Nonleptonic B Decays in SCET (quasi 2-body & 3-body)

Iain Stewart MIT

Three-Body Charmless B-decay Workshop LPNHE, Feb. 2006

Outline

power expansion of QCD

- Nonleptonic decays & Soft-Collinear Effective Theory (SCET)
 i) Factorization Theorem (formal issues)
 ii) Applying the result (phenomenological choices)
 Applications
 - i) $B \to \pi \pi$ $B \to K \pi, K \bar{K}$ isosinglets
 - ii) comments on $B \rightarrow VV, B \rightarrow VP$
 - iii) comments on 3-body decays

B decays - Motivation

• Probe the flavor sector of the SM

Vcb π -66666 CP: (ρ, η) Jacadaadaaaaaaaaaaaaaaaa $\frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*}$ V_{ud} V^{*}_{ub} V_{cd} V^{*}_{cb} α CECE CON (1, 0)B (0, 0)

$B \rightarrow M_1 M_2$ Factorization (with SCET)

Bauer, Pirjol, Rothstein, I.S.

Operators

QCD

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^{(d)} \left(C_1 O_1^p + C_2 O_2^p + \sum_{i=3}^{10,8g} C_i O_i \right)$$

SCET_I Integrate out $\sim m_b$ fluctuations

$$H_W = \frac{2G_F}{\sqrt{2}} \left\{ \sum_{i=1}^6 \int d\omega_j c_i^{(f)}(\omega_j) Q_{if}^{(0)}(\omega_j) + \sum_{i=1}^8 \int d\omega_j b_i^{(f)}(\omega_j) Q_{if}^{(1)}(\omega_j) + \mathcal{Q}_{c\bar{c}} + \dots \right\}$$

$$Q_{1d}^{(0)} = \left[\bar{u}_{n,\omega_{1}} \,\vec{n} P_{L} b_{v}\right] \left[\bar{d}_{\bar{n},\omega_{2}} \,\vec{n} P_{L} u_{\bar{n},\omega_{3}}\right], \dots$$
$$Q_{1d}^{(1)} = \frac{-2}{m_{b}} \left[\bar{u}_{n,\omega_{1}} \,ig \mathcal{B}_{n,\omega_{4}}^{\perp} P_{L} b_{v}\right] \left[\bar{d}_{\bar{n},\omega_{2}} \,\vec{n} P_{L} u_{\bar{n},\omega_{3}}\right],$$

...

