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Model Independent Expansions

• mW ,mt ! mb
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Model Independent Expansions
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Factorization Theorems

Decay 
starts at
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order

B → M1M2



Operators

Decays of B mesons to two light mesons are important for the study of CP violation in the

standard model. In [1] it was suggested that since mb, EM ! Λ, mM the amplitudes should

factorize into simpler non-perturbative objects. Factorization has also been considered in

pQCD [2]. These factorization theorems require a perturbative expansion in αs(EMΛ).

B → ππ factorization was recently studied in [3] using the soft collinear effective theory

(SCET) [4]. In this paper we reduce the SCET operator basis to its minimal form and

extend it to allow for all B → M1M2 decays including two vectors. We give a form of the

factorization theorem which does not rely on a perturbative expansion in αs(EMΛ), and

show that the non-perturbative parameters are still the same as those in the B → M form

factors. We do not attempt to factorize long distance cc̄ effects.

The decays B → M1M2 are mediated in full QCD by the weak ∆B = 1 Hamiltonian,

which for ∆S = 0 reads

HW =
GF√

2

∑

p=u,c

λ(d)
p

(
C1O

p
1 + C2O

p
2 +

10,8g∑

i=3

CiOi

)
, (1)

where the CKM factor is defined as λ(d)
p = VpbV ∗

pd and the standard basis of operators are [6]

Op
1 =(pb)V−A(dp)V−A, Op

2 = (pβbα)V−A(dαpβ)V−A,

O3,5,4,6 =
{
(db)V−A(qq)V∓A , (dβbα)V−A(qαqβ)V∓A

}
,

O7,9,8,10 =
3eq

2

{
(db)V−A(qq)V±A , (dβbα)V−A(qαqβ)V±A

}
,

O8g =−mb

8π2
d σµν(gGa

µνT
a)(1+γ5)b . (2)

Here the sum over q = u, d, s, c, b is implicit, α, β are color indices and eq are electric charges.

The ∆S = 1 weak Hamiltonian responsible for transitions such as B̄ → Kπ, is obtained

by replacing d → s in the HW in Eq. (1). The coefficients of these operators are known

at NLL order [6]. In the NDR scheme taking αs(mZ) = 0.118 at µ = mb = 4.8 GeV gives

C8g(mb) = −0.149 and

C1−10(mb) = {1.080 ,−.177 , .011 ,−.033 , .010 ,−.040 ,

4.9×10−4 , 4.6×10−4 ,−9.8×10−3 , 1.9×10−3} . (3)

The relevant scales are mb, mc, the jet scale
√

EΛ ∼ 1.3 GeV, and Λ. Integrating out

2

QCD

SCETI Integrate out ∼ mb fluctuations

HW =
2GF√

2
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FIG. 1: An example of long distance charming penguins.

where c(f)
i are Wilson coefficients and the ellipses denote higher order terms, and Qcc̄ denotes

long distance charm effects as in Fig. 1. The offshellness of the cc̄ system depends on the

value of q2, and for q2 ∼ 4m2
c the charm quarks are moving non-relativistically. This

region corresponds to momentum fractions x " 4m2
c/m

2
b " 0.4 in the middle of the light-

cone distribution φM(x). These contributions have one αs(4m2
c), but can not be calculated

perturbatively [5], and may be comprable in size to other penguin terms. We do not derive

a factorization theorem for them here, and focus on observables that are independent of

Qcc̄. Penguin contractions with light quark loops can be included in matching onto Q(0,1)
if

since their long distance contributions are power suppressed [1], as are the long distance cc̄

contributions occuring for x→ 0.

In Eq. (4) the f = d, s (super)subscript distinguishes the ∆S = 0 and ∆S = 1 (coeffi-

cients) operators. The O(λ0) operators are [summing over q = u, d, s]

Q(0)
1d =

[
ūn,ω1n̄/PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (4)

Q(0)
2d,3d =

[
d̄n,ω1n̄/PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(0)
4d =

[
q̄n,ω1n̄/PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(0)
5d,6d =

[
d̄n,ω1n̄/PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

with Q(0)
is obtained by taking d̄→ s̄. In Eq. (4) the “quark” fields with subscripts n and n̄ are

products of collinear quark fields and Wilson lines with large momentum fractions ωi. For

example ūn,ω = [ξ̄(u)
n Wn δ(ω−n̄·P†)] , where ξn denotes a collinear quark moving along the n

direction. The bv field is the standard usoft HQET field with Lagrangian Lh = b̄viv·Dvv. For

a complete basis we also need operators with octet bilinears. We take these to be Q(0)
i with

TA ⊗ T A color structure, eg. Q(0)

1d
=

[
ūn,ω1n̄/PLTAbv

][
d̄n̄,ω2n/PLTAun̄,ω3

]
. These operators do

not contribute to the decays B → M1M2 at leading order. This basis of O(0)
i,d operators is

equivalent to the one derived in [3]. We observe that no new SCETI operators are required

to include the effects of electroweak penguins, so they are included in the c(f)
i ’s.

