Factorization, B decays, and the Soft-Collinear Effective Theory

Iain Stewart MIT

LPNHE, Feb. 2006

Outline

- Motivation
- Soft-Collinear Effective Theory (SCET)
- Applications in B decays:
i) Charm (test factorization):

$$
B \rightarrow D \pi \quad B \rightarrow D \rho \quad \Lambda_{b} \rightarrow \Sigma_{c}^{(*)} \pi
$$

ii) Inclusive decays (Vub, shape functions):

$$
B \rightarrow X_{u} \ell \bar{\nu} \quad B \rightarrow X_{s} \gamma \quad B \rightarrow X_{s} \ell^{+} \ell^{-}
$$

iii) \subset CP: $B \rightarrow \pi \ell \bar{\nu}$ and $B \rightarrow \pi \pi \quad\left|V_{u b}\right| \& \gamma$

- Outlook

B decays - Motivation

- Heavy Stable Hadrons \longrightarrow lots of decays
- Probe the flavor sector of the SM

CKM matrix

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

GP:

$$
B^{+}=u \bar{b}, B^{0}=d \bar{b}, \bar{B}^{0}=\bar{d} b, B^{-}=\bar{u} b, \quad \text { similarly for } B^{* ' s}
$$

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the $B^{ \pm}$section, but because of their importance we have created two new sections: " $B^{ \pm} / B^{0}$ Admixture" for $\Upsilon(4 S)$ results and " $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_{b} at high energy are found in the Admixture sections. $B^{0}-\bar{B}^{0}$ mixing data are found in the B^{0} section, while $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing data and $B-\bar{B}$ mixing data for a B^{0} / B_{s}^{0} admixture are found in the B_{s}^{0} section. $C P$-violation data are found in the $B^{ \pm}, B^{0}$, and $B^{ \pm} B^{0}$ Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- $B^{ \pm}$
mass, mean life, branching fractions $C P$ violation
- B^{0}
mass, mean life, branching fractions
polarization in B^{0} decay, $B^{0}-\bar{B}^{0}$ mixing, $C P$ violation
- $B^{ \pm} B^{0}$ Admixtures
branching fractions, $C P$ violation
- $B^{ \pm} / B^{0} / B_{s}^{0} / b$-baryon Admixtures
mean life, production fractions, branching fractions
χ_{b} at high energy, $V_{c b}$ measurements

- B^{*}

mass

- B_{s}^{0}
mass, mean life, branching fractions
polarization in B_{s}^{0} decay, $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing
- $B_{c}^{ \pm}$
mass, mean life, branching fractions
At end of Baryon Listings:
- Λ_{b}
mass, mean life, branching fractions
-b-baryon Admixture
mean life, branching fractions

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

$$
\begin{aligned}
& \text { Mass } m_{B^{ \pm}}=5279.0 \pm 0.5 \mathrm{MeV} \\
& \text { Mean life } \tau_{B^{ \pm}}=(1.671 \pm 0.018) \times 10^{-12} \mathrm{~s} \\
& \quad c \tau=501 \mu \mathrm{~m}
\end{aligned}
$$

$C P$ violation

$$
\begin{aligned}
& A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=-0.007 \pm 0.019 \\
& A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) \pi^{+}\right)=-0.01 \pm 0.13 \\
& A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)=-0.037 \pm 0.025 \\
& A_{C P}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)=0.04 \pm 0.07 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} K^{+}\right)=0.06 \pm 0.19 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P}(-1) K^{+}\right)=-0.19 \pm 0.18 \\
& A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=0.05 \pm 0.15 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=-0.10 \pm 0.08 \\
& A_{C P}\left(B^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=0.03 \pm 0.08 \quad(S=1.1) \\
& A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)=-0.39 \pm 0.35 \\
& A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.09 \pm 0.16 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}\right)=0.01 \pm 0.08 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+}\right)=0.02 \pm 0.08 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \eta^{\prime}\right)=0.009 \pm 0.035 \\
& A_{C P}\left(B^{+} \rightarrow \omega \pi^{+}\right)=-0.21 \pm 0.19 \\
& A_{C P}\left(B^{+} \rightarrow \omega K^{+}\right)=-0.21 \pm 0.28 \\
& A_{C P}\left(B^{+} \rightarrow \phi K^{+}\right)=0.03 \pm 0.07 \\
& A_{C P}\left(B^{+} \rightarrow \phi K^{*}(892)^{+}\right)=0.09 \pm 0.15 \\
& A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}\right)=0.20 \pm 0.31
\end{aligned}
$$

B^{-}modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the $B^{ \pm} / B^{0}$ ADMIXTURE section.