Factorization at m_b

 $p^2 \sim \Lambda^2$

 $p^2 \sim Q^2$

Hard Coefficients: $T_{i\zeta}(u)$, $T_{iJ}(u)$

M_1M_2	$T_{1\zeta}(u)$	$T_{2\zeta}(u)$	M_1M_2	$T_{1\zeta}(u)$	$T_{2\zeta}(u)$
$\pi^{-}\pi^{+}, \rho^{-}\pi^{+}, \pi^{-}\rho^{+}, \rho_{\parallel}^{-}\rho_{\parallel}^{+}$	$c_1^{(d)} + c_4^{(d)}$	0	$\pi^+ K^{(*)-}, \rho^+ K^-, \rho_{\parallel}^+ K_{\parallel}^{*-}$	0	$c_1^{(s)} + c_4^{(s)}$
$\pi^-\pi^0, ho^-\pi^0$	$\frac{1}{\sqrt{2}}(c_1^{(d)}+c_4^{(d)})$	$\frac{1}{\sqrt{2}}(c_2^{(d)}-c_3^{(d)}-c_4^{(d)})$	$\pi^{0}K^{(*)-}$	$\frac{1}{\sqrt{2}}(c_2^{(s)}-c_3^{(s)})$	$\frac{1}{\sqrt{2}}(c_1^{(s)}+c_4^{(s)})$
$\pi^- ho^0, ho_\parallel^- ho_\parallel^0$	$\frac{1}{\sqrt{2}}(c_1^{(d)}+c_4^{(d)})$	$\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}(c_2^{(d)} + c_3^{(d)} - c_4^{(d)})$	$ ho^0 K^-, ho^0_\parallel K^{st-}_\parallel$	$\frac{1}{\sqrt{2}}(c_2^{(s)}+c_3^{(s)})$	$\frac{1}{\sqrt{2}}(c_1^{(s)}+c_4^{(s)})$
$\pi^0\pi^0$	$\tfrac{1}{2}(c_2^{(d)}\!-\!c_3^{(d)}\!-\!c_4^{(d)})$	$\frac{1}{2}(c_2^{(d)}-c_3^{(d)}-c_4^{(d)})$	$\pi^{-}\bar{K}^{(*)0}, \rho^{-}\bar{K}^{0}, \rho_{\parallel}^{-}\bar{K}_{\parallel}^{*0}$	0	$-c_4^{(s)}$
$ ho^0\pi^0$	$\tfrac{1}{2}(c_2^{(d)}\!+\!c_3^{(d)}\!-\!c_4^{(d)})$	$\tfrac{1}{2}(c_2^{(d)}\!-\!c_3^{(d)}\!-\!c_4^{(d)})$	$\pi^0ar{K}^{(*)0}$	$\frac{1}{\sqrt{2}}(c_2^{(s)}-c_3^{(s)})$	$-\frac{1}{\sqrt{2}}c_{4}^{(s)}$
$ ho_{\parallel}^0 ho_{\parallel}^0$	$\tfrac{1}{2}(c_2^{(d)}\!+\!c_3^{(d)}\!-\!c_4^{(d)})$	$\tfrac{1}{2}(c_2^{(d)}\!+\!c_3^{(d)}\!-\!c_4^{(d)})$	$ ho^0ar{K}^0, ho^0_\parallelar{K}^{st 0}_\parallel$	$\frac{1}{\sqrt{2}}(c_2^{(s)}+c_3^{(s)})$	$-\frac{1}{\sqrt{2}}c_4^{(s)}$
$K^{(*)0}K^{(*)-}, K^{(*)0}\bar{K}^{(*)0}$	$-c_4^{(d)}$	0	$K^{(*)-}K^{(*)+}$	0	0

similar for T_J 's in terms of $b_i^{(f)}$'s

Note: have not used isospin yet

Matching

$$c_{1}^{(f)} = \lambda_{u}^{(f)} \left(C_{1} + \frac{C_{2}}{N_{c}} \right) - \lambda_{t}^{(f)} \frac{3}{2} \left(C_{10} + \frac{C_{9}}{N_{c}} \right) + \Delta c_{1}^{(f)} ,$$

$$b_{1}^{(f)} = \lambda_{u}^{(f)} \left[C_{1} + \left(1 - \frac{m_{b}}{\omega_{3}} \right) \frac{C_{2}}{N_{c}} \right] - \lambda_{t}^{(f)} \left[\frac{3}{2} C_{10} + \left(1 - \frac{m_{b}}{\omega_{3}} \right) \frac{3C_{9}}{2N_{c}} \right] + \Delta b_{1}^{(f)} ,$$

 $\Delta c_i^{(f)} \quad \text{known at one-loop} \qquad \qquad \text{Beneke et al.} \\ \Delta b_i^{(f)} \quad \text{known at one-loop for O1,2} \qquad \qquad \text{Beneke \& Jager}$

Running

Bauer, Pirjol, Fleming, I.S.; Brodsky & Lepage

Becher, Hill, Neubert; Brodsky & Lepage

$$A(B \to M_1 M_2) = A^{c\bar{c}} + N \left\{ f_{M_2} \zeta^{BM_1} \int du T_{2\zeta}(u) \phi^{M_2}(u) + f_{M_2} \int du dz T_{2J}(u, z) \zeta_J^{BM_1}(z) \phi^{M_2}(u) + (1 \leftrightarrow 2) \right\}$$

