2),

yy = spline(x,y,xx) returns the value at xx of the interpolating cubic
spline. If xx is a refinement of the mesh x, then yy provides a corresponding
refinement of y.

pp = spline(x,y) returns the pp-form of the cubic spline interpolant, for later
use with ppval (and with functions available in the Spline Toolbox).

Ordinarily, the ‘not-a-knot’ end conditions are used. However, if y contains
exactly two more values than x has entries, then y(:,1) and y(:,end) are used
as the endslopes for the cubic spline.

Examples The two vectors

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633];

represent the census years from 1900 to 1990 and the corresponding United
States population in millions of people. The expression

spline(t,p,2000)

uses the cubic spline to extrapolate and predict the population in the year 2000.
The result is

ans =
270.6060
2-704

spline
The statements

x = pi*[0:.5:2]; y = [0 1 0 -1 0 1 0; 1 0 1 0 -1 0 1];
pp = spline(x,y);
yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or'), axis equal

generate the plot of a circle, with the five data points y(:,2),...,y(:,6)
marked with o's. Note that this y contains two more values (i.e., two more
columns) than does x, hence y(:,1) and y(:,end) are used as endslopes.

Algorithm A tridiagonal linear system (with, possibly, several right sides) is being solved
for the information needed to describe the coefficients of the various cubic
polynomials which make up the interpolating spline. spline uses the functions
ppval, mkpp, and unmkpp. These routines form a small suite of functions for
working with piecewise polynomials. spline uses these functions in a fairly
simple fashion to perform cubic spline interpolation. For access to the more
advanced features, see the on-line help for these M-files and the Spline Toolbox.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2-705

spline
See Also interp1, interp2, interp3, interpn

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.
2-706

spones
2sponesPurpose Replace nonzero sparse matrix elements with ones

Syntax R = spones(S)

Description R = spones(S) generates a matrix R with the same sparsity structure as S, but
with 1’s in the nonzero positions.

Examples c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

See Also nnz, spalloc, spfun
2-707

spparms
2spparmsPurpose Set parameters for sparse matrix routines

Syntax spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description spparms('key',value) sets one or more of the tunable parameters used in the
sparse linear equation operators, \ and /, and the minimum degree orderings,
colmmd and symmmd. In ordinary use, you should never need to deal with this
function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag.
0 produces no diagnostic output, the default.
1 produces information about choice of algorithm based on
matrix structure, and about storage allocation.
2 also produces very detailed information about the minimum
degree algorithms.

'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree+thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree. Zero to use
approximate degrees.

'supernd' If positive, minimum degree amalgamates the supernodes
every supernd stages.

'rreduce' If positive, minimum degree does row reduction every rreduce
stages.

'wh_frac' Rows with density > wh_frac are ignored in colmmd.
2-708

spparms
spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current
settings.

[keys,values] = spparms returns that vector, and also returns a character
matrix whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to the
values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to their tight
settings, which can lead to orderings with less fill-in, but which make the
ordering functions themselves use more execution time.

The key parameters for default and tight settings are

'autommd' Nonzero to use minimum degree orderings with \ and /.

'aug_rel',
'aug_abs'

Residual scaling parameter for augmented equations is
aug_rel∗max(max(abs(A))) + aug_abs.

For example, aug_rel = 0, aug_abs = 1 puts an unscaled
identity matrix in the (1,1) block of the augmented matrix.
2-709

spparms
See Also The arithmetic operator \

colmmd, symmmd

References [1] Gilbert, John R., Cleve Moler and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

Keyword Default Tight

values(1) 'spumoni' 0.0

values(2) 'thr_rel' 1.1 1.0

values(3) 'thr_abs' 1.0 0.0

values(4) 'exact_d' 0.0 1.0

values(5) 'supernd' 3.0 1.0

values(6) 'rreduce' 3.0 1.0

values(7) 'wh_frac' 0.5 0.5

values(8) 'autommd' 1.0

values(9) 'aug_rel' 0.001

values(10) 'aug_abs' 0.0
2-710

sprand
2sprandPurpose Sparse uniformly distributed random matrix

Syntax R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description R = sprand(S) has the same sparsity structure as S, but uniformly distributed
random entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with
approximately density∗m∗n uniformly distributed nonzero entries
(0 ≤ density ≤ 1).

R = sprand(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr ≤ min(m,n), then R has rc as its first lr
singular values, all others are zero. In this case, R is generated by random plane
rotations applied to a diagonal matrix with the given singular values. It has a
great deal of topological and algebraic structure.

See Also sprandn, sprandsym
2-711

sprandn
2sprandnPurpose Sparse normally distributed random matrix

Syntax R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description R = sprandn(S) has the same sparsity structure as S, but normally distributed
random entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with
approximately density∗m∗n normally distributed nonzero entries
(0 ≤ density ≤ 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices of rank one.

If rc is a vector of length lr, where lr ≤ min(m,n), then R has rc as its first lr
singular values, all others are zero. In this case, R is generated by random plane
rotations applied to a diagonal matrix with the given singular values. It has a
great deal of topological and algebraic structure.

See Also sprand, sprandn
2-712

sprandsym
2sprandsymPurpose Sparse symmetric random matrix

Syntax R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)

Description R = sprandsym(S) returns a symmetric random matrix whose lower triangle
and diagonal have the same structure as S. Its elements are normally
distributed, with mean 0 and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n, sparse
matrix with approximately density∗n∗n nonzeros; each entry is the sum of one
or more normally distributed random samples, and (0 ≤ density ≤ 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal condition
number equal to rc. The distribution of entries is nonuniform; it is roughly
symmetric about 0; all are in .

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is a positive
(nonnegative) vector then R is a positive definite matrix. In either case, R is
generated by random Jacobi rotations applied to a diagonal matrix with the
given eigenvalues or condition number. It has a great deal of topological and
algebraic structure.

R = sprandsym(n,density,rc,kind) returns a positive definite matrix.
Argument kind can be:

• 1 to generate R by random Jacobi rotation of a positive definite diagonal
matrix. R has the desired condition number exactly.

• 2 to generate an R that is a shifted sum of outer products. R has the desired
condition number only approximately, but has less structure.

• 3 to generate an R that has the same structure as the matrix S and
approximate condition number 1/rc. density is ignored.

See Also sprand, sprandn

1 1,–[]
2-713

sprintf
2sprintfPurpose Write formatted data to a string

Syntax s = sprintf(format,A,...)
[s,errrmsg] = sprintf(format,A,...)

Description s = sprintf(format,A,...) formats the data in matrix A (and in any
additional matrix arguments) under control of the specified format string, and
returns it in the MATLAB string variable s. sprintf is the same as fprintf
except that it returns the data in a MATLAB string variable rather than
writing it to a file.

The format string specifies notation, alignment, significant digits, field width,
and other aspects of output format. It can contain ordinary alphanumeric
characters; along with escape characters, conversion specifiers, and other
characters, organized as shown below.

[s,errrmsg] = sprintf(format,A,...) returns an error message string
errmsg if an error occurred, or an empty matrix if an error did not occur.

Remarks The sprintf function behaves like its ANSI C language sprintf() namesake
with certain exceptions and extensions, including the following.

}%–12.5e

Initial % character
Field width and
precision

Conversion
characterFlag

These non-standard subtype
specifiers are supported for
conversion specifiers %o, %u,
%x, and %X.

b The underlying C data type is a
double rather than an unsigned
integer. For example, to print a
double-precision value in
hexadecimal, use a format like
'%bx'.
2-714

sprintf
The following tables describe the nonalphanumeric characters found in format
specification strings.

t The underlying C data type is a
float rather than an unsigned
integer.

When input matrix A is
nonscalar, sprintf is
vectorized.

The format string is cycled through
the elements of A (columnwise)
until all the elements are used up.
It is then cycled in a similar
manner, without reinitializing,
through any additional matrix
arguments.
2-715

sprintf
Escape Characters

Conversion Specifiers
Conversion characters specify the notation of the output.

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

\'' or ''

(two single
quotes)

Single quotation mark

%% Percent character

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.
2-716

sprintf
Other Characters
Other characters can be inserted into the conversion specifier between the %
and the conversion character.

Examples

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description Example

A minus sign (–) Left-justifies the converted argument in
its field.

%–5.2d

A plus sign (+) Always prints a sign character (+ or –). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05.2d

Digits (field
width)

A digit string specifying the minimum
number of digits to be printed.

%6f

Digits (precision) A digit string including a period (.)
specifying the number of digits to be
printed to the right of the decimal point.

%6.2f

Specifier Description

Command Result

sprintf('%0.5g',(1+sqrt(5))/2) 1.618

sprintf('%0.5g',1/eps) 4.5036e+15
2-717

sprintf
See Also int2str, num2str, sscanf

References [1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

sprintf('%15.5f',1/eps) 4503599627370496.00000

sprintf('%d',round(pi)) 3

sprintf('%s','hello') hello

sprintf('The array is %dx%d.',2,3) The array is 2x3

sprintf('\n') Line termination character
on all platforms

Command Result
2-718

spy
2spyPurpose Visualize sparsity pattern

Syntax spy(S)
spy(S,markersize)
spy(S,'LineSpec')
spy(S,'LineSpec',markersize)

Description spy(S) plots the sparsity pattern of any matrix S.

spy(S,marksize), where markersize is an integer, plots the sparsity pattern
using markers of the specified point size.

spy(S,'LineSpec'), where LineSpec is a string, uses the specified plot marker
type and color.

spy(S,'LineSpec',markersize) uses the specified type, color, and size for the
plot markers.

S is usually a sparse matrix, but full matrices are acceptable, in which case the
locations of the nonzero elements are plotted.

spy replaces format +, which takes much more space to display essentially the
same information.

See Also The gplot and LineSpec reference entries in the MATLAB Graphics Guide,
and:

find, symmmd, symrcm
2-719

sqrt
2sqrtPurpose Square root

Syntax B = sqrt(A)

Description B = sqrt(A) returns the square root of each element of the array X. For the
elements of X that are negative or complex, sqrt(X) produces complex results.

Remarks See sqrtm for the matrix square root.

Examples sqrt((–2:2)')
ans =

0 + 1.4142i
0 + 1.0000i
0

1.0000
1.4142

See Also sqrtm
2-720

sqrtm
2sqrtmPurpose Matrix square root

Syntax Y = sqrtm(X)
[Y,esterr] = sqrtm(X)

Description Y = sqrtm(X) is the matrix square root of X. Complex results are produced if X
has negative eigenvalues. A warning message is printed if the computed Y*Y is
not close to X.

[Y,esterr] = sqrtm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(Y*Y–X)/norm(X).

Remarks If X is real, symmetric and positive definite, or complex, Hermitian and positive
definite, then so is the computed matrix square root.

Some matrices, like X = [0 1; 0 0], do not have any square roots, real or
complex, and sqrtm cannot be expected to produce one.

Examples A matrix representation of the fourth difference operator is

X =
5 –4 1 0 0

–4 6 –4 1 0
1 –4 6 –4 1
0 1 –4 6 –4
0 0 1 –4 5

This matrix is symmetric and positive definite. Its unique positive definite
square root, Y = sqrtm(X), is a representation of the second difference
operator.

Y =
2 –1 –0 0 –0

–1 2 –1 –0 –0
–0 –1 2 –1 0
0 –0 –1 2 –1

–0 –0 0 –1 2
2-721

sqrtm
The matrix

X =
7 10

15 22

has four square roots. Two of them are

Y1 =
1.5667 1.7408
2.6112 4.1779

and

Y2 =
1 2
3 4

The other two are –Y1 and –Y2. All four can be obtained from the eigenvalues
and vectors of X.

[V,D] = eig(X);
D =

0.1386 0
0 28.8614

The four square roots of the diagonal matrix D result from the four choices of
sign in

S =
±0.3723 0

0 ±5.3723

All four Ys are of the form

Y = V*S/V

The sqrtm function chooses the two plus signs and produces Y1, even though Y2
is more natural because its entries are integers.

Finally, the matrix

X =
0 1
0 0
2-722

sqrtm
does not have any square roots. There is no matrix Y, real or complex, for which
Y∗Y = X. The statement

Y = sqrtm(X)

produces several warning messages concerning accuracy and the answer

Y =

1.0e+03 *

 0.0000+ 0.0000i 4.9354- 7.6863i
 0.0000+ 0.0000i 0.0000+ 0.0000i

Algorithm The function sqrtm(X) is an abbreviation for funm(X,'sqrt'). The algorithm
used by funm is based on a Schur decomposition. It can fail in certain situations
where X has repeated eigenvalues. See funm for details.

See Also expm, funm, logm
2-723

squeeze
2squeezePurpose Remove singleton dimensions

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A, but with all
singleton dimensions removed. A singleton dimension is any dimension for
which size(A,dim) = 1.

Examples Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a singleton
column dimension — that is, there’s only one column per page.

Y =

Y(:,:,1) = Y(:,:,2) =
 0.5194 0.0346
 0.8310 0.0535

Y(:,:,3) =
 0.5297
 0.6711

The command Z = squeeze(Y) yields a 2-by-3 matrix:

Z =
 0.5194 0.0346 0.5297
 0.8310 0.0535 0.6711

See Also reshape, shiftdim
2-724

sscanf
2sscanfPurpose Read string under format control

Syntax A = sscanf(s,format)
A = sscanf(s,format,size)
[A,count,errmsg,nextindex] = sscanf(...)

Description A = sscanf(s,format) reads data from the MATLAB string variable s,
converts it according to the specified format string, and returns it in matrix A.
format is a string specifying the format of the data to be read. See “Remarks”
for details. sscanf is the same as fscanf except that it reads the data from a
MATLAB string variable rather than reading it from a file.

A = sscanf(s,format,size) reads the amount of data specified by size and
converts it according to the specified format string. size is an argument that
determines how much data is read. Valid options are

If the matrix A results from using character conversions only and size is not of
the form [M,N], a row vector is returned.

sscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

[A,count,errmsg,nextindex] = sscanf(...) reads data from the MATLAB
string variable s, converts it according to the specified format string, and
returns it in matrix A. count is an optional output argument that returns the
number of elements successfully read. errmsg is an optional output argument
that returns an error message string if an error occurred or an empty matrix if
an error did not occur. nextindex is an optional output argument specifying
one more than the number of characters scanned in s.

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the
matrix in column order. n can be Inf, but not m.
2-725

sscanf
Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be
matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character.

Valid conversion characters are as shown.

An asterisk (*) Skip over the matched value if the value is matched
but not stored in the output matrix.

A digit string Maximum field width.

A letter The size of the receiving object; for example, h for short
as in %hd for a short integer, or l for long as in %ld for a
long integer or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-whitespace characters

}%–12.5e

Initial % character
Field width and
precision

Conversion
characterFlag
2-726

sscanf
If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters, or %s to skip all white
space.

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The statements

s = '2.7183 3.1416';
A = sscanf(s,'%f')

create a two-element vector containing poor approximations to e and pi.

See Also eval, sprintf, textread

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)
2-727

startup
2startupPurpose Run MATLAB startup M-file

Syntax startup

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on MATLAB’s search path. You can create
a startup file in your own MATLAB directory. The file can include physical
constants, handle graphics defaults, engineering conversion factors, or
anything else you want predefined in your workspace.

Algorithm Only matlabrc.m is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup')==2
startup

end

that invoke startup.m. You can extend this process to create additional startup
M-files, if required.

Remarks You can also start MATLAB using options you define at the command line or
in your Windows shortcut for MATLAB. See Chapter 2 of Using MATLAB for
details.

See Also exist, matlabrc, path, quit
2-728

std
2stdPurpose Standard deviation

Syntax s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

Definition There are two common textbook definitions for the standard deviation s of a
data vector X:

where

and n is the number of elements in the sample. The two forms of the equation
differ only in versus in the divisor.

Description s = std(X), where X is a vector, returns the standard deviation using (1)
above. If X is a random sample of data from a normal distribution, s2 is the best
unbiased estimate of its variance.

If X is a matrix, std(X) returns a row vector containing the standard deviation
of the elements of each column of X. If X is a multidimensional array, std(X) is
the standard deviation of th elements along the first nonsingleton dimension of
X.

s = std(X,flag) for flag = 0, is the same as std(X). For flag = 1, std(X,1)
returns the standard deviation using (2) above, producing the second moment
of the sample about its mean.

(1) s 1
n 1–
------------- xi x–()2

i 1=

n

∑ 
 
  1

2

= and (2) s 1
n
--- xi x–()2

i 1=

n

∑ 
 
  1

2

=

x 1
n
--- xi

i 1=

n

∑=

n 1– n
2-729

std
s = std(X,flag,dim) computes the standard deviations along the dimension
of X specified by scalar dim.

Examples For matrix X

X =
1 5 9

 7 15 22

s = std(X,0,1)
s =

4.2426 7.0711 9.1924

s = std(X,0,2)
s =

4.000
7.5056

See Also corrcoef, cov, mean, median
2-730

str2double
2str2doublePurpose Convert string to double-precision value

Syntax x = str2double('str')
X = str2double(C)

Description = str2double('str') converts the string str, which should be an ASCII
character representation of a real or complex scalar value, to MATLAB's
double-precision representation. The string may contain digits, a comma
(thousands separator), a decimal point, a leading + or – sign, an e preceeding a
power of 10 scale factor, and an i for a complex unit.

If str does not represent a valid scalar value, str2double returns NaN.

X = str2double(C) converts the strings in the cell array of strings C to double
precision. The matrix X returned will be the same size as C.

Examples Here are some valid str2double conversions.

str2double('123.45e7')
str2double('123 + 45i')
str2double('3.14159')
str2double('2.7i - 3.14')
str2double({'2.71' '3.1415'})
str2double('1,200.34')

See Also char, hex2num, num2str, str2num
2-731

str2num
2str2numPurpose String to number conversion

Syntax x = str2num('str')

Description x = str2num('str') converts the string str, which is an ASCII character
representation of a numeric value, to MATLAB’s numeric representation. The
string can contain:

• Digits

• A decimal point

• A leading + or – sign

• A letter e preceding a power of 10 scale factor

• A letter i indicating a complex or imaginary number.

The str2num function can also convert string matrices.

Examples str2num('3.14159e0') is approximately π.

To convert a string matrix:

str2num(['1 2';'3 4'])

ans =

 1 2
 3 4

See Also The special characters [] and ;

hex2num, num2str, sparse, sscanf
2-732

strcat
2strcatPurpose String concatenation

Syntax t = strcat(s1,s2,s3,...)

Description t = strcat(s1,s2,s3,...) horizontally concatenates corresponding rows of
the character arrays s1, s2, s3, etc. The trailing padding is ignored. All the
inputs must have the same number of rows (or any can be a single string).
When the inputs are all character arrays, the output is also a character array.

When any of the inputs is a cell array of strings, strcat returns a cell array of
strings formed by concatenating corresponding elements of s1,s2, etc. The
inputs must all have the same size (or any can be a scalar). Any of the inputs
can also be a character array.