The branching fractions listed below assume $50 \% B^{0} \bar{B}^{0}$ and $50 \% B^{+} B^{-}$ production at the $\Upsilon(4 S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\gamma(4 S)$ production ratio to $50: 50$ and their assumed D, D_{S}, D^{*}, and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.
Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{ \pm}$anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

D, D^{*}, or D_{s} modes

$(4.98 \pm 0.29) \times 10^{-3}$		2308
(1.34 ± 0.18) \%		2236
$(3.7 \pm 0.6) \times 10^{-4}$	$\mathrm{S}=1.1$	2280
$(6.1 \pm 2.3) \times 10^{-4}$		2213
$(5.5 \pm 1.6) \times 10^{-4}$		2189
$(7.5 \pm 1.7) \times 10^{-4}$		2071
(1.1 ± 0.4) \%		2289
$\left(\begin{array}{ll}5 & \pm 4\end{array}\right) \times 10^{-3}$		2289
$(4.2 \pm 3.0) \times 10^{-3}$		2207
$\left(\begin{array}{lll}5 & \pm 4\end{array}\right) \times 10^{-3}$		2123
$(4.1 \pm 0.9) \times 10^{-3}$		2206
$(2.1 \pm 0.6) \times 10^{-3}$		2247
$<1.4 \times 10^{-3}$	CL=90\%	2299
$(4.6 \pm 0.4) \times 10^{-3}$		2256
$(4.5 \pm 1.2) \times 10^{-3}$		2149
$(9.8 \pm 1.7) \times 10^{-3}$		2181
$(3.6 \pm 1.0) \times 10^{-4}$		2227
$(7.2 \pm 3.4) \times 10^{-4}$		2156
$<1.06 \times 10^{-3}$	CL=90\%	2132
$(1.5 \pm 0.4) \times 10^{-3}$		2008

HTTP://PDG.LBL.GOV
Page 3
Created: 12/9/2004 16:47

HTTP://PDG.LBL.GOV

Page
Created: 12/9/2004 16:47

$K^{*}(892)^{0} \pi^{+} \gamma$	$(2.0$	+0.7		
$K_{0}^{+} \rho^{0} \gamma$	<2.6	$) \times 10^{-5}$		2562
$K^{+} \pi^{-} \pi^{+} \gamma$ nonresonant	<9.2	$\times 10^{-5}$	$C L=90 \%$	2558
$K_{1}(1400)^{+} \gamma$	<5.0	$\times 10^{-6}$	$C L=90 \%$	2609
$K_{2}^{*}(1430)^{+} \gamma$	<1.4	$\times 10^{-3}$	$C L=90 \%$	2453
$K^{*}(1680)^{+} \gamma$	<1.9	$\times 10^{-3}$	$C L=90 \%$	2447
$K_{3}^{*}(1780)^{+} \gamma$	<5.5	$\times 10^{-3}$	$C L=90 \%$	2360
$K_{4}^{*}(2045)^{+} \gamma$	<9.9	$\times 10^{-3}$	$C L=90 \%$	2243

Light unflavored meson modes				
$\rho^{+} \gamma$	<2.1	$\times 10^{-6}$	CL=90\%	2583
$\pi^{+} \pi^{0}$	(5.6) $\times 10^{-6}$		2636
$\pi^{+} \pi^{+} \pi^{-}$	(1.1) $\times 10^{-5}$		2630
$\rho^{0} \pi^{+}$	(8.6) $\times 10^{-6}$		2581
$\pi^{+} f_{0}(980)$	< 1.4	$\times 10^{-4}$	CL=90\%	2547
$\pi^{+} f_{2}(1270)$	<2.4	$\times 10^{-4}$	CL=90\%	2483
$\pi^{+} \pi^{-} \pi^{+}$nonresonant	< 4.1	$\times 10^{-5}$	CL=90\%	2630
$\pi^{+} \pi^{0} \pi^{0}$	< 8.9	$\times 10^{-4}$	CL=90\%	2631
$\rho^{+} \pi^{0}$	< 4.3	$\times 10^{-5}$	CL=90\%	2581
$\pi^{+} \pi^{-} \pi^{+} \pi^{0}$	<4.0	$\times 10^{-3}$	CL=90\%	2621
$\rho^{+} \rho^{0}$	(2.6) $\times 10^{-5}$		2523
$a_{1}(1260)^{+} \pi^{0}$	< 1.7	$\times 10^{-3}$	CL=90\%	2494
$a_{1}(1260)^{0} \pi^{+}$	<9.0	$\times 10^{-4}$	CL=90\%	2494
$\omega \pi^{+}$	(6.4) $\times 10^{-6}$	$\mathrm{S}=1.3$	2580
$\omega \rho^{+}$	<6.1	$\times 10^{-5}$	CL=90\%	2522
$\eta \pi^{+}$	<5.7	$\times 10^{-6}$	CL=90\%	2609
$\eta^{\prime} \pi^{+}$	<7.0	$\times 10^{-6}$	CL=90\%	2551
$\eta^{\prime} \rho^{+}$	<3.3	$\times 10^{-5}$	CL=90\%	2492
$\eta \rho^{+}$	< 1.5	$\times 10^{-5}$	CL=90\%	2553
$\phi \pi^{+}$	< 4.1	$\times 10^{-7}$	CL=90\%	2539
$\phi \rho^{+}$	< 1.6	$\times 10^{-5}$		2480
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	< 8.6	$\times 10^{-4}$	CL=90\%	2608
$\rho^{0} a_{1}(1260)^{+}$	<6.2	$\times 10^{-4}$	CL=90\%	2433
$\rho^{0} a_{2}(1320)^{+}$	<7.2	$\times 10^{-4}$	CL=90\%	2410
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	<6.3	$\times 10^{-3}$	CL=90\%	2592
$a_{1}(1260)^{+} a_{1}(1260)^{0}$	< 1.3	\%	CL=90\%	2335

