| ATLAS |    |     |  |
|-------|----|-----|--|
|       |    |     |  |
|       | 00 | 000 |  |
|       |    |     |  |
|       |    |     |  |

### Soutenance du stage de pré-thèse

Les évènements top en multileptons - avec un J/y dans l'état final - dans l'expérience ATLAS

### Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

19 Juin 2009

### Laboratoire de Physique Nucléaire et des Hautes Energies responsable : Frédéric Derue

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Sommaire | ATLAS |              |                |  |
|----------|-------|--------------|----------------|--|
|          |       | 0<br>00<br>0 | 0<br>000<br>00 |  |

### 1 ATLAS

- Le LHC
- Objectifs
- Le détecteur

### 2 Le quark top

- Intérêt
- Production et désintégration
- Event display

### 3 Identification des objets

- Différents types d'objets
- Identification des électrons
- Identification des jets
- 4 Sélection d'évènements top
  - Topologie des évènements étudiés
  - Mise en œuvre de la sélection
  - Résultats

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

• • = • • =

|        | ATLAS  |              |                |  |
|--------|--------|--------------|----------------|--|
|        | 0<br>0 | 0<br>00<br>0 | 0<br>000<br>00 |  |
| Le LHC |        |              |                |  |

Le LHC

**CERN** Accelerator Complex



AD Antiproton Decelerator CTF3 Clic Test Facility CNSS Cern Neutrinos to Gran Sesso ISOLDE Isotope Separator OnLine Device LEIR Low Energy Ion Ring UNAC LINear ACcelerator n-ToF Neutrons Time Of Right

- Large Hadron Collider : collisionneur proton-proton de 27km de circonférence situé au CERN, à Genève
- quatre principaux détecteurs : ATLAS, CMS, LHCb et ALICE

イロト イポト イヨト イヨト

Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

|           | ATLAS<br>O<br>O | Identification des objets<br>O<br>OO<br>O | Sélection d'évènements top<br>O<br>OOO<br>OO |  |
|-----------|-----------------|-------------------------------------------|----------------------------------------------|--|
| Objectifs |                 |                                           |                                              |  |
| Object    | ifs             |                                           |                                              |  |

- permettra d'accéder à l'échelle du TeV avec  $\sqrt{s} = 14 TeV$ ,  $L = 10^{34} cm^2 s^{-1}$
- permettra de confirmer l'existence du boson de Higgs et d'apporter un éclairage sur la physique au delà du modèle standard
- démarage à l'automne 2009 à  $\sqrt{s} = 10 \text{ TeV}, L = 10^{31} \text{ cm}^2 \text{s}^{-1}$ , essentiellement pour des mesures sur le modèle standard

| Accélérateur           | $\sqrt{s}$      | Luminosité                                             |
|------------------------|-----------------|--------------------------------------------------------|
| Tevatron (Run II)      | 1,96 <i>TeV</i> | 2,86.10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| LHC (démarage)         | 10 <i>TeV</i>   | 10 <sup>31</sup> cm <sup>-2</sup> s <sup>-1</sup>      |
| LHC (basse luminosité) | 14 <i>TeV</i>   | 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup>      |
| LHC (haute luminosité) | 14 <i>TeV</i>   | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup>      |

伺 ト イ ヨ ト イ ヨ ト

| Sommaire ATLAS |              |                |  |
|----------------|--------------|----------------|--|
| 0<br>0<br>•    | 0<br>00<br>0 | 0<br>000<br>00 |  |

Le détecteur

### Le multi-détecteur ATLAS



Schéma du détecteur ATLAS

- A Toroïdal LHC ApparatuS
- 46m x 25n x 25m, 7000 t
- structure cylindrique autour de l'axe des faisceaux
- le LPNHE a participé à la construction du calorimètre électromagnétique

Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

(日) (同) (日) (日)

| ATLAS | Le quark top |    |     |  |
|-------|--------------|----|-----|--|
|       | •            |    |     |  |
|       |              | 00 | 000 |  |
|       |              |    | 00  |  |
|       |              |    |     |  |

### Le quark top et le modèle standard



Correlation entre la masse du boson de Higgs et celle du top et du W.

le top est la particule la plus massive découverte à ce jour : m<sub>t</sub> = 172,4±1,2GeV