We also need the O(λ) operators. Defining ig B⊥µ
n,ω = (W †

n[in̄·Dc,n, iD
µ
n,⊥]Wn)ωδ(ω−P̄†)/ω

3

B M
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FIG. 2: Factorization of B →MM ′ in SCET.

they are:

Q(1)
1d =

−2

mb

[
ūn,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PLun̄,ω3

]
, (5)

Q(1)
2d,3d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
ūn̄,ω2n/PL,Run̄,ω3

]
,

Q(1)
4d =

−2

mb

[
q̄n,ω1 ig /B⊥

n,ω4
PLbv

][
d̄n̄,ω2n/PL qn̄,ω3

]
,

Q(1)
5d,6d =

−2

mb

[
d̄n,ω1 ig /B⊥

n,ω4
PLbv

][
q̄n̄,ω2n/PL,Rqn̄,ω3

]
,

Q(1)
7d =

−2

mb

[
ūn,ω1 ig B⊥µ

n,ω4
PLbv

][
d̄n̄,ω2n/γ

⊥
µ PRun̄,ω3

]
,

Q(1)
8d =

−2

mb

[
q̄n,ω1 ig B⊥µ

n,ω4
PLbv

][
d̄n̄,ω2n/γ

⊥
µ PRqn̄,ω3

]
.

Our basis in Eq.(5) is simpler than the one in [3] for several reasons. Terms with a B⊥
n or D⊥

n

in the n̄-bilinear can be reduced to Eq.(5) by a series of one or more Fierz transformations.

This shows that spectator and form factor contributions are related. Second, P/⊥Q(0)
if = 0, so

integration by parts allows a basis choice for Q(1)
if with no n-covariant derivatives, only field

strengths B⊥
n , plus [ūnγ

µ
⊥PLbv]Pµ

⊥[d̄n̄n/PLun̄] operators that give vanishing contributions. We

suppress Q(1)’s with octet bilinears that do not contribute at LO, while Q(0,1)
5,6 only contribute

to SU(3)n̄ singlet production and are dropped below.

Next we determine the most general structure of the p2 ∼ EΛ contributions in SCETI .

We first decouple the usoft modes by making the field redefinitions [4] ξn′ = Yn′ξn′, An′ =

Yn′A(0)
n′ Y †

n′, with Yn′ a wilson line of n′ ·Aus gluons and n′ = n or n̄. In Q(0,1)
if all Y ’s cancel

except for the combination (Y †
n bv) [3], and the operators factor into (n, v) and n̄ parts,

Qif = Q̃ifQn̄
if . In Fig. 2 this is indicated by the fact that the M ′ meson only connects to

the rest of the diagram at the scale p2 ∼ Q2. The shaded region in the figure is necessary

4

...

...
B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

Bauer, Pirjol, 
Rothstein, I.S. 

 Factorization (with SCET)B →M1M2



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

Form Factors

Nonleptonic

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

}

Factorization at mb

f(E) =
∫

dz T (z,E) ζBM
J (z,E)

+ C(E) ζBM (E)

universality at 
EΛ

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'



Hard Coefficients:
3

M1M2 T1ζ(u) T2ζ(u) M1M2 T1ζ(u) T2ζ(u)

π−π+, ρ−π+, π−ρ+, ρ−‖ ρ+
‖ c(d)

1 + c(d)
4 0 π+K(∗)−, ρ+K−, ρ+

‖ K∗−
‖ 0 c(s)

1 + c(s)
4

π−π0, ρ−π0 1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 −c(d)
3 −c(d)

4 ) π0K(∗)− 1√
2
(c(s)

2 −c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π−ρ0, ρ−‖ ρ0
‖

1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K−, ρ0
‖K

∗−
‖

1√
2
(c(s)

2 +c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π0π0 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π−K̄(∗)0, ρ−K̄0, ρ−‖ K̄∗0
‖ 0 −c(s)

4

ρ0π0 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π0K̄(∗)0 1√
2
(c(s)

2 −c(s)
3 ) − 1√

2
c(s)
4

ρ0
‖ρ

0
‖

1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K̄0, ρ0
‖K̄

∗0
‖

1√
2
(c(s)

2 +c(s)
3 ) − 1√

2
c(s)
4

K(∗)0K(∗)−, K(∗)0K̄(∗)0 −c(d)
4 0 K(∗)−K(∗)+ 0 0

M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u) M⊥
1 M⊥

2 T2J (u)

ρ+
Lρ−L −b(d)

7 − b(d)
8 ρ+

LK∗−
L −b(s)

7 − b(s)
8 ρ−L K̄∗0

L −b(s)
8

ρ0
Lρ0

L
1
2 b(d)

8 ρ0
LK̄∗0

L
1√
2
b(s)
8 K̄0∗

L K∗0
L b(d)

8

ρ0
Lρ−L , ρ−Lρ0

L
1√
2
(b(d)

7 +b(d)
8 ), − 1√

2
b(d)
8 ρ0

LK̄∗−
L

1√
2
(b(s)

7 +b(s)
8 ) K̄∗−

L K∗0
L −b(d)

8

TABLE I: Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry. The coefficients T1J,2J (u, z) are identical to T1ζ,2ζ(u) with each c(f)

i (u) replaced by b(f)
i (u, z).

