a from $B \rightarrow \rho \pi$ Decays

A Working Example of Time Dependent Three Body Analysis

Jinwei Wu Harvard University

Charmless Workshop, Feb 1st, 2006

Mixing induced CPV in Charmless B Decay

• Decay-amplitude weak-phase structure for $b \rightarrow u \overline{u} d$:

 $A \cong V_{ud}V_{ub}^* \left(T^u + P^u - P^c\right) + V_{td}V_{tb}^* \left(P^t - P^c\right) = V_{ud}V_{ub}^*T + V_{td}V_{tb}^*P = R_u e^{+i\gamma}T + R_t e^{-i\beta}P$

$$\lambda_{CP} = \frac{q}{p} \frac{\overline{A}}{A} \cong \frac{R_u e^{+i\alpha}}{R_u e^{-i\alpha}} \frac{T + R_t P}{T + R_t P} = e^{2i\alpha_{eff}}$$

• Time dependent asymmetry probes $\alpha_{\text{eff:}}$

$$a(t) = \frac{\Gamma\left(\overline{B}_{phys}^{0}\left(t\right) \to f_{CP}\right) - \Gamma\left(B_{phys}^{0}\left(t\right) \to f_{CP}\right)}{\Gamma\left(\overline{B}_{phys}^{0}\left(t\right) \to f_{CP}\right) + \Gamma\left(B_{phys}^{0}\left(t\right) \to f_{CP}\right)}$$
$$= \sqrt{1 - C^{2}}\sin\left(2\alpha_{eff}\right)\sin\left(\Delta m\Delta t\right) + C\cos\left(\Delta m\Delta t\right)$$

$B^0 \rightarrow \rho^{\pm} \pi^{\mp}$ Decay Amplitudes

Transition Amplitudes:

$$A(B^{0} \to \rho^{+} \pi^{-}) \equiv A^{+-} = T^{+-} e^{-i\alpha} + P^{+-}$$
$$A(B^{0} \to \rho^{-} \pi^{+}) \equiv A^{-+} = T^{-+} e^{-i\alpha} + P^{-+}$$

$$A\left(\overline{B}^{0} \to \rho^{+} \pi^{-}\right) \equiv \overline{A}^{+-} = T^{-+} e^{+i\alpha} + P^{-+}$$
$$A\left(\overline{B}^{0} \to \rho^{-} \pi^{+}\right) \equiv \overline{A}^{-+} = T^{+-} e^{+i\alpha} + P^{+-}$$

Nine unknowns:

$$T^{+-}, T^{-+}, P^{+-}, P^{-+}, \alpha$$

* Taking into account $\rho^0 \pi^0$ adds two more unknowns, assuming SU(2)

Quasi-two-body Analysis

- Quasi-two-body approximation, ignore interference effect
- <u>6 observables</u> through a time-dependent fit:

$$f(\Delta t, Q_{\rho}, Q_{tag}) = (1 + Q_{\rho}A_{CP})\frac{e^{-|\Delta t|/\tau}}{4\tau}$$

$$\left[1 + Q_{tag}\left(\left(S + Q_{\rho}\Delta S\right)\sin\left(\Delta m_{d}\Delta t\right) - \left(C + Q_{\rho}\Delta C\right)\cos\left(\Delta m_{d}\Delta t\right)\right)\right]$$

A _{CP}	Direct CPV
С	Direct CPV
ΔC	Dilution
S	Mixing-induced CPV
ΔS	Strong phase difference

$$Penguin free scenarioA_{CP} = 0 C = 0S_{\rho\pi} = \frac{2r_{T^{+-}}}{1 + r_{T^{+-}}^2} \sin 2\alpha \cos \delta$$
$$\Delta S_{\rho\pi} = \frac{2r_{T^{+-}}}{1 + r_{T^{+-}}^2} \cos 2\alpha \sin \delta \quad \Delta C_{\rho\pi} = \frac{1 - r_{T^{+-}}^2}{1 + r_{T^{+-}}^2}$$

$$\delta \equiv \arg(A^{-+}A^{+-*}), r_T \equiv \left|\frac{T^{+-}}{T^{-+}}\right|$$

Alternative Approach

- $\hfill\square$ Difficult to extract α with the isospin analysis
- □ Sensitive to the branching fractions
- □ Need to solve high order algebraic equations