- il intervient de manière prépondérante dans les corrections radiatives de la masse du boson de Higgs
- elle pourrait être la seule particule plus massive que le boson de Higgs
- $m_t$  est sensiblement égal á la valeur moyenne dans le vide du champ de Higgs  $v/\sqrt{2} \simeq 174 GeV$
- le top joue un rôle particulier dans de nombreux modèles au delà du modèle standard

|                   | ATLAS       | Le quark top |    |     |  |
|-------------------|-------------|--------------|----|-----|--|
|                   |             |              |    |     |  |
|                   |             | •            | 00 | 000 |  |
|                   |             |              |    |     |  |
| Production et dés | intégration |              |    |     |  |

### Production et désintégration

- le top est essentiellement produit par paires par interaction forte
- on attend au LHC environ 80 millions de paires par an à la luminosité nominale, 80 000 la première année
- I il se désintègre par interaction faible :  $t \rightarrow Wb$  à plus de 99%
- plusieurs topologies de l'état final sont possibles : hadronique (44%), semileptonique (44%) et dileptonique (12% dont 0.05% avec un J/ψ)



Modes de production de paires tī : par fusion de quark (en haut à gauche) et par fusion de gluons (90% des paires produites au LHC).



Désintégration semileptonique d'une paire tt.

医子宫医子宫

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

| ATLAS | Le quark top |    |     |  |
|-------|--------------|----|-----|--|
|       |              |    |     |  |
|       |              | 00 | 000 |  |
|       | •            |    |     |  |
|       |              |    |     |  |

#### Event display

### Exemple d'évènement top



Event display d'un évènement tī

- on représente le détecteur ATLAS en coupe transversale
- il s'agit d'un évènement tt ; l'un des W donne un électron, l'autre donne un muon
- on distingue les deux jets de b (dépots dans les calorimètres), le muon (trace dans le détecteur interne et les spectromètres à muons) et l'électron (trace dans le détecteur interne et gerbe électromagnétique)

周 トイラトイラ

|                                | ATLAS | Identification des objets |     |  |
|--------------------------------|-------|---------------------------|-----|--|
|                                |       | •                         |     |  |
|                                |       | 00                        | 000 |  |
|                                |       |                           |     |  |
| Difference to the second shall |       |                           |     |  |

Différents types d'objets

## Différents types d'objets



Distribution d'énergie transverse pour des électrons de W (en grisé) et de J/ $\psi$ .



Distribution d'impulsion transverse pour des muons.



Distribution d'énergie transverse pour des jets de B (en grisé) et pour des jets légers.



Distribution d'énergie transverse manquante.

### Timothée Theveneaux-Pelzer

Soutenance du stage de pré-thèse

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

|                              | ATLAS |  | Identification des objets |     |  |  |  |
|------------------------------|-------|--|---------------------------|-----|--|--|--|
|                              |       |  |                           |     |  |  |  |
|                              |       |  | 00                        | 000 |  |  |  |
|                              |       |  |                           |     |  |  |  |
| Identification des électrons |       |  |                           |     |  |  |  |

### Variables de discrimination pour les électrons



- on utilise de nombreuses variables pour distinguer les électrons des jets
- le profil de ces variable change selon le type d'électron (électron de W ou électron de b, "mou")

Fuite hadronique pour des électrons de W (a) et de b (b) et largeur de la gerbe pour des électrons de W (c) et de b (d) ; les distributions pour les électrons sont en grisé. □ ▶ ⊲ ♂ ▶

Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

|                    | ATLAS     | Identification des objets |     |  |
|--------------------|-----------|---------------------------|-----|--|
|                    |           |                           |     |  |
|                    |           | 00                        | 000 |  |
|                    |           |                           |     |  |
| Identification des | électrons |                           |     |  |

## Efficacité d'identification des électrons



Efficacité de différentes sélections d'électrons en fonction de leur énergie, pour des électrons de W.