Factorization at $\sqrt{E\Lambda}$

expansion in $\alpha_s(\sqrt{E\Lambda})$

 $\zeta_J^{BM}(z) = f_M f_B \int_0^1 dx \int_0^\infty dk^+ J(z, x, k^+, E) \phi_M(x) \phi_B(k^+)$ $\zeta^{BM} = ? \quad \text{(left as a form factor)}$ Beneke, Feldmann Bauer, Pirjol, I.S. Becher, Hill, Lange, Neubert

Formalism Comments

• $\Lambda^2 \ll E\Lambda \ll E^2, m_b^2$ corrections ~ 20%

eg. Large Annihilation $C_1 \frac{\Lambda}{E}$

not great precision, but sufficient for large new physics signals (and improvable)

• with pert. theory at $\sqrt{E\Lambda}$ agrees with Factorization proposed by Beneke, Buchalla, Neubert, Sachrajda

• sizeable charm loops $interpret} \begin{array}{c} interpret} \downarrow d,s \\ \downarrow$

Phenomenology

I) BBNS expand in $\alpha_s(Q) = \alpha_s(\sqrt{E\Lambda})$ (eg. light-cone sum rules) from elsewhere input $\phi_M(x), \phi_B(k^+), \zeta^{BM}$ $\zeta_I^{BM} \sim \alpha_s \zeta^{BM}$ include perturbative charm & certain power corrections RGI amplitudes II) "Charming penguins" fit penguin containing charm can use factorization like I) for other terms III) BPRS, "SCET" expand in $\alpha_s(Q)$, but keep all orders in $\alpha_s(\sqrt{E\Lambda})$ fit ζ^{BM}, ζ^{BM}_I $\zeta^{B\pi} \sim \zeta^{B\pi}_{I}$ fit penguins containing charm loop using only isospin neglect power corrections to non-penguin amplitudes ($\alpha_s(Q)$ corrections will require input)

Worth remembering: more theory input = less fit parameters = more ways to test for new physics

The more results from QCD we decide are trustworthy the better the chances to find new physics Counting parameters

a/b remove small $O_{8,9}$

 $\pi \pi : \{ \zeta^{B\pi} + \zeta^{B\pi}_{J}, \beta_{\pi} \zeta^{B\pi}_{J}, P_{\pi\pi} \}, \\ K\pi : \{ \zeta^{B\pi} + \zeta^{B\pi}_{J}, \beta_{\bar{K}} \zeta^{B\pi}_{J}, \zeta^{B\bar{K}} + \zeta^{B\bar{K}}_{J}, \beta_{\pi} \zeta^{B\bar{K}}_{J}, P_{K\pi} \},$

$$\beta_M = \int_0^1 dx \; \frac{\phi_M(x)}{3x}$$

Counting parameters

use isospin to reduce errors !

	$Br \times 10^6$	$A_{\rm CP} = -C$	S
$\pi^+\pi^-$	5.0 ± 0.4	0.37 ± 0.10	-0.50 ± 0.12
$\pi^0\pi^0$	1.45 ± 0.29	0.28 ± 0.40	
$\pi^+\pi^0$	5.5 ± 0.6	0.01 ± 0.06	

$\alpha \text{ from } B \to \pi \pi$

Bauer, Rothstein, I.S.

Isospin + bare minimum from Λ/m_b expansionsmall strong phase between
two "tree" amplitudes $\operatorname{Im}\left(\frac{C}{T}\right) \sim \mathcal{O}\left(\alpha_s(m_b), \frac{\Lambda}{E_{\pi}}\right)$

$$\sqrt{\pi\pi} = 83.0^{\circ + 7.2^{\circ}}_{-8.8^{\circ}} \pm 2^{\circ}$$

compare

$$\gamma_{\text{global}}^{\text{CKMfitter}} = 58.6^{\circ} + 6.8^{\circ}_{-5.9^{\circ}},$$
$$\gamma_{\text{global}}^{\text{UTfit}} = 57.9^{\circ} \pm 7.4^{\circ}$$