Examples Given two 1-by-2 cell arrays a and b,

a = b =
 'abcde' 'fghi' 'jkl' 'mn'

the command t = strcat(a,b) yields:

t =
 'abcdejkl' 'fghimn'

Given the 1-by-1 cell array c = {‘Q’}, the command t = strcat(a,b,c) yields:

t =
 'abcdejklQ' 'fghimnQ'

Remarks strcat and matrix operation are different for strings that contain trailing
spaces:

a = 'hello '
b = 'goodby'
strcat(a,b)
ans =
hellogoodby
[a b]
ans =
hello goodby
2-733

strcat
See Also cat, cellstr, strvcat
2-734

strcmp
2strcmpPurpose String compare

Syntax k = strcmp('str1','str2')
TF = strcmp(S,T)

Description k = strcmp(str1,str2) compares the strings str1 and str2 and returns
logical true (1) if the two are identical, and logical false (0) otherwise.

TF = strcmp(S,T) where either S or T is a cell array of strings, returns an
array TF the same size as S and T containing 1 for those elements of S and T that
match, and 0 otherwise. S and T must be the same size (or one can be a scalar
cell). Either one can also be a character array with the right number of rows.

Remarks The strcmp function is case sensitive. When comparing a string array to a cell
or cell array, the string array is deblanked (trailing spaces are removed) before
comparison.

Examples These examples show the comparison of two strings:

strcmp('Yes','No')

ans =

 0

strcmp('Yes ','Yes')

ans =

 0
2-735

strcmp
This example compares a string to a cell array of strings:

A = {'MATLAB';'Simulink';'The MathWorks'}

A =

 'MATLAB'
 'Simulink'
 'The MathWorks'

strcmp('The MathWorks',A)

ans =

 0
 0
 1

Thes examples compare two cell arrays of strings:

A = {'MATLAB ';'Simulink ';'The MathWorks'};
B = {'MATLAB';'Stateflow' ;'The MathWorks'};
strcmp(A,B)

ans =

 0
 0
 1

strcmp({'Simulink'}, B)

ans =
 0
 0
 0
2-736

strcmp
These examples demonstrate scalar expansion:

strcmp('hello', {'hello','world'})

ans =

1 0

strcmp({'hello'}, ['hello';'world'])

ans =
 1
 0

strcmp({'hello'}, ['hello '; 'world '])

ans =
 1
 0

See Also findstr, strcmpi, strmatch, strncmp
2-737

strcmpi
2strcmpiPurpose Compare strings ignoring case

Syntax strcmpi(str1,str2)
strcmpi(S,T)

Description strcmpi(str1,str2) returns 1 if strings str1 and str2 are the same except
for case and 0 otherwise.

strcmpi(S,T) when either S or T is a cell array of strings, returns an array the
same size as S and T containing 1 for those elements of S and T that match
except for case, and 0 otherwise. S and T must be the same size (or one can be
a scalar cell). Either one can also be a character array with the right number of
rows.

strcmpi supports international character sets.

See Also findstr, strcmp, strmatch, strncmpi
2-738

strings
2stringsPurpose MATLAB string handling

Syntax S = 'Any Characters'
S = string(X)
X = numeric(S)

Description S = 'Any Characters' is a vector whose components are the numeric codes for
the characters (the first 127 codes are ASCII). The actual characters displayed
depend on the character set encoding for a given font. The length of S is the
number of characters. A quote within the string is indicated by two quotes.

S = string(X) can be used to convert an array that contains positive integers
representing numeric codes into a MATLAB character array.

X = double(S) converts the string to its equivalent numeric codes.

isstr(S) tells if S is a string variable.

Use the strcat function for concatenating cell arrays of strings, for arrays of
multiple strings, and for padded character arrays. For concatenating two single
strings, it is more efficient to use square brackets, as shown in the example,
than to use strcat.

Example s = ['It is 1 o''clock', 7]

See Also char, strcat
2-739

strjust
2strjustPurpose Justify a character array

Syntax T = strjust(S)
T = strjust(S,'right')
T = strjust(S,'left')
T = strjust(S,'center')

Description T = strjust(S) or T = strjust(S,'right') returns a right-justified version
of the character array S.

T = strjust(S,'left') returns a left-justified version of S.

T = strjust(S,'center') returns a center-justified version of S.

See Also deblank
2-740

strmatch
2strmatchPurpose Find possible matches for a string

Syntax i = strmatch('str',STRS)
i = strmatch('str',STRS,'exact')

Description i = strmatch('str',STRS) looks through the rows of the character array or
cell array of strings STRS to find strings that begin with string str, returning
the matching row indices. strmatch is fastest when STRS is a character array.

i = strmatch('str',STRS,'exact') returns only the indices of the strings in
STRS matching str exactly.

Examples The statement

i = strmatch('max',strvcat('max','minimax','maximum'))

returns i = [1; 3] since rows 1 and 3 begin with 'max'. The statement

i = strmatch('max',strvcat('max','minimax','maximum'),'exact')

returns i = 1, since only row 1 matches 'max' exactly.

See Also findstr, strcmp, strncmp, strvcat
2-741

strncmp
2strncmpPurpose Compare the first n characters of two strings

Syntax k = strncmp('str1','str2',n)
TF = strncmp(S,T,n)

Description k = strncmp('str1','str2',n) returns logical true (1) if the first n
characters of the strings str1 and str2 are the same, and returns logical false
(0) otherwise. Arguments str1 and str2 may also be cell arrays of strings.

TF = strncmp(S,T,N) where either S or T is a cell array of strings, returns an
array TF the same size as S and T containing 1 for those elements of S and T that
match (up to n characters), and 0 otherwise. S and T must be the same size (or
one can be a scalar cell). Either one can also be a character array with the right
number of rows.

Remarks The command strncmp is case sensitive. Any leading and trailing blanks in
either of the strings are explicitly included in the comparison.

See Also findstr, strcmp, strcmpi, strmatch, strncmpi
2-742

strncmpi
2strncmpiPurpose Compare first n characters of strings ignoring case

Syntax strncmpi('str1','str2',n)
TF = strncmpi(S,T,n)

Description strncmpi('str1','str2',n) returns 1 if the first n characters of the strings
str1 and str2 are the same except for case, and 0 otherwise.

TF = strncmpi(S,T,n) when either S or T is a cell array of strings, returns an
array the same size as S and T containing 1 for those elements of S and T that
match except for case (up to n characters), and 0 otherwise. S and T must be the
same size (or one can be a scalar cell). Either one can also be a character array
with the right number of rows.

strncmpi supports international character sets.

See Also findstr, strmatch, strncmp, strncmpi
2-743

strrep
2strrepPurpose String search and replace

Syntax str = strrep(str1,str2,str3)

Description str = strrep(str1,str2,str3) replaces all occurrences of the string str2
within string str1 with the string str3.

strrep(str1,str2,str3), when any of str1, str2, or str3 is a cell array of
strings, returns a cell array the same size as str1, str2 and str3 obtained by
performing a strrep using corresponding elements of the inputs. The inputs
must all be the same size (or any can be a scalar cell). Any one of the strings
can also be a character array with the right number of rows.

Examples s1 = 'This is a good example.';
str = strrep(s1,'good','great')
str =
This is a great example.

A =
'MATLAB' 'SIMULINK'

 'Toolboxes' 'The MathWorks'

B =
'Handle Graphics' 'Real Time Workshop'

 'Toolboxes' 'The MathWorks'

C =
'Signal Processing' 'Image Processing'

 'MATLAB' 'SIMULINK'

strrep(A,B,C)
ans =

'MATLAB' 'SIMULINK’
 'MATLAB' 'SIMULINK’

See Also findstr
2-744

strtok
2strtokPurpose First token in string

Syntax token = strtok('str',delimiter)
token = strtok('str')
[token,rem] = strtok(...)

Description token = strtok('str',delimiter) returns the first token in the text string
str, that is, the first set of characters before a delimiter is encountered. The
vector delimiter contains valid delimiter characters.

token = strtok('str') uses the default delimiters, the white space
characters. These include tabs (ASCII 9), carriage returns (ASCII 13), and
spaces (ASCII 32).

[token,rem] = strtok(...) returns the remainder rem of the original string.
The remainder consists of all characters from the first delimiter on.

Examples s = 'This is a good example.';
[token,rem] = strtok(s)
token =
This
rem =
is a good example.

See Also findstr, strmatch
2-745

struct
2structPurpose Create structure array

Syntax s = struct('field1',values1,'field2',values2,...)

Description s = struct('field1',values1,'field2',values2,...) creates a structure
array with the specified fields and values. The value arrays values1, values2,
etc. must be cell arrays of the same size or scalar cells. Corresponding elements
of the value arrays are placed into corresponding structure array elements. The
size of the resulting structure is the same size as the value cell arrays or 1-by-1
if none of the values is a cell.

Examples The command

s = struct('type',{'big','little'},'color',{'red'},'x',{3 4})

produces a structure array s:

s =
1x2 struct array with fields:
 type
 color
 x

The value arrays have been distributed among the fields of s:

s(1)
ans =

type: 'big'
 color: 'red'
 x: 3

s(2)
ans =

type: 'little'
 color: 'red'
 x: 4

See Also fieldnames, getfield, rmfield, setfield
2-746

struct2cell
2struct2cellPurpose Convert structure array to cell array

Syntax c = struct2cell(s)

Description c = struct2cell(s) converts the m-by-n structure s (with p fields) into a
p-by-m-by-n cell array c.

If structure s is multidimensional, cell array c has size [p size(s)].

Examples The commands

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

create the structure

s =
 category: 'tree'
 height: 37.4000
 name: 'birch'

Converting the structure to a cell array,

c = struct2cell(s)

c =
 'tree'
 [37.4000]
 'birch'

See Also cell2struct
2-747

strvcat
2strvcatPurpose Vertical concatenation of strings

Syntax S = strvcat(t1,t2,t3,...)

Description S = strvcat(t1,t2,t3,...) forms the character array S containing the text
strings (or string matrices) t1,t2,t3,... as rows. Spaces are appended to each
string as necessary to form a valid matrix. Empty arguments are ignored.

Remarks If each text parameter, ti, is itself a character array, strvcat appends them
vertically to create arbitrarily large string matrices.

Examples The command strvcat('Hello','Yes') is the same as ['Hello';'Yes '],
except that strvcat performs the padding automatically.

t1 = 'first';t2 = 'string';t3 = 'matrix';t4 = 'second';

S1 = strvcat(t1,t2,t3) S2 = strvcat(t4,t2,t3)

S1 = S2 =

first second
string string
matrix matrix

S3 = strvcat(S1,S2)

S3 =
first
string
matrix
second
string
matrix

See Also cat, int2str, mat2str, num2str
2-748

sub2ind
2sub2indPurpose Single index from subscripts

Syntax IND = sub2ind(siz,I,J)
IND = sub2ind(siz,I1,I2,...,In)

Description The sub2ind command determines the equivalent single index corresponding
to a set of subscript values.

IND = sub2ind(siz,I,J) returns the linear index equivalent to the row and
column subscripts in the arrays I and J for an matrix of size siz.

IND = sub2ind(siz,I1,I2,...,In) returns the linear index equivalent to the
n subscripts in the arrays I1,I2,...,In for an array of size siz.

Examples The mapping from subscripts to linear index equivalents for a 2-by-2-by-2
array is:

See Also ind2sub, find

1,2,21,1,2

2,2,22,1,2

1,2,11,1,1

2,2,12,1,1

75

86

31

42
2-749

subsasgn
2subsasgnPurpose Overloaded method for A(i)=B, A{i}=B, and A.field=B

Syntax A = subsasgn(A,S,B)

Description A = subsasgn(A,S,B) is called for the syntax A(i)=B, A{i}=B, or A.i=B when
A is an object. S is a structure array with the fields:

• type: A string containing '()', '{}', or '.', where '()' specifies integer
subscripts; '{}' specifies cell array subscripts, and '.' specifies subscripted
structure fields.

• subs: A cell array or string containing the actual subscripts.

Examples The syntax A(1:2,:)=B calls A=subsasgn(A,S,B) where S is a 1-by-1 structure
with S.type='()' and S.subs = {1:2,':'}. A colon used as a subscript is
passed as the string ':'.

The syntax A{1:2}=B calls A=subsasgn(A,S,B) where S.type='{}' .

The syntax A.field=B calls subsasgn(A,S,B) where S.type='.' and
S.subs='field'.

These simple calls are combined in a straightforward way for more complicated
subscripting expressions. In such cases length(S) is the number of
subscripting levels. For instance, A(1,2).name(3:5)=B calls
A=subsasgn(A,S,B) where S is 3-by-1 structure array with the following
values:

See Also subsref

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}
2-750

subsindex
2subsindexPurpose Overloaded method for X(A)

Syntax i = subsindex(A)

Description i = subsindex(A) is called for the syntax 'X(A)' when A is an object.
subsindex must return the value of the object as a zero-based integer index (i
must contain integer values in the range 0 to prod(size(X))–1). subsindex is
called by the default subsref and subsasgn functions, and you can call it if you
overload these functions.

See Also subsasgn, subsref
2-751

subsref
2subsrefPurpose Overloaded method for A(I), A{I} and A.field

Syntax B = subsref(A,S)

Description B = subsref(A,S) is called for the syntax A(i), A{i}, or A.i when A is an
object. S is a structure array with the fields:

• type: A string containing '()', '{}', or '.', where '()' specifies integer
subscripts; '{}' specifies cell array subscripts, and '.' specifies subscripted
structure fields.

• subs: A cell array or string containing the actual subscripts.

Examples The syntax A(1:2,:) calls subsref(A,S) where S is a 1-by-1 structure with
S.type='()' and S.subs = {1:2,':'}. A colon used as a subscript is passed
as the string ':'.

The syntax A{1:2} calls subsref(A,S) where S.type='{}' .

The syntax A.field calls subsref(A,S) where S.type='.' and
S.subs='field'.

These simple calls are combined in a straightforward way for more complicated
subscripting expressions. In such cases length(S) is the number of
subscripting levels. For instance, A(1,2).name(3:5) calls subsref(A,S) where
S is 3-by-1 structure array with the following values:

See Also subsasgn

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}
2-752

subspace
2subspacePurpose Angle between two subspaces

Syntax theta = subspace(A,B)

Description theta = subspace(A,B) finds the angle between two subspaces specified by
the columns of A and B. If A and B are column vectors of unit length, this is the
same as acos(A'∗B).

Remarks If the angle between the two subspaces is small, the two spaces are nearly
linearly dependent. In a physical experiment described by some observations
A, and a second realization of the experiment described by B, subspace(A,B)
gives a measure of the amount of new information afforded by the second
experiment not associated with statistical errors of fluctuations.

Examples Consider two subspaces of a Hadamard matrix, whose columns are orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes— A has three columns and B four.
It is not necessary that two subspaces be the same size in order to find the
angle between them. Geometrically, this is the angle between two hyperplanes
embedded in a higher dimensional space.

theta = subspace(A,B)
theta =
 1.5708

That A and B are orthogonal is shown by the fact that theta is equal to π/2.

theta – pi/2
ans =
 0
2-753

sum
2sumPurpose Sum of array elements

Syntax B = sum(A)
B = sum(A,dim)

Description B = sum(A) returns sums along different dimensions of an array.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a row
vector of the sums of each column.

If A is a multidimensional array, sum(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = sum(A,dim) sums along the dimension of A specified by scalar dim.

Remarks sum(diag(X)) is the trace of X.

Examples The magic square of order 3 is

M = magic(3)
M =

8 1 6
3 5 7
4 9 2

This is called a magic square because the sums of the elements in each column
are the same.

sum(M) =
15 15 15

as are the sums of the elements in each row, obtained by transposing:

sum(M') =
15 15 15

See Also cumsum, diff, prod, trace
2-754

superiorto
2superiortoPurpose Superior class relationship

Syntax superiorto('class1','class2',...)

Description The superiorto function establishes a hierarchy that determines the order in
which MATLAB calls object methods.

superiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should be invoked if
a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement:
superiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_c/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object’s
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also inferiorto
2-755

svd
2svdPurpose Singular value decomposition

Syntax s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)

Description The svd command computes the matrix singular value decomposition.

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X,
with nonnegative diagonal elements in decreasing order, and unitary matrices
U and V so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the “economy size” decomposition. If X is m-by-n
with m > n, then svd computes only the first n columns of U and S is n-by-n.

Examples For the matrix

X =
1 2
3 4
5 6
7 8

the statement

[U,S,V] = svd(X)

produces

U =
0.1525 0.8226 –0.3945 –0.3800
0.3499 0.4214 0.2428 0.8007
0.5474 0.0201 0.6979 –0.4614
0.7448 –0.3812 –0.5462 0.0407
2-756

svd
S =
14.2691 0

0 0.6268
0 0
0 0

V =
0.6414 –0.7672
0.7672 0.6414

The economy size decomposition generated by

[U,S,V] = svd(X,0)

produces

U =
0.1525 0.8226
0.3499 0.4214
0.5474 0.0201
0.7448 –0.3812

S =
14.2691 0

0 0.6268
V =

0.6414 –0.7672
0.7672 0.6414

Algorithm The svd command uses the LINPACK routine ZSVDC.

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a singular value,
this message appears:

Solution will not converge.

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

See Also svds, gsvd
2-757

svds
2svdsPurpose Find a few singular values

Syntax s = svds(A)
s = svds(A,k)
s = svds(A,k,0)
[U,S,V] = svds(A,...)

Description svds(A) computes the five largest singular values and associated singular
vectors of the matrix A.

svds(A,k) computes the k largest singular values and associated singular
vectors of the matrix A.

svds(A,k,0) computes the k smallest singular values and associated singular
vectors.

With one output argument, s is a vector of singular values. With three output
arguments and if A is m-by-n:

• U is m-by-k with orthonormal columns

• S is k-by-k diagonal

• V is n-by-k with orthonormal columns

• U*S*V' is the closest rank k approximation to A

Algorithm svds(A,k) uses eigs to find the k largest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0].

svds(A,k,0) uses eigs to find the 2k smallest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0], and then selects the k positive
eigenvalues and their eigenvectors.

Example west0479 is a real 479-by-479 sparse matrix. svd calculates all 479 singular
values. svds picks out the largest and smallest singular values.

load west0479
s = svd(full(west0479))
sl = svds(west0479,4)
ss = svds(west0479,6,0)
2-758

svds
These plots show some of the singular values of west0479 as computed by svd
and svds.

The largest singular value of west0479 can be computed a few different ways:

svds(west0479,1) =
 3.189517598808622e+05

max(svd(full(west0479))) =
 3.18951759880862e+05

norm(full(west0479)) =
 3.189517598808623e+05

and estimated:

normest(west0479) =
 3.189385666549991e+05

See Also svd, eigs

1 2 3 4
3.165

3.17

3.175

3.18

3.185

3.19
x 10

5 4 largest singular values of west0479

svds(A,4)
svd(A)

1 2 3 4 5 6
0

1

2

3

4

5

6
x 10

−5 6 smallest singular values of west0479

svds(A,6,0)
svd(A)
2-759

switch
2switchPurpose Switch among several cases based on a conditional expression

Syntax switch switch_expr
case case_expr

statements
case {case_expr1,case_expr2,case_expr3,...}

statements
...
otherwise

statements
end

Description The switch statement syntax is a means of conditionally executing code. In
particular, switch executes one set of statements selected from an arbitrary
number of alternatives, called case groups. Each case group consists of:

• A case statement, consisting of a case label and one or more conditional
expressions

• One or more statements, where a statement can be another switch
statement

Execution of the switch statement begins with an evaluation of switch_expr.
The determined value is then compared to each case_expr in the order in
which they appear in the switch statement. The statements associated with
the first case where switch_expr matches case_expr are executed.

