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• Soft-Collinear Effective Theory

Applications in B decays:

Outlook
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B decays - Motivation

• Probe the flavor sector of the SM

• Heavy Stable Hadrons lots of decays
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BOTTOM MESONSBOTTOM MESONSBOTTOM MESONSBOTTOM MESONS
(B = ±1)(B = ±1)(B = ±1)(B = ±1)

B+ = ub, B0 = db, B0 = d b, B− = ub, similarly for B∗’s

B-particle organizationB-particle organizationB-particle organizationB-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily
included such admixtures in the B± section, but because of their importance we have created
two new sections: “B±/B0 Admixture” for Υ(4S) results and “B±/B0/B0

s /b-baryon Admix-
ture” for results at higher energies. Most inclusive decay branching fractions and χb at high
energy are found in the Admixture sections. B0-B0 mixing data are found in the B0 section,
while B0

s -B
0
s mixing data and B-B mixing data for a B0/B0

s admixture are found in the B0
s

section. CP-violation data are found in the B±, B0, and B± B0 Admixture sections. b-baryons
are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle
sections and brackets indicate reviews.

•B±
mass, mean life, branching fractions CP violation

•B0

mass, mean life, branching fractions
polarization in B0 decay, B0-B0 mixing, CP violation

•B± B0 Admixtures
branching fractions, CP violation

•B±/B0/B0
s /b-baryon Admixtures

mean life, production fractions, branching fractions
χb at high energy,Vcb measurements

• B∗

mass

• B0
s

mass, mean life, branching fractions

polarization in B0
s decay, B0

s -B
0
s mixing

• B±
c

mass, mean life, branching fractions

At end of Baryon Listings:

• Λb

mass, mean life, branching fractions

• b-baryon Admixture

mean life, branching fractions
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B±B±B±B± I (JP ) = 1
2 (0−)

I , J, P need confirmation. Quantum numbers shown are quark-model
predictions.

Mass mB± = 5279.0 ± 0.5 MeV
Mean life τ B± = (1.671 ± 0.018) × 10−12 s

cτ = 501 µm

CP violationCP violationCP violationCP violation

ACP (B+ → J/ψ(1S)K+) = −0.007 ± 0.019
ACP (B+ → J/ψ(1S)π+) = −0.01 ± 0.13
ACP (B+ → ψ(2S)K+) = −0.037 ± 0.025
ACP (B+ → D0K+) = 0.04 ± 0.07
ACP (B+ → DCP(+1)K

+) = 0.06 ± 0.19

ACP (B+ → DCP(−1)K
+) = −0.19 ± 0.18

ACP (B+ → π+π0) = 0.05 ± 0.15
ACP (B+ → K+π0) = −0.10 ± 0.08
ACP (B+ → K0

S π+) = 0.03 ± 0.08 (S = 1.1)
ACP (B+ → π+π−π+) = −0.39 ± 0.35
ACP (B+ → ρ+ρ0) = −0.09 ± 0.16
ACP (B+ → K+π−π+) = 0.01 ± 0.08
ACP (B+ → K+K−K+) = 0.02 ± 0.08
ACP (B+ → K+η′) = 0.009 ± 0.035
ACP (B+ → ωπ+) = −0.21 ± 0.19
ACP (B+ → ωK+) = −0.21 ± 0.28
ACP (B+ → φK+) = 0.03 ± 0.07
ACP (B+ → φK∗(892)+) = 0.09 ± 0.15
ACP (B+ → ρ0K∗(892)+) = 0.20 ± 0.31

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−
production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.
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For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/ p

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
!+ν! anything [a] (10.2 ±0.9 ) % –

D0 !+ν! [a] ( 2.15±0.22) % 2310

D∗(2007)0 !+ν! [a] ( 6.5 ±0.5 ) % 2258

D1(2420)0 !+ν! ( 5.6 ±1.6 ) × 10−3 2084

D∗
2(2460)0 !+ν! < 8 × 10−3 CL=90% 2067

π0 e+ νe ( 9.0 ±2.8 ) × 10−5 2638

η!+ν! ( 8 ±4 ) × 10−5 2611

ω!+ν! [a] < 2.1 × 10−4 CL=90% 2582

ρ0 !+ν! [a] ( 1.34+0.32
−0.35) × 10−4 2583

ppe+ νe < 5.2 × 10−3 CL=90% 2467

e+ νe < 1.5 × 10−5 CL=90% 2640

µ+ νµ < 2.1 × 10−5 CL=90% 2638

τ+ντ < 5.7 × 10−4 CL=90% 2340

e+ νe γ < 2.0 × 10−4 CL=90% 2640

µ+ νµ γ < 5.2 × 10−5 CL=90% 2638

D, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modesD, D∗, or Ds modes
D0 π+ ( 4.98±0.29) × 10−3 2308

D0 ρ+ ( 1.34±0.18) % 2236

D0 K+ ( 3.7 ±0.6 ) × 10−4 S=1.1 2280

D0 K∗(892)+ ( 6.1 ±2.3 ) × 10−4 2213

D0 K+K0 ( 5.5 ±1.6 ) × 10−4 2189

D0 K+K∗(892)0 ( 7.5 ±1.7 ) × 10−4 2071

D0 π+π+π− ( 1.1 ±0.4 ) % 2289

D0 π+π+π−nonresonant ( 5 ±4 ) × 10−3 2289

D0 π+ρ0 ( 4.2 ±3.0 ) × 10−3 2207

D0 a1(1260)+ ( 5 ±4 ) × 10−3 2123

D0 ωπ+ ( 4.1 ±0.9 ) × 10−3 2206

D∗(2010)−π+π+ ( 2.1 ±0.6 ) × 10−3 2247

D−π+π+ < 1.4 × 10−3 CL=90% 2299

D∗(2007)0π+ ( 4.6 ±0.4 ) × 10−3 2256

D∗(2007)0ωπ+ ( 4.5 ±1.2 ) × 10−3 2149

D∗(2007)0ρ+ ( 9.8 ±1.7 ) × 10−3 2181

D∗(2007)0K+ ( 3.6 ±1.0 ) × 10−4 2227

D∗(2007)0K∗(892)+ ( 7.2 ±3.4 ) × 10−4 2156

D∗(2007)0K+K0 < 1.06 × 10−3 CL=90% 2132

D∗(2007)0K+K∗(892)0 ( 1.5 ±0.4 ) × 10−3 2008
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D∗(2007)0π+π+π− ( 9.4 ±2.6 ) × 10−3 2236

D∗(2007)0 a1(1260)+ ( 1.9 ±0.5 ) % 2062

D∗(2007)0π−π+π+π0 ( 1.8 ±0.4 ) % 2219

D∗(2010)+π0 < 1.7 × 10−4 CL=90% 2255

D∗(2010)+K0 < 9.5 × 10−5 CL=90% 2225

D∗(2010)−π+π+π0 ( 1.5 ±0.7 ) % 2235

D∗(2010)−π+π+π+π− < 1 % CL=90% 2217

D∗
1(2420)0π+ ( 1.5 ±0.6 ) × 10−3 S=1.3 2081

D∗
1(2420)0ρ+ < 1.4 × 10−3 CL=90% 1995

D∗
2(2460)0π+ < 1.3 × 10−3 CL=90% 2064

D∗
2(2460)0ρ+ < 4.7 × 10−3 CL=90% 1977

D0 D+
s ( 1.3 ±0.4 ) % 1815

D0 DsJ (2317)+ seen 1605

D0 DsJ (2457)+ seen –
D0 DsJ (2536)+ not seen 1447

D∗(2007)0DsJ (2536)+ not seen 1338

D0 DsJ (2573)+ not seen 1417

D∗(2007)0DsJ (2573)+ not seen 1306

D0 D∗+
s ( 9 ±4 ) × 10−3 1734

D∗(2007)0D+
s ( 1.2 ±0.5 ) % 1737

D∗(2007)0D∗+
s ( 2.7 ±1.0 ) % 1651

D
(∗)+
s D∗∗0 ( 2.7 ±1.2 ) % –

D∗(2007)0D∗(2010)+ < 1.1 % CL=90% 1713

D0 D∗(2010)+ +
D∗(2007)0D+

< 1.3 % CL=90% 1792

D0 D+ < 6.7 × 10−3 CL=90% 1866

D0 D+K0 < 2.8 × 10−3 CL=90% 1571

D∗(2007)0D+K0 < 6.1 × 10−3 CL=90% 1475

D0 D∗(2010)+K0 ( 5.2 ±1.2 ) × 10−3 1476

D∗(2007)0D∗(2010)+K0 ( 7.8 ±2.6 ) × 10−3 1362

D0 D0K+ ( 1.9 ±0.4 ) × 10−3 1577

D∗(2010)0D0K+ < 3.8 × 10−3 CL=90% –
D0 D∗(2007)0 K+ ( 4.7 ±1.0 ) × 10−3 1481

D∗(2007)0D∗(2007)0 K+ ( 5.3 ±1.6 ) × 10−3 1368

D−D+K+ < 4 × 10−4 CL=90% 1571

D−D∗(2010)+K+ < 7 × 10−4 CL=90% 1475

D∗(2010)−D+K+ ( 1.5 ±0.4 ) × 10−3 1475

D∗(2010)−D∗(2010)+K+ < 1.8 × 10−3 CL=90% 1363

(D +D∗ )(D +D∗ )K ( 3.5 ±0.6 ) % –
D+

s π0 < 2.0 × 10−4 CL=90% 2270

D∗+
s π0 < 3.3 × 10−4 CL=90% 2215

D+
s η < 5 × 10−4 CL=90% 2235

D∗+
s η < 8 × 10−4 CL=90% 2178
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D+
s ρ0 < 4 × 10−4 CL=90% 2197