A00(B̄ →M1M2) = Acc̄
00 +

GF m2
B√

2

{
fM2 ζBM1

∫ 1

0
du T2ζ(u)φM2(u) + fM1 ζBM2

∫ 1

0
du T1ζ(u)φM1(u) (9)

+
fBfM1fM2

mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dk+ J(z, x, k+)

[
T2J(u, z)φM1(x)φM2 (u) + T1J(u, z)φM2(x)φM1 (u)

]
φ+

B(k+)
}

,

A⊥⊥(B̄ →M⊥
1 M⊥

2 ) = Acc̄
⊥⊥ +

GF m2
B√

2
fBfT

M1
fT

M2

2mB

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz T2J(u, z)J⊥(z, x, k+)φM1

⊥ (x)φ+
B(k+)φM2

⊥ (u) .

where Acc̄ denote long distance charming penguin ampli-
tudes and φM

⊥ (u) is the chiral-odd twist 2 wave function.
For each decay mode there is a separate set of hard co-
efficients, T which we give in Table I. In Ref. [1] the full
theory form factor appear in the factorization theorem.
The analog of this in Eq. (9) is that the non-perturbative
parameters ζ, φM , φM

⊥ , and φB also appear in the fac-
torization formula for the form factor [7, 13].

What is new from our analysis is that the jet functions
J and J⊥ in Eq. (9) are also the same as those in the
B → M form factors. For example, f+ = Cζ ζB→M +
fBfM

mB

∫
dxdzdk+ J(x, z, k+)Ca

J (z)φM (x)φ+
B(k+). The jet

functions depends on physics at the intermediate scale,
their perturbative expansion in αs(

√
EΛ) is not as con-

vergent as for the Ti which are expanded in αs(Q). In
fact perturbation theory may fail for J , J⊥ all together.
Without expanding J and J⊥ perturbatively, we find

A00 = Acc̄
00 +

GF m2
B√

2

{
fM2ζ

BM1

∫ 1

0
du T2ζ(u)φM2(u)

+fM1ζ
BM2

∫ 1

0
du T1ζ(u)φM1 (u) (10)

+fM2

∫ 1

0
du

∫ 1

0
dz T2J(u, z)ζBM1

J (z)φM2(u)

+fM1

∫ 1

0
du

∫ 1

0
dz T1J(u, z)ζBM2

J (z)φM1(u)
}

.

A⊥⊥ = Acc̄
⊥⊥ +

GF m2
B

2
√

2
fT

M1

∫ 1

0
du

∫ 1

0
dz

×T2J(u, z)ζBM1
J⊥

(z)φM2
⊥ (u) . (11)

Here the non-perturbative parameters ζBM , ζBM
J,J⊥

(z),
φM (u), and φM

⊥ (u) still all occur in the B →M semilep-
tonic and rare form factors. Note that it was possible to
derive Eqs. (10) and (11) because in Eq. (9) we seperated
the scales Q2 and EΛ into T and J ’s respectively.

The phenomenology of B → PP and B → PV de-
cays has been explored in Ref. [15] using a factoriza-
tion formula similar to Eq. (9) and in Ref. [16] using
a SU(3) analysis. The former relies on a perturbative
expansion in αs(

√
EΛ) $ 0.3 and requires some formally

power suppressed contributions for a reasonable fit to the
data, while the latter may have ∼ 30% corrections from
SU(3) violation. In the long term, Eqs. (10) and (11),
may be more useful phenomenologically since the correc-
tions are only from perturbative αs(mb) ∼ 0.2 corrections
and Λ/E ∼ 0.2 power corrections. A model independent
analysis requires knowledge of the ζ and φ parameters,
which can in principle be determined from the q2 depen-
dent B →M form factors and processes sensitive to the
light-cone distributions φM . Note that power counting
implies that ζBM ∼ ζBM

J,J⊥
∼ (Λ/Q)3/2.

Eqs. (10) and (11) still require matching the full theory
Oi’s onto the Q(0,1)

if to determine the Wilson coefficients

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
(12)

−λ(f)
t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]

−λ(f)
t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−

C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,

b(f)
8 = −λ(d,s)

t

(2mb

ω2
−2mb

ω3

)(C5

Nc
− C9

2Nc

)
+∆b(d,s)

8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [? ] and later in Ref. [?

]. A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which

have to be accounted for. For example, C1 is about a factor of 6 larger than any of the

other coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table ?? that is

independent of c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”.

There could be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and

# Ci≥3. These effects have been computed for the c(f)
i ’s [? ], but not yet for the b(f)

i ’s.

A more serious problem are large power corrections proportional to C1Λ/E which is also

∼ C2 and # Ci≥3. Unless these can be accounted for or such terms are absent, one should

assign ∼ 100% uncertainty to predictions for contaminated decays. An example of this type

is Br(B̄0 → π0π0).