A cell array can be used to associate a list of case expressions with a set of
statements. The cell array syntax is shown in the second case group above. A
match of the switch_expr with any element in the cell array will result in a
match to the case group.

The switch_expr can be a scalar or a string. A scalar switch_expr matches a
case_expr if switch_expr == case_expr. A string switch_expr matches a
case_expr if strcmp(switch_expr,case_expr) returns 1 (true).

If switch_expr does not match the case expression for any of the case groups,
control is passed to the optional otherwise case. The otherwise statement
does not include any conditional expressions and therefore matches all values
of switch_expr.
2-760

switch
After executing the appropriate case or otherwise group, program execution
continues with the statement after the end statement.

Note for C Programmers: The MATLAB switch construct is different from
the C programming language switch construct. The C switch construct
allows execution to “fall through” many case groups before ending, using
break statements to control execution. The MATLAB switch construct
executes one case group at most and therefore break statements are not
required.

Examples Assume method exists as a string variable:

switch lower(method)
case {'linear','bilinear'}

 disp('Method is linear')
case 'cubic'

 disp('Method is cubic')
case 'nearest'

 disp('Method is nearest')
otherwise

 disp('Unknown method.')
end

See Also case, end, if, otherwise, while
2-761

symmmd
2symmmdPurpose Sparse symmetric minimum degree ordering

Syntax p = symmmd(S)

Description p = symmmd(S) returns a symmetric minimum degree ordering of S. For a
symmetric positive definite matrix S, this is a permutation p such that S(p,p)
tends to have a sparser Cholesky factor than S. Sometimes symmmd works well
for symmetric indefinite matrices too.

Remarks The minimum degree ordering is automatically used by \ and / for the solution
of symmetric, positive definite, sparse linear systems.

Some options and parameters associated with heuristics in the algorithm can
be changed with spparms.

Algorithm The symmetric minimum degree algorithm is based on the column minimum
degree algorithm. In fact, symmmd(A) just creates a nonzero structure K such
that K'∗K has the same nonzero structure as A and then calls the column
minimum degree code for K.

Examples Here is a comparison of reverse Cuthill-McKee and minimum degree on the
Bucky ball example mentioned in the symrcm reference page.

B = bucky+4∗speye(60);
r = symrcm(B);
p = symmmd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R), title('B(r,r)')
subplot(2,2,2), spy(S), title('B(s,s)')
subplot(2,2,3), spy(chol(R)), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S)), title('chol(B(s,s))')
2-762

symmmd
Even though this is a very small problem, the behavior of both orderings is
typical. RCM produces a matrix with a narrow bandwidth which fills in almost
completely during the Cholesky factorization. Minimum degree produces a
structure with large blocks of contiguous zeros which do not fill in during the
factorization. Consequently, the minimum degree ordering requires less time
and storage for the factorization.

See Also colmmd, colperm, symrcm

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

0 20 40 60

0

20

40

60

nz = 240

B(r,r)

0 20 40 60

0

20

40

60

nz = 240

B(s,s)

0 20 40 60

0

20

40

60

nz = 514

chol(B(r,r))

0 20 40 60

0

20

40

60

nz = 360

chol(B(s,s))
2-763

symrcm
2symrcmPurpose Sparse reverse Cuthill-McKee ordering

Syntax r = symrcm(S)

Description r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering of S.
This is a permutation r such that S(r,r) tends to have its nonzero elements
closer to the diagonal. This is a good preordering for LU or Cholesky
factorization of matrices that come from long, skinny problems. The ordering
works for both symmetric and nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are the same
as those of S, but eig(S(r,r)) probably takes less time to compute than
eig(S).

Algorithm The algorithm first finds a pseudoperipheral vertex of the graph of the matrix.
It then generates a level structure by breadth-first search and orders the
vertices by decreasing distance from the pseudoperipheral vertex. The
implementation is based closely on the SPARSPAK implementation described
by George and Liu.

Examples The statement

B = bucky

uses an M-file in the demos toolbox to generate the adjacency graph of a
truncated icosahedron. This is better known as a soccer ball, a Buckminster
Fuller geodesic dome (hence the name bucky), or, more recently, as a 60-atom
carbon molecule. There are 60 vertices. The vertices have been ordered by
numbering half of them from one hemisphere, pentagon by pentagon; then
reflecting into the other hemisphere and gluing the two halves together. With
this numbering, the matrix does not have a particularly narrow bandwidth, as
the first spy plot shows

subplot(1,2,1), spy(B), title('B')

The reverse Cuthill-McKee ordering is obtained with

p = symrcm(B);
R = B(p,p);
2-764

symrcm
The spy plot shows a much narrower bandwidth:

subplot(1,2,2), spy(R), title('B(p,p)')

This example is continued in the reference pages for symmmd.

The bandwidth can also be computed with

[i,j] = find(B);
bw = max(i–j) + 1

The bandwidths of B and R are 35 and 12, respectively.

See Also colmmd, colperm, symmmd

References [1] George, Alan and Joseph Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” to appear in SIAM Journal on Matrix
Analysis, 1992. A slightly expanded version is also available as a technical
report from the Xerox Palo Alto Research Center.

0 20 40 60

0

10

20

30

40

50

60

nz = 180

B

0 20 40 60

0

10

20

30

40

50

60

nz = 180

B(p,p)
2-765

symvar
2symvarPurpose Determine symbolic variables in an expression

Syntax symvar('str')

Description symvar('str') searches the string str for identifiers other than i, j, pi, inf,
nan, eps, and common functions. The variables are returned as a cell array of
strings. If no such variable exists, symvar returns the empty cell array {}.

Example symvar('cos(pi*x - beta1)') returns {'beta1','x'}.
symvar('pi eps nan') returns {}.

See Also findstr
2-766

tan, tanh
2tan, tanhPurpose Tangent and hyperbolic tangent

Syntax Y = tan(X)
Y = tanh(X)

Description The tan and tanh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = tan(X) returns the circular tangent of each element of X.

Y = tanh(X) returns the hyperbolic tangent of each element of X.

Examples Graph the tangent function over the domain and the
hyperbolic tangent function over the domain

x = (–pi/2)+0.01:0.01:(pi/2)–0.01; plot(x,tan(x))
x = –5:0.01:5; plot(x,tanh(x))

The expression tan(pi/2) does not evaluate as infinite but as the reciprocal of
the floating point accuracy eps since pi is only a floating-point approximation
to the exact value of π.

Algorithm

π 2⁄– x π 2⁄ ,< <
5– x 5.≤ ≤

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-100

-80

-60

-40

-20

0

20

40

60

80

100

x

y=
ta

n(
x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y=
ta

nh
(x

)

2-767

tan, tanh
See Also atan, atan2

z()tan z()sin
z()cos

-----------------=

z()tanh z()sinh
z()cosh

--------------------=
2-768

tempdir
2tempdirPurpose Return the name of the system’s temporary directory

Syntax tmp_dir = tempdir

Description tmp_dir = tempdir returns the name of the system’s temporary directory, if
one exists. This function does not create a new directory.

See Also tempname
2-769

tempname
2tempnamePurpose Unique name for temporary file

Syntax tempname

Description tempname returns a unique string beginning with the characters tp. This string
is useful as a name for a temporary file.

See Also tempdir
2-770

textread
2textreadPurpose Read formatted data from text file

Syntax [A,B,C,...] = textread('filename','format')
[A,B,C,...] = textread('filename','format',N)
[...] = textread(...,'param','value',...)

Description [A,B,C,...] = textread('filename','format') reads data from the file
'filename' into the variables A,B,C, and so on, using the specified format,
until the entire file is read. textread is useful for reading text files with a
known format. Both fixed and free format files can be handled.

textread matches and converts groups of characters from the input. Each
input field is defined as a string of non-whitespace characters that extends to
the next whitespace or delimiter character, or to the maximum field width.
Repeated delimiter characters are significant, while repeated whitespace
characters are treated as one.

The format string determines the number and types of return arguments. The
number of return arguments is the number of items in the format string. The
format string supports a subset of the conversion specifiers and conventions of
the C language FSCANF function. Values for the format string are listed in the
table below. Whitespace characters in the format string are ignored.

format Action Output

Literals
(ordinary
characters)

Ignore the matching characters.
For example, in a file that has
Dept followed by a number (for
department number), to skip the
Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating point value. Double array

%s Read a whitespace-separated
string.

Cell array of strings
2-771

textread
[A,B,C,...] = textread('filename','format',N) reads the data, reusing
the format string N times, where N is an integer greater than zero. If N is
smaller than zero, textread reads the entire file.

%q Read a string, which could be in
double quotes.

Cell array of
strings. Does not
include the double
quotes.

%c Read characters, including white
space.

Character array

%[...] Read the longest string
containing characters specified in
the brackets.

Cell array of strings

%[^...] Read the longest non-empty string
containing characters that are not
specified in the brackets.

Cell array of strings

%*...
instead of %

Ignore the matching characters
specified by *.

No output

%w...
instead of %

Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p is
the precision.

format Action Output
2-772

textread
[...] = textread(...,'param','value',...) customizes textread using
param/value pairs, as listed in the table below.

Examples Example 1 – Read All Fields in Free Format File Using %
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

param value Action

whitespace * where
* can be:

Treats vector of characters, *, as
whitespace. Default is \b\r\n\t.

b
f
n
r
t
\\
\'' or ''
%%

Backspace
Form feed
New line
Carriage return
Horizontal tab
Backslash
Single quotation mark
Percent sign

delimiter Delimiter
character

Specifies delimiter character. Default is
none.

expchars Exponent
characters

Default is eEdD.

bufsize positive
integer

Specifies the maximum string length, in
bytes. Default is 4095.

headerlines positive
integer

Ignores the specified number of lines at
the beginning of the file.

commentstyle matlab Ignores characters after %

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.
2-773

textread
Read the first line of the file as a free format file using the % format.

[names,types,x,y,answer] = textread('mydata.dat','%s %s %f ...
%d %s',1)

returns

names =
 'Sally'
types =
 'Type1'
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Example 2 – Read as Fixed Format File, Ignoring the Floating Point Value
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the floating point
value.

[names,types,y,answer] = textread('mydata.dat','%9c %5s %*f ...
...

%2d %3s',1)

returns

names =
Sally
types =
 'Type1'
y =
 45
answer =
 'Yes'

%*f in the format string causes textread to ignore the floating point value, in
this case, 12.34.
2-774

textread
Example 3 – Read Using Literal to Ignore Matching Characters
The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second field.

[names,typenum,x,y,answer] = textread('mydata.dat','%s Type%d %f
%d %s',1)

returns

names =
 'Sally'
typenum =
 1
x =
 12.34000000000000
y =
 45
answer =
 'Yes'

Type%d in the format string causes the characters Type in the second field to be
ignored, while the rest of the second field is read as a signed integer, in this
case, 1.

Example 4 – Read M-file into a Cell Array of Strings
Read the file fft.m into cell array of strings.

file = textread('fft.m','%s','delimiter','\n','whitespace','');

See Also dlmread, sscanf
2-775

tic, toc
2tic, tocPurpose Stopwatch timer

Syntax tic
any statements

toc
t = toc

Description tic starts a stopwatch timer.

toc prints the elapsed time since tic was used.

t = toc returns the elapsed time in t.

Examples This example measures how the time required to solve a linear system varies
with the order of a matrix.

for n = 1:100
A = rand(n,n);
b = rand(n,1);
tic
x = A\b;
t(n) = toc;

end
plot(t)

See Also clock, cputime, etime
2-776

toeplitz
2toeplitzPurpose Toeplitz matrix

Syntax T = toeplitz(c,r)
T = toeplitz(r)

Description A Toeplitz matrix is defined by one row and one column. A symmetric Toeplitz
matrix is defined by just one row. toeplitz generates Toeplitz matrices given
just the row or row and column description.

T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix T having c as its
first column and r as its first row. If the first elements of c and r are different,
a message is printed and the column element is used.

T = toeplitz(r) returns the symmetric or Hermitian Toeplitz matrix formed
from vector r, where r defines the first row of the matrix.

Examples A Toeplitz matrix with diagonal disagreement is

c = [1 2 3 4 5];
r = [1.5 2.5 3.5 4.5 5.5];
toeplitz(c,r)
Column wins diagonal conflict:
ans =

1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

See Also hankel
2-777

trace
2tracePurpose Sum of diagonal elements

Syntax b = trace(A)

Description b = trace(A) is the sum of the diagonal elements of the matrix A.

Algorithm trace is a single-statement M-file.

t = sum(diag(A));

See Also det, eig
2-778

trapz
2trapzPurpose Trapezoidal numerical integration

Syntax Z = trapz(Y)
Z = trapz(X,Y)
Z = trapz(...,dim)

Description Z = trapz(Y) computes an approximation of the integral of Y via the
trapezoidal method (with unit spacing). To compute the integral for spacing
other than one, multiply Z by the spacing increment.

If Y is a vector, trapz(Y) is the integral of Y.

If Y is a matrix,trapz(Y) is a row vector with the integral over each column.

If Y is a multidimensional array, trapz(Y) works across the first nonsingleton
dimension.

Z = trapz(X,Y) computes the integral of Y with respect to X using trapezoidal
integration.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), trapz(X,Y) operates across this dimension.

Z = trapz(...,dim) integrates across the dimension of Y specified by scalar
dim. The length of X, if given, must be the same as size(Y,dim).

Examples The exact value of is 2.

To approximate this numerically on a uniformly spaced grid, use

X = 0:pi/100:pi;
Y = sin(x);

Then both

Z = trapz(X,Y)

and

Z = pi/100∗trapz(Y)

x()sin xd
0

π
∫

2-779

trapz
produce

Z =
1.9998

A nonuniformly spaced example is generated by

X = sort(rand(1,101)∗pi);
Y = sin(X);
Z = trapz(X,Y);

The result is not as accurate as the uniformly spaced grid. One random sample
produced

Z =
1.9984

See Also cumsum, cumtrapz
2-780

tril
2trilPurpose Lower triangular part of a matrix

Syntax L = tril(X)
L = tril(X,k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of X. k = 0
is the main diagonal, k > 0 is above the main diagonal, and k < 0 is below the
main diagonal.

Examples tril(ones(4,4),–1) is

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

See Also diag, triu

k > 0

k < 0

k = 0
2-781

triu
2triuPurpose Upper triangular part of a matrix

Syntax U = triu(X)
U = triu(X,k)

Description U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of X. k = 0
is the main diagonal, k > 0 is above the main diagonal, and k < 0 is below the
main diagonal.

Examples triu(ones(4,4),–1) is

1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1

See Also diag, tril

k > 0

k < 0

k = 0
2-782

try
2tryPurpose Begin try block

Description The general form of a try statement is:

try statement, ..., statement, catch statement, ..., statement end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also catch, end, eval, evalin
2-783

tsearch
2tsearchPurpose Search for enclosing Delaunay triangle

Syntax T = tsearch(x,y,TRI,xi,yi)

Description T = tsearch(x,y,TRI,xi,yi) returns an index into the rows of TRI for each
point in xi,yi. The tsearch command returns NaN for all points outside the
convex hull. Requires a triangulation TRI of the points x,y obtained from
delaunay.

See Also delaunay, dsearch
2-784

type
2typePurpose List file

Syntax type filename

Description type filename displays the contents of the specified file in the MATLAB
command window given a full pathname or a MATLABPATH relative partial
pathname. Use pathnames and drive designators in the usual way for your
computer’s operating system.

If you do not specify a filename extension, the type command adds the m
extension by default. The type command checks the directories specified in
MATLAB’s search path, which makes it convenient for listing the contents of
M-files on the screen.

Examples type foo.bar lists the file foo.bar.

type foo lists the file foo.m.

See Also cd, dbtype, delete, dir, partialpath, path, what, who
2-785

uint8, uint16, uint32
2uint8, uint16, uint32Purpose Convert to unsigned integer

Syntax i = uint8(x)
i = uint16(x)
i = uint32(x)

Description i = uint*(x) converts the vector x into an unsigned integer. x can be any
numeric object (such as a double). The results of a uint* operation are shown
in the next table.

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already an unsigned integer of the same class,
uint* has no effect.

The uint* class is primarily meant to store integer values. Most operations
that manipulate arrays without changing their elements are defined (examples
are reshape, size, the logical and relational operators, subscripted
assignment, and subscripted reference). No math operations except for sum are
defined for uint* since such operations are ambiguous on the boundary of the
set (for example they could wrap or truncate there). You can define your own
methods for uint* (as you can for any object) by placing the appropriately
named method in an @uint* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

See Also double, int8, int16, int32, single

Operatio
n

Output
Range

Output Type Bytes
per
Element

Output Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65535 Unsigned
16-bit integer

2 uint16

uint32 0 to
4294967295

Unsigned
32-bit integer

4 uint32
2-786

union
2unionPurpose Set union of two vectors

Syntax c = union(a,b)
c = union(A,B,'rows')
[c,ia,ib] = union(...)

Description c = union(a,b) returns the combined values from a and b but with no
repetitions. The resulting vector is sorted in ascending order. In set theoretic
terms, c = a∪ b. a and b can be cell arrays of strings.

c = union(A,B,'rows') when A and B are matrices with the same number of
columns returns the combined rows from A and B with no repetitions.

[c,ia,ib] = union(...) also returns index vectors ia and ib such that
c = a(ia) and c = b(ib) or, for row combinations, c = a(ia,:) and
c = b(ib,:).

Examples a = [–1 0 2 4 6];
b = [–1 0 1 3];
[c,ia,ib] = union(a,b);
c =

 –1 0 1 2 3 4 6

ia =

 3 4 5

ib =

 1 2 3 4

See Also intersect, setdiff, setxor, unique
2-787

unique
2uniquePurpose Unique elements of a vector

Syntax b = unique(a)
b = unique(A,'rows')
[b,i,j] = unique(...)

Description b = unique(a) returns the same values as in a but with no repetitions. The
resulting vector is sorted in ascending order. a can be a cell array of strings.

b = unique(A,'rows') returns the unique rows of A.

[b,i,j] = unique(...) also returns index vectors i and j such that b = a(i)
and a = b(j) (or b = a(i,:) and a = b(j,:)).

Examples a = [1 1 5 6 2 3 3 9 8 6 2 4]
a =
1 1 5 6 2 3 3 9 8 6 2 4
[b,i,j] = unique(a)
b =

1 2 3 4 5 6 8 9
i =

2 11 7 12 3 10 9 8
j =
1 1 5 6 2 3 3 8 7 6 2 4
a(i)
ans =

1 2 3 4 5 6 8 9
b(j)
ans =
1 1 5 6 2 3 3 9 8 6 2 4

See Also intersect, ismember, setdiff, setxor, union
2-788

unwrap
2unwrapPurpose Correct phase angles

Syntax Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description Q = unwrap(P) corrects the radian phase angles in array P by adding multiples
of ±2π when absolute jumps between consecutive array elements are greater
than π radians. If P is a matrix, unwrap operates columnwise. If P is a
multidimensional array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default value, π.

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Examples Array P features smoothly increasing phase angles except for discontinuities at
elements (3,1) and (1,2).

P =
 0 7.0686 1.5708 2.3562
 0.1963 0.9817 1.7671 2.5525

6.6759 1.1781 1.9635 2.7489
 0.5890 1.3744 2.1598 2.9452

The function Q = unwrap(P) eliminates these discontinuities.