Snyder-Quinn Method

$B^0 \rightarrow \pi^+ \pi^- \pi^0$: Snyder-Quinn Method

Conceptually, it's pretty simple, one measure 11 amplitudes and phases, then solve for 11 known including α

Main Model Assumptions

 The strong phase difference between the ρ(770) and its radial excitations are independent of the charge of the resonances

Tested to very good accuracy in $\tau \rightarrow \pi^+ \pi^0 \nu$ and $e^+e^- \rightarrow \pi^+ \pi^-$ data

The ratio *P*/*T* is the same for the ground state and the radial excitations of the *ρ*

True in naive factorization. Same assumptions go into isospin analysis

Assumptions theoretically motivated and necessary to limit the fit parameters

• Hypothesis tested and validated in data (+ systematics study)

Fitting Strategy

- Directly fitting for amplitudes and phases suffers from mirror solutions and local minima with limited statistics.
- Alternative fit approach:
 - \Rightarrow expand $A_{3\pi}$ as sum of Breit-Wigner bilinears
 - \Rightarrow fit the coefficients of Breit-Wigner bilinears

$$\begin{aligned} \left|A_{3\pi}\right|^{2} \pm \left|\overline{A}_{3\pi}\right|^{2} &= \sum_{\kappa \in \{+,0,-\}} \left|f_{\kappa}\right|^{2} \boldsymbol{U}_{\kappa}^{\pm} + 2 \sum_{\sigma < \kappa \in \{+,0,-\}} \left(\operatorname{Re}\left[f_{\kappa}f_{\sigma}^{*}\right]\boldsymbol{U}_{\kappa}^{\pm} - \operatorname{Im}\left[f_{\kappa}f_{\sigma}^{*}\right]\boldsymbol{U}_{\kappa\sigma}^{\pm,\operatorname{Im}}\right) \\ &\operatorname{Im}\left(\overline{A}_{3\pi}A_{3\pi}^{*}\right) = \sum_{\kappa \in \{+,0,-\}} \left|f_{\kappa}\right|^{2} \boldsymbol{I}_{\kappa} + \sum_{\sigma < \kappa \in \{+,0,-\}} \left(\operatorname{Re}\left[f_{\kappa}f_{\sigma}^{*}\right]\boldsymbol{I}_{\kappa\sigma}^{\operatorname{Im}} + \operatorname{Im}\left[f_{\kappa}f_{\sigma}^{*}\right]\boldsymbol{I}_{\kappa\sigma}^{\operatorname{Re}}\right) \end{aligned}$$

- Instead of 11 unknowns, one now gets 27 *interdependent* observables. we can safely fit 16 of them if $\rho^0 \pi^0$ is small.
- Extract physics parameters using *U*s and *I*s fit results, such as quasitwo-body *CP* parameters, $\rho^0 \pi^0$ branching fraction, α scan, ...

Analysis Overview

- Why is this analysis so difficult?
 - 1. Rare B decays with branching fraction 2x10⁻⁵ and tagging effectively reducing the efficiency by a factor of two
 - 2. ~80% of the sample are continuum events even after rather tight preselection criteria
 - 3. Three body B decays with neutral particles in the final states, suffer large cross-feed from other B decays
 - 4. B dalitz plots are difficult to model
 - 5. Significant amount of signal events are mis-reconstructed and create dilution in CP measurement and bad "resolution" on the dalitz plot
 - 6. Signal efficiency drops to zero in the corners of the dalitz plot which are the place where the interference is expected to happen
 - 7. Many variables (both kinematic and event shape) are correlated to the dalitz plot which makes the maximum likelihood fit difficult

8.