Charged particle ($h^{ \pm}$) modes
$\quad h^{ \pm}=K^{ \pm}$or $\pi^{ \pm}$
$h^{+} \pi^{0}$
ωh^{+}
$h^{+} X^{0}($ Familon $)$
HTTP. //PDG LBL.GOV

$$
\begin{array}{ll}
\left(1.6_{-0.6}^{+0.7}\right) \times 10^{-5} & 2636 \\
\left(1.38_{-0.24}^{+0.27}\right) \times 10^{-5} & 2580
\end{array}
$$

4?

Operator Product Expansion (I)

m_{W}

- $m_{W}, m_{t} \gg m_{b}$
m_{b}
m_{c}

Λ_{QCD}
m_{s}
Decays like $B \rightarrow X_{s} \gamma \& B \rightarrow K \pi$ have contributions from ~ 12 operators
$m_{u, d}$
m_{W}
m_{b}
m_{c}
Operator Product Expansion (II)
- $m_{b} \gg \Lambda_{\mathrm{QCD}}$

Soft - Collinear Effective Theory

Bauer, Pirjol, Stewart
Fleming, Luke, ...

An effective field theory for energetic hadrons \& jets

$$
E \gg \Lambda_{\mathrm{QCD}}
$$

Effective Field Theory

- Separate physics at different momentum scales
- Model independent, systematically improvable
- Power expansion, can estimate uncertainty
- Exploit symmetries
- Resum Sudakov logarithms

Soft Collinear Effective Theory

eg.

Pion has: $\quad p_{\pi}^{\mu}=(2.3 \mathrm{GeV}) n^{\mu}=Q n^{\mu} \quad n^{2}=\bar{n}^{2}=0,\left(\bar{n} \cdot p=p^{-}\right)$
Soft constituents:

$$
p_{s}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim(\Lambda, \Lambda, \Lambda)
$$

Collinear constituents:

$$
\begin{aligned}
& \text { near constituents: } \\
& p_{c}^{\mu}=\left(p^{+}, p^{-}, p^{\perp}\right) \sim\left(\frac{\Lambda^{2}}{Q}, Q, \Lambda\right) \sim Q\left(\lambda^{2}, 1, \lambda\right) \quad \lambda=\frac{\Lambda}{Q}
\end{aligned}
$$

Degrees of freedom in SCET

Introduce fields for infrared degrees of freedom (in operators)

$$
\begin{array}{cccc}
\text { modes } & p^{\mu}=(+,-, \perp) & p^{2} & \text { fields } \\
\hline \text { collinear } & Q\left(\lambda^{2}, 1, \lambda\right) & Q^{2} \lambda^{2} & \xi_{n}, A_{n}^{\mu} \\
\text { soft } & Q(\lambda, \lambda, \lambda) & Q^{2} \lambda^{2} & q_{s}, A_{s}^{\mu} \\
\text { usoft } & Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) & Q^{2} \lambda^{4} & q_{u s}, A_{u s}^{\mu}
\end{array}
$$

$\mathrm{SCET}_{\mathrm{I}} \quad$ Energetic jets $\quad \Lambda^{2} \ll Q \Lambda \ll Q^{2}$

usoft	$p^{\mu} \sim \Lambda$
collinear	$p_{c}^{2} \sim Q \Lambda, \quad \lambda=\sqrt{\Lambda / Q}$

$\mathrm{SCET}_{\text {II }}$
Energetic hadrons
$\begin{array}{ll}\text { soft } & p^{\mu} \sim \Lambda \\ \text { collinear } & p_{c}^{2} \sim \Lambda^{2}, \quad \lambda=\Lambda / Q\end{array}$

