α from $B \rightarrow \rho \pi$ Decays

A Working Example of Time Dependent Three Body Analysis

Jinwei Wu
Harvard University

Charmless Workshop, Feb $1^{\text {st }}, 2006$

Mixing induced CPV in Charmless B Decay

- Decay-amplitude weak-phase structure for $b \rightarrow u \bar{u} d:$
- Time dependent asymmetry probes $\alpha_{\text {eff: }}$

$$
\begin{aligned}
a(t) & =\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B_{p h y s}^{0}(t) \rightarrow f_{C P}\right)} \\
& =\sqrt{1-C^{2}} \sin \left(2 \alpha_{\text {eff }}\right) \sin (\Delta m \Delta t)+C \cos (\Delta m \Delta t)
\end{aligned}
$$

$B^{0} \rightarrow \rho^{\dagger} \pi^{\mp}$ Decay Amplitudes

Transition Amplitudes:

$$
\begin{aligned}
& A\left(B^{0} \rightarrow \rho^{+} \pi^{-}\right) \equiv A^{+-}=T^{+-} e^{-i \alpha}+P^{+-} \\
& A\left(B^{0} \rightarrow \rho^{-} \pi^{+}\right) \equiv A^{-+}=T^{-+} e^{-i \alpha}+P^{-+}
\end{aligned}
$$

$$
\begin{aligned}
& A\left(\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}\right) \equiv \bar{A}^{+-}=T^{-+} e^{+i \alpha}+P^{-+} \\
& A\left(\bar{B}^{0} \rightarrow \rho^{-} \pi^{+}\right) \equiv \bar{A}^{-+}=T^{+-} e^{+i \alpha}+P^{+-}
\end{aligned}
$$

Nine unknowns:

$$
T^{+-}, T^{-+}, P^{+-}, P^{-+}, \alpha
$$

* Taking into account $\rho^{0} \pi^{0}$ adds two more unknowns, assuming SU(2)

Quasi-two-body Analysis

- Quasi-two-body approximation, ignore interference effect
- 6 observables through a time-dependent fit:

$$
\begin{aligned}
f\left(\Delta t, Q_{\rho}, Q_{\text {tag }}\right)= & \left(1+Q_{\rho} A_{C P}\right) \frac{e^{-|\Delta t| \tau}}{4 \tau} \\
& {\left[1+Q_{\text {tag }}\left(\left(S+Q_{\rho} \Delta S\right) \sin \left(\Delta m_{d} \Delta t\right)-\left(C+Q_{\rho} \Delta C\right) \cos \left(\Delta m_{d} \Delta t\right)\right)\right] }
\end{aligned}
$$

$A_{C P}$	Direct CPV
C	Direct CPV
ΔC	Dilution
S	Mixing-induced CPV
ΔS	Strong phase difference

$$
\delta \equiv \arg \left(A^{-+} A^{+-*}\right), r_{T} \equiv\left|\frac{T^{+-}}{T^{-+}}\right|
$$

Alternative Approach

- Difficult to extract α with the isospin analysis
- Sensitive to the branching fractions
- Need to solve high order algebraic equations

Snyder-Quinn Method

Idea: Extract α and the strong phases

Quinn, Snyder PRD 48, 2139, (1993) using the interference between $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ amplitudes

$\pi^{+} \pi^{-} \pi^{0}$ amplitude parameterization:

$$
\begin{aligned}
& A_{3 \pi}=\mathrm{f}_{+} A^{+-}+\mathrm{f}_{-} A^{-+}+\mathrm{f}_{0} A^{00} \\
& \bar{A}_{3 \pi}=\mathrm{f}_{+} \bar{A}^{+-}+\mathrm{f}_{-} \bar{A}^{-+}+\mathrm{f}_{0} \bar{A}^{00}
\end{aligned}
$$

- The $\mathrm{f}_{+,-, 0}$ are relativistic Breit-Wigner form factors

$$
f\left(\Delta t, Q_{\text {tag }}\right) \propto\left(\left|A_{3 \pi}\right|^{2}+\left|\overline{A_{3 \pi}}\right|^{2}\right) \frac{e^{-|\Delta t| \tau}}{4 \tau}
$$

$$
\left(1+2 Q_{a g} \frac{\operatorname{Im}\left[\bar{A}_{3 \pi} A_{3 \pi}^{*}\right]}{\left|A_{3 \pi}\right|^{2}+\left|\overline{A_{3 \pi}}\right|^{2}} \sin \left(\Delta m_{d} \Delta t\right)-Q_{a g} \frac{\left|A_{3 \pi}\right|^{2}-\left|\overline{A_{3 \pi}}\right|^{2}}{\left|A_{3 \pi}\right|^{2}+\left|\overline{A_{3 \pi}}\right|^{2}} \cos \left(\Delta m_{d} \Delta t\right), 6\right)
$$