Q =
 0 0.7854 1.5708 2.3562
 0.1963 0.9817 1.7671 2.5525
 0.3927 1.1781 1.9635 2.7489
 0.5890 1.3744 2.1598 2.9452

Limitations The unwrap function detects branch cut crossings, but it can be fooled by sparse,
rapidly changing phase values.

See Also abs, angle
2-789

upper
2upperPurpose Convert string to upper case

Syntax t = upper('str')
B = upper(A)

Description t = upper('str') converts any lower-case characters in the string str to the
corresponding upper-case characters and leaves all other characters
unchanged.

B = upper(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying upper to each string within A.

Examples upper('attention!') is ATTENTION!.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also lower
2-790

var
2varPurpose Variance

Syntax var(X)
var(X,1)
var(X,w)

Description var(X) returns the variance of X for vectors. For matrices, var(X)is a row
vector containing the variance of each column of X. var(X) normalizes by N-1
where N is the sequence length. This makes var(X) the best unbiased estimate
of the variance if X is a sample from a normal distribution.

var(X,1) normalizes by N and produces the second moment of the sample
about its mean.

var(X,W) computes the variance using the weight vector W. The number of
elements in W must equal the number of rows in X unless W = 1, which is treated
as a short-cut for a vector of ones. The elements of W must be positive. var
normalizes W by dividing each element in W by the sum of all its elements.

The variance is the square of the standard deviation (STD).

See Also corrcoef, cov, std
2-791

varargin, varargout
2varargin, varargoutPurpose Pass or return variable numbers of arguments

Syntax function varargout = foo(n)
y = function bar(varargin)

Description function varargout = foo(n) returns a variable number of arguments from
function foo.m.

y = function bar(varargin) accepts a variable number of arguments into
function bar.m.

The varargin and varargout statements are used only inside a function M-file
to contain the optional arguments to the function. Each must be declared as the
last argument to a function, collecting all the inputs or outputs from that point
onwards. In the declaration, varargin and varargout must be lowercase.

Examples The function

function myplot(x,varargin)
plot(x,varargin{:})

collects all the inputs starting with the second input into the variable
varargin. myplot uses the comma-separated list syntax varargin{:} to pass
the optional parameters to plot. The call

myplot(sin(0:.1:1),'color',[.5 .7 .3],'linestyle',':')

results in varargin being a 1-by-4 cell array containing the values 'color',
[.5 .7 .3], 'linestyle', and ':'.

The function

function [s,varargout] = mysize(x)
nout = max(nargout,1)-1;
s = size(x);
for i=1:nout, varargout(i) = {s(i)}; end

returns the size vector and, optionally, individual sizes. So

[s,rows,cols] = mysize(rand(4,5));

returns s = [4 5], rows = 4, cols = 5.
2-792

varargin, varargout
See Also nargin , nargout, nargchk
2-793

vectorize
2vectorizePurpose Vectorize expression

Syntax vectorize(string)
vectorize(function)

Description vectorize(string) inserts a . before any ^, * or / in string. The result is a
character string.

vectorize(function) when function is an inline function object, vectorizes the
formula for function. The result is the vectorized version of the inline function.

See Also inline

cd, dbtype, delete, dir, partialpath, path, what, who
2-794

ver
2verPurpose Display version information for MATLAB, Simulink, and toolboxes

Syntax ver
ver toolbox

Description ver displays the current version numbers and release dates for MATLAB,
Simulink, and toolboxes.

ver toolbox displays the current version number and release date for the
toolbox specified by toolbox.

Remarks See ver.m for information on how your own toolboxes can use the ver command.

Examples ver fuzzy

returns the version information for the Fuzzy Logic Toolbox

Fuzzy Logic Toolbox. Version 2.0 15-Nov-1997

See Also help, info, version, whatsnew
2-795

version
2versionPurpose Return MATLAB version number

Syntax v = version
[v,d] = version

Description v = version returns a string v containing the MATLAB version number.

[v,d] = version also returns a string d containing the date of the version.

See Also help, info, ver, whatsnew
2-796

voronoi
2voronoiPurpose Voronoi diagram

Syntax voronoi(x,y)
voronoi(x,y,TRI)
h = voronoi(...,'LineSpec')
[vx,vy] = voronoi(...)

Definition Consider a set of coplanar points For each point in the set you can
draw a boundary enclosing all the intermediate points lying closer to than
to other points in the set Such a boundary is called a Voronoi polygon, and
the set of all Voronoi polygons for a given point set is called a Voronoi diagram.

Description voronoi(x,y) plots the Voronoi diagram for the points x,y.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing it via
delaunay.

h = voronoi(...,'LineSpec') plots the diagram with color and line style
specified and returns handles to the line objects created in h.

[vx,vy] = voronoi(...) returns the vertices of the Voronoi edges in vx and
vy so that plot(vx,vy,'–',x,y,'.') creates the Voronoi diagram.

P. Px P,
Px

P.
2-797

voronoi
Examples This code plots the Voronoi diagram for 10 randomly generated points.

rand('state',0);
x = rand(1,10); y = rand(1,10);
[vx, vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b–'); axis equal

See Also convhull, delaunay, dsearch, linespec

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

2-798

warning
2warningPurpose Display warning message

Syntax warning('message')
warning on
warning off
warning backtrace
warning debug
warning once
warning always
[s,f] = warning

Description warning('message') displays the text 'message' as does the disp function,
except that with warning, message display can be suppressed.

warning off suppresses all subsequent warning messages.

warning on re-enables them.

warning backtrace is the same as warning on except that the file and line
number that produced the warning are displayed.

warning debug is the same as dbstop if warning and triggers the debugger
when a warning is encountered.

warning once displays Handle Graphics backwards compatibility warnings
only once per session.

warning always displays Handle Graphics backwards compatibility warnings
as they are encountered (subject to current warning state).

[s,f] = warning returns the current warning state s and the current warning
frequency f as strings.

Remarks Use dbstop on warning to trigger the debugger when a warning is
encountered.

See Also dbstop, disp, error
2-799

wavread
2wavreadPurpose Read Microsoft WAVE (.wav) sound file

Syntax y = wavread('filename')
[y,Fs,bits] = wavread('filename')
[...] = wavread('filename',N)
[...] = wavread('filename',[N1 N2])
[...] = wavread('filename','size')

Description wavread supports multichannel data, with up to 16 bits per sample.

y = wavread('filename') loads a WAVE file specified by the string filename,
returning the sampled data in y. The .wav extension is appended if no
extension is given. Amplitude values are in the range [–1,+1].

[y,Fs,bits] = wavread('filename') returns the sample rate (Fs) in Hertz
and the number of bits per sample (bits) used to encode the data in the file.

[...] = wavread('filename',N) returns only the first N samples from each
channel in the file.

[...] = wavread('filename',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = wavread('filename','size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the vector siz
= [samples channels].

See Also auread, wavwrite
2-800

wavwrite
2wavwritePurpose Write Microsoft WAVE (.wav) sound file

Syntax wavwrite(y,'filename')
wavwrite(y,Fs,'filename')
wavwrite(y,Fs,N,'filename')

Description wavwrite supports multi-channel 8- or 16-bit WAVE data.

wavwrite(y,'filename') writes a WAVE file specified by the string filename.
The data should be arranged with one channel per column. Amplitude values
outside the range [–1,+1] are clipped prior to writing.

wavwrite(y,Fs,'filename') specifies the sample rate Fs, in Hertz, of the
data.

wavwrite(y,Fs,N,'filename') forces an N-bit file format to be written, where
N <= 16.

See Also auwrite, wavread
2-801

web
2webPurpose Point Web browser at file or Web site

Syntax web url
stat = web(...)

Description web url opens a Web browser and loads the file or Web site specified by url
(Uniform Resource Locator). url can be in any form your browser supports.
Generally, url specifies a local file or a Web site on the Internet.

stat = web(...) returns the status of web to the variable stat.

Remarks On UNIX, the Web browser used is specified in the docopt M-file, in the doccmd
string.

On Windows, the Web browser is determined by the operating system.

Examples web file:/disk/dir1/dir2/foo.html points the browser to the file foo.html.
If the file is on the MATLAB path, web(['file:' which('foo.html')]) also
works.

web http://www.mathworks.com loads The MathWorks Web page into your
browser.

Use web mailto:email_address to send e-mail to another site.

See Also doc, docopt

Value of stat Description of web Status

0 Successful execution.

1 Browser was not found.

2 Browser was found but could not be launched.
2-802

weekday
2weekdayPurpose Day of the week

Syntax [N,S] = weekday(D)

Description [N,S] = weekday(D) returns the day of the week in numeric (N) and string (S)
form for each element of a serial date number array or date string. The days of
the week are assigned these numbers and abbreviations:

Examples Either

[n,s] = weekday(728647)

or

[n,s] = weekday('19-Dec-1994')

returns n = 2 and s = Mon.

See Also datenum, datevec, eomday

N S N S

1 Sun 5 Thu

2 Mon 6 Fri

3 Tue 7 Sat

4 Wed
2-803

what
2whatPurpose List M-files, MAT-files, and MEX-files in current directory

Syntax what
what dirname
what('dirname')

Description what lists the M-files, MAT-files, and MEX-files in the current directory.

what dirname lists the files in directory dirname on MATLAB’s search path. It
is not necessary to enter the full pathname of the directory. The last
component, or last couple of components, is sufficient. Use what class or what
dirname/private to list the files in a method directory or a private directory
(for the class named class).

w = what('dirname') returns the results of what in a structure array with
these fields.

Examples The statements

what general

and

what matlab/general

Field Description

path path to directory

M cell array of M-file names

MAT cell array of MAT-file names

MEX cell array of MEX-file names

MDL cell array of MDL-file names

P cell array of P-file names

classes cell array of class names
2-804

what
both list the M-files in the general directory. The syntax of the path depends
on your operating system.

See Also dir, lookfor, path, which, who

UNIX matlab/general

VMS MATLAB.GENERAL

Windows MATLAB\GENERAL
2-805

whatsnew
2whatsnewPurpose Display README files for MATLAB and toolboxes

Syntax whatsnew
whatsnew matlab
whatsnew toolboxpath

Description whatsnew displays the README file for the MATLAB product or a specified
toolbox. If present, the README file summarizes new functionality that is not
described in the documentation.

whatsnew matlab displays the README file for MATLAB.

whatsnew toolboxpath displays the README file for the toolbox specified by the
string toolboxpath.

Examples whatsnew matlab % MATLAB README file

whatsnew signal % Signal Processing Toolbox README file

See Also help, lookfor, path, version, which
2-806

which
2whichPurpose Locate functions and files

Syntax which fun
which fun –all
which file.ext
which fun1 in fun2
which fun(a,b,c,...)
s = which(...)

Description which fun displays the full pathname of the specified function. The function
can be an M-file, MEX-file, workspace variable, built-in function, or
SIMULINK model. The latter three display a message indicating that they are
variable, built in to MATLAB, or are part of SIMULINK. Use which private/
fun or which class/fun or which class/private/fun to further qualify the
function name for private functions, methods, and private methods (for the
class named class).

which fun –all displays the paths to all functions with the name fun. The
first one in the list is the one normally returned by which. The others are either
shadowed or can be executed in special circumstances. The –all flag can be
used with all forms of which.

which file.ext displays the full pathname of the specified file.

which fun1 in fun2 displays the pathname to function fun1 in the context of
the M-file fun2. While debugging fun2, which fun1 does the same thing. You
can use this to determine if a local or private version of a function is being
called instead of a function on the path.

which fun(a,b,c,...) displays the path to the specified function with the
given input arguments. For example, which feval(g), when
g=inline('sin(x)'), indicates that inline/feval.m is invoked.

s = which(...) returns the results of which in the string s instead of printing
it to the screen. s will be the string built-in or variable for built-in functions
or variables in the workspace. You must use the functional form of which when
there is an output argument.
2-807

which
Examples For example,

which inv

reveals that inv is a built-in function, and

which pinv

indicates that pinv is in the matfun directory of the MATLAB Toolbox.

The statement

which jacobian

probably says

jacobian not found

because there is no file jacobian.m on MATLAB’s search path. Contrast this
with lookfor jacobian, which takes longer to run, but finds several matches
to the keyword jacobian in its search through all the help entries. (If
jacobian.m does exist in the current directory, or in some private directory
that has been added to MATLAB’s search path, which jacobian finds it.)

See Also dir, exist, help, lookfor, path, type, what, who
2-808

while
2whilePurpose Repeat statements an indefinite number of times

Syntax while expression
statements

end

Description while repeats statements an indefinite number of times. The statements are
executed while the real part of expression has all nonzero elements.
expression is usually of the form

expression rop expression

where rop is ==, <, >, <=, >=, or ~=.

The scope of a while statement is always terminated with a matching end.

Examples The variable eps is a tolerance used to determine such things as near
singularity and rank. Its initial value is the machine epsilon, the distance from
1.0 to the next largest floating-point number on your machine. Its calculation
demonstrates while loops:

eps = 1;
while (1+eps) > 1

eps = eps/2;
end
eps = eps*2

See Also all, any, break, end, for, if, return, switch
2-809

who, whos
2who, whosPurpose List directory of variables in memory

Syntax who
whos
who global
whos global
who –file filename
whos –file filename
who ... var1 var2
whos ... var1 var2
s = who(...)
s = whos(...)

Description who lists the variables currently in memory.

whos lists the current variables, their sizes, and whether they have nonzero
imaginary parts.

who global and whos global list the variables in the global workspace.

who –file filename and whos –file filename list the variables in the
specified MAT-file.

who ... var1 var2 and whos ... var1 var2 restrict the display to the
variables specified. The wildcard character * can be used to display variables
that match a pattern. For instance, who A* finds all variables in the current
workspace that start with A. Use the functional form, such as whos('–
file',filename,v1,v2), when the filename or variable names are stored in
strings.

s = who(...) returns a cell array containing the names of the variables in
the workspace or file. Use the functional form of who when there is an output
argument.

s = whos(...) returns a structure with the fields

name variable name

bytes number of bytes allocated for the array

class class of variable
2-810

who, whos
Use the functional form of whos when there is an output argument.

See Also dir, exist, help, what, workspace
2-811

wilkinson
2wilkinsonPurpose Wilkinson’s eigenvalue test matrix

Syntax W = wilkinson(n)

Description W = wilkinson(n) returns one of J. H. Wilkinson’s eigenvalue test matrices. It
is a symmetric, tridiagonal matrix with pairs of nearly, but not exactly, equal
eigenvalues.

Examples wilkinson(7) is

3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3

The most frequently used case is wilkinson(21). Its two largest eigenvalues
are both about 10.746; they agree to 14, but not to 15, decimal places.

See Also eig, gallery, pascal
2-812

wk1read
2wk1readPurpose Read a Lotus123 WK1 spreadsheet file into a matrix

Syntax M = wk1read(filename)
M = wk1read(filename,r,c)
M = wk1read(filename,r,c,range)

Description M = wk1read(filename) reads a Lotus123 WK1 spreadsheet file into the
matrix M.

M = wk1read(filename,r,c) starts reading at the row-column cell offset
specified by (r,c). r and c are zero based so that r=0, c=0 specifies the first
value in the file.

M = wk1read(filename,r,c,range) reads the range of values specified by the
parameter range, where range can be:

• A four-element vector specifying the cell range in the format

[upper_left_row upper_left_col lower_right_row lower_right_col]

• A cell range specified as a string; for example, 'A1...C5'.

• A named range specified as a string; for example, 'Sales'.

See Also wk1write

MATLAB Matrix

Spreadsheet

column

row
2-813

wk1write
2wk1writePurpose Write a matrix to a Lotus123 WK1 spreadsheet file

Syntax wk1write(filename,M)
wk1write(filename,M,r,c)

Description wk1write(filename,M) writes the matrix M into a Lotus123 WK1 spreadsheet
file named filename.

wk1write(filename,M,r,c) writes the matrix starting at the spreadsheet
location (r,c). r and c are zero based so that r=0, c=0 specifies the first cell in
the spreadsheet.

See Also wk1read

MATLAB Matrix

Spreadsheet

column

row
2-814

workspace
2workspacePurpose Display the Workspace Browser, a GUI for managing the workspace

Syntax workspace

Description workspace displays the Workspace Browser, a GUI that allows you to view and
manage the contents of the current MATLAB workspace. It provides a
graphical representation of the whos display.

Remarks On Windows platforms, to open the Workspace Browser, select Show
Workspace from the File menu, or click the Workspace Browser toolbar
button.

Drag the column header borders to resize the columns. The workspace is sorted
by variable name. Sorting by other fields is not supported.

To clear a variable, select the variable and click Delete. Shift-click to select
multiple variables.

To rename a variable, first select it, then click its name. After a short delay,
type a new name and press Enter to complete the name change.

Editing Arrays
To see and edit a graphical representation of a variable, select a variable’s icon
in the Workspace Browser and click Open, or double-click the icon. The
2-815

workspace
variable is displayed in the Editor/Debugger window, where you can edit it.
You can only use this feature with numeric arrays.

See Also edit, who

Current Values: Change Any Value By Editing It in the Cell

Current Dimensions: Add or Remove Rows and Columns By Editing these Dimensions Current Cell
2-816

xor
2xorPurpose Exclusive or

Syntax C = xor(A,B)

Description C = xor(A,B) performs an exclusive OR operation on the corresponding
elements of arrays A and B. The resulting element C(i,j,...) is logical true (1)
if A(i,j,...) or B(i,j,...), but not both, is nonzero.

Examples Given A = [0 0 pi eps] and B = [0 –2.4 0 1], then

C = xor(A,B)
C =
 0 1 1 0

To see where either A or B has a nonzero element and the other matrix does not,

spy(xor(A,B))

See Also all, any, find

The logical operators & and |

A B C

zero zero 0

zero nonzero 1

nonzero zero 1

nonzero nonzero 0
2-817

zeros
2zerosPurpose Create an array of all zeros

Syntax B = zeros(n)
B = zeros(m,n)
B = zeros([m n])
B = zeros(d1,d2,d3...)
B = zeros([d1 d2 d3...])
B = zeros(size(A))

Description B = zeros(n) returns an n-by-n matrix of zeros. An error message appears if n
is not a scalar.

B = zeros(m,n) or B = zeros([m n]) returns an m-by-n matrix of zeros.

B = zeros(d1,d2,d3...) or B = zeros([d1 d2 d3...]) returns an array of
zeros with dimensions d1-by-d2-by-d3-by-... .

B = zeros(size(A)) returns an array the same size as A consisting of all
zeros.

Remarks The MATLAB language does not have a dimension statement—MATLAB
automatically allocates storage for matrices. Nevertheless, most MATLAB
programs execute faster if the zeros function is used to set aside storage for a
matrix whose elements are to be generated one at a time, or a row or column at
a time.

Examples With n = 1000, the for loop

for i = 1:n, x(i) = i; end

takes about 1.2 seconds to execute on a Sun SPARC-1. If the loop is preceded
by the statement x = zeros(1,n); the computations require less than 0.2
seconds.