D∗+
s ρ0 < 5 × 10−4 CL=90% 2138

D+
s ω < 5 × 10−4 CL=90% 2195

D∗+
s ω < 7 × 10−4 CL=90% 2136

D+
s a1(1260)0 < 2.2 × 10−3 CL=90% 2079

D∗+
s a1(1260)0 < 1.6 × 10−3 CL=90% 2014

D+
s φ < 3.2 × 10−4 CL=90% 2141

D∗+
s φ < 4 × 10−4 CL=90% 2079

D+
s K0 < 1.1 × 10−3 CL=90% 2241

D∗+
s K0 < 1.1 × 10−3 CL=90% 2184

D+
s K∗(892)0 < 5 × 10−4 CL=90% 2172

D∗+
s K∗(892)0 < 4 × 10−4 CL=90% 2112

D−
s π+K+ < 8 × 10−4 CL=90% 2222

D∗−
s π+K+ < 1.2 × 10−3 CL=90% 2164

D−
s π+K∗(892)+ < 6 × 10−3 CL=90% 2138

D∗−
s π+K∗(892)+ < 8 × 10−3 CL=90% 2076

Charmonium modesCharmonium modesCharmonium modesCharmonium modes
ηc K+ ( 9.0 ±2.7 ) × 10−4 1754

J/ψ(1S)K+ ( 1.00±0.04) × 10−3 1683

J/ψ(1S)K+π+π− ( 7.7 ±2.0 ) × 10−4 1612

X (3872)K+ seen –
J/ψ(1S)K∗(892)+ ( 1.35±0.10) × 10−3 1571

J/ψ(1S)K (1270)+ ( 1.8 ±0.5 ) × 10−3 1390

J/ψ(1S)K (1400)+ < 5 × 10−4 CL=90% 1308

J/ψ(1S)φK+ ( 5.2 ±1.7 ) × 10−5 S=1.2 1227

J/ψ(1S)π+ ( 4.0 ±0.5 ) × 10−5 1727

J/ψ(1S)ρ+ < 7.7 × 10−4 CL=90% 1611

J/ψ(1S)a1(1260)+ < 1.2 × 10−3 CL=90% 1414

J/ψ(1S)pΛ ( 1.2 +0.9
−0.6 ) × 10−5 567

ψ(2S)K+ ( 6.8 ±0.4 ) × 10−4 1284

ψ(2S)K∗(892)+ ( 9.2 ±2.2 ) × 10−4 1115

ψ(2S)K+π+π− ( 1.9 ±1.2 ) × 10−3 1178

χc0(1P)K+ ( 6.0 +2.4
−2.1 ) × 10−4 1478

χc1(1P)K+ ( 6.8 ±1.2 ) × 10−4 1411

χc1(1P)K∗(892)+ < 2.1 × 10−3 CL=90% 1265

K or K∗ modesK or K∗ modesK or K∗ modesK or K∗ modes
K0π+ ( 1.88±0.21) × 10−5 2614

K+π0 ( 1.29±0.12) × 10−5 2615

η′K+ ( 7.8 ±0.5 ) × 10−5 2528

η′K∗(892)+ < 3.5 × 10−5 CL=90% 2472
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ηK+ < 6.9 × 10−6 CL=90% 2588

ηK∗(892)+ ( 2.6 +1.0
−0.9 ) × 10−5 2534

ωK+ ( 9.2 +2.8
−2.5 ) × 10−6 2557

ωK∗(892)+ < 8.7 × 10−5 CL=90% 2503

K∗(892)0 π+ ( 1.9 +0.6
−0.8 ) × 10−5 2562

K∗(892)+π0 < 3.1 × 10−5 CL=90% 2562

K+π−π+ ( 5.7 ±0.4 ) × 10−5 2609

K+π−π+nonresonant < 2.8 × 10−5 CL=90% 2609

K+ρ0 < 1.2 × 10−5 CL=90% 2558

K∗
2(1430)0π+ < 6.8 × 10−4 CL=90% 2445

K−π+π+ < 1.8 × 10−6 CL=90% 2609

K−π+π+nonresonant < 5.6 × 10−5 CL=90% 2609

K1(1400)0 π+ < 2.6 × 10−3 CL=90% 2451

K0π+π0 < 6.6 × 10−5 CL=90% 2609

K0ρ+ < 4.8 × 10−5 CL=90% 2558

K∗(892)+π+π− < 1.1 × 10−3 CL=90% 2556

K∗(892)+ρ0 ( 1.1 ±0.4 ) × 10−5 2504

K∗(892)+K∗(892)0 < 7.1 × 10−5 CL=90% 2484

K1(1400)+ρ0 < 7.8 × 10−4 CL=90% 2387

K∗
2(1430)+ρ0 < 1.5 × 10−3 CL=90% 2381

K+K0 < 2.0 × 10−6 CL=90% 2593

K0K+π0 < 2.4 × 10−5 CL=90% 2578

K+K0
S K0

S ( 1.34±0.24) × 10−5 2521

K0
S K0

S π+ < 3.2 × 10−6 CL=90% 2577

K+K−π+ < 6.3 × 10−6 CL=90% 2578

K+K−π+nonresonant < 7.5 × 10−5 CL=90% 2578

K+K+π− < 1.3 × 10−6 CL=90% 2578

K+K+π−nonresonant < 8.79 × 10−5 CL=90% 2578

K+K∗(892)0 < 5.3 × 10−6 CL=90% 2540

K+K−K+ ( 3.08±0.21) × 10−5 2522

K+φ ( 9.3 ±1.0 ) × 10−6 S=1.3 2516

K+K−K+nonresonant < 3.8 × 10−5 CL=90% 2522

K∗(892)+K+K− < 1.6 × 10−3 CL=90% 2466

K∗(892)+φ ( 9.6 ±3.0 ) × 10−6 S=1.9 2460

K1(1400)+φ < 1.1 × 10−3 CL=90% 2339

K∗
2(1430)+φ < 3.4 × 10−3 CL=90% 2332

K+φφ ( 2.6 +1.1
−0.9 ) × 10−6 2306

K∗(892)+γ ( 3.8 ±0.5 ) × 10−5 2564

K1(1270)+γ < 9.9 × 10−5 CL=90% 2486

φK+γ ( 3.4 ±1.0 ) × 10−6 2516

K+π−π+γ ( 2.4 +0.6
−0.5 ) × 10−5 2609
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K∗(892)0π+γ ( 2.0 +0.7
−0.6 ) × 10−5 2562

K+ρ0γ < 2.0 × 10−5 CL=90% 2558

K+π−π+γ nonresonant < 9.2 × 10−6 CL=90% 2609

K1(1400)+γ < 5.0 × 10−5 CL=90% 2453

K∗
2(1430)+γ < 1.4 × 10−3 CL=90% 2447

K∗(1680)+γ < 1.9 × 10−3 CL=90% 2360

K∗
3(1780)+γ < 5.5 × 10−3 CL=90% 2341

K∗
4(2045)+γ < 9.9 × 10−3 CL=90% 2243

Light unflavored meson modesLight unflavored meson modesLight unflavored meson modesLight unflavored meson modes
ρ+γ < 2.1 × 10−6 CL=90% 2583

π+π0 ( 5.6 +0.9
−1.1 ) × 10−6 2636

π+π+π− ( 1.1 ±0.4 ) × 10−5 2630

ρ0π+ ( 8.6 ±2.0 ) × 10−6 2581

π+ f0(980) < 1.4 × 10−4 CL=90% 2547

π+ f2(1270) < 2.4 × 10−4 CL=90% 2483

π+π−π+nonresonant < 4.1 × 10−5 CL=90% 2630

π+π0π0 < 8.9 × 10−4 CL=90% 2631

ρ+π0 < 4.3 × 10−5 CL=90% 2581

π+π−π+π0 < 4.0 × 10−3 CL=90% 2621

ρ+ρ0 ( 2.6 ±0.6 ) × 10−5 2523

a1(1260)+π0 < 1.7 × 10−3 CL=90% 2494

a1(1260)0π+ < 9.0 × 10−4 CL=90% 2494

ωπ+ ( 6.4 +1.8
−1.6 ) × 10−6 S=1.3 2580

ωρ+ < 6.1 × 10−5 CL=90% 2522

ηπ+ < 5.7 × 10−6 CL=90% 2609

η′π+ < 7.0 × 10−6 CL=90% 2551

η′ρ+ < 3.3 × 10−5 CL=90% 2492

ηρ+ < 1.5 × 10−5 CL=90% 2553

φπ+ < 4.1 × 10−7 CL=90% 2539

φρ+ < 1.6 × 10−5 2480

π+π+π+π−π− < 8.6 × 10−4 CL=90% 2608

ρ0 a1(1260)+ < 6.2 × 10−4 CL=90% 2433

ρ0 a2(1320)+ < 7.2 × 10−4 CL=90% 2410

π+π+π+π−π−π0 < 6.3 × 10−3 CL=90% 2592

a1(1260)+ a1(1260)0 < 1.3 % CL=90% 2335

Charged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modesCharged particle (h±) modes

h± = K± or π±

h+π0 ( 1.6 +0.7
−0.6 ) × 10−5 2636

ωh+ ( 1.38+0.27
−0.24) × 10−5 2580

h+X0 (Familon) < 4.9 × 10−5 CL=90% –
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Baryon modesBaryon modesBaryon modesBaryon modes
ppπ+ < 3.7 × 10−6 CL=90% 2439