Factorization

Factorization

- Separation of scales and Decoupling
eg. $\bar{u} \Gamma b$

$\longrightarrow \bar{\xi}_{n} W \Gamma h_{v}$ integrate out offshell quarks
$\longrightarrow\left(\bar{\xi}_{n} W\right) \Gamma\left(Y^{\dagger} h_{v}\right)$ usoft-collinear factorization (field redefn.)
$\longrightarrow \int d \omega C(\omega)\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma\left(Y^{\dagger} h_{v}\right)$ hard-collinear factorization

$$
\begin{gathered}
\omega \sim p_{c}^{-} \sim Q \\
W=P \exp \left(i g \int_{-\infty}^{y} d s \bar{n} \cdot A_{n}\left(s \bar{n}^{\mu}\right)\right) \\
S=P \exp \left(i g \int_{-\infty}^{y} d s n \cdot A_{s}\left(s n^{\mu}\right)\right) \\
Y=P \exp \left(i g \int_{-\infty}^{y} d s n \cdot A_{u s}\left(s n^{\mu}\right)\right)
\end{gathered}
$$

- operators are gauge invariant, so factorization is too

SCET $_{\text {I }}$ Lagrangians

Expansion:

$$
\begin{aligned}
\mathcal{L}_{c}^{(0)} & =\bar{\xi}_{n}\left\{n \cdot i D+i \not D_{c}^{\perp} W \frac{1}{\overline{\mathcal{P}}} W^{\dagger} i D_{c}^{\perp}\right\} \frac{\bar{h}}{2} \xi_{n} \\
\mathcal{L}_{u s, s}^{(0)} & =\bar{q} i \not D q \\
\mathcal{L}_{\xi q}^{(1)} & =\bar{\xi}_{n} W \frac{1}{\overline{\mathcal{P}}} W^{\dagger}\left(i g \not ⿻_{c}^{\perp}\right) W Y^{\dagger} q_{u s}+\text { h.c. } \\
\mathcal{L}^{(2)} & \text { known }
\end{aligned}
$$

- Same (subleading!) Lagrangians for all processes
- Many processes require subleading Lagrangians or they vanish

Factorization

- $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}$
B, D are soft, π collinear

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)}
$$

Factorization if $\mathcal{O}=O_{c} \times O_{s}$

$$
\langle D \pi|(\bar{c} b)(\bar{u} d)|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

Calculate T

- $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}$

Mantry, Pirjol, I.S.

$$
\begin{aligned}
A_{00}^{D^{(*)} \pi}= & N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{\pi}(x) \\
& +A_{\text {long }}^{D^{(*)} \pi}
\end{aligned}
$$

$$
\frac{\Lambda}{E_{M}} \& \frac{1}{N_{c}} \text { suppressed }
$$

Color Suppressed Decays

- Factorization with SCET

 Single class of power suppressed $\operatorname{SCET}_{\text {I }}$ operators $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$

- with HQET for $\left\langle D^{(*) 0} \pi\right|(\bar{c} b)(\bar{d} u)\left|\bar{B}^{0}\right\rangle \quad$ get $\quad \frac{p_{\pi}^{\mu}}{m_{c}} \rightarrow \frac{E_{\pi}}{m_{c}}=1.5$
not a convergent expansion

Expt Average (Cleo, Belle, Babar):

Extension to isosinglets:

Blechman, Mantry, I.S.
isospin triangle

Not yet tested:

- $\operatorname{Br}\left(D^{*} \rho_{\|}^{0}\right) \gg \operatorname{Br}\left(D^{*} \rho_{\perp}^{0}\right), \quad \operatorname{Br}\left(D^{* 0} K_{\|}^{* 0}\right) \sim \operatorname{Br}\left(D^{* 0} K_{\perp}^{* 0}\right)$
- equal ratios $D^{(*)} K^{*}, D_{s}^{(*)} K, D_{s}^{(*)} K^{*}$; triangles for $D^{(*)} \rho, D^{(*)} K$

Baryon decays

$$
\Lambda_{b} \rightarrow \Lambda_{c} \pi, \Lambda_{c} \rho, \Sigma_{c}^{(*)} \pi, \Sigma_{c}^{(*)} \rho
$$

Leibovich et al.