Grossman, Hoecker, Ligeti, Pirjol

Counting parameters

Expand in
$$\epsilon = \left| \frac{V_{us}^* V_{ub}}{V_{cs}^* V_{cb}} \right| \frac{T}{P}$$
, $\left| \frac{V_{us}^* V_{ub}}{V_{cs}^* V_{cb}} \right| \frac{C}{P}$, $\frac{P_{ew}^{(t,c)}}{P}$

Sum Rules

• Br sum rule:

Lipkin, many authors

 $R(f) = \frac{\Gamma(B \to f)}{\Gamma(\bar{B}^0 \to \pi^- \bar{K}^0)}$

$$R(\pi^{0}K^{-}) - \frac{1}{2}R(\pi^{-}K^{+}) + R(\pi^{0}K^{0}) = \mathcal{O}(\epsilon^{2})$$

$$0.094 \pm 0.073 = \mathcal{O}(\epsilon^{2}) = 0.03 \pm 0.02$$

no puzzle here yet

estimate from factorization in SCET

Direct-CP sum rule:Neubert,
Gronau, Rosner
$$(\bar{K}^0\pi^0) - \frac{1}{2}\Delta(K^+\pi^-) + \Delta(K^+\pi^0) - \frac{1}{2}\Delta(\bar{K}^0\pi^-) = \mathcal{O}(\epsilon^2)$$
 $\delta(f) = \mathcal{O}(\epsilon^2)$ $0.07 \pm 0.08 \Rightarrow \mathcal{O}(\epsilon^2) = 0 \pm 0.007$
estimate from
factorization in SCET
 $\propto \epsilon^2 \sin(\delta - \delta^{ew})$ $\Delta(f) = \frac{A_{CP}(f)\Gamma_{avg}^{CP}(f)}{\Gamma_{avg}^{CP}(\pi^-\bar{K}^0)}$

Counting parameters

	no expn.	SU(2)	SU(3)	SCET + SU(2)	SCET + SU(3)
$B \to \pi \pi$	11	7/5	15/19	4	Λ
$B \to K\pi$	15	11	13/13	+5(6)	4
$B \to K\bar{K}$	11	11	+4/0	+3(4)	+0

 $(V_{ub} = 4.25 \ 10^{-3})$ and $\langle u^{-1} \rangle_{\pi} \equiv 3\beta_{\pi} = 3.2$ Fix: Include theory errors in fit For $\gamma = 83^{\circ}$ we find For $\gamma = 59^\circ$ we find $\zeta^{B\pi} = 0.094 \pm 0.042$ $\zeta^{B\pi} = 0.088 \pm 0.049$ $\zeta_{\rm J}^{\rm B\pi} = 0.085 \pm 0.036$ $\zeta_{\rm J}^{\rm B\pi} = 0.100 \pm 0.027$ $10^{3}P_{\pi\pi} = (2.6 \pm 1.1)e^{i(103 \pm 25)}$ $10^{3}P_{\pi\pi}=(5.5\pm1.5)e^{i(151\pm10)}$ $\zeta^{B\pi} \sim \zeta_I^{B\pi}$ Find: **Then Predict:** $Br(\pi^0\pi^0) = (1.3\pm.5) \ 10^{-6}$ $Br(\pi^0\pi^0) = (1.4\pm.6) \ 10^{-6}$ $Br(\pi^0\pi^0)^{\text{expt}} = 1.45 \pm 0.29$ $C(\pi^0\pi^0) = 0.49 \pm 0.26$ $C(\pi^0\pi^0) = 0.61 \pm 0.27$ $C(\pi^0 \pi^0)^{\text{expt}} = -0.28 \pm 0.40$

• for $\zeta_J^{B\pi} \sim \zeta^{B\pi}$, a term $\frac{C_1}{N_c} \langle \bar{u}^{-1} \rangle_{\pi} \zeta_J^{B\pi}$ in the factorization theorem ruins color suppression and explains the rate

if $\zeta^{B\pi} \gg \zeta_J^{B\pi}$ this Br is sensitive to power corrections (small wilson coeffs. at LO could compete with larger ones at subleading order). ~ 0.3

• In the future: determine parameters using improved data on the $B \to \pi \ell \bar{\nu}$ form factor at low q^2 to provide a check.