- on utilise des coupures sur ces nombreuses variables pour identifier les électrons
- on peut également les combiner entre elles pour calculer un rapport de fonctions de vraissemblance (optimisation pour les électrons non isolés)

|                                    | électrons de W |        | électrons de J/Psi |        |
|------------------------------------|----------------|--------|--------------------|--------|
| Selection                          | efficacité     | pureté | efficacité         | pureté |
| Loose (calorimètre)                | 78%            | 65%    | 51%                | 49%    |
| Tight isolés (calorimètre+tracker) | 66%            | 92%    | 20%                | 95%    |
| Tight non isolés                   | 66%            | 92%    | 30%                | 95%    |
| vraissemblance (non isolés)        | 68%            | 75%    | 52%                | 86%    |

|                         | ATLAS | Identification des objets |     |  |
|-------------------------|-------|---------------------------|-----|--|
|                         |       |                           |     |  |
|                         |       | 00                        | 000 |  |
|                         |       | •                         |     |  |
| Identification des iste |       |                           |     |  |

### Identification des jets de b

- les jets de b sont associés à un vertex secondaire, à cause de la longue durée de vie des mésons B
- il existe une variable standard permettant d'identifier les jets de b en utilisant cette particularité (efficacité de 50% environ)



Timothée Theveneaux-Pelzer Soutenance du stage de pré-thèse Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

|                   | ATLAS           |    | Sélection d'évènements top |  |
|-------------------|-----------------|----|----------------------------|--|
|                   |                 |    | •                          |  |
|                   |                 | 00 | 000                        |  |
|                   |                 |    |                            |  |
| Topologia das ávé | nomente átudiáe |    |                            |  |

## Topologie des évènements étudiés

- dans un premier temps on a étudié un lot tt contenant 450 000 évènements avec toutes les topologies possibles
- on a par la suite mis en œuvre une sélection d'évènements top avec un J/ψ dans l'état final sur un lot contenant des évènements tt où l'un des W donne deux jets, l'autre un muon et un neutrino ; l'un des b donne un J/ψ qui se désintègre en deux électrons
- le rapport d'embranchement est très faible (5,5.10<sup>-4</sup>), néanmoins il est possible de mesurer la masse du top grâce à ce canal; la masse du top est corrélée à la mase invariante du système de 3 leptons
- c'est aussi une introduction aux électrons non isolés les J/y seront produits de manière directe en grand nombre - et au b-tagging

A (1) > A (1) > A (1)

|                  | ATLAS        |    | Sélection d'évènements top |  |
|------------------|--------------|----|----------------------------|--|
|                  |              |    |                            |  |
|                  |              | 00 | 000                        |  |
|                  |              |    |                            |  |
| Mise en œuvre de | la sélection |    |                            |  |

## Sélection



Graphe de Feynmann d'un évènement tī semileptonique où l'un des jets de b donne un J/ $\psi$ .

- on ne garde que les évènement ayant au moins 20 GeV d'énergie transverse manquante
- on ne garde que les muons reconstruits d'impulsion transverse supérieure à 20 GeV
- les jets de b sont identifiés grâce à la coupure sur la variable de b-tagging

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

Timothée Theveneaux-Pelzer

|                          | ATLAS          |    | Sélection d'évènements top |  |
|--------------------------|----------------|----|----------------------------|--|
|                          |                |    |                            |  |
|                          |                | 00 | 000                        |  |
|                          |                |    |                            |  |
| Address and account of a | In a flandland |    |                            |  |

Mise en œuvre de la sélection

## Sélection des électrons



Spectre de masse invariante pour toutes les paires d'électrons reconstruits, en grisé pour les électrons loose, en clair pour les électrons identifiés avec le poids.

- les électrons pré-sélectionnés sont loose
  sélection standard la moins sévère : environ 50% d'efficacité
- on a quelques candidats par évènement ;
  on calcule la masse invariante des paires délectrons reconstruits et on garde la paire dont la masse invariante est dans une fenêtre autour de la masse du J/ψ
- l'efficacité de reconstruction des J/ψ est d'environ 27 %; on gagne en pureté avec le poids par rapport à la sélection loose (99% contre 76%)

|                  | ATLAS        |    | Sélection d'évènements top |  |
|------------------|--------------|----|----------------------------|--|
|                  |              |    |                            |  |
|                  |              | 00 | 000                        |  |
|                  |              |    |                            |  |
| Mise en œuvre de | la célection |    |                            |  |

# Sélection des jets



Spectre de masse invariante pour toutes les paires de jets légers reconstruits.