$\mathrm{E}=$ exchange

B = bow-tie
commensurate

Predict

In SCET: $\quad T \gg C \sim E \gg B$ similar factorization theorems

$$
\begin{array}{cc|ll}
\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)}=\frac{8 m_{\Lambda_{b}}^{3}\left(1-r_{\Lambda}^{2}\right)^{3} r_{D}}{m_{B}^{3}\left(1-r_{D}^{2}\right)^{3}\left(1+r_{D}\right)^{2}}\left(\frac{\zeta\left(w_{\max }^{\Lambda}\right)}{\xi\left(w_{\max }^{D}\right)}\right)^{2} & \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \pi\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \pi\right)}=2, & \frac{B r\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \rho\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Sigma_{c} \rho\right)}=2 \\
1.6 & \text { need } & \frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K\right)}=2, & \frac{B r\left(\Lambda_{b} \rightarrow \Xi_{c}^{*} K_{\|}^{*}\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Xi_{c}^{\prime} K_{\|}^{*}\right)}=2
\end{array}
$$

Inclusive B-Decays

$B \rightarrow X_{s} \gamma$
agrees with SM at current precision

NNLL theory OPE based calculations are progressing

Matching C_{1-6}	$2 L$
$C_{7,8}$	$3 L$
Running $\quad \hat{\gamma}$	$\left(\begin{array}{ll}3 \mathrm{~L} & 4 \mathrm{~L} \\ 2 \mathrm{~L} & 3 \mathrm{~L}\end{array}\right)$
M.Elts. $\left\langle O_{1-6}\right\rangle$	$3 L$
$\left\langle O_{7,8}\right\rangle$	$2 L$

Bobeth, Misiak, Urban
Misiak, Steinhauser

Haisch,Gorbahn,Gambinio
Czakon et al.

Bieri, Greub, Steinhauser
Greub,Hurth,Asatrian
Blockland et al., Melnikov, Mitov

Gambina,Gorbahn,Haisch Asatrian, Greub, Hurth Misiak, Steinhauser

most cuts which avoid the charm background make X_{u} jet like

$$
\begin{gathered}
m_{X}^{2} \sim m_{b} \Lambda \\
P_{X}^{-} \gg P_{X}^{+}
\end{gathered}
$$

sensitive to "b" momentum
\Rightarrow shape function

Shape function region

$$
d \Gamma=\underbrace{H\left(m_{b}, p_{X}^{-}\right)}_{Q^{2}} \int d k^{+} \underbrace{U\left(p_{X}^{-} k^{+}\right.}_{Q \Lambda}) f(\underbrace{\left.k^{k^{+}+\bar{\Lambda}-p_{X}^{+}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)}_{\text {universal }} \begin{array}{l}
\text { measure in } B \rightarrow X_{s} \gamma \\
\text { use it in } B \rightarrow X_{u} \ell \bar{\nu}
\end{array}
$$

What's new from SCET:

- $\mathcal{O}\left(\alpha_{s}\right)$ matching for $\mathrm{H}, \mathrm{J} \quad \begin{gathered}\text { Bauer, Manohar; } \\ \text { Bosch et al }\end{gathered}$
- moments of f require a cutoff (relation to $B \rightarrow X_{c} \ell \bar{\nu}$ parameters) now known at $\mathcal{O}\left(\alpha_{s}^{2}\right) \quad$ Becher, Neubert
- triple diff. rate for subleading terms, $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$

Lee, I.S.; Bosch et al.; Beneke et al.

- $B \rightarrow X_{s} \ell^{+} \ell^{-}$in shape function region

Lee, Ligeti, I.S. Tackmann

In SCET rate is given by simple graphs (not ∞ sets)

LO

T-product Example Diagram

$$
\begin{gathered}
J^{(0)}=\int d \omega C(\omega)\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma\left(Y^{\dagger} h_{v}\right) \\
d \Gamma=H\left(m_{b}, p_{X}^{-}\right) \int d k^{+} J\left(p_{X}^{-} k^{+}\right) f\left(k^{+}+\bar{\Lambda}-p_{X}^{+}\right)
\end{gathered}
$$

NLO

T-product

Example Diagram
$\hat{T}^{(2 a)}$

$\hat{T}^{(2 L)}$

$\hat{T}^{(2 q)}$

$$
\left|V_{u b}\right|^{\text {incl }}=(4.38 \pm 0.33) \times 10^{-3}
$$

M.Morri

Vxb workshop, Jan.o6

- $\left|V_{u b}\right|$ determined to $\pm 7.6 \%$

Statistical	$\pm 2.2 \%$
Expt. syst.	$\pm 2.5 \%$
$b \rightarrow c \ell v$ model	$\pm 1.9 \%$
$b \rightarrow u \ell v$ model	$\pm 2.2 \%$
SF params.	$\pm 4.7 \%$
Theory	$\pm 4.0 \%$

- The SF parameters can be improved with $b \rightarrow s \gamma$, $b \rightarrow c \ell v$ measurements
- What's the theory error?
- rate depends mostly on

$$
\begin{aligned}
O_{7} & =m_{b} \bar{s} \sigma_{\mu \nu} e F^{\mu \nu} P_{R} b, \\
O_{9} & =e^{2}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \\
O_{10} & =e^{2}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

- Calculations at NNLL order

Bobeth,Misiak,Urban ,Gambino,Gorbahn,Haisch, Asatryan, Asatrian Greub, Walker,Ghinculov,Hurth,Isidori,Yao, ...
most precise for $1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$