See Also eye, ones, rand, randn
2-818

List of Com-
mands
 A
List of Commands

Function Names
Function Names
Arithmetic Operators + - * / \ ̂
'……………………………… 2-3
Relational Operators
< > <= >= == ~=… 2-10
Logical Operators & | ~ 2-12
Special Characters [] () {} = ' .
... , ; % ! ………………… 2-14
Colon :…………………… 2-17
abs ……………………… 2-19
acos, acosh ……………… 2-20
acot, acoth ……………… 2-21
acsc, acsch ……………… 2-23
addpath ………………… 2-25
airy ……………………… 2-26
all………………………… 2-28
angle …………………… 2-30
ans ……………………… 2-31
any ……………………… 2-32
asec, asech ……………… 2-34
asin, asinh ……………… 2-35
assignin ………………… 2-36
atan, atanh …………… 2-38
atan2 …………………… 2-39
auread…………………… 2-40
auwrite ………………… 2-41
balance ………………… 2-42
base2dec………………… 2-45
besselh ………………… 2-46
besseli, besselk ………… 2-48
besselj, bessely ………… 2-51
beta, betainc, betaln … 2-55
bicg ……………………… 2-57
bicgstab ………………… 2-64
bin2dec ………………… 2-68
bitand …………………… 2-69
bitcmp…………………… 2-70
bitget …………………… 2-71
bitmax…………………… 2-72
bitor……………………… 2-73
bitset …………………… 2-74
bitshift ………………… 2-75

bitxor……………………… 2-76
blanks …………………… 2-77
blkdiag …………………… 2-78
break ……………………… 2-79
builtin …………………… 2-80
calendar ………………… 2-81
cart2pol…………………… 2-82
cart2sph ………………… 2-84
case ……………………… 2-85
cat ………………………… 2-86
catch ……………………… 2-87
cd ………………………… 2-88
cdf2rdf …………………… 2-89
ceil ………………………… 2-91
cell ………………………… 2-92
cell2struct ……………… 2-93
celldisp …………………… 2-94
cellfun …………………… 2-96
cellplot …………………… 2-98
cellstr …………………… 2-99
cgs ……………………… 2-100
char …………………… 2-104
chol …………………… 2-106
cholinc ………………… 2-108
cholupdate …………… 2-116
class …………………… 2-119
clc ……………………… 2-120
clear …………………… 2-121
clock …………………… 2-123
colmmd ………………… 2-124
colperm………………… 2-127
compan ………………… 2-128
complex………………… 2-129
computer ……………… 2-130
cond …………………… 2-132
condeig ………………… 2-133
condest ………………… 2-134
conj …………………… 2-135
conv …………………… 2-136
conv2 …………………… 2-137
convhull ……………… 2-139
convn…………………… 2-140
copyfile ………………… 2-141
corrcoef ………………… 2-142

cos, cosh ………………… 2-143
cot, coth ………………… 2-144
cov ……………………… 2-145
cplxpair ………………… 2-146
cputime ………………… 2-147
cross……………………… 2-148
csc, csch ………………… 2-149
cumprod ………………… 2-150
cumsum ………………… 2-151
cumtrapz ……………… 2-152
date ……………………… 2-154
datenum ………………… 2-155
datestr…………………… 2-157
datevec ………………… 2-159
dbclear ………………… 2-160
dbcont …………………… 2-161
dbdown ………………… 2-162
dbmex …………………… 2-163
dbquit …………………… 2-164
dbstack ………………… 2-165
dbstatus ………………… 2-166
dbstep …………………… 2-167
dbstop …………………… 2-168
dbtype …………………… 2-171
dbup……………………… 2-172
dblquad ………………… 2-173
ddeadv…………………… 2-175
ddeexec ………………… 2-177
ddeinit…………………… 2-178
ddepoke ………………… 2-179
ddereq …………………… 2-181
ddeterm ………………… 2-183
ddeunadv ……………… 2-184
deal ……………………… 2-185
deblank ………………… 2-188
dec2base ………………… 2-189
dec2bin ………………… 2-190
dec2hex ………………… 2-191
deconv …………………… 2-192
del2 ……………………… 2-193
delaunay………………… 2-196
delete …………………… 2-199
det ……………………… 2-200
detrend ………………… 2-201
-2

List of Commands

Function Names
diag……………………… 2-203
diary …………………… 2-204
diff ……………………… 2-205
dir ……………………… 2-207
disp……………………… 2-208
dlmread ………………… 2-209
dlmwrite ……………… 2-210
dmperm ………………… 2-211
doc ……………………… 2-212
docopt…………………… 2-213
double ………………… 2-214
dsearch ………………… 2-215
echo …………………… 2-216
edit ……………………… 2-217
eig ……………………… 2-219
eigs ……………………… 2-222
ellipj …………………… 2-228
ellipke ………………… 2-230
else ……………………… 2-232
elseif …………………… 2-233
end ……………………… 2-235
eomday ………………… 2-237
eps ……………………… 2-238
erf, erfc, erfcx, erfinv … 2-239
error …………………… 2-241
errortrap ……………… 2-242
etime …………………… 2-243
eval……………………… 2-244
evalc …………………… 2-246
evalin …………………… 2-247
exist …………………… 2-249
exp ……………………… 2-251
expint…………………… 2-252
expm …………………… 2-254
eye ……………………… 2-256
factor …………………… 2-257
factorial ………………… 2-258
fclose …………………… 2-259
feof ……………………… 2-260
ferror …………………… 2-261
feval …………………… 2-262
fft ……………………… 2-263
fft2 ……………………… 2-266
fftn ……………………… 2-267

fftshift …………………… 2-268
fgetl ……………………… 2-269
fgets ……………………… 2-270
fieldnames ……………… 2-271
fileparts ………………… 2-272
filter ……………………… 2-273
filter2 …………………… 2-276
find ……………………… 2-277
findstr …………………… 2-279
fix ………………………… 2-280
flipdim …………………… 2-281
fliplr ……………………… 2-282
flipud …………………… 2-283
floor ……………………… 2-284
flops ……………………… 2-285
fmin ……………………… 2-286
fminbnd ………………… 2-289
fmins …………………… 2-292
fminsearch ……………… 2-296
fopen……………………… 2-300
for ………………………… 2-303
format …………………… 2-305
fprintf …………………… 2-307
frameedit………………… 2-313
fread ……………………… 2-316
freqspace ………………… 2-319
frewind ………………… 2-320
fscanf …………………… 2-321
fseek ……………………… 2-324
ftell ……………………… 2-325
full ……………………… 2-326
fullfile …………………… 2-327
function ………………… 2-328
funm……………………… 2-330
fwrite …………………… 2-332
fzero ……………………… 2-335
gallery …………………… 2-339
gamma, gammainc, gammaln
2-359
gcd ……………………… 2-361
getfield…………………… 2-363
global …………………… 2-364
gmres …………………… 2-366
gradient ………………… 2-370

griddata………………… 2-373
gsvd …………………… 2-376
hadamard ……………… 2-381
hankel ………………… 2-382
hdf ……………………… 2-383
help……………………… 2-385
helpdesk ……………… 2-387
helpwin ………………… 2-389
hess……………………… 2-391
hex2dec ………………… 2-393
hex2num ……………… 2-394
hilb ……………………… 2-395
home …………………… 2-396
i ………………………… 2-397
if ………………………… 2-398
ifft ……………………… 2-400
ifft2 ……………………… 2-401
ifftn……………………… 2-402
ifftshift ………………… 2-403
imag …………………… 2-404
imfinfo ………………… 2-405
imread ………………… 2-408
imwrite ………………… 2-413
ind2sub ………………… 2-421
Inf ……………………… 2-422
inferiorto ……………… 2-423
inline …………………… 2-424
inmem ………………… 2-427
inpolygon ……………… 2-428
input …………………… 2-429
inputname……………… 2-430
int8, int16, int32 ……… 2-431
int2str ………………… 2-433
interp1 ………………… 2-434
interp2 ………………… 2-437
interp3 ………………… 2-441
interpft ………………… 2-443
interpn ………………… 2-444
intersect………………… 2-446
inv ……………………… 2-447
invhilb ………………… 2-450
ipermute ……………… 2-451
is* ……………………… 2-452
isa ……………………… 2-456
-3

Function Names
ismember ……………… 2-457
isstr ……………………… 2-458
j ………………………… 2-459
keyboard………………… 2-460
kron……………………… 2-461
lasterr …………………… 2-462
lastwarn ………………… 2-464
lcm ……………………… 2-465
legendre ………………… 2-466
length …………………… 2-468
lin2mu ………………… 2-469
linspace ………………… 2-470
load ……………………… 2-471
loadobj ………………… 2-473
log ……………………… 2-474
log2 ……………………… 2-475
log10 …………………… 2-476
logical …………………… 2-477
logm……………………… 2-478
logspace ………………… 2-480
lookfor…………………… 2-481
lower …………………… 2-482
ls ………………………… 2-483
lscov……………………… 2-484
lsqnonneg ……………… 2-485
lu ………………………… 2-488
luinc …………………… 2-492
magic …………………… 2-499
mat2str ………………… 2-501
matlabrc………………… 2-502
matlabroot ……………… 2-504
max ……………………… 2-505
mean …………………… 2-506
median ………………… 2-507
menu …………………… 2-508
meshgrid ……………… 2-509
methods ………………… 2-511
mexext ………………… 2-512
mfilename ……………… 2-513
min ……………………… 2-514
mislocked ……………… 2-515
mkdir …………………… 2-516
mlock …………………… 2-517
mod ……………………… 2-518

more …………………… 2-519
munlock ……………… 2-520
mu2lin ………………… 2-521
NaN …………………… 2-522
nargchk………………… 2-523
nargin, nargout ……… 2-524
nchoosek ……………… 2-526
ndgrid ………………… 2-527
ndims ………………… 2-528
nextpow2 ……………… 2-529
nnls …………………… 2-530
nnz……………………… 2-532
nonzeros ……………… 2-533
norm …………………… 2-534
normest………………… 2-535
now …………………… 2-536
null …………………… 2-537
num2cell ……………… 2-538
num2str ……………… 2-539
nzmax ………………… 2-540
ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb 2-541
odefile ………………… 2-550
odeget ………………… 2-555
odeset ………………… 2-556
ones …………………… 2-562
open …………………… 2-563
openvar………………… 2-565
optimget ……………… 2-566
optimset ……………… 2-567
orth …………………… 2-571
otherwise ……………… 2-572
pack …………………… 2-573
partialpath …………… 2-575
pascal ………………… 2-576
path …………………… 2-577
pathtool ……………… 2-579
pause…………………… 2-581
pcg ……………………… 2-582
pcode …………………… 2-586
perms ………………… 2-587
permute ……………… 2-588
persistent ……………… 2-589
pi ……………………… 2-590

pinv ……………………… 2-591
plotedit ………………… 2-594
pol2cart ………………… 2-597
poly ……………………… 2-598
polyarea ………………… 2-601
polyder ………………… 2-602
polyeig…………………… 2-603
polyfit …………………… 2-604
polyval ………………… 2-608
polyvalm………………… 2-609
pow2 …………………… 2-611
primes …………………… 2-612
prod ……………………… 2-613
profile …………………… 2-614
profreport ……………… 2-617
pwd ……………………… 2-619
quit ……………………… 2-620
qmr ……………………… 2-622
qr ………………………… 2-626
qrdelete ………………… 2-629
qrinsert ………………… 2-630
qrupdate………………… 2-631
quad, quad8 …………… 2-634
qz ………………………… 2-636
rand ……………………… 2-637
randn …………………… 2-639
randperm ……………… 2-641
rank……………………… 2-642
rat, rats ………………… 2-643
rcond …………………… 2-646
real ……………………… 2-647
realmax ………………… 2-648
realmin ………………… 2-649
rem ……………………… 2-650
repmat ………………… 2-651
reshape ………………… 2-652
residue ………………… 2-653
return …………………… 2-655
rmfield ………………… 2-656
rmpath ………………… 2-657
roots……………………… 2-658
rot90 …………………… 2-660
round …………………… 2-661
rref, rrefmovie ………… 2-662
-4

List of Commands

Function Names
rsf2csf ………………… 2-664
save …………………… 2-666
saveas ………………… 2-669
saveobj ………………… 2-672
schur …………………… 2-673
script …………………… 2-675
sec, sech………………… 2-676
setdiff…………………… 2-678
setfield ………………… 2-679
setstr …………………… 2-680
setxor …………………… 2-681
shiftdim………………… 2-682
sign……………………… 2-683
sin, sinh………………… 2-684
single …………………… 2-686
size ……………………… 2-687
sort ……………………… 2-689
sortrows………………… 2-690
sound …………………… 2-691
soundsc ………………… 2-692
spalloc ………………… 2-693
sparse…………………… 2-694
spconvert ……………… 2-696
spdiags ………………… 2-698
speye …………………… 2-701
spfun …………………… 2-702
sph2cart ……………… 2-703
spline …………………… 2-704
spones ………………… 2-707
spparms………………… 2-708
sprand ………………… 2-711
sprandn ………………… 2-712
sprandsym …………… 2-713
sprintf ………………… 2-714
spy ……………………… 2-719
sqrt ……………………… 2-720
sqrtm …………………… 2-721
squeeze ………………… 2-724
sscanf …………………… 2-725
startup ………………… 2-728
std ……………………… 2-729
str2double……………… 2-731
str2num………………… 2-732
strcat …………………… 2-733

strcmp …………………… 2-735
strcmpi…………………… 2-738
strings …………………… 2-739
strjust …………………… 2-740
strmatch ………………… 2-741
strncmp ………………… 2-742
strncmpi ………………… 2-743
strrep …………………… 2-744
strtok …………………… 2-745
struct …………………… 2-746
struct2cell ……………… 2-747
strvcat …………………… 2-748
sub2ind ………………… 2-749
subsasgn ………………… 2-750
subsindex ……………… 2-751
subsref …………………… 2-752
subspace ………………… 2-753
sum ……………………… 2-754
superiorto ……………… 2-755
svd ……………………… 2-756
svds ……………………… 2-758
switch …………………… 2-760
symmmd ………………… 2-762
symrcm ………………… 2-764
symvar…………………… 2-766
tan, tanh ………………… 2-767
tempdir ………………… 2-769
tempname ……………… 2-770
textread ………………… 2-771
tic, toc …………………… 2-776
toeplitz…………………… 2-777
trace ……………………… 2-778
trapz……………………… 2-779
tril………………………… 2-781
triu ……………………… 2-782
try ………………………… 2-783
tsearch …………………… 2-784
type ……………………… 2-785
uint8, uint16, uint32 … 2-786
union …………………… 2-787
unique …………………… 2-788
unwrap ………………… 2-789
upper …………………… 2-790
var………………………… 2-791

varargin, varargout … 2-792
vectorize ……………… 2-794
ver ……………………… 2-795
version ………………… 2-796
voronoi ………………… 2-797
warning ………………… 2-799
wavread………………… 2-800
wavwrite ……………… 2-801
web ……………………… 2-802
weekday………………… 2-803
what …………………… 2-804
whatsnew ……………… 2-806
which …………………… 2-807
while …………………… 2-809
who, whos ……………… 2-810
wilkinson ……………… 2-812
wk1read………………… 2-813
wk1write ……………… 2-814
workspace ……………… 2-815
xor ……………………… 2-817
zeros …………………… 2-818
-5

Function Names
-6

Index
Symbols
! 2-14

- 2-3

% 2-14

& 2-12

' 2-3, 2-14

() 2-14

* 2-3

+ 2-3

, 2-14

. 2-14

... 2-14

/ 2-3

: 2-17

< 2-10

= 2-14

== 2-10

> 2-10

\ 2-3

^ 2-3

{} 2-14

| 2-12

~ 2-12

~= 2-10

 2-10

 2-10

Numerics
π (pi) 2-590, 2-644, 2-684

1-norm 2-534, 2-646

2-norm (estimate of) 2-535

A
abs 2-19
accuracy
of linear equation solution 2-132

of matrix inversion 2-132

relative floating-point 2-238

acos 2-20
acosh 2-20
acot 2-21
acoth 2-21
acsc 2-23
acsch 2-23
Adams-Bashforth-Moulton ODE solver 2-547

addition (arithmetic operator) 2-3

addpath 2-25
addressing selected array elements 2-17

adjacency graph 2-211

airy 2-26
aligning scattered data

multi-dimensional 2-527

two-dimensional 2-373

all 2-28
allocation of storage (automatic) 2-818

and (M-file function equivalent for &) 2-12

AND, logical
bit-wise 2-69

angle 2-30
annotating plots 2-594

ans 2-31
anti-diagonal 2-382

any 2-32
arccosecant 2-23

arccosine 2-20

arccotangent 2-21

arcsecant 2-34

arcsine 2-35

arctangent 2-38

(four-quadrant) 2-39

arguments, M-file
I-1

Index

I-2
checking number of input 2-523

number of input 2-524

number of output 2-524

passing variable numbers of 2-792

arithmetic operations, matrix and array distin-
guished 2-3

arithmetic operators 2-3

array
addressing selected elements of 2-17

displaying 2-208

finding indices of 2-277

left division (arithmetic operator) 2-4

maximum elements of 2-505

mean elements of 2-506

median elements of 2-507

minimum elements of 2-514

multiplication (arithmetic operator) 2-4

of all ones 2-562

power (arithmetic operator) 2-4

product of elements 2-613

of random numbers 2-637, 2-639

removing first n singleton dimensions of 2-682

removing singleton dimensions of 2-724

reshaping 2-652

right division (arithmetic operator) 2-4

shifting dimensions of 2-682

size of 2-687

sorting elements of 2-689

structure 2-271, 2-363, 2-656, 2-679

sum of elements 2-754

swapping dimensions of 2-451, 2-588

transpose (arithmetic operator) 2-5

of all zeros 2-818

arrays
editing 2-816

maximum size of 2-130

opening 2-563
arrowhead matrix 2-127

ASCII
data

reading from disk 2-471

saving 2-666

saving to disk 2-666

delimited files
reading 2-209

writing 2-210

ASCII data
converting sparse matrix after loading from
2-696

printable characters (list of) 2-104

asech 2-34
asin 2-35
asinh 2-35
assignin 2-36
atan2 2-39
.au files

reading 2-40

writing 2-41

audio
converting vector into 2-691, 2-692

signal conversion 2-469, 2-521

auread 2-40
auwrite 2-41
average of array elements 2-506

axes

editing 2-594

axis crossing See zero of a function
azimuth (spherical coordinates) 2-703

B
badly conditioned 2-646

balance 2-42
bank format 2-305

Index
base to decimal conversion 2-45

base two operations
conversion from decimal to binary 2-190

logarithm 2-475

next power of two 2-529

base2dec 2-45
Bessel functions 2-46, 2-51

first kind 2-48

modified 2-48

second kind 2-49

third kind 2-52

Bessel’s equation
(defined) 2-46, 2-51

modified (defined) 2-48

besselh 2-46
besseli 2-48
besselj 2-51
besselk 2-48
bessely 2-51
beta 2-55
beta function

(defined) 2-55

incomplete (defined) 2-55

natural logarithm of 2-55

betainc 2-55
betaln 2-55
bicgstab 2-64
big endian formats 2-301

bin2dec 2-68
binary

data
reading from disk 2-471

saving to disk 2-666

writing to file 2-332

files
reading 2-316

mode for opened files 2-301

binary to decimal conversion 2-68

bisection search 2-337

bitand 2-69
bitcmp 2-70
bitget 2-71
bitmax 2-72
bitor 2-73
bitset 2-74
bitshift 2-75
bit-wise operations