Selection

- \Box Tight selection: 5.272 < $m_{\rm ES}$ < 5.288 GeV/c² , –1 < ΔE < 1
- □ Remove uninteresting regions of the dalitz plot: $m(\pi^+\pi^-) > 0.53 \text{ GeV}/c^2, m(\pi\pi) < 1.5 \text{ GeV}/c^2$

^{*} Signals are separated into truth matched signal and mis-reconstructed signal (SCF)

Extended Maximum Likelihood Fit

For signal events:

Category (c)	Lepton	KPiorK	KorPl	Inclusive	UnTagged
Efficiency(%) ($ ho\pi$), ϵ_{c}	1.9	3.3	3.9	4.0	6.9
Mis-tag rate (%)	3.8	9.3	19.6	31.4	50.0
f _{SCF} (%) (ρπ)	14.1	19.9	23.8	22.4	24.2

Each event is classified in one of five categories (c=5) and tested for the four hypotheses* (j=4) in the likelihood:

$$L = \prod_{c=1}^{5} e^{-N_{c}'} \prod_{i=1}^{N_{c}} \left(N_{\mathrm{S}} \varepsilon_{c} \left(1 - f_{\mathrm{SCF},c} \right) \mathsf{P}_{\mathrm{S},c}^{\mathrm{TM}} + N_{\mathrm{S}} \varepsilon_{c} f_{\mathrm{SCF},c} \mathsf{P}_{\mathrm{S},c}^{\mathrm{SCF}} + N_{q\bar{q}} \mathsf{P}_{q\bar{q},c} + \sum_{j=1}^{N_{class}} N_{B,j} \varepsilon_{B,c} \mathsf{P}_{B,c} \right) \left(\overrightarrow{x_{i}} \right)$$

where:
$$\vec{x}_i = (m_{\text{ES}}, \Delta E, xNN, Btag, \Delta t, DP)$$

* Truth matched signal, mis-reconstructed signal, continuum events, and events from other B decay

The Square Dalitz Plot

The Signal Dalitz Plot Treatment

Systematic Uncertainties

- Δm , τ_B : within the uncertainties on the world average
- Signal PDF parameters: within statistical uncertainties
- Average SCF fractions: by 25% from $B \rightarrow D\rho$ control sample
- Tagging eff., dilutions, biases: within stat. Uncertainties
- Contribution from non-resonance: by adding MC in data
- *B* background tagging parameters, Δt resolution parameters
- Continuum DP extrapolation from m_{ES} sideband: from data
- Continuum DP parameterization: adding protection classes
- B background yields, CP parameters: allowed ranges
- Floating 16 UsIs instead of 27: from toy study
- ρ masses and widths: *doubled* uncertainties from e^+e^- and τ fits
- $\rho(1450)$ amplitude and phase: 0, free in the fit
- $\rho(1700)$ amplitude and phase: toy plus data fit
- Fit bias from fitting on fully simulated MC samples

Statistical errors dominant

Dalitz Plot Analysis: Fit Projection plots

16

Dalitz Plot Analysis: Direct Fit Results

TT .		4 4 9 9 4 9 9 9 9	C. Lh
U_+	Coeff. of $ f(\rho^2) ^2$	$1.19 \pm 0.12 \pm 0.03$	
I.	Coeff. of $ f(\rho^2) ^2 \sin(\Delta m \Delta t)$	$-0.19 \pm 0.11 \pm 0.02$	2
I ₊	Coeff. of $ f(\rho^+) ^2 \sin(\Delta m \Delta t)$	$0.06 \pm 0.11 \pm 0.02$	Q2B
U_	Coeff. of $ f(\rho^{-}) ^2 \cos(\Delta m \Delta t)$	$0.22 \pm 0.16 \pm 0.05$	$U_{+}^{+} = 1$
U ₊ -	Coeff. of $ f(\rho^+) ^2 \cos(\Delta m \Delta t)$	$0.50 \pm 0.17 \pm 0.05$	
U ₊₋ -,Im	Coeff. of $Im[f(\rho^+) f(\rho^-)^*]cos(\Delta m \Delta t)$	$0.25 \pm 1.4 \pm 0.3$	
U ₊₋ -,Re	Coeff. of Re[$f(\rho^+)$ $f(\rho^-)^*$]cos($\Delta m \Delta t$)	2.0 ± 1.2 ± 0.2	
U ₊₋ +,Im	Coeff. of $Im[f(\rho^+) f(\rho^-)^*]$	0.16 ± 0.70 ± 0.14	interfering
U ₊₋ +,Re	Coeff. of Re[$f(\rho^+) f(\rho^-)^*$]	$-0.26 \pm 0.65 \pm 0.17$	terms
I_+-Im	Coeff. of $Im[f(\rho^+) f(\rho^-)^*]sin(\Delta m \Delta t)$	$-5.2 \pm 1.9 \pm 0.7$	Less sensitive
I ₊₋ Re	Coeff. of Re[f(ρ^+) f(ρ^-)*]sin($\Delta m \Delta t$)	$-0.3 \pm 2.0 \pm 0.5$	
$\mathbf{U_0^+}$	Coeff. of $ f(\rho^0) ^2$	$0.16 \pm 0.05 \pm 0.05$	
U ₊₀ +,Im	Coeff. of $Im[f(\rho^+) f(\rho^0)^*]$	$0.25 \pm 0.35 \pm 0.18$	$\rho^{0}\pi^{0}$ terms
U ₊₀ +,Re	Coeff. of Re[$f(\rho^+) f(\rho^0)^*$]	$-0.34 \pm 0.39 \pm 0.15$	Significant
U_0 ^{+,Im}	Coeff. of $Im[f(\rho^{-}) f(\rho^{0})^{*}]$	$0.34 \pm 0.43 \pm 0.17$	
U_0 ^{+,Re}	Coeff. of Re[$f(\rho^{-}) f(\rho^{0})^{*}$]	$-0.98 \pm 0.44 \pm 0.18$	17