ppπ+nonresonant < 5.3 × 10−5 CL=90% 2439

ppπ+π+π− < 5.2 × 10−4 CL=90% 2369

ppK+ ( 4.3 +1.2
−1.0 ) × 10−6 2348

ppK+nonresonant < 8.9 × 10−5 CL=90% 2348

pΛ < 1.5 × 10−6 CL=90% 2430

pΛπ+π− < 2.0 × 10−4 CL=90% 2367

∆0p < 3.8 × 10−4 CL=90% 2402

∆++p < 1.5 × 10−4 CL=90% 2402

D+pp < 1.5 × 10−5 CL=90% 1860

D∗(2010)+pp < 1.5 × 10−5 CL=90% 1786

Λ−
c pπ+ ( 2.1 ±0.7 ) × 10−4 1981

Λ−
c pπ+π0 ( 1.8 ±0.6 ) × 10−3 1936

Λ−
c pπ+π+π− ( 2.3 ±0.7 ) × 10−3 1881

Λ−
c pπ+π+π−π0 < 1.34 % CL=90% 1823

Σ c(2455)0p < 8 × 10−5 CL=90% 1939

Σ c(2520)0p < 4.6 × 10−5 CL=90% 1905

Σ c(2455)0pπ0 ( 4.4 ±1.8 ) × 10−4 1897

Σ c(2455)0pπ−π+ ( 4.4 ±1.7 ) × 10−4 1845

Σ c(2455)−−pπ+π+ ( 2.8 ±1.2 ) × 10−4 1845

Λc(2593)− /Λc (2625)−pπ+ < 1.9 × 10−4 CL=90% –

Lepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, orLepton Family number (LF ) or Lepton number (L) violating modes, or
∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes∆B = 1 weak neutral current (B1) modes

π+ e+ e− B1 < 3.9 × 10−3 CL=90% 2638

π+µ+µ− B1 < 9.1 × 10−3 CL=90% 2633

K+ e+ e− B1 ( 6.3 +1.9
−1.7 ) × 10−7 2616

K+µ+µ− B1 ( 4.5 +1.4
−1.2 ) × 10−7 2612

K+ "+ "− B1 [a] ( 5.3 ±1.1 ) × 10−7 2616

K+ ν ν B1 < 2.4 × 10−4 CL=90% 2616

K∗(892)+ e+ e− B1 < 4.6 × 10−6 CL=90% 2564

K∗(892)+µ+µ− B1 < 2.2 × 10−6 CL=90% 2560

K∗(892)+ "+ " B1 [a] < 2.2 × 10−6 CL=90% 2564

π+ e+µ− LF < 6.4 × 10−3 CL=90% 2637

π+ e−µ+ LF < 6.4 × 10−3 CL=90% 2637

K+ e+µ− LF < 8 × 10−7 CL=90% 2615

K+ e−µ+ LF < 6.4 × 10−3 CL=90% 2615

K∗(892)+ e±µ∓ LF < 7.9 × 10−6 CL=90% 2563

π− e+ e+ L < 1.6 × 10−6 CL=90% 2638

π−µ+µ+ L < 1.4 × 10−6 CL=90% 2633
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u

d

mc

ms

mu,d

Operator Product Expansion (I)

•

perturbative QCD

mW ,mt ! mb
u
u

b

W

d

g

db

uu

db

uu

u,c

Decays like B → Xsγ & B → Kπ

have contributions from         operators  ∼ 12



mW

?

mb

ΛQCD

mc

ms

mu,d

Operator Product Expansion (II)

•

 
b

B-meson

Γ = c(0)f (0) +
1

mb
c(1)f (1) + . . .

mb ! ΛQCD

Heavy Quark Effective Theory

Justifies free quark decay as leading 
approximation

Local OPE for Inclusive Decays
•

hv, q

•
b → ueν̄



mW

?

mb

ΛQCD

mc

ms

mu,d

√
ΛE

E

}
Q

Factorization Theorems

Energetic Hadrons

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

ξn,Aµ
n

ξn̄, Aµ
n̄

hv,qs,Aµ
s

Eπ ! ΛQCD
B! !

eg.

A =
∫

dzdxidk+T (z) J(z, xi, k
+) φ1(x1)φ2(x2)φB(k+) + . . .

!!

} } }

Λ2EΛQ2

Soft-Collinear 
Effective Theory



Soft - Collinear Effective Theory
Bauer, Pirjol, Stewart

Fleming, Luke, ...       

E ! ΛQCD

Separate physics at different momentum scales 
Model independent, systematically improvable
Power expansion, can estimate uncertainty
Exploit symmetries 
Resum Sudakov logarithms

Effective Field Theory
•
•
•
•
•

An effective field theory for energetic hadrons & jets



Soft Collinear Effective Theory

B D!eg.

Pion has: pµ
π = (2.3 GeV)nµ = Q nµ n2 = n̄2 = 0, (n·p = p−)

B

n
µ

!

pµ
s = (p+, p−, p⊥) ∼ (Λ,Λ,Λ)

Collinear constituents:

pµ
c = (p+, p−, p⊥) ∼

(Λ2

Q
,Q,Λ

)
∼ Q(λ2, 1,λ) λ =

Λ
Q

Soft constituents:



Introduce fields for infrared degrees of freedom (in operators)

modes pµ = (+,−,⊥) p2 fields
collinear Q(λ2, 1,λ) Q2λ2 ξn, Aµ

n

soft Q(λ,λ,λ) Q2λ2 qs, Aµ
s

usoft Q(λ2,λ2,λ2) Q2λ4 qus, Aµ
us

Degrees of freedom in SCET

SCETI

SCETII

usoft pµ ∼ Λ
collinear p2

c ∼ QΛ, λ =
√

Λ/Q

soft pµ ∼ Λ
collinear p2

c ∼ Λ2, λ = Λ/Q

Energetic jets

n
µ

X

Energetic hadrons
n
µ

!

Λ2 ! QΛ! Q2

ξn,Aµ
n

ξn,Aµ
n

B



Factorization



Factorization

b

u

integrate out offshell quarks

eg. ū Γ b

Separation of scales
 and Decoupling

•

ξ̄nW Γ hv

W = P exp
(
ig

∫ y
−∞ ds n̄·An(sn̄µ)

)

usoft-collinear factorization (field redefn.)

hard-collinear factorization
ω ∼ p−c ∼ Q

• operators are gauge invariant, 
so factorization is too

S = P exp
(
ig

∫ y
−∞ ds n·As(snµ)

)

Y = P exp
(
ig

∫ y
−∞ ds n·Aus(snµ)

)

(ξ̄nW )Γ (Y †hv)
∫

dω C(ω)(ξ̄nW )ω Γ (Y †hv)



SCET   Lagrangians
Expansion:    

L(0)
us,s = q̄ iD/ q

L(1)
ξq = ξ̄nW

1
P̄

W †(igB/⊥c )WY †qus + h.c.

L(2) known

I

L(0)
c = ξ̄n

{
n·iD + iD/⊥c W

1
P̄

W †iD/⊥c

} n̄/

2
ξn

• Same (subleading!) Lagrangians for all processes

• Many processes require subleading Lagrangians or they vanish



Factorization 

B D

!

〈Dπ|(c̄b)(ūd)|B〉 = N ξ(v · v′)
∫ 1

0
dxT (x, µ) φπ(x, µ) Calculate T  

B,D are soft, π collinear

LSCET = L(0)
s + L(0)

c

Factorization if O = Oc ×Os

B̄0 → D+π− , B− → D0π−

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

•

• B̄0 → D(∗)0π0
Mantry, Pirjol, I.S.

1
Nc

Λ
EM

& suppressed



Color Suppressed Decays
Factorization with SCET 

+AD(∗)π
long

AD(∗)π
00 = N (∗)

0

∫
dx dz dk+

1 dk+
2 T (i)(z) J (i)(z, x, k+

1 , k+
2 ) S(i)(k+

1 , k+
2 ) φπ(x)

Single class of power suppressed SCETI operators T{O(0),L(1)
ξq ,L(1)

ξq }

Order λ2 =
(√

Λ/E
)2 = Λ/E

b

d

c

u

d

d

(a)

b
c

u

u

ud

(b)

with HQET for 〈D(∗)0π|(c̄ b)(d̄ u)|B̄0〉 pµ
π

mc
→ Eπ

mc
= 1.5get

not a convergent expansion

•

•

same for D, D* up to αs(mb)



Expt Average (Cleo, Belle, Babar):

D
0!0 0"

0 0
K

0"'

0#

D

D D

D

D
0$0

D
+!-

D
0!-

D
+
$-

D
0
$-D

+
%-

D
0 -
%

A(D*M)

A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed

color suppressed

LO  SCET  prediction

*

* # + #

δ(Dπ) = 30.4± 4.8◦

δ(D∗π) = 31.0± 5.0◦

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

! "

= D
*= D
#
#

RI
2

A003

A0_

isospin triangle

Extension to isosinglets:
Blechman, Mantry, I.S.

Not yet tested:

• Br(D∗ρ0
‖)! Br(D∗ρ0

⊥) ,
• equal ratios D(∗)K∗, D(∗)

s K, D(∗)
s K∗;  triangles for D(∗)ρ, D(∗)K

Br(D∗0K∗0
‖ ) ∼ Br(D∗0K∗0

⊥ )



Baryon decays

b

d

c

u

q

q

!

d

"b

"c

#c

,

!

b c

u
d , u

d

,u d

"c

#c

,
"b

!

b c

qd

d
"c

#c

,
"b u

q

"b

b c

u
d

du

!c!b d
u

"

T=tree C= color 
commensurate

E= exchange B = bow-tie

Leibovich et al.