AND 2-69

get 2-71

OR 2-73

set bit 2-74

shift 2-75

XOR 2-76

bitxor 2-76
blanks

removing trailing 2-188

blanks 2-77
blkdiag 2-78
braces, curly (special characters) 2-14

brackets (special characters) 2-14

break 2-79
breakpoints

listing 2-166

removing 2-160

resuming execution from 2-161

setting in M-files 2-168

Buckminster Fuller 2-764

builtin 2-80
built-in functions 2-807

C
cache, path 2-577

calendar 2-81
I-3

Index

I-4
cart2pol 2-82
cart2sph 2-84
Cartesian coordinates 2-82, 2-84, 2-597, 2-703

case
in switch statement (defined) 2-760

lower to upper 2-790

upper to lower 2-482

case 2-85
cat 2-86
catch 2-87
Cayley-Hamilton theorem 2-610

cd 2-88
cdf2rdf 2-89
ceil 2-91
cell array

conversion to from numeric array 2-538

creating 2-92

structure of, displaying 2-98

cell2struct 2-93
celldisp 2-94
cellfun 2-96
cellplot 2-98
cgs 2-100
char 2-104
characters

conversion, in format specification string 2-309,

2-716

escape, in format specification string 2-309,

2-716

checkerboard pattern (example) 2-651

chol 2-106
Cholesky factorization 2-106

(as algorithm for solving linear equations) 2-7

lower triangular factor 2-576

minimum degree ordering and (sparse) 2-762

preordering for 2-127

cholinc 2-108
cholinc 2-108
cholupdate 2-116
class 2-119
class, object See object classes
clc 2-120, 2-120
clear 2-121
clearing

command window 2-120

items from workspace 2-121

clock 2-123
closing

files 2-259

MATLAB 2-620

colmmd 2-124
colperm 2-127
combinations of n elements 2-526

combs 2-526
comma (special characters) 2-16

command window
clearing 2-120

commands
help for 2-385, 2-389

common elements See set operations, intersection
compan 2-128
companion matrix 2-128

complementary error function
(defined) 2-239

scaled (defined) 2-239

complete elliptic integral
(defined) 2-230

modulus of 2-228, 2-230

complex
exponential (defined) 2-251

logarithm 2-474, 2-476

numbers 2-397

numbers, sorting 2-689, 2-690

phase angle 2-30

Index
unitary matrix 2-626

See also imaginary
complex 2-129
complex conjugate 2-135

sorting pairs of 2-146

complex data
creating 2-129

complex Schur form 2-673

computer 2-130
computer MATLAB is running on 2-130

concatenating arrays 2-86

cond 2-132
condeig 2-133
condest 2-134
condition number of matrix 2-42, 2-132, 2-646

estimated 2-134

conditional execution See flow control
conj 2-135
conjugate, complex 2-135

sorting pairs of 2-146

contents.m file 2-385

continuation (..., special characters) 2-15

continued fraction expansion 2-643

conv 2-136
conv2 2-137
conversion

base to decimal 2-45

binary to decimal 2-68

Cartesian to cylindrical 2-82

Cartesian to polar 2-82

complex diagonal to real block diagonal 2-89

cylindrical to Cartesian 2-597

decimal number to base 2-185, 2-189

decimal to binary 2-190

decimal to hexadecimal 2-191

full to sparse 2-694

hexadecimal to decimal 2-393

hexadecimal to double precision 2-394

integer to string 2-433

lowercase to uppercase 2-790

matrix to string 2-501

numeric array to cell array 2-538

numeric array to logical array 2-477

numeric array to string 2-539

partial fraction expansion to pole-residue
2-653

polar to Cartesian 2-597

pole-residue to partial fraction expansion
2-653

real to complex Schur form 2-664

spherical to Cartesian 2-703

string matrix to cell array 2-99

string to numeric array 2-732

uppercase to lowercase 2-482

vector to character string 2-104

conversion characters in format specification
string 2-309, 2-716

convhull 2-139
convn 2-140
convolution 2-136

inverse See deconvolution
two-dimensional 2-137

coordinates
Cartesian 2-82, 2-84, 2-597, 2-703

cylindrical 2-82, 2-84, 2-597

polar 2-82, 2-84, 2-597

spherical 2-703

See also conversion
copyfile 2-141
copying

files 2-141

corrcoef 2-142
cos 2-143
cosecant 2-149
I-5

Index

I-6
hyperbolic 2-149

inverse 2-23

inverse hyperbolic 2-23

cosh 2-143
cosine 2-143

hyperbolic 2-143

inverse 2-20

inverse hyperbolic 2-20

cot 2-144
cotangent 2-144

hyperbolic 2-144

inverse 2-21

inverse hyperbolic 2-21

coth 2-144
cov 2-145
covariance

least squares solution and 2-484

cplxpair 2-146
cputime 2-147
creating your own MATLAB functions 2-328

cross 2-148
cross product 2-148

csc 2-149
csch 2-149
ctranspose (M-file function equivalent for ') 2-5

cubic interpolation 2-434, 2-437

cubic spline interpolation 2-434, 2-437, 2-441,

2-444

cumprod 2-150
cumsum 2-151
cumtrapz 2-152
cumulative

product 2-150

sum 2-151

curly braces (special characters) 2-14

current directory 2-88

cursor, moving position of 2-396
curve fitting (polynomial) 2-604

customizing
MATLAB 2-502, 2-728

workspace 2-728

Cuthill-McKee ordering, reverse 2-762, 2-764

cylindrical coordinates 2-82, 2-84, 2-597

D
data

ASCII
reading from disk 2-471

saving to disk 2-666

binary
formats 2-667

reading from disk 2-471

saving to disk 2-666

writing to file 2-332

formatted
reading from files 2-321

writing to file 2-307

formatting 2-307, 2-714

reading from files 2-771

writing to strings 2-714

data types
complex 2-129

data, aligning scattered
multi-dimensional 2-527

two-dimensional 2-373

data, ASCII
converting sparse matrix after loading from
2-696

date 2-154
date and time functions 2-237

date string
format of 2-157

date vector 2-159

Index
datenum 2-155
datestr 2-157
datevec 2-159
dbclear 2-160
dbcont 2-161
dbdown 2-162
dbmex 2-163
dbquit 2-164
dbstack 2-165
dbstatus 2-166
dbstep 2-167
dbstop 2-168
dbtype 2-171
dbup 2-172
ddeadv 2-175
ddeexec 2-177
ddeinit 2-178
ddepoke 2-179
ddereq 2-181
ddeterm 2-183
ddeunadv 2-184
deal 2-185
deblank 2-188
debugging

changing workspace context 2-162

changing workspace to calling M-file 2-172

displaying function call stack 2-165

MEX-files on UNIX 2-163

M-files 2-460, 2-614

quitting debug mode 2-164

removing breakpoints 2-160

resuming execution from breakpoint 2-167

setting breakpoints in 2-168

stepping through lines 2-167

dec2base 2-185, 2-189
dec2bin 2-190
dec2hex 2-191

decimal number to base conversion 2-185, 2-189

decimal point (.)
(special characters) 2-15

to distinguish matrix and array operations 2-3

decomposition
Dulmage-Mendelsohn 2-211

“economy-size” 2-626, 2-756

orthogonal-triangular (QR) 2-484, 2-626

Schur 2-673

singular value 2-642, 2-756

deconv 2-192
deconvolution 2-192

default tolerance 2-238

definite integral 2-634

del operator 2-193

del2 2-193
delaunay 2-196
delete 2-199
deleting

files 2-199

items from workspace 2-121

delimiters in ASCII files 2-209, 2-210

density
of sparse matrix 2-532

dependence, linear 2-753

derivative
approximate 2-205

polynomial 2-602

det 2-200
Detect 2-452

detecting
alphabetic characters 2-453

empty arrays 2-452

equal arrays 2-452

finite numbers 2-452

global variables 2-453

infinite elements 2-453
I-7

Index

I-8
logical arrays 2-453

members of a set 2-457

NaNs 2-453

objects of a given class 2-456

positive, negative, and zero array elements
2-683

prime numbers 2-454

real numbers 2-454

determinant of a matrix 2-200

detrend 2-201
diag 2-203
diagonal 2-203

anti- 2-382

k-th (illustration) 2-781

main 2-203

sparse 2-698

diary 2-204
diff 2-205
differences

between adjacent array elements 2-205

between sets 2-678

differential equation solvers 2-541

adjusting parameters of 2-556

extracting properties of 2-555

digits, controlling number of displayed 2-305

dimension statement (lack of in MATLAB) 2-818

dimensions
size of 2-687

Diophantine equations 2-361

dir 2-207
direct term of a partial fraction expansion 2-653

directories
adding to search path 2-25

checking existence of 2-249

creating 2-516

listing contents of 2-207

listing MATLAB files in 2-804
listing, on UNIX 2-483

removing from search path 2-657

See also directory, search path
directory

changing working 2-88

current 2-88, 2-619

root 2-504

temporary system 2-769

See also directories
discontinuities, eliminating (in arrays of phase an-

gles) 2-789

discontinuous problems 2-299

disp 2-208
display

controlling in command window 2-519

format, specifying 2-305

distribution
Gaussian 2-239

division
array, left (arithmetic operator) 2-4

array, right (arithmetic operator) 2-4

by zero 2-422

matrix, left (arithmetic operator) 2-4

matrix, right (arithmetic operator) 2-4

modulo 2-518

of polynomials 2-192

remainder after 2-650

divisor
greatest common 2-361

dlmread 2-209
dlmwrite 2-210
dmperm 2-211
doc 2-212
docopt 2-213
documentation

displaying HTML 2-212

displaying online 2-387

Index
location of files for UNIX 2-213

dot product 2-148

double 2-214
dsearch 2-215
dual vector 2-530

Dulmage-Mendelsohn decomposition 2-211

E
echo 2-216
edge finding, Sobel technique 2-137

editing
M-files 2-217

editor
default, specifying 2-217

See also Editor/Debugger
Editor/Debugger

opening 2-217

eig 2-219
eigensystem

transforming 2-89

eigenvalue
accuracy of 2-42, 2-219

complex 2-89

matrix logarithm and 2-478

modern approach to computation of 2-599

of companion matrix 2-128

poorly conditioned 2-42

problem 2-219, 2-603

problem, generalized 2-220, 2-603

problem, polynomial 2-603

repeated 2-220, 2-330

Wilkinson test matrix and 2-812

eigenvector
left 2-219

matrix, generalized 2-636

right 2-219

eigs 2-222
elevation (spherical coordinates) 2-703

ellipj 2-228
ellipke 2-230
elliptic functions, Jacobian

(defined) 2-228

elliptic integral
complete (defined) 2-230

modulus of 2-228, 2-230

else 2-232
elseif 2-233
end 2-235
end of line, indicating 2-16

end-of-file indicator 2-260

eomday 2-237
eps 2-238
equal sign (special characters) 2-15

equations, linear
accuracy of solution 2-132

erf 2-239
erfc 2-239
erfcx 2-239
error

catching 2-462

roundoff See roundoff error
error 2-241
error function

(defined) 2-239

complementary 2-239

scaled complementary 2-239

error message
displaying 2-241

Index into matrix is negative or zero

2-477
retrieving last generated 2-462

error messages
Out of memory 2-573
I-9

Index

I-10
errors
in file input/output 2-261

escape characters in format specification string
2-309, 2-716

etime 2-243
eval 2-244
evalc 2-246
evalin 2-247
exclamation point (special characters) 2-16

executing statements repeatedly 2-303, 2-809

execution
conditional See flow control
improving speed of by setting aside storage
2-818

pausing M-file 2-581

resuming from breakpoint 2-161

time for M-files 2-614

exist 2-249
exp 2-251
expint 2-252
expm 2-254
exponential 2-251

complex (defined) 2-251

integral 2-252

matrix 2-254

exponentiation
array (arithmetic operator) 2-4

matrix (arithmetic operator) 2-4

expression, MATLAB 2-398
extension, filename

.m 2-328
eye 2-256

F
factor 2-257
factorial 2-258
factorization
LU 2-488

QZ 2-603, 2-636

See also decomposition
factorization, Cholesky 2-106

(as algorithm for solving linear equations) 2-7

minimum degree ordering and (sparse) 2-762

preordering for 2-127

factors, prime 2-257

fclose 2-259
features

undocumented 2-806

feof 2-260
ferror 2-261
feval 2-262
fft 2-263
FFT See Fourier transform
fft2 2-266
fftn 2-267
fftshift 2-268
fgetl 2-269
fgets 2-270
fid 2-300
field names of a structure, obtaining 2-271

fields, noncontiguous, inserting data into 2-332

fig files 2-313

figures
annotating 2-594

opening 2-563

saving 2-669

file
extension, getting 2-272

position indicator
finding 2-325

setting 2-324

setting to start of file 2-320

See also files

Index
filename
building from parts 2-327

parts 2-272

temporary 2-770

filename extension
.m 2-328

fileparts 2-272
files

ASCII delimited
reading 2-209

writing 2-210

beginning of, rewinding to 2-320

changes to during session 2-577

checking existence of 2-249

closing 2-259

copying 2-141

deleting 2-199

end of, testing for 2-260

errors in input or output 2-261

fig 2-313, 2-669
figure, saving 2-669

finding position within 2-325

format for opening 2-301

getting next line 2-269

getting next line (with line terminator) 2-270

identifier 2-300

listing
contents of 2-785

in directory 2-804

names in a directory 2-207

locating 2-807

MAT 2-471, 2-666, 2-667

mdl 2-669
mode when opened 2-301

model, saving 2-669

opening 2-300, 2-563

in Web browser 2-802

path, getting 2-272

pathname for 2-807

reading
binary 2-316

data from 2-771

formatted 2-321

README 2-806
rewinding to beginning of 2-320

setting position within 2-324

sound
reading 2-40, 2-800

writing 2-41, 2-801

startup 2-502, 2-728

version, getting 2-272

.wav

reading 2-800

writing 2-801

WK1
loading 2-813

writing to 2-814

writing binary data to 2-332

writing formatted data to 2-307

Xdefaults 2-217
See also file

filter 2-273

two-dimensional 2-137

filter 2-273
filter2 2-276
find 2-277
finding

indices of arrays 2-277

sign of array elements 2-683

zero of a function 2-335

See also detecting
findstr 2-279
finish.m 2-620
finite numbers
I-11

Index

I-12
detecting 2-452

FIR filter See filter
fix 2-280
fixed-point output format 2-305

flint See floating-point, integer
flints 2-521

flipdim 2-281
fliplr 2-282
flipud 2-283
floating-point

integer 2-70, 2-74

integer, maximum 2-72

numbers, interval between 2-238

operations, count of 2-285

floating-point arithmetic, IEEE
largest postive number 2-648

relative accuracy of 2-238

smallest postive number 2-649

floating-point output format 2-305

floor 2-284
flops 2-285
flow control

break 2-79
case 2-85
else 2-232
elseif 2-233
end 2-235
error 2-241
for 2-303
if 2-398
keyboard 2-460
otherwise 2-572
return 2-655
switch 2-760
while 2-809

fmin 2-286
fminbnd 2-289
fmins 2-292
fminsearch 2-296
F-norm 2-534

fopen 2-300
for 2-303
format

output display 2-305

precision when writing 2-317

reading files 2-321

specification string, matching file data to 2-726

format 2-305
formats

big endian 2-301

little endian 2-301

formatted data
reading from file 2-321

writing to file 2-307

formatting data 2-714

Fourier transform
algorithm, optimal performance of 2-264, 2-400,

2-401, 2-529

convolution theorem and 2-136

discrete, one-dimensional 2-263

discrete, two-dimensional 2-266

fast 2-263

as method of interpolation 2-443

inverse, one-dimensional 2-400

inverse, two-dimensional 2-401

shifting the DC component of 2-268

fprintf 2-307
fraction, continued 2-643

fragmented memory 2-573

frames for printing 2-313

fread 2-316
freqspace 2-319
frequency response

Index
desired response matrix
frequency spacing 2-319

frequency vector 2-480

frewind 2-320
fscanf 2-321
fseek 2-324
ftell 2-325
full 2-326
function

minimizing (several variables) 2-292

minimizing (single variable) 2-286

function 2-328
functions

built-in 2-807

call stack for 2-165

checking existence of 2-249

clearing from workspace 2-121

finding 2-481

help for 2-385, 2-389

locating 2-807

pathname for 2-807

that accept function name strings 2-262

that work down the first non-singleton dimen-
sion 2-682

funm 2-330
fwrite 2-332
fzero 2-335

G
gallery 2-339
gamma 2-359
gamma function

(defined) 2-359

incomplete 2-359

logarithm of 2-359

gammainc 2-359

gammaln 2-359
Gaussian distribution function 2-239

Gaussian elimination
(as algorithm for solving linear equations) 2-7,

2-8, 2-447

Gauss Jordan elimination with partial pivoting
2-662

LU factorization and 2-488

gcd 2-361
generalized eigenvalue problem 2-220, 2-603

generating a sequence of matrix names (M1
through M12) 2-245

geodesic dome 2-764

getfield 2-363
Givens rotations 2-629, 2-630

global 2-364
global variable

defining 2-364

global variables, clearing from workspace 2-121

gmres 2-366
gradient 2-370
gradient, numerical 2-370

graph
adjacency 2-211

graphics objects, deleting 2-199

graphs
editing 2-594

greatest common divisor 2-361

grid
aligning data to a 2-373

grid arrays
for volumetric plots 2-509

multi-dimensional 2-527

griddata 2-373
gsvd 2-376
I-13

Index

I-14
H
H1 line 2-385, 2-386

hadamard 2-381
Hadamard matrix 2-381

subspaces of 2-753

Hager’s method 2-134

hankel 2-382
Hankel functions, relationship to Bessel of 2-52

Hankel matrix 2-382

hdf 2-383
help

contents file 2-385

creating for M-files 2-385

displaying HTML documentation 2-212

files, location for UNIX 2-213

keyword search 2-481

online 2-385

Plot Editor 2-595

help 2-385
Help Desk 2-212, 2-387

Help Window 2-389

helpdesk 2-387
helpwin 2-389
Hermite transformations, elementary 2-361

hess 2-391
Hessenberg form of a matrix 2-391

hex2dec 2-393
hex2num 2-394
hexadecimal output format 2-305

hilb 2-395
Hilbert matrix 2-395

inverse 2-450

home 2-396, 2-396
horzcat (M-file function equivalent for [,]) 2-16

Householder reflections (as algorithm for solving
linear equations) 2-8

HTML documentation, displaying 2-212
hyperbolic
cosecant 2-149

cosecant, inverse 2-23

cosine 2-143

cosine, inverse 2-20

cotangent 2-144

cotangent, inverse 2-21

secant 2-34, 2-676

secant, inverse 2-34

sine 2-35, 2-684

sine, inverse 2-35

tangent 2-38, 2-767

tangent, inverse 2-38

hyperplanes, angle between 2-753

I
i 2-397
identity matrix 2-256

sparse 2-701

IEEE floating-point arithmetic
largest positive number 2-648

relative accuracy of 2-238

smallest positive number 2-649

if 2-398
ifft 2-400
ifft2 2-401
ifftn 2-402
ifftshift 2-403
IIR filter See filter
imag 2-404
imaginary

part of complex number 2-404

parts of inverse FFT 2-400, 2-401

unit (sqrt(–1)) 2-397, 2-459

See also complex
imfinfo 2-405

Index
imread 2-408
imwrite 2-413
incomplete

beta function (defined) 2-55

gamma function (defined) 2-359

ind2sub 2-421
Index into matrix is negative or zero (error

message) 2-477

indexing
logical 2-477

indicator of file position 2-320

indices, array
finding 2-277

of sorted elements 2-689

Inf 2-422
inferiorto 2-423
infinity 2-422, 2-453

norm 2-534

inheritance, of objects 2-119

inline 2-424
inpolygon 2-428
input

checking number of M-file arguments 2-523

name of array passed as 2-430

number of M-file arguments 2-524

prompting users for 2-429, 2-508

input 2-429
installation, root directory of 2-504

int2str 2-433
int8, int16, int32 2-431
integer

floating-point 2-70, 2-74

floating-point, maximum 2-72

integrable singularities 2-635

integration
quadrature 2-634

interp1 2-434

interp2 2-437
interp3 2-441
interpft 2-443
interpn 2-444
interpolation

one-dimensional 2-434

two-dimensional 2-437

three-dimensional 2-441

multidimensional 2-444

cubic method 2-373, 2-434, 2-437, 2-441, 2-444

cubic spline method 2-434

FFT method 2-443

linear method 2-434, 2-437

nearest neighbor method 2-373, 2-434, 2-437,

2-441, 2-444

trilinear method 2-373, 2-441, 2-444

interpreter, MATLAB
search algorithm of 2-329

intersect 2-446
inv 2-447
inverse

cosecant 2-23

cosine 2-20

cotangent 2-21

Fourier transform 2-400, 2-401

four-quadrant tangent 2-39

Hilbert matrix 2-450

hyperbolic cosecant 2-23

hyperbolic cosine 2-20

hyperbolic cotangent 2-21

hyperbolic secant 2-34

hyperbolic sine 2-35

hyperbolic tangent 2-38

of a matrix 2-447

secant 2-34

sine 2-35

tangent 2-38
I-15

Index

I-16
inversion, matrix
accuracy of 2-132

invhilb 2-450
involutary matrix 2-576

ipermute 2-451
is* 2-452
isa 2-456
iscell 2-452
iscellstr 2-452
ischar 2-452
isempty 2-452
isequal 2-452
isfield 2-452
isfinite 2-452
isglobal 2-453
ishandle 2-453
ishold 2-453
isieee 2-453
isinf 2-453
isletter 2-453
islogical 2-453
ismember 2-457
isnan 2-453
isnumeric 2-453
isobject 2-453
isprime 2-454
isreal 2-454
isspace 2-454
issparse 2-454
isstr 2-458
isstruct 2-454
isstudent 2-454
isunix 2-454
isvms 2-454
J
j 2-459
Jacobi rotations 2-713