Ghinculov, Hurth, Isidori, Yao

- But, we need additional cuts: $m_{X_{s}} \leq 2 \mathrm{GeV}$ [Belle], $m_{X_{s}} \leq 1.8 \mathrm{GeV}$ [Babar] to remove

$$
b \rightarrow c\left(\rightarrow s e^{+} \nu\right) e^{-} \bar{\nu}=b \rightarrow s e^{+} e^{-}+\text {missing energy }
$$

These cuts put us in the shape function region $(\text { with same } J, f)^{*}$

Kinematics

$2 m_{B} E_{X}=m_{B}^{2}+m_{X}^{2}-q^{2}$
$E_{X}^{2} \gg m_{X}^{2} \Rightarrow p_{X}$ near light-cone
$p_{X}^{-} \sim m_{B}>p_{X}^{+} \sim \Lambda_{\mathrm{QCD}}$

Perturbative Counting

- usual counting expands $\left\langle s \ell^{+} \ell^{-}\right| C_{9} O_{9}+C_{10} O_{10}+\ldots|b\rangle$ in α_{s} with $\alpha_{s} \ln \left(m_{W} / m_{b}\right)=\mathcal{O}(1)$

$$
\begin{array}{rlrl}
C_{9} & \sim 1 / \alpha_{s} & \text { but }\left|C_{9}\left(m_{b}\right)\right| \sim C_{10} \\
C_{7,10} & \sim 1
\end{array}
$$

- in shape function region only $\Gamma_{i j} \sim \operatorname{Im}\langle B| T O_{i}^{\dagger}(x) O_{j}(0)|B\rangle$ makes sense

BUT don't want $\quad\langle B| O_{9}^{\dagger} O_{9}|B\rangle \sim 1 / \alpha_{s}^{2}, \quad\langle B| O_{10}^{\dagger} O_{10}|B\rangle \sim 1$
Want $\quad \Gamma_{i j} \sim 1$

Split Matching

- Organize the rate as a product of μ-independent pieces:

$$
d \Gamma=\left[A\left(\mu_{W}, \mu_{0}\right)\right]\left[B\left(\mu_{b}, \mu_{i}, \mu_{\Lambda}\right)\right]
$$

- * A strange fact about $B \rightarrow X_{s} \ell^{+} \ell^{-}$:
as long as q^{2} is not parametrically small in power counting, the factorization is the same as at $q^{2}=0$

$$
J^{(0)}=\int d \omega C(\omega)\left(\bar{\xi}_{n} W\right)_{\omega} \Gamma\left(Y^{\dagger} h_{v}\right)\left(\bar{\ell} \Gamma^{\prime} \ell\right)
$$

Effects of m_{X} cut at lowest order

Define

$$
\eta_{i j}=\frac{\int_{1 \mathrm{Gev}^{2}}^{\mathrm{Gevev}^{2}} d q^{2} \int_{0}^{m \mathrm{mex}} d m_{X}^{2} \frac{d \Gamma_{i j}}{d q^{2} d m_{X}^{2}}}{\int_{1 \mathrm{Gev}^{2}}^{6 \mathrm{Gev}^{2}} q^{2} \frac{2 \Gamma_{i j}}{d q^{2}}}
$$

- Strong m_{X}^{cut} dependence

- Universality, $\eta_{i j}=\eta$
since shape function varies rapidly, as p_{X}^{+} / Λ prefactors in $d \Gamma_{i j}$ vary slowly, as p_{X}^{+} / m_{B}

Including NLL corrections

- Universality maintained to 3%
- Estimate shape function uncertainties using $B \rightarrow X_{s} \gamma$:

Io models for each $m_{b}^{1 S}$
at $m_{X}^{\text {cut }}=2.0 \mathrm{GeV}$:

$$
3.5 \mathrm{GeV}<\mu_{b}<7.5 \mathrm{GeV}
$$

$$
\eta_{00} \sim \pm 6 \%
$$

$$
2 \mathrm{GeV}<\mu_{i}<3 \mathrm{GeV}
$$

$$
\eta_{00} \sim \pm 5 \%
$$

overall
$\simeq 10 \%$ uncertainty in η_{00}
NNLL reduces μ-dependence, effect on q^{2} spectrum small $\Rightarrow \eta^{(\mathrm{NLL})} \approx \eta^{(\mathrm{NNLL})}$

- Alternatively, could take $m_{X}^{\text {cut }}<m_{D}$ and normalize with respect to
$b \rightarrow u$ with same cuts

$$
\begin{gathered}
B \rightarrow \pi \pi, \quad B \rightarrow \pi \ell \bar{\nu} \\
\& \quad\left|V_{u b}\right|
\end{gathered}
$$

Factorization (with SCET)