8

the Wilson coefficients c(f)
i and b(f)

i . We find [f = d, s]

c(f)
1 = λ(f)

u

(
C1+

C2

Nc

)
− λ(f)

t

3

2

(
C10+

C9

Nc

)
+ ∆c(f)

1 ,

c(f)
2 = λ(f)

u

(
C2+

C1

Nc

)
− λ(f)

t

3

2

(
C9+

C10

Nc

)
+ ∆c(f)

2 ,

c(f)
3 =−λ(f)

t

3

2

(
C7 +

C8

Nc

)
+ ∆c(f)

3 , (11)

c(f)
4 =−λ(f)

t

(
C4 +

C3

Nc
− C10

2
− C9

2Nc

)
+ ∆c(f)

4 ,

b(f)
1 = λ(f)

u

[
C1 +

(
1−mb

ω3

)C2

Nc

]
− λ(f)

t

[3

2
C10 +

(
1−mb

ω3

)3C9

2Nc

]
+ ∆b(f)

1 ,

b(f)
2 = λ(f)

u

[
C2 +

(
1−mb

ω3

)C1

Nc

]

−λ(f)
t

[3

2
C9 +

(
1−mb

ω3

)3C10

2Nc

]
+ ∆b(f)

2 ,

b(f)
3 = −λ(f)

t

[3

2
C7 +

(
1−mb

ω2

)3C8

2Nc

]
+ ∆b(f)

3 ,

b(f)
4 = −λ(f)

t

[
C4−

C10

2
+

(
1−mb

ω3

)(C3

Nc
− C9

2Nc

)]
+ ∆b(f)

4

b(f)
7 = −λ(d,s)

t

(mb

ω2
−mb

ω3

)3C9

2Nc
+∆b(d,s)

7 ,

b(f)
8 = −λ(d,s)

t

(2mb

ω2
−2mb

ω3

)(C5

Nc
− C9

2Nc

)
+∆b(d,s)

8 ,

The O(αs) contribution to the ∆c(f)
j (u) have been calculated in Ref [1] and later in Ref. [3].

A full αs(mb) analysis requires ∆b(f)
j (u, z), which are currently unknown.

There is a hierarchy in the c(f)
i and b(f)

i due to the CKM factors and the Ci’s which have

to be accounted for. For example, C1 is about a factor of 6 larger than any of the other

coefficients, making c(d)
1 and b(d)

1 large. Thus any f = d decay in Table I that is independent of

c(d)
1 and b(d)

1 could receive large corrections, and will be called “contaminated”. There could

be large perturbative corrections proportional to αs(mb)C1 which is ∼ C2 and # Ci≥3.

These effects have been computed for the c(f)
i ’s [1], but not yet for the b(f)

i ’s. A more

serious problem are large power corrections proportional to C1Λ/E which is also ∼ C2 and

# Ci≥3. Unless these can be accounted for or such terms are absent, one should assign

∼ 100% uncertainty to predictions for contaminated decays. An example of this type is

Br(B̄0 → π0π0).

At leading order in Λ/E only the one-loop ∆ci, ∆bi are imaginary, producing calculable

strong phases [1]. Imaginary Λ/E corrections can compete with these. It is known from

8

similar for TJ ’s in terms of b(f)
i ’s

Matching

Note:  have not 
used isospin yet

Tiζ(u) TiJ(u)
,

∆c
(f)
i known at one-loop Beneke et al.

∆b
(f)
i

known at one-loop for O1,2 Beneke & Jager



ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

Factorization at √EΛ

ζBM = ?

Beneke, Feldmann
Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

expansion in αs(
√

EΛ)

(left as a form factor)

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'Running

c
(f)
i Bauer, Pirjol, Fleming, I.S.;  Brodsky & Lepage

b
(f)
i Becher, Hill, Neubert;  Brodsky & Lepage



Λ2 ! EΛ! E2,m2
b

!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv) Ciuchini et al,
Colangelo et al

Beneke, Buchalla, Neubert, Sachrajda 

corrections ∼ 20%

B →M1M2

sizeable charm loops

k⊥use        Factorization? Keum, Li, Sanda,
Lu et al.

•
not great precision, but sufficient for large 

new physics signals (and improvable)
eg.  Large Annihilation C1

Λ
E

( a good model for 
soft physics ? )

A
cc̄

• with pert. theory at              agrees with Factorization proposed by

•

• singularity prevents further factorization of ζBM

√

EΛ

long
distance ∼ A

LO

{

v αs(2mc)
} short

distance ∼ A
LO

{

αs(mb)
}

1/x2

Formalism Comments

pQCD



Phenomenology

I)  BBNS expand in αs(
√

EΛ)&αs(Q)

from elsewhere input                                        φM (x) φB(k+), ζBM,
include perturbative charm & certain power corrections

 (eg. light-cone sum rules)

III)  BPRS, “SCET” expand  in 

fit ζBM ζBM
J,

fit penguins containing charm loop using only isospin
neglect power corrections to non-penguin amplitudes

, but keep all orders in 
αs(

√

EΛ)

II) “Charming penguins”
fit penguin containing charm 

can use factorization like I) for other terms

αs(Q)(             corrections will require input )

αs(Q)

ζBM
J ∼ αs ζBM

RGI  amplitudes

ζBπ
∼ ζBπ

J



   more theory input 
   = less fit parameters   
   = more ways to test for new physics

The more results from QCD we decide are trustworthy 
the better the chances to find new physics