In SCET:

Λb → Λcπ, Λcρ, Σ(∗)
c π, Σ(∗)

c ρ

T ! C ∼ E ! B similar factorization theorems

Br(Λb → Ξ∗
cK)

Br(Λb → Ξ′
cK)

= 2 ,
Br(Λb → Ξ∗

cK
∗
‖ )

Br(Λb → Ξ′
cK

∗
‖ )

= 2

Br(Λb → Σ∗
cπ)

Br(Λb → Σcπ)
= 2 ,

Br(Λb → Σ∗
cρ)

Br(Λb → Σcρ)
= 2Γ(Λb → Λcπ−)

Γ(B̄0 → D+π−)
=

8m3
Λb

(1− r2
Λ)3 rD

m3
B(1− r2

D)3(1 + rD)2

(
ζ(wΛ

max)
ξ(wD

max)

)2

1.6 need
semileptonic

Predict



Inclusive B-Decays



B → Xsγ Buras et. al. (update)

Neubert

NLL theory

agrees with SM at
current precision

NNLL theory OPE based calculations are progressing

Matching

Running

M.Elts.

C1−6

C7,8

〈O1−6〉
〈O7,8〉

3L

2L

3L

2L

(
3L 4L
2L 3L

)
γ̂

Misiak, Steinhauser

Greub,Hurth,Asatrian

Bobeth, Misiak, Urban

Haisch,Gorbahn,Gambinio

Czakon et al.

 Bieri, Greub, Steinhauser

Resummation of large logarithms
(

αs ln M2

W

m2

b

)n
in b → sγ amplitude

RGE for the Wilson coefficients µ d
dµ

Cj(µ) = Ci(µ)γij(µ)

• Renormalization constants =⇒ γij

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 12) Ahmed Ali

DESY, Hamburg

Gambina,Gorbahn,Haisch
Asatrian, Greub, Hurth
Misiak, Steinhauser

The b → sγ matrix elements

Perturbative on-shell amplitudes

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 13) Ahmed Ali

DESY, Hamburg

Blockland et al., Melnikov, Mitov



n
µ

X

m2
X ∼ mbΛ

P−X ! P+
XB

B → Xueν̄

0

annihilation

charm
contamination

SCET
region

0.2 0.4 0.6 0.8 1

2

4

6

8

1

.

.

.

.

0

PX
+

mB

PX
-

mB

most cuts which avoid the charm 
background make X   jet like

e

ν̄ sensitive to “b” momentum
shape function

measure Vub

u



B → Xsγ

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)

Shape function region
Korchemsky, Sterman

Neubert,  Falk et al, Bigi et al

{{

{

Q2
Λ

2QΛ
B → Xsγ

B → Xu!ν̄universal
measure in 
use it in 

B → Xsγ and B → Xs"+"−

• B(B → Xsγ) = (3.4± 0.3)× 10−4 — triumph for SM

Major O(100) person-yr effort toward NNLL: error <∼ 5%
(4-loop running, 3-loop matching and matrix elements)

Crucial to measure with as low Ecut
γ as possible  (GeV)γE

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

B
ra

nc
hi

ng
 F

ra
ct

io
n 

/ 1
00

 M
eV

-0.05

0

0.05

0.1

0.15

0.2
-310×

Data
Kinetic scheme
Shape Function scheme

BABAR

• B(B → Xs"+"−) = (4.5± 1.0)× 10−6 also agrees w/ SM

NNLL calculation practically complete, error ∼ 10%

Theory most precise in 1 GeV2 < q2 < 6 GeV2 region
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1.0

1.2
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(a)

d
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/d
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x s
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0
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(G
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/c
2
)-

1
)

d
B

/d
q

2
((

G
e
V

/c
)-

2
)

5 10 15 2520

[Belle]

• Complementarity: in SUSYB → Xsγ mainly

constrains LR mass insertions, while B →
Xs"+"− is sensitive to RR & LL as well

b

b

L
~

sR
R

~
~

bL sR

δd
23( )

RR
γ

m~g

tanβµmb

b

b
R

R

~ sR
~

l

l
s

s

R

R

~

Z
(δ23)RR

d
_

Z. Ligeti — p. 2

What’s new from SCET:
• matching for H,  JO(αs)

• moments of f require a cutoff
B → Xc!ν̄( relation to )parameters

now known at O(α2

s
) Becher, Neubert

Bauer et al.;
Bauer, Manohar; 

Bosch et al

triple diff. rate for subleading terms, 
  Lee, I.S.; Bosch et al.; Beneke et al.

• O

(

Λ

mb

)

+ O

(

Λ

mb

)

• B → Xs!
+
!
− in shape function region

Lee, Ligeti, I.S. Tackmann



T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T (0) ( )0
J

( )0
J

0 x

h[0] J (0) f (0) h̄v(x)hv(0)

TABLE III: Lowest-order insertion of SCET currents. The double lines are heavy quarks and the
dashed line is a collinear light quark.

where n̄·pX is the large momentum in the jet X. Then the remaining momentum rµ ∼ Λ
since n̄ · r = n̄·q + P̄ −mb = 0 and

n · r = n·q −mb = mB −mb − n·pX . (76)

At lowest order

n̄·p = n̄ · pX , n · r = Λ− n·pX , (77)

where both Λ, n · pX ∼ Λ (and higher-order terms in mB −mb will be needed only when we
go beyond LO). For the time being we stick to the partonic variables n̄·p and n·r; later, we
shall perform the expansion involved in switching to hadronic variables. Using the states
defined with HQET, we get

W (0)
µν =

(−1)

π
Im

1

2
〈B̄v|T̂ (0)

µν |B̄v〉 , (78)

T̂ (0)
µν = −i

∫
d4x e−ir·x T J (0)†

j′ µ (x) J (0)
j ν (0) .

Separating out the hard Wilson coefficients, we have

T̂ (0)
µν =

∑

j,j′

∫
dωdω′ Cj′(ω′)Cj(ω)δ(ω′−n̄·p)(−i)

∫
d4x e−ir·x T J (0)†

j′ µ (ω′, x) J (0)
j ν (ω, 0). (79)

The effective-theory currents in the remaining time-ordered product depend only on collinear
and usoft fields describing momenta p2 % m2

b , i.e.

T J (0)†
j′ µ (ω′, x) J (0)

j ν (ω, 0) =
[
H̄vΓ

(0)
j′µχn,ω′

]
(x)

[
χ̄n,ωΓ(0)

jν Hv

]
(0) , (80)

where Γ̄ ≡ γ0Γ†γ0. It is useful to group the collinear and usoft fields into common brackets
by using a Fierz rearrangement. For spin and color we can use

1⊗ 1 =
1

2

6∑

k=1

F n̄
k ⊗ F n

k (81)

=
1

2

[( n̄/

2Nc

)
⊗

(n/

2

)
+

(−n̄/γ5

2Nc

)
⊗

(n/γ5

2

)
+

(−n̄/γα
⊥

2Nc

)
⊗

(n/γ⊥α
2

)

+
(
n̄/T a

)
⊗

(n/T a

2

)
+

(
−n̄/γ5T

a
)
⊗

(n/γ5T a

2

)
+

(
−n̄/γα

⊥T a
)
⊗

(n/γ⊥α T a

2

)]
.

22

In SCET rate is given by simple graphs 

∫
dω C(ω)(ξ̄nW )ω Γ (Y †hv)J (0) =

dΓ = H(mb, p
−
X)

∫
dk+ J(p−Xk+) f(k+ + Λ− p+

X)

∞(not       sets)

LO

T-product Example Diagram
Hard, Jet, and

Shape Functions
Usoft Operator

T̂ (2H)

h

(2 )

( )0
J ( )0

J

0 x

y

L
h0J (0) f (2)

0 h̄v(x)hv(0)iL(2)
h (y)

T̂ (2a)
( )0

J ( )2
J

( )2
J

( )
J

0

0 x

h1,2J (0) f (2)
1,2

h̄v(x)(DT,⊥hv)(0)
(h̄vDT,⊥)(x)hv(0)

T̂ (2L)
!!

(2   )( )0
J

( )0
J

0 x

y

L
a h3,4 J (−2)

1,2 f (4)
3,4

h3,4 J (−2)
3,4 g(4)

3,4

h̄v(x)(D⊥D⊥)(y)hv(0)

T̂ (2q)

bb
qq

( )0
J

( )0
J

!q
(1 )

!q
(1 )

L L

0 xyz h5,6 J (−4)
1 f (6)

5,6

h5−8 J (−4)
2−4 g(6)

5−10

h̄v(x)q(y)q̄(z)hv(0)

TABLE IV: Time-ordered products that are of order λ2 = Λ/mb overall, and that are non-zero
at tree level. The power of λ2 is obtained by multiplying the powers from the jet functions J
by those from the shape functions f or g. We suppress color and Dirac structure in the usoft
operators listed, which can be found in the text. The time-ordered product in the last row has not
been considered in the literature and is enhanced relative to the others entries by a prefactor of
4παs(EXΛ) ∼ 5.

for example, the product J (1b)†J (1b) has a jet function that starts at one-loop order since
we must contract both the collinear quark and gluon lines. A second example consists of
time-ordered products that involve a L(1)

ξξ insertion, which involves a Dc
⊥ since neither its

P⊥ or A⊥n parts can contribute at tree level.
The category that appears already at tree level will be most important phenomenologi-

31

NLO
dΓ

NLO
= . . .
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 10!|  [
ub

|V
2 4 6
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 10!|  [
ub
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2 4 6

CLEO (endpoint) 