Counting parameters

no SU(3)!

	${ m Br} imes 10^6$	$A_{\rm CP} = -C$	S
$\pi^+\pi^-$	5.0 ± 0.4	0.37 ± 0.10	-0.50 ± 0.12
$\pi^0\pi^0$	1.45 ± 0.29	0.28 ± 0.40	
$\pi^+\pi^0$	5.5 ± 0.6	0.01 ± 0.06	_
$\pi^- \bar{K}^0$	24.1 ± 1.3	-0.02 ± 0.04	-
$\pi^0 K^-$	12.1 ± 0.8	0.04 ± 0.04	
$\pi^+ K^-$	18.9 ± 0.7	-0.115 ± 0.018	
$\pi^0 \bar{K}^0$	11.5 ± 1.0	-0.02 ± 0.13	0.31 ± 0.26
K^+K^-	0.06 ± 0.12		
$K^0 \bar{K}^0$	0.96 ± 0.25		
$\bar{K}^0 K^-$	1.2 ± 0.3		

Combined $\pi\pi \& K\pi$

SU(3) preferred if $\gamma = 83$ $10^{3}P_{\pi\pi}=(5.5\pm1.5)e^{i(151\pm10)}$

phase

Include $Br(K^+\pi^-)$

penguin amplitude

Counting parameters

Extension to isosinglets $\pi\eta, \eta\eta, K\eta', \dots$

Williamson & Zupan +4 (2 solutions)

Predictions (4 param. fit)