Worth remembering:  
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters
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theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.
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ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
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The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3
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, 3
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, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3
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come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at
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EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)
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J , βK̄ζBπ
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J , βπζBK̄

J , PKπ} ,
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Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

βM =

∫ 1

0

dx
φM (x)

3x

remove small O8,9a/b
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Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters

2

Br × 106 ACP = −C S

π+π− 5.0 ± 0.4 0.37 ± 0.10 −0.50 ± 0.12

π0π0 1.45 ± 0.29 0.28 ± 0.40

π+π0 5.5 ± 0.6 0.01 ± 0.06 −

π−K̄0 24.1 ± 1.3 −0.02 ± 0.04 −

π0K− 12.1 ± 0.8 0.04 ± 0.04 −

π+K− 18.9 ± 0.7 −0.115 ± 0.018 −

π0K̄0 11.5 ± 1.0 −0.02 ± 0.13 0.31 ± 0.26

K+K− 0.06 ± 0.12

K0K̄0 0.96 ± 0.25

K̄0K− 1.2 ± 0.3 −

TABLE I: Current B → ππ, Kπ, and KK̄ data [2, 3, 4, 5, 6].
The S for πK is S(π0KS).

or disagrees with the standard model in the presence
of hadronic uncertainties, and to provide a roadmap for
looking for deviations in future precision measurements
of these decays.

The SU(2) isospin symmetry is known to hold to a
few percent accuracy, and thus almost every analysis
of nonleptonic decays exploits isospin symmetry. (Elec-
troweak penguin contributions are simply ∆I = 1/2 and
∆I = 3/2 weak operators, and are not what we mean by
isospin violation.) Methods for determining or bounding
α (or γ) using isospin have been discussed in [7, 8] and are
actively used in B → ππ and B → ρρ decays. In B → ρρ
this yields αρρ = 96◦± 13◦ [2]. For B → ππ this analysis
has significantly larger errors, since the Ac amplitudes
are larger and the asymmetry C(π0π0) is not yet mea-
sured well enough to constrain the hadronic parameters.
Isospin violating effects have been studied in [9]. For
B → Kπ and B → KK̄ an SU(2) analysis is not fruit-
ful since there are more isospin parameters than there are
measurements, so further information about the hadronic
parameters is mandatory.

In B → ππ, even if C(π0π0) were known precisely it
would still be important to have more information about
the amplitudes Au and Ac than isospin provides. For
example, isospin allows us to test whether γππ differs
from the value obtained by global fits [10, 12],

γ CKMfitter
global = 58.6◦+6.8◦

−5.9◦ ,

γ UTfit
global = 57.9◦ ± 7.4◦ . (4)

However, a deviation in γ is not the only way that new
physics can appear in B → ππ decays. Simply fitting
the full set of SU(2) amplitudes can parameterize away a
source of new physics. For example, Ref. [13] has argued
that it is impossible to see new physics in the (ππ)I=0

amplitudes in an isospin based fit. Thus, it is important
to consider the additional information provided by SU(3)
or factorization, since this allows us to make additional
tests of the standard model. The expansion parameters
here are larger, and so for these analyses it becomes much
more important to properly assess the theoretical uncer-
tainties in order to interpret the data.

The analysis of B → Kπ decays has a rich history
in the standard model, provoked by the CLEO measure-
ments [14] that indicated that these decays are domi-
nated by penguin amplitudes that were larger than ex-
pected. The dominance by loop effects makes these de-
cays an ideal place to look for new physics effects. Some
recent new physics analyses can be found in Refs. [15].
This literature is divided on whether or not there are
hints for new physics in these decays. The main obsta-
cle is the assessment of the uncertainty of the standard
model predictions from hadronic interactions.

Several standard model analyses based on the limit
ms/Λ " 1 (ie SU(3) symmetry) have been reported re-
cently [16, 17, 18, 19, 20, 21] (see also [22, 23, 24] for
earlier work). In the ∆S = 1 decays the electroweak
penguin amplitudes can not be neglected, since they are
enhanced by CKM factors. Unfortunately the number
of precise measurements makes it necessary to introduce
additional “dynamical assumptions” to reduce the num-
ber of hadronic parameters beyond those in SU(3). In
some cases efforts are made to estimate a subset of the
SU(3) violating effects to further reduce the uncertainty.
The dynamical assumptions rely on additional knowledge
of the strong matrix elements and in the past were mo-
tivated by naive factorization or the large Nc limit of
QCD. Our current understanding of the true nature of
factorization in QCD allows some of these assumptions
to be justified by the Λ/EM expansion. However, it
should be noted that a priori there is no reason to prefer
these factorization predictions to others that follow from
the Λ/mb expansion (such as the prediction that certain
strong phases are small).