 0.35" 0.47 "4.02 

BELLE (endpoint) 

 0.31" 0.45 "4.82 

BABAR (endpoint) 

 0.31" 0.27 "4.23 

) 
2

, qeBABAR (E
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2

, qXBELLE  sim. ann. (m
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2

, qXBABAR (m

 0.32" 0.34 "4.76 

Average +/- exp +/- (mb,theory) 

 0.27" 0.19 "4.38 

HFAG
EPS-2005 moments! s " and b# c l "HQ input from b

/dof = 5.9/ 6 (CL = 43.0%)
2
$

|Vub|incl = (4.38 ± 0.33)× 10−3

• Event generator for Neubert, Lange, Pazb → u
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B → Xs!
+
!
−

!"#$%&'()*!)+,)-./)01 234453/)6355/7899 :;$!6< =
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BRS$31)#/0.(10&$(1$(1):3'(9#$/.0#

B → Xs!+!− is more complex

• Rate depends on

O7 = mb s̄σµνeF
µνPRb,

O9 = e2(s̄γµPLb)(#̄γµ#),

O10 = e2(s̄γµPLb)(#̄γµγ5#)

Theory most precise for 1 GeV2 < q2 < 6 GeV2

NNLL b→ s#+#− perturbative calculation
[Bobeth, Misiak, Urban, Gambino, Gorbahn, Haisch, Asatryan, Asatrian, Greub,

Walker, Ghinculov, Hurth, Isidori, Yao, etc.] 0 5 10 15 20
0

1

2

3

4

[Ghinculov, Hurth, Isidori, Yao]

• Experiments use additional cut: mXs < 2GeV [Belle, hep-ex/0503044] 1.8GeV [Babar, hep-ex/0404006]

Theoretical issues similar to measurement of |Vub| from B → Xu#ν̄
[Lee, ZL, Stewart, Tackmann]

Z. Ligeti — p. 32

rate depends mostly on•

• Calculations at NNLL order  

most precise for 1 GeV2 ≤ q2 ≤ 6 GeV2
0 5 10 15 20

0

1

2

3

4

J/Ψ
Ψ′

q2

107 dBr
dq2

(GeV−2)

Ghinculov, Hurth, Isidori, Yao
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• But, we need additional cuts:

to remove
mXs

≤ 2 GeV [Belle], mXs
≤ 1.8 GeV [Babar]
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FIG. 1: The kinematic range for p−X and p+
X given the experimental cuts of q2 < 6GeV2 and

mX ≤ 2.0GeV for B → Xs!+!−.

an additional cut is required, making measurements less inclusive. In particular, a hadronic
invariant-mass cut is imposed in order to eliminate the combinatorial background, which
includes the semileptonic decay b → c(→ se+ν) e−ν̄ = b → se+e− + missing energy. The
latest analyses from BABAR and Belle impose cuts of mX ≤ 1.8 GeV and mX ≤ 2.0 GeV
respectively [23], which in the B-meson rest frame correspond to q0 >∼ 2.3 GeV. This cut
dependence has so far been analyzed only in the Fermi-motion model [24], and not in a
model-independent formalism.

When m2
X

<∼ mbΛ, the operator product expansion must be rearranged, and, instead
of depending on non-perturbative parameters (λ1, λ2, . . .) that are matrix elements of local
operators, the decay rates depend on non-perturbative functions. In this so-called shape
function region, the set of outgoing hadronic states becomes more jet-like and the relevant
degrees of freedom are collinear and ultrasoft modes. The appropriate theoretical method
is then the Soft-Collinear Effective Theory (SCET) [25, 26, 27, 28]. The endpoint region
has been the focus of much work in the context of B → Xsγ and B → Xu$ν̄ (see e.g.
Refs. [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]). In B → Xu$ν̄ this is because
of the cuts used to eliminate the dominant b → c background. In B → Xsγ, it is known that
cuts with q0 >∼ 2.1 GeV put us in the shape function region.1 In the small-q2 region of B →
Xs$+$− with q0 ≥ 2.3 GeV, shape-function effects also dominate rather than the expansion
in local operators. To see this, note that the cut causes 2mBEX = m2

B + m2
X − q2 & m2

X .
Decomposing 2EX = p+

X +p−X with m2
X = p−Xp+

X , we see that the Xs is jet-like with p−X & p+
X ,

and the restricted sum over states in the Xs causes the non-perturbative shape functions
to become important. For the experimental cuts on q2 and mX , values for p±X are shown in

1 In Ref. [43] it was pointed out that even a cut of Eγ ≥ E0 = 1.8 GeV, corresponding to mX
<∼ 3 GeV, might

not guarantee that a theoretical description in terms of the local OPE is sufficient, owing to sensitivity

to the scale ∆ = mb − 2E0 in power and perturbative corrections. Using a multi-scale OPE with an

expansion in Λ/∆ allows the shape function and local OPE regions to be connected [32, 33, 43].
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These cuts put us
in the shape 

function region

new
physics?

(with same J, f )*
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includes the semileptonic decay b → c(→ se+ν) e−ν̄ = b → se+e− + missing energy. The
latest analyses from BABAR and Belle impose cuts of mX ≤ 1.8 GeV and mX ≤ 2.0 GeV
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of depending on non-perturbative parameters (λ1, λ2, . . .) that are matrix elements of local
operators, the decay rates depend on non-perturbative functions. In this so-called shape
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of the cuts used to eliminate the dominant b → c background. In B → Xsγ, it is known that
cuts with q0 >∼ 2.1 GeV put us in the shape function region.1 In the small-q2 region of B →
Xs$+$− with q0 ≥ 2.3 GeV, shape-function effects also dominate rather than the expansion
in local operators. To see this, note that the cut causes 2mBEX = m2
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Decomposing 2EX = p+

X +p−X with m2
X = p−Xp+

X , we see that the Xs is jet-like with p−X & p+
X ,

and the restricted sum over states in the Xs causes the non-perturbative shape functions
to become important. For the experimental cuts on q2 and mX , values for p±X are shown in

1 In Ref. [43] it was pointed out that even a cut of Eγ ≥ E0 = 1.8 GeV, corresponding to mX
<∼ 3 GeV, might

not guarantee that a theoretical description in terms of the local OPE is sufficient, owing to sensitivity

to the scale ∆ = mb − 2E0 in power and perturbative corrections. Using a multi-scale OPE with an
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FIG. 1: Phase space cuts. A substantial part of the rate for
q2
1 < q2 < q2

2 falls in the rectangle bounded by p+
X < p+cut

X .

II. mX CUT EFFECTS AT LEADING ORDER

For simplicity, consider the kinematics in the B me-
son’s rest frame. Since q = pB − pX ,

2mBEX = m2
B + m2

X − q2. (4)

If m2
X " m2

B and q2 is not near m2
B, then EX = O(mB).

Since E2
X # m2

X , pX is near the light-cone, with p+
X =

EX − |!pX| = O(ΛQCD) and p−X = EX + |!pX| = O(mB).
Of the variables symmetric in p!+ and p!− (p±X , EX , q2,
m2

X), only two are independent, and we work with q2 and
p+

X or mX . The phase space cuts are shown in Fig. 1.
For the p+

X " p−X region, factorization of the form

dΓ = HJ ⊗ f̂ (0) has been proven for semileptonic and
radiative B decays [15], where H contains perturbative
physics at µb ∼ mb, J at µi ∼

√

ΛQCDmb, and f̂ (0)(ω)
is a universal nonperturbative shape function [16]. This
factorization also applies for B → Xs#+#− with the same
f̂ (0), as long as q2 is not parametrically small [13].

In the q2 < 6 GeV2 region, |Cmix
9 (q2, µ0 = 4.8 GeV)| =

4.52 to better than 1%, and can be taken to be constant.
We neglect αs corrections in this section and find

dΓ

dp+
Xdq2

= f̂ (0)(p+
X)

Γ0

m5
B

[(mB − p+
X)2 − q2]2

(mB − p+
X)3

×
{

(|Cmix
9 |2 + C2

10)
[

2q2 + (mB − p+
X)2

]

+ 4m2
B |Cmix

7 |2
[

1 +
2(mB − p+

X)2

q2

]

+ 12mB Re
[

Cmix
7 Cmix

9
∗
]

(mB − p+
X)

}

, (5)

where f̂ (0)(ω) has support in ω ∈ [0,∞). As a func-
tion of p+

X , the kinematic terms in Eq. (5) vary only on a

scale mB, while f̂ (0)(p+
X) varies on a scale ΛQCD. Writing

mB = mb + Λ̄ and expanding in (p+
X − Λ̄)/mB decouple

the p+
X and q2 dependences in Eq. (5), and give the lo-

cal OPE prefactors, (m2
b − q2)2 Gij(q2), in Eq. (3). For

η′
ij(p

+cut
X , q2

1 , q
2
2) the p+

X integration is over a rectangle in

Fig. 1, whose boundaries do not couple p+
X and q2. Thus,

η′ =
∫

dp+
X f̂ (0)(p+

X), independent of ij and q2
1,2. While

the mX cut retains more events than the p+
X cut, the
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FIG. 2: ηij(mcut
X , 1GeV2, 6GeV2) as functions of mcut

X . The
dashed curves show the local OPE result, the solid curves
include the leading shape function effects. The uppermost,
middle, and lowest curves are η00,99, η79, and η77, respectively.

latter may give theoretically cleaner constraints on short
distance physics when statistical errors become small.