Factorization at m_{b}

Bauer, Pirjol, Rothstein, I.S.
(BBNS; Chay,Kim)
Nonleptonic $\quad B \rightarrow M_{1} M_{2}$

$$
A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2} \zeta^{B M_{1}}} \int d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}
$$

Form Factors

$$
\begin{aligned}
& B \rightarrow \text { pseudoscalar: } f_{+}, f_{0}, f_{T} \\
& B \rightarrow \text { vector: } V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}
\end{aligned}
$$

$$
1
$$

$$
\begin{aligned}
f(E) & =\int d z T(z, E) \zeta_{J}^{B M}(z, E) & \} & \begin{array}{l}
\text { "hard spectator", } \\
\text { "factorizable" }
\end{array} \rightarrow \text { universality at } \\
& +C(E) \zeta^{B M}(E) & \} & \begin{array}{l}
\text { "soft form factor", } \\
\text { "non-factorizable" }
\end{array}
\end{aligned}
$$

Factorization at $\sqrt{E \Lambda}$

$$
\begin{aligned}
\zeta_{J}^{B M}(z) & =f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right) \\
\zeta^{B M} & =? \quad \text { (left as a form factor) }
\end{aligned}
$$

Use nonleptonic data: $\quad B \rightarrow \pi \pi$

$$
\left|V_{u b}\right| f_{+}(0)=F\left(S_{\pi^{+} \pi^{-}}, C_{\pi^{+} \pi^{-}}, \operatorname{Br}\left(\pi^{+} \pi^{-}\right), B r\left(\pi^{0} \pi^{-}\right), \beta, \gamma, V_{u d}\right) \quad\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda_{\mathrm{QCD}}}{E}\right)\right]
$$

- Uses data instead of hadronic parameters (remove complex penguin amplitude, and color suppressed amplitude)

Factorization \& $B \rightarrow \pi \pi$ determines $\left|V_{u b}\right| f_{+}(0)$

$$
\begin{aligned}
& \left|V_{u b}\right| f_{+}(0)=\left[\frac{64 \pi}{m_{B}^{3} f_{\pi}^{2}} \frac{\bar{B} r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right)}{\tau_{B^{-}}\left|V_{u d}\right|^{2} G_{F}^{2}}\right]^{1 / 2} \\
& \times\left[\frac{\left(C_{1}+C_{2}\right) t_{c}-C_{2}}{C_{1}^{2}-C_{2}^{2}}\right]\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)\right], \\
& t_{c}=\frac{\left|T_{\pi \pi}\right|}{\left|T_{\pi \pi}+C_{\pi \pi}\right|} \\
& t_{c}=\sqrt{\bar{R}_{c} \frac{\left(1+B_{\pi^{+} \pi^{-}} \cos 2 \beta+S_{\pi^{+} \pi^{-}} \sin 2 \beta\right)}{2 \sin ^{2} \gamma}} \\
& \bar{R}_{c}=\frac{\operatorname{Br}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) \tau_{B^{-}}}{2 B r\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right) \tau_{B^{0}}} \\
& B_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}-S_{\pi^{+} \pi^{-}}^{2}} \\
& f_{+}(0)=\zeta^{B \pi}+\zeta_{J}^{B \pi}
\end{aligned}
$$

Current
 Data

$$
f_{+}(0)=(0.18 \pm \underset{\text { expt. }}{0.01} \pm \underset{\text { theory }}{0.04})\left(\frac{3.9 \times 10^{-3}}{\left|V_{u b}\right|}\right)
$$

$$
\left|V_{u b}\right| f_{+}(0)=(7.2 \pm 1.8) \times 10^{-4}
$$

dominated by theory, estimate:
$\sim 25 \%$ from perturbative
and power corrections
nonleptonic

Which Vub?

$\longrightarrow\left|V_{u b}\right|$ to $4 \%!?!$
Uncertainty from theory dominates.

$$
\frac{d \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{d q^{2}}=\frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

$q^{2} \geq 16 \mathrm{GeV}^{2}$
HFAG
expt. theory
$10^{3} \times\left|V_{u b}\right|=3.75 \pm \overline{0.2} 7_{-0.42}^{+\overline{0.64}} \quad$ FNAL
$10^{3} \times\left|V_{u b}\right|=4.45 \pm 0.32_{-0.47}^{+0.69}$
My LP'05 Average for this method:
$10^{3} \times\left|V_{u b}\right|=4.1 \pm 0.32_{-0.47}^{+0.69}$
statistics 4-6\%

Systematics	HPQCD errors
perturbative matching	9%
chiral extrapolation	4%
action discretization	2%
matching $a, 1 / m_{Q}$	5%
Total	II $\%$

Systematics	Fermilab/ MILC errors
matching	I\%
chiral extrapolation	4%
q^{2} interp.	4%
finite a	9%
Total	II\%

Lattice \& QCD Dispersion Relations Bourrely etal,

Arnesen, Grinstein, Rothstein, I.S.