$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$: Snyder-Quinn Method

Conceptually, it's pretty simple, one measure 11 amplitudes and phases, then solve for 11 known including α

Main Model Assumptions

- The strong phase difference between the $\rho(770)$ and its radial excitations are independent of the charge of the resonances

Tested to very good accuracy in $\tau \rightarrow \pi^{+} \pi^{0} \nu$ and $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$data

- The ratio P / T is the same for the ground state and the radial excitations of the ρ

True in naive factorization. Same assumptions go into isospin analysis

Assumptions theoretically motivated and necessary to limit the fit parameters

- Hypothesis tested and validated in data (+ systematics study)

Fitting Strategy

- Directly fitting for amplitudes and phases suffers from mirror solutions and local minima with limited statistics.
- Alternative fit approach:
\Rightarrow expand $A_{3 \pi}$ as sum of Breit-Wigner bilinears \Rightarrow fit the coefficients of Breit-Wigner bilinears

Quinn, Silva

PRD 62, 054002, (2000)

$$
\begin{aligned}
& \left|A_{3 \pi}\right|^{2} \pm\left|\bar{A}_{3 \pi}\right|^{2}=\sum_{\kappa \in\{+,+,-\}}\left|f_{\kappa}\right|^{2} U_{\kappa}^{ \pm}+2 \sum_{\sigma<\kappa \in\{+0,-\}}\left(\operatorname{Re}\left[f_{\kappa} f_{\sigma}^{*}\right] U_{\kappa}^{ \pm}-\operatorname{Im}\left[f_{\kappa} f_{\sigma}^{*}\right] U_{k \sigma}^{ \pm \ln m}\right) \\
& \left.\operatorname{Im}\left(\bar{A}_{3 \pi} A_{3 \pi}^{*}\right)=\sum_{\kappa \in\{+, 0,-\}}\left|f_{\kappa}\right|^{2} I_{\kappa}+\sum_{\sigma<\kappa \in\{+, 0,\}}\left(\operatorname{Re}\left[f_{\kappa} f_{\sigma}^{*}\right] I_{\kappa \sigma}^{\mathrm{Im}}+\operatorname{Im}\left[f_{\kappa} f_{\sigma}^{*}\right]\right]_{\kappa \sigma}^{\mathrm{Re}}\right)
\end{aligned}
$$

- Instead of 11 unknowns, one now gets 27 interdependent observables. we can safely fit 16 of them if $\rho^{0} \pi^{0}$ is small.
- Extract physics parameters using Us and Is fit results, such as quasi-two-body CP parameters, $\rho^{0} \pi^{0}$ branching fraction, α scan, ...

Analysis Overview

- Why is this analysis so difficult?

1. Rare B decays with branching fraction 2×10^{-5} and tagging effectively reducing the efficiency by a factor of two
2. $\sim 80 \%$ of the sample are continuum events even after rather tight preselection criteria
3. Three body B decays with neutral particles in the final states, suffer large cross-feed from other B decays
4. B dalitz plots are difficult to model
5. Significant amount of signal events are mis-reconstructed and create dilution in CP measurement and bad "resolution" on the dalitz plot
6. Signal efficiency drops to zero in the corners of the dalitz plot which are the place where the interference is expected to happen
7. Many variables (both kinematic and event shape) are correlated to the dalitz plot which makes the maximum likelihood fit difficult
8.

Selection

- Tight selection: $5.272<m_{\text {ES }}<5.288 \mathrm{GeV} / \mathrm{c}^{2},-1<\Delta E<1$
- Remove uninteresting regions of the dalitz plot: $m\left(\pi^{+} \pi^{-}\right)>0.53 \mathrm{GeV} / c^{2}, m(\pi \pi)<1.5 \mathrm{GeV} / c^{2}$

[^0]
Extended Maximum Likelihood Fit

For signal events:

Category (c)	Lepton	KPiorK	KorPI	Inclusive	UnTagged
Efficiency(\%) $(\rho \pi), \varepsilon_{c}$	1.9	3.3	3.9	4.0	6.9
Mis-tag rate (\%)	3.8	9.3	19.6	31.4	50.0
$f_{\text {SCF }}(\%)(\rho \pi)$	14.1	19.9	23.8	22.4	24.2