Branching Fraction Direct CP Asymmetry

Mode	Exp.	Theory I	Theory II
$B^- \to \pi^- \eta$	$4.3 \pm 0.5 \ (S = 1.3)$	$4.9 \pm 1.7 \pm 1.0 \pm 0.5$	$5.0 \pm 1.7 \pm 1.2 \pm 0.4$
	-0.11 ± 0.08	$0.05 \pm 0.19 \pm 0.21 \pm 0.05$	$0.37 \pm 0.19 \pm 0.21 \pm 0.05$
$B^- \to \pi^- \eta'$	$2.53 \pm 0.79 \ (S = 1.5)$	$2.4 \pm 1.2 \pm 0.2 \pm 0.4$	$2.8 \pm 1.2 \pm 0.3 \pm 0.3$
	0.14 ± 0.15	$0.21 \pm 0.12 \pm 0.10 \pm 0.14$	$0.02 \pm 0.10 \pm 0.04 \pm 0.15$
$ar{B}^0 o \pi^0 \eta$	-	$0.88 \pm 0.54 \pm 0.06 \pm 0.42$	$0.68 \pm 0.46 \pm 0.03 \pm 0.41$
	-	$0.03 \pm 0.10 \pm 0.12 \pm 0.05$	$-0.07 \pm 0.16 \pm 0.04 \pm 0.90$
$ar{B}^0 o \pi^0 \eta'$		$2.3 \pm 0.8 \pm 0.3 \pm 2.7$	$1.3 \pm 0.5 \pm 0.1 \pm 0.3$
	-	$-0.24 \pm 0.10 \pm 0.19 \pm 0.24$	-
$\bar{B}^0 \to \eta \eta$		$0.69 \pm 0.38 \pm 0.13 \pm 0.58$	$1.0 \pm 0.4 \pm 0.3 \pm 1.4$
	-	$-0.09 \pm 0.24 \pm 0.21 \pm 0.04$	$0.48 \pm 0.22 \pm 0.20 \pm 0.13$
$ar{B}^0 o \eta \eta'$		$1.0 \pm 0.5 \pm 0.1 \pm 1.5$	$2.2 \pm 0.7 \pm 0.6 \pm 5.4$
	-		$0.70 \pm 0.13 \pm 0.20 \pm 0.04$
$ar{B}^0 o \eta' \eta'$	-	$0.57 \pm 0.23 \pm 0.03 \pm 0.69$	$1.2 \pm 0.4 \pm 0.3 \pm 3.7$
			$0.60 \pm 0.11 \pm 0.22 \pm 0.29$
$\bar{B}^0 \to \bar{K}^0 \eta'$	$63.2 \pm 4.9 \ (S = 1.5)$	$63.2 \pm 24.7 \pm 4.2 \pm 8.1$	$62.2 \pm 23.7 \pm 5.5 \pm 7.2$
	$0.07 \pm 0.10 \ (S = 1.5)$	$0.011 \pm 0.006 \pm 0.012 \pm 0.002$	$-0.027 \pm 0.007 \pm 0.008 \pm 0.005$
$\bar{B}^0 \to \bar{K}^0 \eta$	< 1.9	$2.4 \pm 4.4 \pm 0.2 \pm 0.3$	$2.3 \pm 4.4 \pm 0.2 \pm 0.5$
		$0.21 \pm 0.20 \pm 0.04 \pm 0.03$	$-0.18 \pm 0.22 \pm 0.06 \pm 0.04$
$B^- \to K^- \eta'$	69.4 ± 2.7	$69.5 \pm 27.0 \pm 4.3 \pm 7.7$	$69.3 \pm 26.0 \pm 7.1 \pm 6.3$
	0.031 ± 0.021	$-0.010 \pm 0.006 \pm 0.007 \pm 0.005$	$0.007 \pm 0.005 \pm 0.002 \pm 0.009$
$B^- \to K^- \eta$	2.5 ± 0.3	$2.7 \pm 4.8 \pm 0.4 \pm 0.3$	$2.3 \pm 4.5 \pm 0.4 \pm 0.3$
	$-0.33 \pm 0.17 \ (S = 1.4)$	$0.33 \pm 0.30 \pm 0.07 \pm 0.03$	$-0.33 \pm 0.39 \pm 0.10 \pm 0.04$

 $Y = 59^{\circ}$

errors: su3, 1/mb, fit

Counting parameters VP, VV modes

	no expn.	SU(2)	SU(3)	SCET + SU(2)	$\begin{array}{c} \mathrm{SCET} \\ +\mathrm{SU}(3) \end{array}$
$B \to \pi \pi$	11	7/5	15/19	4	Λ
$B \to K\pi$	15	11	13/13	+5(6)	4
$B \to K\bar{K}$	11	11	+4/0	+3(4)	+0

SCET+SU(2) counting for:

4 $B \to \rho_{\parallel} \rho_{\parallel}$ +5 (6) $B \to K^* \pi$ $B \rightarrow K \rho$ +2 (6) $B \rightarrow K_{\parallel}^* \rho_{\parallel} + 2 (6)$ $B \to \rho \pi$ +4 (8)

Rough Analysis

For $\gamma = 83^{\circ}$ I find

 $\zeta^{B\rho} + \zeta_{J}^{B\rho} = 0.27 \pm 0.02$ $\beta_{\rho} \zeta_{J}^{B\rho} = 0.09$ $10^{3} P_{\rho\rho} = (7.6) e^{i(-3^{0})}$

Fix: $(V_{ub} = 4.25 \ 10^{-3})$ For $\gamma = 59^{\circ}$ I find

 $\begin{aligned} \zeta^{B\rho} + \zeta_{J}{}^{B\rho} = 0.29 \pm 0.02 \\ \beta_{\rho} \zeta_{J}{}^{B\rho} = 0.07 \\ 10^{3} P_{\rho\rho} = (2.9) e^{i(8^{0})} \end{aligned}$