In Ref. [16] a χ2-fit was performed with γ as a fit
parameter, including decays to η and η′. The result
γ = 61◦ ± 11◦ agrees well with global CKM fits. Here
evidence for deviations from the standard model would
show up as large contributions to the χ2. The most recent
analysis [19] has Br(K+π−), Br(K0π0), and ACP(K0π0)
contributing ∆χ2 = 2.7, 5.9, and 2.9 respectively, giv-
ing some hints for possible deviations from the stan-
dard model. Ref. [17] extracted hadronic paramters from
B → ππ decays, and used these results together with
SU(3) and the neglect of exchange, penguin annihilation,
and all electroweak penguin topologies except for the tree
to make predictions for B → Kπ and B → KK̄ decays.
They find large annihilation amplitudes, a large phase
and magnitude for an amplitude ratio C̃/T̃ which is in-
terpretted as large Put penguin amplitudes. The devi-
ation of Br(K+π−)/Br(K̄0π0) from standard model ex-
pectations was interpreted as evidence for new physics in
electroweak penguins.

There has been tremendous progress over the last few
years in understanding charmless two-body, non-leptonic
B decays in the heavy quark limit of QCD [25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. In
this limit one can prove factorization theorems of the
matrix elements describing the strong dynamics in the
decay into simpler structures such as light cone distribu-

use isospin to reduce errors !



α from B → ππ

Isospin + bare minimum from               expansion    Λ/mb

Bauer, Rothstein, I.S.

Im
(C

T

)

∼ O

(

αs(mb),
Λ

Eπ

)small strong phase between 
two “tree” amplitudes

13

Parameter Measured value

mB (5279.4 ± 0.5) MeV [60]

τB0 (1.528 ± 0.009) ps [2]

τB+ (1.643 ± 0.010) ps [2]

β 0.379 ± 0.022 [2]

fπ (130.7 ± 0.4) MeV [60]

fK (159.8 ± 1.5) MeV [60]

|Vud| 0.9739 ± 0.0003 [61]

|Vus| 0.2248 ± 0.0016 [61]

|Vcd| 0.2261 ± 0.0010 [10]

|Vcs| 0.9732 ± 0.0002 [10]

|Vcb| (41.6 ± 0.5) × 10−3 [2, 62]

|Vub|
incl (4.39 ± 0.34) × 10−3 [2, 63]

|Vub|
excl (3.92 ± 0.52) × 10−3 [58, 64, 65]

|Vub|
global
CKM (3.53 ± 0.22) × 10−3 [10]

|Vub|
here (4.25 ± 0.34) × 10−3

TABLE III: Summary of well measured input parameters. For
our central value for |Vub| we use a weighted average of the
inclusive [2] and exclusive [58] with a slightly inflated error.
Use mt = 174.3 GeV.

B. B → ππ with Isospin and Im(Cππ/Tππ) = 0

Using only SU(2) there are a total of 5 hadronic pa-
rameters describing the decays B → ππ, in addition to
a weak phase. The 6 measurements allow in principle to
determine all of these parameters as was first advocated
by Gronau and London [7]. Unfortunately, the large un-
certainties in the direct CP asymmetry of B̄0 → π0π0 do
not allow for a definitive analysis at the present time (ie.
it currently gives 65◦ < α < 200◦ [10]). It was shown in
Ref. [45] that one can use SCET to eliminate one of the 5
hadronic SU(2) parameters, since ε = Im(Cππ/Tππ) " 0,
and then directly fit for the remaining four hadronic pa-
rameters and the weak angle γ, which substantially re-
duces the uncertainty. Using the most recent data shown
in section I, we find

γππ = 83.0◦+7.2◦

−8.8◦ ± 2◦ (61)

where the first error is from the experimental uncertain-
ties, while the second uncertainty is an estimate of the
theoretical uncertainties from the expansions in SCET,
estimated by varying ε = ±0.2 as explained in Ref. [45].
This value is in disagreement with the results from a
global fit to the unitarity triangle

γ CKMfitter
global = 58.6◦+6.8◦

−5.9◦ ,

γ UTfit
global = 57.9◦ ± 7.4◦ , (62)

at the 2-σ level. A more sophisticated statistical analysis
can be found in Ref. [46]. The errors in Eq. (61) are
slightly misleading because they do not remain Gaussian
for larger ε. At ε = 0.3 the deviation drops to 1.5-σ,
and at ε = 0.4 it drops to 0.5-σ. The result in Eq. (61)

FIG. 1: Comparison of constraints on Vub and γ from i) the
direct measurement of β, ii) current HFAG value for inclusive
|Vub|, iii) global fit value of γ, iv) |Vub| as output from the
global fit [2, 10], and v) results for γ from the small ε analysis
of B → ππ decays [45]. All errors bands are 1-σ.

is consistent with the direct measurement of this angle
which has larger errors [2]

γDK = 63◦+15◦

−12◦ . (63)

It is interesting to note that the global fit for β plus the
inclusive determination of |Vub| in table III also prefers
larger values of γ as shown in Fig. 1. It will be quite
interesting to see how these hints of discrepancies are
sharpened or clarified in the future. In the remainder of
this paper, we will show results for γ = 83◦ and γ = 59◦

to give the reader an indication of the γ dependence of
our results.