Jacobian elliptic functions
(defined) 2-228

joining arrays See concatenating arrays

K
K>> prompt 2-460

keyboard 2-460
keyboard mode 2-460

terminating 2-655

keyword search 2-481

kron 2-461
Kronecker tensor product 2-461

L
labeling

matrix columns 2-208

plots (with numeric values) 2-539

Laplacian 2-193

largest array elements 2-505

lasterr 2-462
lastwarn 2-464
lcm 2-465
ldivide (M-file function equivalent for .\) 2-5

least common multiple 2-465

least squares
polynomial curve fitting 2-604

problem 2-484

problem, nonnegative 2-530

problem, overdetermined 2-591

legendre 2-466
Legendre functions

(defined) 2-466

Index
Schmidt semi-normalized 2-466

length 2-468
line

editing 2-594

line numbers in M-files 2-171

linear audio signal 2-469, 2-521

linear dependence (of data) 2-753

linear equation systems
accuracy of solution 2-132

solving overdetermined 2-627-2-628

linear equation systems, methods for solving
Cholesky factorization 2-7

Gaussian elimination 2-7, 2-8

Householder reflections 2-8

least squares 2-530

matrix inversion (inaccuracy of) 2-447

linear interpolation 2-434, 2-437

linearly spaced vectors, creating 2-470

linspace 2-470
little endian formats 2-301

load 2-471
loadobj 2-473
local variables 2-328, 2-364

locking M-files 2-517

log 2-474
log, saving session to file 2-204

log10 [log010] 2-476
log2 2-475
logarithm

base ten 2-476

base two 2-475

complex 2-474, 2-476

matrix (natural) 2-478

natural 2-474

of beta function (natural) 2-55

of gamma function (natural) 2-359

logarithmically spaced vectors, creating 2-480

logical 2-477
logical array

converting numeric array to 2-477

detecting 2-453

logical indexing 2-477

logical operations
AND, bit-wise 2-69

OR, bit-wise 2-73

XOR 2-817

XOR, bit-wise 2-76

logical operators 2-12

logical tests
all 2-28

any 2-32

See also detecting
logm 2-478
logspace 2-480
lookfor 2-481
Lotus WK1 files

loading 2-813

writing 2-814

lower 2-482
lower triangular matrix 2-781

lowercase to uppercase 2-790

ls 2-483
lscov 2-484
lsqnonneg 2-485

lu 2-488
LU factorization 2-488

storage requirements of (sparse) 2-540

luinc 2-492

M
machine epsilon 2-809

magic 2-499
magic squares 2-499
I-17

Index

I-18
mat2str 2-501
MAT-file

converting sparse matrix after loading from
2-696

MAT-files 2-471, 2-666, 2-667

listing for directory 2-804

MATLAB
customizing 2-502, 2-728

installation directory 2-504

quitting 2-620

startup 2-502, 2-728

version number, displaying 2-795

MATLAB interpreter
search algorithm of 2-329

matlab.mat 2-471, 2-666
matlabrc 2-502
matlabroot 2-504
matrix

addressing selected rows and columns of 2-17

arrowhead 2-127

companion 2-128

complex unitary 2-626

condition number of 2-42, 2-132, 2-646

converting to formatted data file 2-307

converting to from string 2-725

converting to vector 2-17

decomposition 2-626

defective (defined) 2-220

determinant of 2-200

diagonal of 2-203

Dulmage-Mendelsohn decomposition of 2-211

estimated condition number of 2-134

evaluating functions of 2-330

exponential 2-254

flipping left-right 2-282

flipping up-down 2-283

Hadamard 2-381, 2-753
Hankel 2-382

Hermitian Toeplitz 2-777

Hessenberg form of 2-391

Hilbert 2-395

identity 2-256

inverse 2-447

inverse Hilbert 2-450

inversion, accuracy of 2-132

involutary 2-576

left division (arithmetic operator) 2-4

lower triangular 2-781

magic squares 2-499, 2-754

maximum size of 2-130

modal 2-219

multiplication (defined) 2-3

orthonormal 2-626

Pascal 2-576, 2-609

permutation 2-488, 2-626

poorly conditioned 2-395

power (arithmetic operator) 2-4

pseudoinverse 2-591

reading files into 2-209

reduced row echelon form of 2-662

replicating 2-651

right division (arithmetic operator) 2-4

Rosser 2-354

rotating 90˚ 2-660

Schur form of 2-664, 2-673

singularity, test for 2-200

sorting rows of 2-690

sparse See sparse matrix
specialized 2-339

square root of 2-721

subspaces of 2-753

test 2-339

Toeplitz 2-777

trace of 2-203, 2-778

Index
transpose (arithmetic operator) 2-5

transposing 2-15

unimodular 2-361

unitary 2-756

upper triangular 2-782

Vandermonde 2-607

Wilkinson 2-699, 2-812

writing as binary data 2-332

writing formatted data to 2-321

writing to ASCII delimited file 2-210

writing to spreadsheet 2-814

See also array
matrix functions

evaluating 2-330

matrix names, (M1 through M12) generating a se-
quence of 2-245

matrix power See matrix, exponential
max 2-505
MDL-files

checking existence of 2-249

mean 2-506
median 2-507
median value of array elements 2-507

memory
clearing 2-121

minimizing use of 2-573

variables in 2-810

menu 2-508
menu (of user input choices) 2-508

meshgrid 2-509
message

error See error message
warning See warning message

methods
inheritance of 2-119

MEX-files
clearing from workspace 2-121

debugging on UNIX 2-163

listing for directory 2-804

M-file
debugging 2-460

displaying during execution 2-216

function 2-328

function file, echoing 2-216

naming conventions 2-328

pausing execution of 2-581

programming 2-328

script 2-328

script file, echoing 2-216

M-files
checking existence of 2-249

clearing from workspace 2-121

debugging with profile 2-614
deleting 2-199

editing 2-217

line numbers, listing 2-171

listing names of in a directory 2-804

locking (preventing clearing) 2-517

opening 2-563

optimizing 2-614

setting breakpoints 2-168

unlocking (allowing clearing) 2-520

min 2-514
minimizing, function

of one variable 2-286

of several variables 2-292

minimum degree ordering 2-762

minus (M-file function equivalent for -) 2-5

mislocked 2-515
mkdir 2-516
mldivide (M-file function equivalent for \) 2-5

mlock 2-517
mod 2-518
modal matrix 2-219
I-19

Index

I-20
models
opening 2-563

saving 2-669

modulo arithmetic 2-518

Moore-Penrose pseudoinverse 2-591

more 2-519, 2-521
mpower (M-file function equivalent for ^) 2-5

mrdivide (M-file function equivalent for /) 2-5

mtimes (M-file function equivalent for *) 2-5

mu-law encoded audio signals 2-469, 2-521

multidimensional arrays
concatenating 2-86

interpolation of 2-444

longest dimension of 2-468

number of dimensions of 2-528

rearranging dimensions of 2-451, 2-588

removing singleton dimensions of 2-724

reshaping 2-652

size of 2-687

sorting elements of 2-689

See also array
multiple

least common 2-465

multiplication
array (arithmetic operator) 2-4

matrix (defined) 2-3

of polynomials 2-136

multistep ODE solver 2-547

munlock 2-520

N
naming conventions

M-file 2-328

NaN 2-522
NaN (Not-a-Number) 2-453, 2-522

returned by rem 2-650
nargchk 2-523
nargin 2-524
nargout 2-524
ndgrid 2-527
ndims 2-528
nearest neighbor interpolation 2-373, 2-434, 2-437

Nelder-Mead simplex search 2-294

nextpow2 2-529
nnls 2-530
nnz 2-532
no derivative method 2-298

noncontiguous fields, inserting data into 2-332

nonzero entries
number of in sparse matrix 2-694

nonzero entries (in sparse matrix)
allocated storage for 2-540

number of 2-532

replacing with ones 2-707

vector of 2-533

nonzeros 2-533
norm

1-norm 2-534, 2-646

2-norm (estimate of) 2-535

F-norm 2-534

infinity 2-534

matrix 2-534

pseudoinverse and 2-591-2-593

vector 2-534

norm 2-534
normest 2-535
not (M-file function equivalent for ~) 2-12

now 2-536
null 2-537
null space 2-537

num2cell 2-538
num2str 2-539
number

Index
of array dimensions 2-528

numbers
complex 2-30, 2-397

finite 2-452

imaginary 2-404

largest positive 2-648

minus infinity 2-453

NaN 2-453, 2-522

plus infinity 2-422, 2-453

prime 2-454, 2-612

random 2-637, 2-639

real 2-454, 2-647

smallest positive 2-649

numeric precision
format reading binary data 2-317

format writing binary data 2-332

numerical differentiation formula ODE solvers
2-548

nzmax 2-540

O
object

determining class of 2-456

inheritance 2-119

object classes, list of predefined 2-119, 2-456

ODE See differential equation solvers
ode45 and other solvers 2-541
odefile 2-550
odeget 2-555
odeset 2-556
ones 2-562
one-step ODE solver 2-547

online documentation, displaying 2-387

online help 2-385

location of files for UNIX 2-213

open 2-563

opening files 2-300

openvar 2-565
operating system command, issuing 2-16

operators
arithmetic 2-3

logical 2-12

relational 2-10, 2-477

special characters 2-14

optimget 2-566

optimization parameters structure 2-566, 2-567

Optimization Toolbox 2-287, 2-293

optimizing M-file execution 2-614

optimset 2-567

logical OR
bit-wise 2-73

or (M-file function equivalent for |) 2-12

ordering
minimum degree 2-762

reverse Cuthill-McKee 2-762, 2-764

orth 2-571
orthogonal-triangular decomposition 2-484, 2-626

orthonormal matrix 2-626

otherwise 2-572
Out of memory (error message) 2-573

output
format of 2-305

number of M-file arguments 2-524

paging of 2-519

overdetermined equation systems, solving
2-627-2-628

overflow 2-422

P
pack 2-573
Padé approximation (of matrix exponential) 2-254

paging
I-21

Index

I-22
of screen 2-386

output in command window 2-519

parentheses (special characters) 2-15

Parlett’s method (of evaluating matrix functions)
2-330

partial fraction expansion 2-653

partialpath 2-575
pascal 2-576
Pascal matrix 2-576, 2-609

path
adding directories to 2-25

building from parts 2-327

cache 2-577

current 2-577

viewing 2-579

path 2-577
pathname

partial 2-575

pathnames
of functions or files 2-807

relative 2-575

pathtool 2-579
pause 2-581
pauses, removing 2-160

pausing M-file execution 2-581

pcg 2-582
pcode 2-586
percent sign (special characters) 2-16

period (.), to distinguish matrix and array opera-
tions 2-3

period (special characters) 2-15

perms 2-587
permutation

of array dimensions 2-588

matrix 2-488, 2-626

random 2-641

permutations of n elements 2-587
permute 2-588
persistent 2-589
persistent variable 2-589

P-files
checking existence of 2-249

phase, complex 2-30

correcting angles 2-789

pi 2-590
pi (π) 2-590, 2-644, 2-684

pinv 2-591
platform MATLAB is running on 2-130

plot

editing 2-594

Plot Editor
help for 2-595

plot, volumetric
generating grid arrays for 2-509

plotedit 2-594
plotting See visualizing
plus (M-file function equivalent for +) 2-5

PNG
parameters that can be set when saving 2-415

pol2cart 2-597
polar coordinates 2-82, 2-84, 2-597

poles of transfer function 2-653

poly 2-598
polyarea 2-601
polyder 2-602
polyeig 2-603
polyfit 2-604
polygon

area of 2-601

detecting points inside 2-428

polynomial
characteristic 2-598-2-599, 2-658

coefficients (transfer function) 2-653

curve fitting with 2-604

Index
derivative of 2-602

division 2-192

eigenvalue problem 2-603

evaluation 2-608

evaluation (matrix sense) 2-609

multiplication 2-136

polyval 2-608
polyvalm 2-609
poorly conditioned

eigenvalues 2-42

matrix 2-395

position indicator in file 2-325

pow2 2-611
power

matrix See matrix exponential
of two, next 2-529

power (M-file function equivalent for .^) 2-5

precision
reading binary data writing 2-317

writing binary data 2-332

prime factors 2-257

dependence of Fourier transform on 2-266

prime numbers 2-454, 2-612

primes 2-612
print frames 2-313

printframe 2-313
PrintFrame Editor 2-313

printing
borders 2-313

with print frames 2-315

printing, suppressing 2-16

prod 2-613
product

cumulative 2-150

Kronecker tensor 2-461

of array elements 2-613

of vectors (cross) 2-148

scalar (dot) 2-148

profile 2-614
profile report 2-617

profreport 2-617
K>> prompt 2-460

prompting users for input 2-429, 2-508

pseudoinverse 2-591

pwd 2-619

Q
qmr 2-622
qr 2-626
QR decomposition 2-484, 2-626

deleting a column from 2-629

inserting a column into 2-630

qrdelete 2-629
qrinsert 2-630
quad 2-634
quad8 2-634
quadrature 2-634

quit 2-620
quitting MATLAB 2-620

quotation mark
inserting in a string 2-311

qz 2-636
QZ factorization 2-603, 2-636

R
rand 2-637, 2-755
randn 2-423, 2-639
random

numbers 2-637, 2-639

permutation 2-641

sparse matrix 2-711, 2-712

symmetric sparse matrix 2-713
I-23

Index

I-24
randperm 2-641
range space 2-571

rank 2-642
rank of a matrix 2-642

rat 2-643
rational fraction approximation 2-643

rats 2-643
rcond 2-646
rdivide (M-file function equivalent for ./) 2-5

reading
binary files 2-316

data from files 2-771

formatted data from file 2-321

formatted data from strings 2-725

README file 2-806

real 2-647
real numbers 2-454, 2-647

real Schur form 2-673

realmax 2-648
realmin 2-649
rearranging arrays

converting to vector 2-17

removing first n singleton dimensions 2-682

removing singleton dimensions 2-724

reshaping 2-652

shifting dimensions 2-682

swapping dimensions 2-451, 2-588

rearranging matrices
converting to vector 2-17

flipping left-right 2-282

flipping up-down 2-283

rotating 90˚ 2-660

transposing 2-15

reduced row echelon form 2-662

regularly spaced vectors, creating 2-17, 2-470

relational operators 2-10, 2-477

relative accuracy
floating-point 2-238

rem 2-650
remainder after division 2-650

repeatedly executing statements 2-303, 2-809

replicating a matrix 2-651

repmat 2-651
reports

profile 2-617

reshape 2-652
residue 2-653
residues of transfer function 2-653

return 2-655
reverse Cuthill-McKee ordering 2-762, 2-764

rewinding files to beginning of 2-320

rmfield 2-656
rmpath 2-657
RMS See root-mean-square
root directory 2-504

root-mean-square
of vector 2-534

roots 2-658
roots of a polynomial 2-598-2-599, 2-658

Rosenbrock banana function 2-293, 2-297

Rosenbrock ODE solver 2-548

Rosser matrix 2-354

rot90 2-660
rotations

Givens 2-629, 2-630

Jacobi 2-713

round
to nearest integer 2-661

towards infinity 2-91

towards minus infinity 2-284

towards zero 2-280

round 2-661
roundoff error

characteristic polynomial and 2-599

Index
convolution theorem and 2-136

effect on eigenvalues 2-42

evaluating matrix functions 2-330

in inverse Hilbert matrix 2-450

partial fraction expansion and 2-654

polynomial roots and 2-658

sparse matrix conversion and 2-697

rref 2-662
rrefmovie 2-662
rsf2csf 2-664
Runge-Kutta ODE solvers 2-547

S
save 2-666
saveas 2-669
saveobj 2-672
saving

ASCII data 2-666

session to a file 2-204

workspace variables 2-666

scalar product (of vectors) 2-148

scaled complementary error function (defined)
2-239

scattered data, aligning
multi-dimensional 2-527

two-dimensional 2-373

Schmidt semi-normalized Legendre functions
2-466

Schur decomposition 2-673

matrix functions and 2-330

Schur form of matrix 2-664, 2-673

screen, paging 2-386

script 2-675

scrolling screen 2-386

search path
adding directories to 2-25

MATLAB’s 2-577, 2-785

modifying 2-579

removing directories from 2-657

viewing 2-579

search, string 2-279

sec 2-676
secant 2-676

secant, inverse 2-34

secant, inverse hyperbolic 2-34

sech 2-676
semicolon (special characters) 2-16

sequence of matrix names (M1 through M12)
generating 2-245

session
saving 2-204

set operations
difference 2-678

exclusive or 2-681

intersection 2-446

membership 2-457

union 2-787

unique 2-788

setdiff 2-678
setfield 2-679
setstr 2-680

setxor 2-681
shiftdim 2-682
sign 2-683
signum function 2-683

simplex search 2-298

Simpson’s rule, adaptive recursive 2-635

Simulink
printing diagram with frames 2-313

version number, displaying 2-795

sin 2-684
sine 2-684

sine, inverse 2-35
I-25

Index

I-26
sine, inverse hyperbolic 2-35

single 2-686
single quote (special characters) 2-15

singular value
decomposition 2-642, 2-756

largest 2-534

rank and 2-642

singularities
integrable 2-635

soft 2-635

sinh 2-684
size 2-687
size of array dimensions 2-687

size vector 2-652, 2-687

skipping bytes (during file I/O) 2-332

smallest array elements 2-514

soccer ball (example) 2-764

soft singularities 2-635

sort 2-689
sorting

array elements 2-689

complex conjugate pairs 2-146

matrix rows 2-690

sortrows 2-690
sound

converting vector into 2-691, 2-692

files
reading 2-40, 2-800

writing 2-41, 2-801

sound 2-691, 2-692
soundsc 2-692
spalloc 2-693
sparse 2-694
sparse matrix

allocating space for 2-693

applying function only to nonzero elements of
2-702
density of 2-532

diagonal 2-698

finding indices of nonzero elements of 2-277

identity 2-701

minimum degree ordering of 2-124

number of nonzero elements in 2-532, 2-694

permuting columns of 2-127

random 2-711, 2-712

random symmetric 2-713

replacing nonzero elements of with ones 2-707

results of mixed operations on 2-695

vector of nonzero elements 2-533

visualizing sparsity pattern of 2-719

sparse storage
criterion for using 2-326

spconvert 2-696
spdiags 2-698
speye 2-701
spfun 2-702
sph2cart 2-703
spherical coordinates 2-703