Then Predict: $\begin{aligned} \zeta^{B\rho} \gg \zeta_{J}^{B\rho} ? & \text{closer to BBNS counting} \\ Br(\rho^{0}\rho^{0}) = (2.8) \ 10^{-6} & Br(\rho^{0}\rho^{0}) = (1.9) \ 10^{-6} \\ & \text{at isospin bound} \\ Br(\rho^{0}\rho^{0})^{\text{expt}} < (1.1) \times 10^{-6} \end{aligned}$ for $\langle u^{-1} \rangle_{\rho}/3 \equiv \beta_{\rho} \simeq 0.8 \ \beta_{\pi}$ ratio $\frac{\zeta_{J}^{B\rho}}{\zeta_{J}^{B\pi}}$ agrees with $\alpha_{s}(\sqrt{E\Lambda})$ perturbation theory Counting parameters VP, VV modes

	no expn.	SU(2)	SU(3)	SCET + SU(2)	$\begin{array}{c} \mathrm{SCET} \\ +\mathrm{SU}(3) \end{array}$
$B \to \pi \pi$	11	7/5	15/19	4	Λ
$B \to K\pi$	15	11	13/13	+5(6)	4
$B \to K\bar{K}$	11	11	+4/0	+3(4)	+0

SCET+SU(2) counting for:

 $B \to \rho_{\parallel} \rho_{\parallel}$ 4 +5 (6) $B \to K^* \pi$ *#* observables +2 (6) similar to $B \to K \rho$ $K\pi$ +2 (6) $B \to K_{\parallel}^* \rho_{\parallel}$ can make +4 (8) $B \to \rho \pi$ predictions to test factorization

or determine Y

Counting parameters VP, VV modes

	no expn.	SU(2)	SU(3)	SCET + SU(2)	$\begin{array}{c} \mathrm{SCET} \\ +\mathrm{SU}(3) \end{array}$
$B \to \pi \pi$	11	7/5	15/19	4	Λ
$B \to K\pi$	15	11	13/13	+5(6)	4
$B \to K\bar{K}$	11	11	+4/0	+3(4)	+0

SCET+SU(2) counting for:

 $B \rightarrow \rho_{\parallel}\rho_{\parallel} \qquad 4$ $B \rightarrow K^{*}\pi \qquad +5 (6)$ $B \rightarrow K\rho \qquad +2 (6)$ $B \rightarrow K_{\parallel}^{*}\rho_{\parallel} \qquad +2 (6)$ $B \rightarrow \rho\pi \qquad +4 (8)$

+2 (6) can make
+4 (8) } predictions to
test factorization
or determine γ

Three -body Decays with Factorization

(Results derived back of the envelope, while at this meeting)

Factorization:

two-meson distn. function

 $A = \zeta^{BM_1M_2} T \otimes \phi^{M_3} + \zeta^{BM_3} T \otimes \phi^{M_1M_2} + (\zeta_J \text{ terms})$

 $B \to M_n^1 M_{\bar{n}}^2 M_s^3$

small E_K

strange quark must be collinear at LO !

Factorization:

 $A = \zeta^{BM_1M_3} T \otimes \phi^{M_2} + \zeta^{BM_2M_3} T \otimes \phi^{M_1} + (\zeta_J \text{ terms})$

Thoughts

- factorization will provide additional strong phase information
 can use γ^{*}γ → M₁M₂ for φ<sup>M₁M₂
 </sup>
- can use $B \to DM_1M_2$ for $\phi^{M_1M_2}$
- can use $B \to M_1 M_2 e \bar{\nu}$ for $\zeta^{BM_1 M_2}$

- enhanced SU(3) predictions, eg. can use SU(3) on $\phi^{M_1M_2}$
- From theory point of view: simpler to predict amplitudes with cuts

The END