The phase of the amplitude Aππ
cc is mostly determined

from the CP asymmetries in B → π+π−. In particu-
lar, as can be seen from the general parameterization of
the amplitudes in Eq. (13), the sign of the direct CP
asymmetry C(π+π−) is correlated with the relative sign
between P̂ππ and T̂ππ and the sign of the asymmetry
C(π0π0) with that between Ĉππ and P̂ππ. Since there is
no relative phase between the amplitudes Ĉππ and T̂ππ

at LO in SCET, the sign of the direct CP asymmetry
in B → π0π0 is thus expected to be positive based on
the negative experimental value for C(π+π−) [46]. This
expectation is in disagreement with the direct measure-
ment shown in Table I. Using the values of the hadronic
parameters from the previous fit we find for γ = 83◦

C(π0π0) = 0.49 ± 0.12 ± 0.23 , (64)

while for γ = 59◦ we find

C(π0π0) = 0.61 ± 0.19 ± 0.19 . (65)

These values are 1.7σ from the measured value, if we add
the theoretical and experimental errors in quadrature.

compare

13

Parameter Measured value

mB (5279.4 ± 0.5) MeV [60]

τB0 (1.528 ± 0.009) ps [2]

τB+ (1.643 ± 0.010) ps [2]

β 0.379 ± 0.022 [2]

fπ (130.7 ± 0.4) MeV [60]

fK (159.8 ± 1.5) MeV [60]

|Vud| 0.9739 ± 0.0003 [61]

|Vus| 0.2248 ± 0.0016 [61]

|Vcd| 0.2261 ± 0.0010 [10]

|Vcs| 0.9732 ± 0.0002 [10]

|Vcb| (41.6 ± 0.5) × 10−3 [2, 62]

|Vub|
incl (4.39 ± 0.34) × 10−3 [2, 63]

|Vub|
excl (3.92 ± 0.52) × 10−3 [58, 64, 65]

|Vub|
global
CKM (3.53 ± 0.22) × 10−3 [10]

|Vub|
here (4.25 ± 0.34) × 10−3

TABLE III: Summary of well measured input parameters. For
our central value for |Vub| we use a weighted average of the
inclusive [2] and exclusive [58] with a slightly inflated error.
Use mt = 174.3 GeV.

B. B → ππ with Isospin and Im(Cππ/Tππ) = 0

Using only SU(2) there are a total of 5 hadronic pa-
rameters describing the decays B → ππ, in addition to
a weak phase. The 6 measurements allow in principle to
determine all of these parameters as was first advocated
by Gronau and London [7]. Unfortunately, the large un-
certainties in the direct CP asymmetry of B̄0 → π0π0 do
not allow for a definitive analysis at the present time (ie.
it currently gives 65◦ < α < 200◦ [10]). It was shown in
Ref. [45] that one can use SCET to eliminate one of the 5
hadronic SU(2) parameters, since ε = Im(Cππ/Tππ) " 0,
and then directly fit for the remaining four hadronic pa-
rameters and the weak angle γ, which substantially re-
duces the uncertainty. Using the most recent data shown
in section I, we find

γππ = 83.0◦+7.2◦

−8.8◦ ± 2◦ (61)

where the first error is from the experimental uncertain-
ties, while the second uncertainty is an estimate of the
theoretical uncertainties from the expansions in SCET,
estimated by varying ε = ±0.2 as explained in Ref. [45].
This value is in disagreement with the results from a
global fit to the unitarity triangle

γ CKMfitter
global = 58.6◦+6.8◦

−5.9◦ ,

γ UTfit
global = 57.9◦ ± 7.4◦ , (62)

at the 2-σ level. A more sophisticated statistical analysis
can be found in Ref. [46]. The errors in Eq. (61) are
slightly misleading because they do not remain Gaussian
for larger ε. At ε = 0.3 the deviation drops to 1.5-σ,
and at ε = 0.4 it drops to 0.5-σ. The result in Eq. (61)

FIG. 1: Comparison of constraints on Vub and γ from i) the
direct measurement of β, ii) current HFAG value for inclusive
|Vub|, iii) global fit value of γ, iv) |Vub| as output from the
global fit [2, 10], and v) results for γ from the small ε analysis
of B → ππ decays [45]. All errors bands are 1-σ.

is consistent with the direct measurement of this angle
which has larger errors [2]
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It is interesting to note that the global fit for β plus the
inclusive determination of |Vub| in table III also prefers
larger values of γ as shown in Fig. 1. It will be quite
interesting to see how these hints of discrepancies are
sharpened or clarified in the future. In the remainder of
this paper, we will show results for γ = 83◦ and γ = 59◦

to give the reader an indication of the γ dependence of
our results.