spline 2-704
spline interpolation (cubic) 2-434, 2-437, 2-441, 2-444

Spline Toolbox 2-436

spones 2-707
spparms 2-708
sprand 2-711
sprandn 2-712
sprandsym 2-713
spreadsheets

loading WK1 files 2-813

reading into a matrix 2-209

writing from matrix 2-814

writing matrices into 2-210

spy 2-719
sqrt 2-720
sqrtm 2-721

Index
square root
of a matrix 2-721

of array elements 2-720

squeeze 2-724
sscanf 2-725
stack, displaying 2-165

standard deviation 2-729

startup 2-728
startup file 2-502, 2-728

startup.m 2-728
Stateflow

printing diagram with frames 2-313

std 2-729
stopwatch timer 2-776

storage
allocated for nonzero entries (sparse) 2-540

sparse 2-694

str2cell 2-99
str2double 2-731
str2num 2-732
strcat 2-733
strcmp 2-735
strcmpi 2-738
string

comparing one to another 2-735

comparing the first n characters of two 2-742

converting from vector to 2-104

converting matrix into 2-501, 2-539

converting to lowercase 2-482

converting to numeric array 2-732

converting to uppercase 2-790

dictionary sort of 2-690

finding first token in 2-745

searching and replacing 2-744

searching for 2-279

string matrix to cell array conversion 2-99

strings

converting to matrix (formatted) 2-725

inserting a quotation mark in 2-311

writing data to 2-714

strings 2-739
strjust 2-740
strmatch 2-741
strncmp 2-742
strncmpi 2-743
strrep 2-744
strtok 2-745
struct2cell 2-747
structure array

field names of 2-271

getting contents of field of 2-363

remove field from 2-656

setting contents of a field of 2-679

strvcat 2-748
sub2ind 2-749
subfunction 2-328

subsasgn 2-750
subspace 2-753
subsref 2-752
subsref (M-file function equivalent for

A(i,j,k...)) 2-16

subtraction (arithmetic operator) 2-3

sum
cumulative 2-151

of array elements 2-754

sum 2-754
superiorto 2-755
svd 2-756
svds 2-758
switch 2-760
symmmd 2-762
symrcm 2-764
symvar 2-766
syntaxes
I-27

Index

I-28
of M-file functions, defining 2-328

system directory, temporary 2-769

T
table lookup See interpolation
tan 2-767
tangent 2-767

hyperbolic 2-767

tangent (four-quadrant), inverse 2-39

tangent, inverse 2-38

tangent, inverse hyperbolic 2-38

tanh 2-767
Taylor series (matrix exponential approximation)

2-254

tempdir 2-769
tempname 2-770
temporary

files 2-770

system directory 2-769

tensor, Kronecker product 2-461

terminating MATLAB 2-620

test matrices 2-339

test, logical See logical tests and detecting
text

editing 2-594

text mode for opened files 2-301

textread 2-771
tic 2-776
tiling (copies of a matrix) 2-651

time
CPU 2-147

elapsed (stopwatch timer) 2-776

required to execute commands 2-243

time and date functions 2-237

times (M-file function equivalent for .*) 2-5

toc 2-776
toeplitz 2-777
Toeplitz matrix 2-777

token See also string 2-745

tolerance, default 2-238

Toolbox
Optimization 2-287, 2-293

Spline 2-436

trace 2-778
trace of a matrix 2-203, 2-778

trailing blanks
removing 2-188

transform, Fourier
discrete, one-dimensional 2-263

discrete, two-dimensional 2-266

inverse, one-dimensional 2-400

inverse, two-dimensional 2-401

shifting the DC component of 2-268

transformation
elementary Hermite 2-361

left and right (QZ) 2-636

See also conversion
transpose

array (arithmetic operator) 2-5

matrix (arithmetic operator) 2-5

transpose (M-file function equivalent for .') 2-5

trapz 2-779
tricubic interpolation 2-373

tril 2-781
trilinear interpolation 2-373, 2-441, 2-444

triu 2-782
truth tables (for logical operations) 2-12

try 2-783
tsearch 2-784
type 2-785

Index
U
uint* 2-786
uint8 2-431, 2-786
uminus (M-file function equivalent for unary –)

2-5

unconstrained minimization 2-296

undefined numerical results 2-522

undocumented functionality 2-806

unimodular matrix 2-361

union 2-787
unique 2-788
unitary matrix (complex) 2-626

unlocking M-files 2-520

unwrap 2-789
uplus (M-file function equivalent for unary +) 2-5

upper triangular matrix 2-782

uppercase to lowercase 2-482

url

opening in Web browser 2-802

V
Vandermonde matrix 2-607

var 2-791
varargout 2-792
variable numbers of M-file arguments 2-792

variables
checking existence of 2-249

clearing from workspace 2-121

global 2-364

graphical representation of 2-816

in workspace 2-815

listing 2-810

local 2-328, 2-364

name of passed 2-430

opening 2-563, 2-565

persistent 2-589

retrieving from disk 2-471

saving to disk 2-666

sizes of 2-810

vector
dual 2-530

frequency 2-480

length of 2-468

product (cross) 2-148

vectorize 2-794
vectors, creating

logarithmically spaced 2-480

regularly spaced 2-17, 2-470

ver 2-795
version 2-796
version numbers

displaying 2-795

returned as strings 2-796

vertcat (M-file function equivalent for [;]) 2-16

visualizing
cell array structure 2-98

sparse matrices 2-719

voronoi 2-797

W
warning 2-799
warning message (enabling, suppressing, and dis-

playing) 2-799

.wav files
reading 2-800

writing 2-801

wavread 2-800
wavwrite 2-801
web 2-802
Web browser

displaying documentation in 2-212

displaying help in 2-387
I-29

Index

I-30
pointing to file or url 2-802
weekday 2-803
well conditioned 2-646

what 2-804
whatsnew 2-806
which 2-807
while 2-809
white space characters, ASCII 2-454, 2-745

who 2-810
whos 2-810
wilkinson 2-812
Wilkinson matrix 2-699, 2-812

WK1 files
loading 2-813

writing from matrix 2-814

wk1read 2-813
wk1write 2-814
workspace

changing context while debugging 2-162, 2-172

clearing items from 2-121

consolidating memory 2-573

predefining variables 2-728

saving 2-666

variables in 2-810

viewing contents of 2-815

workspace 2-815
writing

binary data to file 2-332

formatted data to file 2-307

X
Xdefaults file 2-217

logical XOR 2-817

bit-wise 2-76

xor 2-817
xyz coordinates See Cartesian coordinates
Z
zero of a function, finding 2-335

zero-padding
while converting hexadecimal numbers 2-394

zero-padding when reading binary files 2-316

zeros 2-818

	Command Summary
	General Purpose Commands
	Managing Commands and Functions
	Managing Variables and the Workspace
	Controlling the Command Window
	Working with Files and the Operating Environment
	Starting and Quitting MATLAB

	Operators and Special Characters
	Logical Functions
	Language Constructs and Debugging
	MATLAB as a Programming Language
	Control Flow
	Interactive Input
	Object-Oriented Programming
	Debugging

	Elementary Matrices and Matrix Manipulation
	Elementary Matrices and Arrays
	Special Variables and Constants
	Time and Dates
	Matrix Manipulation

	Specialized Matrices
	Elementary Math Functions
	Specialized Math Functions
	Coordinate System Conversion
	Matrix Functions - Numerical Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Functions
	Low Level Functions

	Data Analysis and Fourier Transform Functions
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms
	Vector Functions

	Polynomial and Interpolation Functions
	Polynomials
	Data Interpolation

	Function Functions – Nonlinear Numerical Methods
	Sparse Matrix Functions
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Nonzero Entries of Sparse Matrices
	Visualizing Sparse Matrices
	Reordering Algorithms
	Norm, Condition Number, and Rank
	Sparse Systems of Linear Equations
	Sparse Eigenvalues and Singular Values
	Miscellaneous

	Sound Processing Functions
	General Sound Functions
	SPARCstation-Specific Sound Functions
	.WAV Sound Functions

	Character String Functions
	General
	String Manipulation
	String to Number Conversion
	Radix Conversion

	Low-Level File I/O Functions
	File Opening and Closing
	Unformatted I/O
	Formatted I/O
	File Positioning
	String Conversion
	Specialized File I/O

	Bitwise Functions
	Structure Functions
	Object Functions
	Cell Array Functions
	Multidimensional Array Functions
	Plotting and Data Visualization
	Basic Plots and Graphs
	Three-Dimensional Plotting
	Plot Annotation and Grids
	Surface, Mesh, and Contour Plots
	Volume Visualization
	Domain Generation
	Specialized Plotting
	View Control
	Lighting
	Color Operations
	Colormaps
	Printing
	Handle Graphics, General
	Handle Graphics, Object Creation
	Handle Graphics, Figure Windows
	Handle Graphics, Axes
	Object Manipulation
	Interactive User Input
	Region of Interest

	Graphical User Interface Creation
	Dialog Boxes
	User Interface Objects
	Other Functions

	Reference
	Arithmetic Operators + - * / \ ^ '
	Relational Operators <��>�<=�� >=�== ~=
	Logical Operators & | ~
	Special Characters [] () {} = ' , ; % !
	Colon :
	abs
	acos, acosh
	acot, acoth
	acsc, acsch
	addpath
	airy
	all
	angle
	ans
	any
	asec, asech
	asin, asinh
	assignin
	atan, atanh
	atan2
	auread
	auwrite
	balance
	base2dec
	besselh
	besseli, besselk
	besselj, bessely
	beta, betainc, betaln
	bicg
	bicgstab
	bin2dec
	bitand
	bitcmp
	bitget
	bitmax
	bitor
	bitset
	bitshift
	bitxor
	blanks
	blkdiag
	break
	builtin
	calendar
	cart2pol
	cart2sph
	case
	cat
	catch
	cd
	cdf2rdf
	ceil
	cell
	cell2struct
	celldisp
	cellfun
	cellplot
	cellstr
	cgs
	char
	chol
	cholinc
	cholupdate
	class
	clc
	clear
	clock
	colmmd
	colperm
	compan
	complex
	computer
	cond
	condeig
	condest
	conj
	conv
	conv2
	convhull
	convn
	copyfile
	corrcoef
	cos, cosh
	cot, coth
	cov
	cplxpair
	cputime
	cross
	csc, csch
	cumprod
	cumsum
	cumtrapz
	date
	datenum
	datestr
	datevec
	dbclear
	dbcont
	dbdown
	dbmex
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	dblquad
	ddeadv
	ddeexec
	ddeinit
	ddepoke
	ddereq
	ddeterm
	ddeunadv
	deal
	deblank
	dec2base
	dec2bin
	dec2hex
	deconv
	del2
	delaunay
	delete
	det
	detrend
	diag
	diary
	diff
	dir
	disp
	dlmread
	dlmwrite
	dmperm
	doc
	docopt
	double
	dsearch
	echo
	edit
	eig
	eigs
	ellipj
	ellipke
	else
	elseif
	end
	eomday
	eps
	erf, erfc, erfcx, erfinv
	error
	errortrap
	etime
	eval
	evalc
	evalin
	exist
	exp
	expint
	expm
	eye
	factor
	factorial
	fclose
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fgetl
	fgets
	fieldnames
	fileparts
	filter
	filter2
	find
	findstr
	fix
	flipdim
	fliplr
	flipud
	floor
	flops
	fmin
	fminbnd
	fmins
	fminsearch
	fopen
	for
	format
	fprintf
	frameedit
	fread
	freqspace
	frewind
	fscanf
	fseek
	ftell
	full
	fullfile
	function
	funm
	fwrite
	fzero
	gallery
	 cauchy—Cauchy matrix
	chebspec—Chebyshev spectral differentiation matrix...
	chebvand—Vandermonde-like matrix for the Chebyshev...
	chow—Singular Toeplitz lower Hessenberg matrix
	circul—Circulant matrix
	clement—Tridiagonal matrix with zero diagonal entr...
	compar—Comparison matrices
	condex—Counter-examples to matrix condition number...
	 cycol—Matrix whose columns repeat cyclically
	dorr—Diagonally dominant, ill-conditioned, tridiag...
	dramadah—Matrix of zeros and ones whose inverse ha...
	fiedler—Symmetric matrix
	forsythe—Perturbed Jordan block
	frank—Matrix with ill-conditioned eigenvalues
	gearmat—Gear matrix
	grcar—Toeplitz matrix with sensitive eigenvalues
	hanowa—Matrix whose eigenvalues lie on a vertical ...
	house—Householder matrix
	invhess—Inverse of an upper Hessenberg matrix
	invol—Involutory matrix
	ipjfact—Hankel matrix with factorial elements
	jordbloc—Jordan block
	kahan—Upper trapezoidal matrix
	kms—Kac-Murdock-Szego Toeplitz matrix
	krylov—Krylov matrix
	lauchli—Rectangular matrix
	lehmer—Symmetric positive definite matrix
	lesp—Tridiagonal matrix with real, sensitive eigen...
	lotkin—Lotkin matrix
	minij—Symmetric positive definite matrix
	moler—Symmetric positive definite matrix
	neumann—Singular matrix from the discrete Neumann ...
	orthog—Orthogonal and nearly orthogonal matrices
	parter—Toeplitz matrix with singular values near p...
	pei—Pei matrix
	poisson—Block tridiagonal matrix from Poisson's eq...
	prolate—Symmetric, ill-conditioned Toeplitz matrix...
	randhess—Random, orthogonal upper Hessenberg matri...
	rando—Random matrix composed of elements –1, 0 or ...
	 randsvd—Random matrix with preassigned singular v...
	redheff—Redheffer’s matrix of 1s and 0s
	riemann—Matrix associated with the Riemann hypothe...
	ris—Symmetric Hankel matrix
	rosser—Classic symmetric eigenvalue test matrix
	 smoke—Complex matrix with a 'smoke ring' pseudosp...
	toeppd—Symmetric positive definite Toeplitz matrix...
	toeppen—Pentadiagonal Toeplitz matrix (sparse)
	tridiag—Tridiagonal matrix (sparse)
	triw—Upper triangular matrix discussed by Wilkinso...
	vander—Vandermonde matrix
	wathen—Finite element matrix (sparse, random entri...
	 wilk—Various matrices devised or discussed by Wil...

	gamma, gammainc, gammaln
	gcd
	getfield
	global
	gmres
	gradient
	griddata
	gsvd
	hadamard
	hankel
	hdf
	help
	helpdesk
	helpwin
	hess
	hex2dec
	hex2num
	hilb
	home
	i
	if
	ifft
	ifft2
	ifftn
	ifftshift
	imag
	imfinfo
	imread
	imwrite
	ind2sub
	Inf
	inferiorto
	inline
	inmem
	inpolygon
	input
	inputname
	int8, int16, int32
	int2str
	interp1
	interp2
	interp3
	interpft
	interpn
	intersect
	inv
	invhilb
	ipermute
	is*
	isa
	ismember
	isstr
	j
	keyboard
	kron
	lasterr
	lastwarn
	lcm
	legendre
	length
	lin2mu
	linspace
	load
	loadobj
	log
	log2
	log10
	logical
	logm
	logspace
	lookfor
	lower
	ls
	lscov
	lsqnonneg
	lu
	luinc
	magic
	mat2str
	matlabrc
	matlabroot
	max
	mean
	median
	menu
	meshgrid
	methods
	mexext
	mfilename
	min
	mislocked
	mkdir
	mlock
	mod
	more
	munlock
	mu2lin
	NaN
	nargchk
	nargin, nargout
	nchoosek
	ndgrid
	ndims
	nextpow2
	nnls
	nnz
	nonzeros
	norm
	normest
	now
	null
	num2cell
	num2str
	nzmax
	ode45, ode23, ode113, ode15s, ode23s, ode23t, ode2...
	odefile
	odeget
	odeset
	ones
	open
	openvar
	optimget
	optimset
	orth
	otherwise
	pack
	partialpath
	pascal
	path
	pathtool
	pause
	pcg
	pcode
	perms
	permute
	persistent
	pi
	pinv
	plotedit
	pol2cart
	poly
	polyarea
	polyder
	polyeig
	polyfit
	polyval
	polyvalm
	pow2
	primes
	prod
	profile
	profreport
	pwd
	quit
	qmr
	qr
	qrdelete
	qrinsert
	qrupdate
	quad, quad8
	qz
	rand
	randn
	randperm
	rank
	rat, rats
	rcond
	real
	realmax
	realmin
	rem
	repmat
	reshape
	residue
	return
	rmfield
	rmpath
	roots
	rot90
	round
	rref, rrefmovie
	rsf2csf
	save
	saveas
	saveobj
	schur
	script
	sec, sech
	setdiff
	setfield
	setstr
	setxor
	shiftdim
	sign
	sin, sinh
	single
	size
	sort
	sortrows
	sound
	soundsc
	spalloc
	sparse
	spconvert
	spdiags
	speye
	spfun
	sph2cart
	spline
	spones
	spparms
	sprand
	sprandn
	sprandsym
	sprintf
	spy
	sqrt
	sqrtm
	squeeze
	sscanf
	startup
	std
	str2double
	str2num
	strcat
	strcmp
	strcmpi
	strings
	strjust
	strmatch
	strncmp
	strncmpi
	strrep
	strtok
	struct
	struct2cell
	strvcat
	sub2ind
	subsasgn
	subsindex
	subsref
	subspace
	sum
	superiorto
	svd
	svds
	switch
	symmmd
	symrcm
	symvar
	tan, tanh
	tempdir
	tempname
	textread
	tic, toc
	toeplitz
	trace
	trapz
	tril
	triu
	try
	tsearch
	type
	uint8, uint16, uint32
	union
	unique
	unwrap
	upper
	var
	varargin, varargout
	vectorize
	ver
	version
	voronoi
	warning
	wavread
	wavwrite
	web
	weekday
	what
	whatsnew
	which
	while
	who, whos
	wilkinson
	wk1read
	wk1write
	workspace
	xor
	zeros

	List of Commands
	Index