BABAR Preliminary

BABAR Preliminary

Extract physics parameters

 Tree amplitudes, penguin amplitudes and trigonometrical functions of α – such as its ambiguities – are 'hidden' in the Us and Is coefficients
 Extract physics parameters using Us and Is fit results

$$C = \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} + \frac{U_{-}^{-}}{U_{-}^{+}} \right) \quad \Delta C = \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} - \frac{U_{-}^{-}}{U_{-}^{+}} \right) \quad S = \frac{I_{+}}{U_{+}^{+}} + \frac{I_{-}}{U_{-}^{+}} \quad \Delta S = \frac{I_{+}}{U_{+}^{+}} - \frac{I_{-}}{U_{+}^{+}} \quad A_{CP} = \frac{U_{+}^{+} - U_{-}^{+}}{U_{+}^{+} + U_{-}^{+}}$$

		Q2B, LP2003	Dalitz Plot Analysis	2
$A_{ ho\pi}$	Direct CPV	$-0.114 \pm 0.062 \pm 0.027$	$-0.088 \pm 0.049 \pm 0.013$	nep-
С	Direct CPV	$0.35 \pm 0.14 \pm 0.05$	0.34 ± 0.11 ± 0.05	ex/C
ΔC	Dilution	$0.20 \pm 0.14 \pm 0.05$	0.15 ± 0.11 ± 0.03	1408
S	Mixing-induced CPV	-0.13 ± 0.18 ± 0.04	-0.10 ± 0.14 ± 0.04	660
ΔS	Strong phase difference	0.33 ± 0.18 ± 0.03	$0.22 \pm 0.15 \pm 0.03$	60

* Using a Q2B approach and 144fb⁻¹ data, BELLE measured:

 $A_{CP} = -0.16 \pm 0.10, C = 0.25 \pm 0.17, \Delta C = 0.38 \pm 0.18, S = -0.28 \pm 0.24, \Delta S = 0.33 \pm 0.18$ ¹⁸

Probing Direct CP Violation

Probing Direct CP Violation

Road to α : the Strong Phase

$$\chi^{2}_{\text{scan}} = \sum_{i,j} \left(UI_{i}^{data} - UI_{i}^{scan} \right) \left(C^{data} \right)^{-1} \left(UI_{j}^{data} - UI_{j}^{scan} \right)$$

21

The Scans

Combination of $\pi\pi$, $\rho\pi$, $\rho\rho$: First Measurement of α

Combining the three analyses ($B \rightarrow \rho \rho$ best single measurement) :

similar precision as CKM fit :

Conclusion

- Shown two methods of extracting α from $B \rightarrow \rho \pi$
 - o The isospin analysis appears hopeless for the near future
 - There is hope for the Dalitz plot analysis although it's technically difficult. We have overcome most of the these difficulties, demonstrated the feasibility and already achieved a weak constraint on α!
- Limitation of the Dalitz plot analysis
 - o Biggest limitation is now luminosity!
 - o Eventually, *ρ* line shape, other content on the Dalitz Plot will become important. But knowledge of these will also improve with statistics.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.