The effect of the mX cut is q2 dependent, because
the upper limit of the p+

X integration is q2 dependent,
as shown in Fig. 1. Including the full p+

X dependence
in Eq. (5), the universality of ηij(mcut

X , q2
1 , q2

2) is main-
tained to better than 3% for 1 GeV2 ≤ q2

1 ≤ 2 GeV2,
5 GeV2 ≤ q2

2 ≤ 7 GeV2, and mcut
X ≥ 1.7 GeV, be-

cause the region where the p+
X and q2 integration lim-

its are coupled has a small effect on the ij dependence.
This is exhibited in Fig. 2, where the solid curves show
ηij(mcut

X , 1 GeV2, 6 GeV2) with the shape function set to
model 1 of [17] with m1S

b = 4.68 GeV and λ1 from [18].
(Taking q2

1 = 1 GeV2 instead of 4m2
! increases the sensi-

tivity to C9,10, but one may be concerned by local dual-
ity / resonances near q2 = 1 GeV2. To estimate this un-
certainty, assume the φ is just below the cut and B(B →
Xsφ) ≈ 10×B(B → K(∗)φ). Then B → Xsφ → Xs#+#−

is ∼2% of the Xs#+#− rate.)
The local OPE results for ηij(mcut

X , q2
1 , q

2
2) are obtained

by replacing f̂ (0)(p+
X) by δ(Λ̄−p+

X) in Eq. (5). Performing
the p+

X integral sets (mB − p+
X) = mb and implies m2

X >
Λ̄(mB − q2/mb). This makes the lower limit on q2 equal
max{q2

1 , mb[mB − (mcut
X )2/Λ̄]}, and so the ηij ’s depend

on the shape of dΓij . In Fig. 2 the local OPE results are
shown by dashed lines, and clearly η77 -= η99. However,
the local OPE is not applicable for p+

X ∼ ΛQCD.
The universality of ηij found here could be broken by

αs corrections in the H or J functions, or by renormaliza-
tion group evolution, since these effects couple p+

X and q2

and have been neglected so far. We consider these next.

III. CALCULATION AND RESULTS AT O(αs)

A complication in calculating B → Xs#+#− compared
to B → Xu#ν̄ is that, in the evolution of the effective
Hamiltonian down to mb, C9(µ) receives a ln(m2

W /m2
b)

B → Xs!+!− kinematics

• There are only two kinematic variables symmetric in p!+ and p!−

2mBEX = m2
B + m2

X − q2

m2
X " m2

B & m2
B − q2 #"m2

B ⇒ EX = O(mB) & E2
X % m2

X ⇒ pX near light-cone

p+
X = n · pX = O(ΛQCD) p−X = n̄ · pX = O(mB) n, n̄ = (1,±!pX/|!pX|)

• p+
X " p−X: jet-like hadronic final state

• Parton level: Γ ∝ f(q2) δ[(mbv − q)2]
Parton level: m2

X ≥ Λ̄(mB − q2/mb)
rate vanishes left of the dashed lines

⇒ nonperturbative physics important
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X " p−X: jet-like hadronic final state
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p
+
X

∼ ΛQCDp
−

X
∼ mB !



Perturbative Counting
Perturbation theory for amplitude or rate?

• Usual power counting: expand 〈s!+!−|H|b〉 in αs, treating αs ln(mW/mb) = O(1)

This is OK in local OPE region (e.g., rate or q2 spectrum) where nonperturbative

corrections (λ1,2, etc.) are small and can be included at the end

• Shape function region: only the rate is calculable, Γ ∼ Im 〈B|T{O†
i (x) Oj(0)}|B〉

C9(mb) ∼ ln(mW/mb) ∼ 1/αs “enhancement”, but |C9(mb)| ∼ C10

– Need to take it seriously to cancel scheme- and scale-dependence in running

– Do not want power counting to imply that 〈B|O†
9O9|B〉 at O(α2

s) is of same
– order as 〈B|O†

10O10|B〉 at tree level

• Matching onto SCET, can separate µ-dependence in matrix element that cancels

that in running from O(mW ) to O(mb), and dependence on scales
√

mbΛQCD and

µhadr ∼ 1 GeV — can work to different orders

Z. Ligeti — p. 35

• usual counting expands

B̄ → Xsl+l−

• The NNLO calculation of B̄ → Xsl+l− corresponds to the NLO calculation of
B̄ → Xsγ, as far as the number of loops in the diagrams is concerned.

• Coefficients of the two additional operators

Oi =
e2

16π2
(s̄LγµbL)(l̄γµγ5l), i = 9,10

have the following perturbative expansion:

C9(µ) =
4π

αs(µ)
C(−1)

9 (µ) + C(0)
9 (µ) +

αs(µ)

4π
C(1)

9 (µ) + ...

C10 = C(0)
10 +

αs(MW )

4π
C(1)

10 + ...

• After an expansion in αs, the term C(−1)
9 (µ) reproduces (the dominant part of) the

electro-weak logarithm that originates from photonic penguins with charm quark loops:

b

!"

s4π

αs(mb)
C(−1)

9 (mb) =
4

9
ln

M2
W

m2
b

+ O(αs)

C(−1)
9 (mb) ! 0.033 " 1 ⇒ 4π

αs(mb)
C(−1)

9 (mb) ! 2

On the other hand: C(0)
9 (mb) ! 2.2

June 7 & 8, 2005

Dubna-Helmholtz Summer School, Dubna
Radiative, Semileptonic and Leptonic Rare B-Decays (page 26) Ahmed Ali

DESY, Hamburg
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Perturbation theory for amplitude or rate?

• Usual power counting: expand 〈s!+!−|H|b〉 in αs, treating αs ln(mW/mb) = O(1)

This is OK in local OPE region (e.g., rate or q2 spectrum) where nonperturbative

corrections (λ1,2, etc.) are small and can be included at the end

• Shape function region: only the rate is calculable, Γ ∼ Im 〈B|T{O†
i (x) Oj(0)}|B〉

C9(mb) ∼ ln(mW/mb) ∼ 1/αs “enhancement”, but |C9(mb)| ∼ C10

– Need to take it seriously to cancel scheme- and scale-dependence in running

– Do not want power counting to imply that 〈B|O†
9O9|B〉 at O(α2

s) is of same
– order as 〈B|O†

10O10|B〉 at tree level

• Matching onto SCET, can separate µ-dependence in matrix element that cancels

that in running from O(mW ) to O(mb), and dependence on scales
√

mbΛQCD and

µhadr ∼ 1 GeV — can work to different orders
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C7,10 ∼ 1

C9 ∼ 1/αs

〈s!+!
−|C9O9 + C10O10 + . . . |b〉

with αsin

• in shape function region only Γij ∼ Im〈B|T O
†
i (x)Oj(0)|B〉

makes sense
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BUT don’t want ∼ 1/α2

s
∼ 1,

Want Γij ∼ 1



mW

mb

ΛQCD

√
ΛE

E

}
Q

mb

Split Matching

µ0

µW

µb

µi

µΛ

Lee & I.S.

∫
dω C(ω)(ξ̄nW )ω Γ (Y †hv)J (0) = (!̄Γ′

!)

as long as q2 is not parametrically small
* A strange fact about                         :

in power counting, the factorization is the
same as at

B → Xs!
+
!
−

q
2

= 0

Organize the rate as a product of 
µ–independent pieces:

dΓ =
[

A(µW , µ0)
][

B(µb, µi, µΛ)
]

& organize perturbation theory 
differently for A, B

•

•



Effects of mX cut at lowest order

• Define:

ηij =

∫ 6 GeV2

1 GeV2
dq2

∫ mcut
X

0
dm2

X

dΓij

dq2 dm2
X∫ 6 GeV2

1 GeV2
dq2 dΓij

dq2

ij: C2
9 and C2

10, C7C9, C2
7 — different

functionally for each contribution

Dashed: tree level in local OPE [wrong]

Solid: with a fixed shape function model

• Strong mcut
X dependence: important to raise it

Once 1− η is sizable, so will be its uncertainty

• Approximate universality of ηij: because shape function varies on scale p+
X/ΛQCD,

while Γparton
ij varies on scale p+

X/mb ⇒ η ≈ ηij

Z. Ligeti — p. 6
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Local OPE (wrong)

fixed shape 
function

∫ 6 GeV
2

1 GeV2

dq2

∫ mcut

X

0

dm2
X

dΓij

dq2 dm2
X∫ 6 GeV

2

1 GeV2

dq2 dΓij

dq2

ηij =

Define

Strong m
cut

X dependence •

• Universality , ηij = η

since shape function varies rapidly,  as p+

X
/Λ

prefactors in          vary slowly,  as p+

X
/mBdΓij



Including NLL corrections

• Universality maintained; estimate shape function uncertainties using B → Xsγ

NNLL reduces µ-dependence, effect on q2 spectrum small⇒ η(NLL) ≈ η(NNLL)

• If increasing mcut
X above ∼ 2.2 GeV hard, keep it < mD, and compare measure-

ment with theory for ratio with same cuts:

R = Γcut(B → Xs#+#−)
/
Γcut(B → Xu#ν̄)

Both shape function (mcut
X ) and mb dependence drastically reduced

Z. Ligeti — p. 10
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0

!00

mX
cut

m 4.63=
4.68=
4.73=

b GeV1S

Universality maintained to 3%•
Estimate shape function uncertainties using• B → Xsγ :

10 models for 
    each   m1S

b

3

enhanced contribution from the mixing of O2. Thus, for-
mally, C9 ∼ O(1/αs), and conventionally one expands
the amplitude in αs, treating αs ln(m2

W /m2
b) = O(1) [12].