Focus on Vub determination, use:
i) Lattice qcd results at large q^{2}
ii) chiral perturbation theory at $q_{\max }^{2}$
iii) expt. spectra for information at low q^{2} $\&$ SCET constraint from $B \rightarrow \pi \pi$ at $q^{2}=0$ iv) QCD dispersion relations to constrain the form factors shape (model independent)
$f_{+}\left(q^{2}\right)$

Belle

Babar

Complex
Magic

$$
z\left(t, t_{0}\right)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \quad t_{ \pm}=\left(m_{B} \pm m_{\pi}\right)^{2}
$$

Form factor for
$B \rightarrow \pi \ell \bar{\nu}$

$$
t=q^{2} \quad f_{+}(t)=\frac{1}{P(t) \phi(t)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

$$
\sum_{n} a_{n}^{2} \leq 1
$$

$$
\text { Pick } t_{0}=0.65 t_{-} \text {then }
$$

$$
-0.34 \leq z \leq 0.22
$$

from dispersion
Strategy: use input points to fix first few a's vary all higher a's to determine uncertainty

Fit to expt. spectra \& input points

- expt. spectrum prefers a larger form factor in
$\sim 5-10 \mathrm{GeV}^{2}$ region

Type of Error	Variation From	$\delta\left\|V_{u b}\right\|^{q^{2}}$
Input Points	$1-\sigma$ correlated errors	$\pm 13 \%$
Bounds	F_{+}versus F_{-}	$<1 \%$
$m_{b}^{\text {pole }}$	4.88 ± 0.40	$<1 \%$
OPE order	2 loop $\rightarrow 1$ loop	$<1 \%$

- Here the SCET point constrains the spectrum, but does not change the determination of Vub

Fit gives:

no SCET: $\quad f_{+}(0)=0.25 \pm 0.06$ similar to sum-rules
with SCET: $\quad f_{+}(0)=0.23 \pm 0.05$
χ^{2} fits to data $\&$ input pts. with dispersion relations

Lepton Photon ' ${ }^{5} 5$

(without SCET point)

$$
\begin{aligned}
\chi^{2} /(d o f) & \sim 1.0 \quad \begin{array}{c}
\text { expt. \& } \\
\text { theory }
\end{array} \\
& \\
10^{3} \times\left|V_{u b}\right| & =3.72 \pm 0.52 \quad \text { FNAL } \\
10^{3} \times\left|V_{u b}\right| & =4.11 \pm 0.52 \quad \text { HPQCD }
\end{aligned}
$$

My Average for this method:

$$
10^{3} \times\left|V_{u b}\right|=3.92 \pm 0.52 \quad \begin{gathered}
13 \% \\
\text { total error } \\
(4 \% \text { expt. })
\end{gathered}
$$

This includes the information in the pure lattice method

Compare Vub's

- $\left|V_{u b}\right|^{\text {incl }}=(4.38 \pm 0.33) \times 10^{-3}$
(HFAG-EPS'O5)
- $\left|V_{u b}\right|_{\text {in global }}^{\text {treated as output }}$. $=\left(3.53_{-0.21}^{+0.22}\right) \times 10^{-3}$
(CKMfitter)
- $\left|V_{u b}\right|^{\text {excl }}=(3.92 \pm 0.52) \times 10^{-3}$
(Lattice + Disp. Analysis
+ Expt. spectrum)

$V_{u b} \times 10^{3}$

In our analysis the errors near $\mathrm{q}^{2}=\mathrm{o}$ in $B \rightarrow \pi \ell \bar{\nu}$ are still much too big to determine $\zeta^{B \pi}, \zeta_{J}{ }^{B \pi}$ and test factorization

More recently, Becher \& Hill have imposed a stronger constraint on the form factor. Here the current $B \rightarrow \pi \ell \bar{\nu}$ data just starts to become interesting. Currently agrees with $B \rightarrow \pi \pi$ at the border of $1-\sigma$

Outlook

- There is an EFT for processes with energetic jets or hadrons
- We now have the tools to systematically study power corrections
\Rightarrow color suppressed decays, inclusive decays
- Exclusive Vub from dispersion + Lattice + spectra
- Nonleptonics \rightarrow predictions for the size of amplitudes
\Rightarrow universal hadronic parameters, strong phases
$\Rightarrow \gamma($ or $\alpha)$ from individual $B \rightarrow M_{1} M_{2}$ channels
- The SCET can be applied to:

Nonleptonic decays, Other B decays Jet physics, Exclusive form factors Charmonium, Upsilon physics ... others?

- A lot of theory and phenomenology left to study ...