- on regarde tous les candidats jets reconstruits par l'algorithme standard
- ceux qui ne passent pas la coupure de la variable de b-tagging sont considérés comme jets légers
- on a une efficacité d'environ 50% pour un jet de b, soit 25% pour deux jets de b
- on garde la paire de jets légers dont la masse invariante est dans une fenêtre autour de la masse du W

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

b) A (E) b.

|           | ATLAS<br>O<br>O<br>O | Identification des objets<br>O<br>OO<br>O | Sélection d'évènements top<br>○<br>○○○<br>●○ |  |
|-----------|----------------------|-------------------------------------------|----------------------------------------------|--|
| Résultats |                      |                                           |                                              |  |
| Résult    | ats(1)               |                                           |                                              |  |

- La masse invariante du système de trois jets permet de mesurer la masse du top
- l'efficacité totale de sélection des évènement est de l'ordre de 1%; la pureté de l'ordre de 20% pour une sélection loose sur les électrons, et de 31% avec le poids
- on attend environ 4500 évènements de ce type pour 10*fb*<sup>-1</sup> de données - soit une année de fonctionnement à haute luminosité



Masse invariante des combinaisons de 3 jets. On n'a pas appliqué de sélection. On devine le pic du top.

|           | ATLAS<br>O<br>O<br>O | Identification des objets<br>O<br>OO<br>O | Sélection d'évènements top<br>○<br>○○○<br>○● |  |
|-----------|----------------------|-------------------------------------------|----------------------------------------------|--|
| Résultats |                      |                                           |                                              |  |
| Résult    | ats(2)               |                                           |                                              |  |

- on peut montrer que la masse du top est correllée à la masse invariante du système de 3 leptons (J/ψ-μ)
- l'efficacité est de l'orde de 18%, avec une pureté de 73% pour des électrons loose, et 99% avec la vraissemblance
- on n'a pas étudié en détail les différents bruits de fond (mauvais appariment des jets et des leptons, QCD, production directe de J/ψ...)



Masse invariante des combinaisons de 3 leptons (sélection loose). La masse du système J/ψ-μ est corrélée à celle du top.

**N A E N A** 

|  | ATLAS |              |                | Conclusion |
|--|-------|--------------|----------------|------------|
|  |       | 0<br>00<br>0 | 0<br>000<br>00 |            |

## Conclusion

- ce stage m'a permis d'avoir un premier contact avec le travail de recherche sur ATLAS
- une certaine part de travail bibliographique fut nécéssaire à la compréhension du sujet et des outils
- ce stage fut l'occasion de comprendre le fonctionnement du calorimètre électromagnétique sur lequel je devrais travailler pendant la thèse; on s'est attardé sur l'identification des électrons (variables de discrimination, efficacité des différentes sélections)
- l'étude des évènements tt avec un J/ψ a permis d'aborder diverses techniques de sélection (jets de b et électrons non isolés)
- 4 jours de conférence au CERN m'ont permis d'apréhender la complexité du sujet
- le sujet de thèse est "Mesure de la section efficace de production de paires de quarks top dans les canaux multileptons dans l'expérience ATLAS"

| ATLAS |         |          |  |
|-------|---------|----------|--|
|       | 0<br>00 | 0<br>000 |  |
|       |         |          |  |

### Remerciements

- Frédéric Derue, mon responsable de stage et futur directeur de thèse
- Philippe Schwemling, chef du groupe ATLAS
- Didier Lacour pour ses explications sur le fonctionnement du calorimètre électromagnétique
- Sandro de Cecco pour ses présentations, notamment sur la reconstruction des jets
- Lydia Roos pour son soutien au début du stage
- les différents membres du personnel technique et administratif

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| 000<br>000 |  |
|------------|--|



Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

-2

| ATLAS |    |     |  |
|-------|----|-----|--|
|       |    |     |  |
|       | 00 | 000 |  |
|       |    | 00  |  |
|       |    |     |  |



Timothée Theveneaux-Pelzer

Master 2 Noyaux, Particules, Astroparticules et Cosmologie - Université Pierre et Marie Curie

< □ > < 同 > < 三 > < 三