In the local OPE this is reasonable, since the nonpertur-
bative corrections are small, and at next-to-leading log
(NLL) all dominant terms in the rate are included. How-
ever, in the shape function region nonperturbative effects
are O(1) and only the rate is calculable. With the tradi-
tional counting the C2

9 contribution to the rate would be
needed to O(α2

s) before the C2
10 terms could be included.

This would be a bad way to organize the perturbative
corrections (numerically |C9(mb)| ≈ |C10|). It can be cir-
cumvented by using a “split matching” procedure to de-
couple the perturbation series above and below the scale
mb [13]. This allows us to consider the short distance
coefficients Cmix

7 , Cmix
9 , and C10 as O(1) numbers when

organizing the perturbation theory at m2
b and mbΛQCD.

The rate and the forward-backward asymmetry are

d2Γ

dq2dp+
X

=
Γ0

m2
B

H(q2, p+
X)F (0)(p+

X , p−) ,

d2AFB

dq2dp+
X

=
Γ0

m2
B

K(q2, p+
X)F (0)(p+

X , p−) , (6)

where p− = mb − q2/(mB − p+
X). The hard functions H

and K were computed in Ref. [13] using SCET [19, 20]
and split matching, which factorizes the dependence on
scales above and below mb as H1(µ0)H2(µb). Here, to
the order one is working at, H1 is µ0 independent, the
µb dependence in H2 and F (0) cancels, and F (0) is µi

independent. The shape function model is specified at
µΛ. The convolution of jet and shape functions at NLL
including O(αs) corrections is

F (0)(p+
X , p−) = UH(p−, µi, µb)

(

f̂ (0)
(

p+
X , µi

)

+
αs(µi)CF

4π

{

[

2 ln2 p+
Xp−

µ2
i

− 3 ln
p+

Xp−

µ2
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+ 7 − π2
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f̂ (0)
(

p+
X , µi
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+

∫ 1

0
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[

4 ln
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Xp−
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f̂ (0)
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,

f̂ (0)(ω, µi) =
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(

ω

µΛ

)η ∫ 1
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dt f̂ (0)

[

ω(1 − t1/η), µΛ

]

, (7)

where η = (16/25) ln[αs(µΛ)/αs(µi)], UH was computed in Ref. [19], the one-loop jet function in Ref. [21, 22], and
the shape function evolution up to µi in Refs. [19, 22] (for earlier calculations, see Refs. [15, 23]). The H and K are

H(q2, p+
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X)3
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|Cmix
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]
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2q̂2 Ω2
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X)2 Ω2
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where s = q2/m2
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X = p+
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/3. (9)

Here αs = αs(µb) and ωV,T
i are defined in Ref. [13].

For each shape function model, the deviations of the
ηij ’s from being universal are still below 3%. In Fig. 3 we
plot η00(mcut

X , 1 GeV2, 6 GeV2), including the αs correc-

tions. We use five different models for f̂ (0), constructed
to obey the known constraints on its moments [22].
The ten orange, green and purple (medium, light, dark)

curves correspond to m1S
b = 4.68 GeV, 4.63 GeV, and

4.73 GeV, respectively, using the central values µ0 =
µb = 4.8 GeV and µi = 2.5 GeV. The curves with slightly
lower [higher] values of η00 at large mcut

X correspond to
µΛ = 1.5 GeV [2 GeV]. For mcut

X = 2 GeV, varying µb in
the range 3.5 GeV < µb < 7.5 GeV changes η00 by ±6%.
We find a ±5% variation for 2 GeV < µi < 3 GeV. The
µ0 dependence is similar to that in the local OPE, and
will be reduced by including the known NNLL correc-
tions [5, 6, 7]. We did not study it here.

Using the ci’s at NLL, for 1 GeV2 < q2 < 6 GeV2 and
mcut

X = 1.8 and 2.0 GeV, we obtain Γcut τB = (1.20 ±
0.15)×10−6 and (1.48±0.14)×10−6, respectively, where
uncertainties from mb, µb, µi, and f̂ (0) are included.

The largest source of universality breaking in the ηij ’s
and one of the largest uncertainties in the rate is due to
subleading shape functions, which affect the rate by ∼ 5%

η00 ∼ ±6%
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µb = 4.8 GeV and µi = 2.5 GeV. The curves with slightly
lower [higher] values of η00 at large mcut

X correspond to
µΛ = 1.5 GeV [2 GeV]. For mcut

X = 2 GeV, varying µb in
the range 3.5 GeV < µb < 7.5 GeV changes η00 by ±6%.
We find a ±5% variation for 2 GeV < µi < 3 GeV. The
µ0 dependence is similar to that in the local OPE, and
will be reduced by including the known NNLL correc-
tions [5, 6, 7]. We did not study it here.

Using the ci’s at NLL, for 1 GeV2 < q2 < 6 GeV2 and
mcut

X = 1.8 and 2.0 GeV, we obtain Γcut τB = (1.20 ±
0.15)×10−6 and (1.48±0.14)×10−6, respectively, where
uncertainties from mb, µb, µi, and f̂ (0) are included.

The largest source of universality breaking in the ηij ’s
and one of the largest uncertainties in the rate is due to
subleading shape functions, which affect the rate by ∼ 5%

η00 ∼ ±5%

Including NLL corrections

• Universality maintained; estimate shape function uncertainties using B → Xsγ

NNLL reduces µ-dependence, effect on q2 spectrum small⇒ η(NLL) ≈ η(NNLL)

• If increasing mcut
X above ∼ 2.2 GeV hard, keep it < mD, and compare measure-

ment with theory for ratio with same cuts:

R = Γcut(B → Xs#+#−)
/
Γcut(B → Xu#ν̄)

Both shape function (mcut
X ) and mb dependence drastically reduced

Z. Ligeti — p. 10

• Alternatively, could take  mcut

X < mD and normalize with respect to
b → u with same cuts

at m
cut

X
= 2.0 GeV:

∼ 10% uncertainty in η00

overall
-
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B → ππ B → π"ν̄,
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pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

Form Factors

Nonleptonic

Factorization at

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

mb

}
f(E) =

∫
dz T (z,E) ζBM

J (z,E)

+ C(E) ζBM (E)

ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

Factorization at √EΛ

ζBM = ?

Beneke, Feldmann
Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

expansion in αs(
√

EΛ)

(left as a form factor)

universality at 
EΛ

Bauer, Pirjol, Rothstein, I.S.
 (BBNS; Chay,Kim)

 Factorization (with SCET)

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2
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Use nonleptonic data: B → ππ

Factorization &                determines |Vub|f+(0)B → ππ

|Vub|f+(0) = F (Sπ+π− , Cπ+π− , Br(π+π−), Br(π0π−),β, γ, Vud)
[
1 +O

(
αs(mb) ,

ΛQCD

E

)]

• Uses data instead of hadronic parameters (remove complex penguin 
amplitude, and color suppressed amplitude)
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FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣
λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦

=
(
0.05± 0.05

)(3.9× 10−3

|Vub|

)
, (40)

ζBπ
J

∣∣
γ=64◦

=
(
0.11± 0.03

)(3.9× 10−3

|Vub|

)
,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦

=
(
0.17± 0.02

)(3.9× 10−3

|Vub|

)
. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).
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|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 + O

(
αs(mb),

ΛQCD

mb

)]
,

2

the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for t in
the B → π range. In Eq. (3) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (5)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here
χ(0)

J is obtained from derivatives of Π(q2) computed with
an OPE. At two loops in terms of the pole mass and
condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (6)

with mb〈ūu〉 ' −0.076 GeV4, 〈αsG2〉 ' 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (3)
the dispersive bound gives a constraint on the coefficients

∑nmax
k=0 a2

k ≤ 1 , (7)

for any choice of nmax.
Eqs. (3) and (7) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 ) 1. The main power of analyt-
icity is that if we fix f+(q2) at nmax input points then
it constrains the q2 shape between these points. With
nmax = 5 the error from the bounds is negligibly small
relative to other uncertainties, as we see below (our anal-
ysis is also insensitive to the exact values of χ(0)

J or mb).
The bounds can be strengthened using heavy quark sym-
metry or higher moments [12], but since this uncertainty
is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
Manipulating formulas in [7] the result is

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(8)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny

C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (9)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− =(1−C2

π+π−−S2
π+π−)1/2. Eqs. (8,9) improve

on relations between B → ππ and B → π(ν̄ derived
earlier, such as in Ref. [14], because they do not rely on
expanding in αs(

√
mbΛ) or require the use of QCD sum

rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (8) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (10)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (8) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. The
staggered fermion (det M)1/4 trick might add model de-
pendence, but we take the agreement with data in [17]
to indicate that this is small. Refs [2, 3] find consistent
results with different heavy quark actions. As our default
we use [2] since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (11)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (11) are statistical, ±σi, and the sec-
ond are 11% systematic errors, ±yf i

in, with y = 0.11. For
the lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in,

which takes σi uncorrelated and includes 100% correla-
tion in the systematic error. Of the eleven reported lat-
tice points we use only three at separated q2. This maxi-
mizes the shape information while minimizing additional
correlations that may occur in neighboring points.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ +mB∗−mB)

[
1+O

(Eπ

∆

)]
, (12)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0

Bπ+π− =
√

1− C 2
π+π− − S 2

π+π−

flat with γ
tc =

|Tππ|
|Tππ + Cππ|



expt.

dominated by theory, estimate:

f+(0) = (0.18 ± 0.01 ± 0.04)
(3.9× 10−3

|Vub|

)

∼ 25% perturbativefrom

2

the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for t in
the B → π range. In Eq. (3) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (5)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here
χ(0)

J is obtained from derivatives of Π(q2) computed with
an OPE. At two loops in terms of the pole mass and
condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (6)

with mb〈ūu〉 ' −0.076 GeV4, 〈αsG2〉 ' 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (3)
the dispersive bound gives a constraint on the coefficients