Each event is classified in one of five categories ($c=5$) and tested for the four hypotheses* $(j=4)$ in the likelihood:

$$
\begin{aligned}
& L=\prod_{c=1}^{5} e^{-N_{c}^{\prime}} \prod_{i=1}^{N_{c}}\left(N_{\mathrm{S}} \varepsilon_{c}\left(1-f_{\mathrm{SCF}, c}\right) \mathrm{P}_{\mathrm{S}, c}^{\mathrm{TM}}+N_{\mathrm{S}} \varepsilon_{c} f_{\mathrm{SCF}, c} \mathrm{P}_{\mathrm{S}, c}^{\mathrm{SCF}}+N_{q \bar{q}} \mathrm{P}_{q \bar{q}, c}+\sum_{j=1}^{N_{B a c c}^{B / c}} N_{B, j} \varepsilon_{B, c} \mathrm{P}_{B, c}\right)\left(\vec{x}_{i}\right) \\
& \text { where: } \quad \vec{x}_{i}=\left(m_{\mathrm{ES}}, \Delta E, x N N, \text { Btag }, \Delta t, D P\right)
\end{aligned}
$$

[^1]
The Square Dalitz Plot

The Signal Dalitz Plot Treatment

Systematic Uncertainties

- $\Delta \mathrm{m}, \tau_{B}$: within the uncertainties on the world average
- Signal PDF parameters: within statistical uncertainties
- Average SCF fractions: by 25% from $B \rightarrow D \rho$ control sample
- Tagging eff., dilutions, biases: within stat. Uncertainties
- Contribution from non-resonance: by adding MC in data
- B background tagging parameters, Δt resolution parameters
- Continuum DP extrapolation from $m_{\text {ES }}$ sideband: from data
- Continuum DP parameterization: adding protection classes
- B background yields, $C P$ parameters: allowed ranges
- Floating 16 Usis instead of 27: from toy study
- ρ masses and widths: doubled uncertainties from $e^{+} e^{-}$and τ fits
- $\rho(1450)$ amplitude and phase: 0 , free in the fit
- $\rho(1700)$ amplitude and phase: toy plus data fit
- Fit bias from fitting on fully simulated MC samples

Statistical errors dominant

Dalitz Plot Analysis: Fit Projection plots

Dalitz Plot Analysis: Direct Fit Results

Extract physics parameters

- Tree amplitudes, penguin amplitudes and trigonometrical functions of α - such as its ambiguities - are 'hidden' in the Us and Is coefficients
- Extract physics parameters using Us and $/ s$ fit results

$$
C=\frac{1}{2}\left(\frac{U_{+}^{-}}{U_{+}^{+}}+\frac{U_{-}^{-}}{U_{-}^{+}}\right) \quad \Delta C=\frac{1}{2}\left(\frac{U_{+}^{-}}{U_{+}^{+}}-\frac{U_{-}^{-}}{U_{-}^{+}}\right) \quad S=\frac{I_{+}}{U_{+}^{+}}+\frac{I_{-}}{U_{-}^{+}} \quad \Delta S=\frac{I_{+}}{U_{+}^{+}}-\frac{I_{-}}{U_{-}^{+}} \quad A_{C P}=\frac{U_{+}^{+}-U_{-}^{+}}{U_{+}^{+}+U_{-}^{+}}
$$

	Q2B, LP2003	Dalitz Plot Analysis	
$A_{\rho \pi}$	Direct $C P V$	$-0.114 \pm 0.062 \pm 0.027$	$-0.088 \pm 0.049 \pm 0.013$
C	Direct $C P V$	$0.35 \pm 0.14 \pm 0.05$	$0.34 \pm 0.11 \pm 0.05$
ΔC	Dilution	$0.20 \pm 0.14 \pm 0.05$	$0.15 \pm 0.11 \pm 0.03$
S	Mixing-induced CPV	$-0.13 \pm 0.18 \pm 0.04$	$-0.10 \pm 0.14 \pm 0.04$
ΔS	Strong phase difference	$0.33 \pm 0.18 \pm 0.03$	$0.22 \pm 0.15 \pm 0.03$

* Using a Q2B approach and $144 \mathrm{fb}^{-1}$ data, BELLE measured:

$$
A_{C P}=-0.16 \pm 0.10, C=0.25 \pm 0.17, \Delta C=0.38 \pm 0.18, S=-0.28 \pm 0.24, \Delta S=0.33 \pm 0.18
$$

Probing Direct CP Violation

Define physically more intuitive quantities:

$$
\begin{aligned}
A_{\rho \pi}^{+-} & \equiv \frac{\left|\bar{A}^{-+}\right|^{2}-\left|A^{+-}\right|^{2}}{\left|\bar{A}^{-+}\right|^{2}+\left|A^{+-}\right|^{2}}=\frac{A_{\rho \pi}+C+A_{\rho \pi} \Delta C}{1+\Delta C+A_{\rho \pi} C} \\
& =-0.21 \pm 0.11 \pm 0.04
\end{aligned}
$$

$$
A_{\rho \pi}^{-+} \equiv \frac{\left|\bar{A}^{+-}\right|^{2}-\left|A^{-+}\right|^{2}}{\left|\bar{A}^{+-}\right|^{2}+\left|A^{-+}\right|^{2}}=\frac{A_{\rho \pi}-C-A_{\rho \pi} \Delta C}{1-C-A_{\rho \pi} \Delta C}
$$

$$
=-0.47_{-0.15}^{+0.14} \pm 0.06
$$

19

Probing Direct CP Violation

Define physically more intuitive quantities:

$$
\begin{aligned}
A_{\rho \pi}^{+-} & \equiv \frac{\left|\bar{A}^{-+}\right|^{2}-\left|A^{+-}\right|^{2}}{\left|\bar{A}^{-+}\right|^{2}+\left|A^{+-}\right|^{2}}=\frac{A_{\rho \pi}+C+A_{\rho \pi} \Delta C}{1+\Delta C+A_{\rho \pi} C} \\
& =-0.15 \pm 0.09
\end{aligned}
$$

$$
A_{\rho \pi}^{-+} \equiv \frac{\left|\bar{A}^{+-}\right|^{2}-\left|A^{-+}\right|^{2}}{\left|\bar{A}^{+-}\right|^{2}+\left|A^{-+}\right|^{2}}=\frac{A_{\rho \pi}-C-A_{\rho \pi} \Delta C}{1-C-A_{\rho \pi} \Delta C}
$$

$$
=-0.47_{-0.14}^{+0.13}
$$

Large Direct CPV not expected...

$$
\begin{aligned}
& A_{C P}=0.01 \pm 0.10 \\
& C=0.00 \pm 0.02
\end{aligned}
$$

Road to α : the Strong Phase

- What is the strong phase between $B^{0} \rightarrow \rho^{-} \pi^{+}$and $B^{0} \rightarrow \rho^{+} \pi^{-}$?

Method 1:

$$
\delta=-\arctan \left(\frac{U_{+-}^{+, \mathrm{Im}}+U_{+-}^{-\mathrm{Im}}}{U_{+-}^{+, \mathrm{Re}}+U_{+-}^{-\mathrm{Re}}}\right)
$$

Method 2:

$$
\chi_{\text {scan }}^{2}=\sum_{i, j}\left(U I_{i}^{\text {data }}-U I_{i}^{\text {scan }}\right)\left(C^{\text {data }}\right)^{-1}\left(U I_{j}^{\text {data }}-U I_{j}^{\text {scan }}\right)
$$

The Scans

Systematic uncertainties included

$$
\begin{array}{ll}
\delta=\left(-67_{-31}^{+28} \pm 7\right)^{\circ} \quad \text { and weak constraint at two standard deviation } \\
\alpha=\left(113_{-17}^{+27} \pm 6\right)^{\circ} \quad \text { and weak constraint at two standard deviation }
\end{array}
$$

Combination of $\pi \pi, \rho \pi, \rho \rho$: First Measurement of α

Combining the three analyses ($B \rightarrow \rho \rho$ best single measurement) :

* similar precision as CKM fit :

$$
\alpha_{\pi \pi-\text { BABAR }}=\left[103_{-9}^{+10}\right]^{\circ} \quad \alpha_{\text {CKM }}=\left[93_{-13}^{+10}\right]^{\circ}
$$

Conclusion

- Shown two methods of extracting α from $B \rightarrow \rho \pi$
o The isospin analysis appears hopeless for the near future
o There is hope for the Dalitz plot analysis although it's technically difficult. We have overcome most of the these difficulties, demonstrated the feasibility and already achieved a weak constraint on α !
- Limitation of the Dalitz plot analysis
o Biggest limitation is now luminosity!
o Eventually, o line shape, other content on the Dalitz Plot will become important. But knowledge of these will also improve with statistics.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

[^0]: * Signals are separated into truth matched signal and mis-reconstructed signal (SCF)

[^1]: * Truth matched signal, mis-reconstructed signal, continuum events, and events from other B decay