∑nmax
k=0 a2

k ≤ 1 , (7)

for any choice of nmax.
Eqs. (3) and (7) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 ) 1. The main power of analyt-
icity is that if we fix f+(q2) at nmax input points then
it constrains the q2 shape between these points. With
nmax = 5 the error from the bounds is negligibly small
relative to other uncertainties, as we see below (our anal-
ysis is also insensitive to the exact values of χ(0)

J or mb).
The bounds can be strengthened using heavy quark sym-
metry or higher moments [12], but since this uncertainty
is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.
Manipulating formulas in [7] the result is

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(8)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny

C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (9)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− =(1−C2

π+π−−S2
π+π−)1/2. Eqs. (8,9) improve

on relations between B → ππ and B → π(ν̄ derived
earlier, such as in Ref. [14], because they do not rely on
expanding in αs(

√
mbΛ) or require the use of QCD sum

rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (8) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (10)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (8) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. The
staggered fermion (det M)1/4 trick might add model de-
pendence, but we take the agreement with data in [17]
to indicate that this is small. Refs [2, 3] find consistent
results with different heavy quark actions. As our default
we use [2] since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (11)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (11) are statistical, ±σi, and the sec-
ond are 11% systematic errors, ±yf i

in, with y = 0.11. For
the lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in,

which takes σi uncorrelated and includes 100% correla-
tion in the systematic error. Of the eleven reported lat-
tice points we use only three at separated q2. This maxi-
mizes the shape information while minimizing additional
correlations that may occur in neighboring points.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ +mB∗−mB)

[
1+O

(Eπ

∆

)]
, (12)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular

theory

and power corrections
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i)  Lattice qcd results at large 

iii) 

q2

iv)  QCD dispersion relations to constrain the
      form factors shape

   expt. spectra for information at low 

Arnesen, Grinstein, Rothstein, I.S. 

(model independent)
Figure 5 presents the obtained q2 distributions for the two decay modes, overlaid with the

best fits of FF shapes to the data. To be self-consistent, the shape of a particular FF model
is fit to the q2 distribution extracted with that FF model. The quality of the fit in terms of
χ2 and the probability of χ2, shown in Table I and II, may provide one way to discriminate
among the models. At the present accuracy, we are unable to draw any conclusion on this
point.
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FIG. 5: Extracted q2 distrubution for the B0 → π−"+ν(left) and B0 → ρ−"+ν(right) decays. Data

points are shown for different FF models used to estimate the detection efficiency. Lines are for
the best fit of the FF shapes to the obtained q2 distribution.

We extract |Vub| using the relation,

|Vub| =

√

√

√

√

B(B0 → π−(ρ−)$+ν)

Γ̃thy τB0

, (4)

where Γ̃thy is the form-factor normalization, predicted from theories. In this paper, our
major focus is on the |Vub| determination based on the π−$+ν data and the form factor
predicted by LQCD calculations. Since the current LQCD calculations are available only in
the region q2 ≥ 16 GeV2/c2, we use the branching fraction in the high q2 bin extracted with
UKQCD; B≥16 = (0.45 ± 0.16) × 10−4. We use τB0 = 1.536 ± 0.014 ps for the B0 lifetime
[20].

We apply Γ̃thy predicted by the FNAL [23], JLQCD [24], APE [6] as well as UKQCD
calculations, as quoted by the CLEO analysis in 2003 [6]. For the average of these results,
the combined Γ̃thy = 1.92+0.32

−0.12 ± 0.47 ps−1 calculated by CLEO work is used. Here the
errors are the statistical and the systematic in LQCD calculations, the latter including the
quenching error of 15%. We obtain

|Vub|
π"ν
(q2≥16) = (3.90 ± 0.71 ± 0.23+0.62

−0.48) × 10−3, (5)
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functional forms. The variable

z(t, t0) =
√

t+ − t−
√

t+ − t0√
t+ − t +

√
t+ − t0

, (6)

maps t+ < t <∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)

J
corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(10)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
π+π−)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =
{3.87± 0.70± 0.22+0.85

−0.51 (FNAL)

4.73± 0.85± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫
d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an

OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

Im Πµν=
∫
[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉+ . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞∑

k=0

ak(t0) z(t, t0)k , (5)

with coefficients ak that parameterize different allowed
t0 = 0.65 t−

−0.34 ≤ z ≤ 0.22

Pick

P (t)φ(t)f(t) =
∞∑

n=0

an zn

Blaschke Factor: remove pole at t = m2
B∗

Outer function:  phase space, Jacobian,
χ(0) in QCD

f+(t) =
1

P (t)φ(t)

∞∑

n=0

an zn

Strategy:  use input points to fix first few a’s
vary all higher a’s to determine uncertainty

t = q2

then

Complex 
Magic

* *

t z

B → π"ν̄

vac→ B̄π("ν)

B∗ pole

t− t+

Form factor for

∑

n

a2
n ≤ 1

from dispersion
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FIG. 3: The curves are as in Fig.2, but for the decay rate.

we exploit the q2 shape information. To do this we define

χ2 =
17∑

i=1

[Brexp
i − Bri(Vub, F±)]2

(δBri)2
+

[f0
in − f0]2

(δf0)2
(19)

+
[f4

in − f4]2

(δf4)2
+

3∑

i,j=1

[
f i
in − f i

][
f j
in − f j

]
(E−1)ij ,

and minimize χ2 as a function of |Vub| and f0−4. χ2

contains both experimental and theoretical errors, with
E−1 the inverse error matrix. By allowing f 0−4 in F± to
move away from f 0−4

in the theoretical rate is allowed to
adjust itself based on the experimental q2 shape.

Minimizing (19) gives χ2/(dof) = 1.04 and

|Vub| = (3.54 ± 0.47)× 10−3 . (20)

Results for f+(q2) and dΓ/dq2 are shown by the black
solid curves in Figs. 2 and 3. Eq.(20) has a total error of
13%. If we fix f0−4 = f0−4

in then the experimental error is
4.9%, ie. δ|Vub| = ±0.17. The remainder, δ|Vub| = ±0.44
is from the input points, so the q2 spectra brought this
theory error down to 12%. Other uncertainties are small
as shown in Table I. The experimental spectra favor a
larger form factor between the lattice and SCET points.
This decreases the value of |Vub| from that in (18). Using
Eqs. (12,15) this fit yields

f+(0) = 0.227± 0.047 , g fB = 96 ± 29 MeV , (21)

consistent with our inputs. This f+(0) has 21% error.

If we entirely remove the SCET point f 0 from Eq.(19)
then we obtain a fit that uses only semileptonic data,
shown by the dashed red lines in Figs. 2 and 3. The
spectrum is now determined less precisely at small q2,
since this data only bounds the area in the smallest q2-
bin. The result is |Vub| = (3.56 ± 0.48) × 10−3. It has
the same input point error as Eq.(20) and a somewhat
larger bound error, δ|Vub| = 1.8%. Turning the use of
Eq.(12) around, we can combine it with f+(0) to get an
independent method of fixing |Vub| from the nonleptonic
data. The semileptonic fit gives f+(0) = 0.25 ± 0.06, so
Eq.(12) yields |Vub|nonlep = (2.9 ± 1.0)× 10−3.

Our final result for |Vub| is given in (20). The final the-
ory error is dominated by the lattice points, and is very
close to their error. It will decrease with this error in
the future. See also [22]. To go beyond the analysis here
it will be interesting to study the additional error cor-
relation implied by the dispersion relations when lattice
input points are included that are closer together.
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expt. spectrum prefers a 
larger form factor in 
                        region  

•

5–10 GeV2

• Here the SCET point constrains 
the spectrum, but does not 
change the determination of Vub

Fit to expt. spectra & input points

∼

f+(0) = 0.25± 0.06
Type of Error Variation From δ|Vub|q

2

Input Points 1-σ correlated errors ±13%
Bounds F+ versus F− < 1%
mpole

b 4.88 ± 0.40 < 1%
OPE order 2 loop → 1 loop < 1%

no SCET:
similar to sum-rules

Fit gives:

with SCET: f+(0) = 0.23± 0.05



χ2     fits to data & input pts. 
with dispersion relations

My Average for this method:

|Vub| = 3.92 ± 0.52 total error
(4% expt.)

13% This includes the information
in the pure lattice method103×

HPQCD
FNAL

expt. &
theory

|Vub| = 3.72 ± 0.52
|Vub| = 4.11 ± 0.52

χ2/(dof) ∼ 1.0

103×
103×

(without SCET point)
Lepton Photon ‘05
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|Vub|treated as output
in global CKM = (3.53+0.22
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More recently, Becher & Hill have imposed a stronger constraint

In our analysis the errors near q2 =0 in                are still 
much too big to determine ζBπ ζJBπ, and test factorization

on the form factor.  Here the current                     data just starts to become 
interesting.  Currently agrees with                     at the border of  

B → π"ν̄

B → π"ν̄

B → ππ 1–σ



Outlook

• The SCET can be applied to:

• A lot of theory and phenomenology left to study ...

Nonleptonic decays, Other B decays
Jet physics, Exclusive form factors
Charmonium, Upsilon physics
... others ?

• There is an EFT for processes with energetic jets or hadrons 

• We now have the tools to systematically study power corrections

universal hadronic parameters, strong phases
γ (or α) from individual B →M1M2 channels

predictions for the size of amplitudes

color suppressed decays,  inclusive decays

Exclusive Vub from dispersion + Lattice + spectra•

• Nonleptonics