The phase of the amplitude Aππ
cc is mostly determined

from the CP asymmetries in B → π+π−. In particu-
lar, as can be seen from the general parameterization of
the amplitudes in Eq. (13), the sign of the direct CP
asymmetry C(π+π−) is correlated with the relative sign
between P̂ππ and T̂ππ and the sign of the asymmetry
C(π0π0) with that between Ĉππ and P̂ππ. Since there is
no relative phase between the amplitudes Ĉππ and T̂ππ

at LO in SCET, the sign of the direct CP asymmetry
in B → π0π0 is thus expected to be positive based on
the negative experimental value for C(π+π−) [46]. This
expectation is in disagreement with the direct measure-
ment shown in Table I. Using the values of the hadronic
parameters from the previous fit we find for γ = 83◦

C(π0π0) = 0.49 ± 0.12 ± 0.23 , (64)

while for γ = 59◦ we find

C(π0π0) = 0.61 ± 0.19 ± 0.19 . (65)

These values are 1.7σ from the measured value, if we add
the theoretical and experimental errors in quadrature.
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5

no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters

Expand in
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B → Kπ Sum Rules

• Direct-CP sum rule: Neubert,
Gronau, Rosner

∆(f) = ACP (f)ΓCP
avg(f)

ΓCP
avg(π

−K̄0)

no puzzle here yet

• Br sum rule:

R(f) =
Γ(B → f)

Γ(B̄0 → π−K̄0)

R(π0K−)− 1
2
R(π−K+) + R(π0K0) = O(ε2)

Lipkin, many authors

estimate from 
factorization in SCET

no puzzle here yet

0.094 ± 0.073 = O(ε2)= 0.03 ± 0.02

estimate from 
factorization in SCET

∆(K̄0
π

0) −
1

2
∆(K+

π
−) + ∆(K+

π
0) −

1

2
∆(K̄0

π
−) = O(ε2)

0.07 ± 0.08 = O(ε2)= 0 ± 0.007

∝ ε
2 sin(δ − δ

ew)
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters



For γ = 83ᵒ we find

ζBπ  = 0.088±0.049
ζJBπ= 0.085±0.036

103Pππ=(5.5±1.5)ei(151±10)

For γ = 59ᵒ we find

ζBπ  = 0.094±0.042
ζJBπ= 0.100±0.027

103Pππ=(2.6±1.1)ei(103±25)

(Vub = 4.25 10-3) and <u-1>π≡3βπ=3.2

C(π0π0) = 0.49 ± 0.26      C(π0π0) = 0.61 ± 0.27
C(π0

π
0)expt = −0.28 ± 0.40

Then Predict:

Include theory errors in fit
Fix:

Br(π0π0) = (1.4±.6) 10-6      Br(π0π0) = (1.3±.5) 10-6

Br(π0
π

0)expt = 1.45 ± 0.29

ζBπ
∼ ζBπ

JFind:



ζBπ
J ∼ ζBπ for                    , a term 

theorem ruins color suppression and explains the rate
• C1

Nc
〈ū−1〉π ζBπ

J

! 3

in the factorization 

   if                        this Br is sensitive to power corrections
 (small wilson coeffs. at LO could compete with  larger ones at   
   subleading order) .

ζBπ ! ζBπ
J

• In the future: determine parameters using improved data on the
∼ 0.3

q2B → π"ν̄ form factor at low       to provide a check. 
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expn.

SU(2) SU(3)
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B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
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B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters

no SU(3)! 2

Br × 106 ACP = −C S

π+π− 5.0 ± 0.4 0.37 ± 0.10 −0.50 ± 0.12

π0π0 1.45 ± 0.29 0.28 ± 0.40

π+π0 5.5 ± 0.6 0.01 ± 0.06 −

π−K̄0 24.1 ± 1.3 −0.02 ± 0.04 −

π0K− 12.1 ± 0.8 0.04 ± 0.04 −

π+K− 18.9 ± 0.7 −0.115 ± 0.018 −

π0K̄0 11.5 ± 1.0 −0.02 ± 0.13 0.31 ± 0.26

K+K− 0.06 ± 0.12

K0K̄0 0.96 ± 0.25

K̄0K− 1.2 ± 0.3 −

TABLE I: Current B → ππ, Kπ, and KK̄ data [2, 3, 4, 5, 6].
The S for πK is S(π0KS).

or disagrees with the standard model in the presence
of hadronic uncertainties, and to provide a roadmap for
looking for deviations in future precision measurements
of these decays.

The SU(2) isospin symmetry is known to hold to a
few percent accuracy, and thus almost every analysis
of nonleptonic decays exploits isospin symmetry. (Elec-
troweak penguin contributions are simply ∆I = 1/2 and
∆I = 3/2 weak operators, and are not what we mean by
isospin violation.) Methods for determining or bounding
α (or γ) using isospin have been discussed in [7, 8] and are
actively used in B → ππ and B → ρρ decays. In B → ρρ
this yields αρρ = 96◦± 13◦ [2]. For B → ππ this analysis
has significantly larger errors, since the Ac amplitudes
are larger and the asymmetry C(π0π0) is not yet mea-
sured well enough to constrain the hadronic parameters.
Isospin violating effects have been studied in [9]. For
B → Kπ and B → KK̄ an SU(2) analysis is not fruit-
ful since there are more isospin parameters than there are
measurements, so further information about the hadronic
parameters is mandatory.

In B → ππ, even if C(π0π0) were known precisely it
would still be important to have more information about
the amplitudes Au and Ac than isospin provides. For
example, isospin allows us to test whether γππ differs
from the value obtained by global fits [10, 12],

γ CKMfitter
global = 58.6◦+6.8◦

−5.9◦ ,

γ UTfit
global = 57.9◦ ± 7.4◦ . (4)

However, a deviation in γ is not the only way that new
physics can appear in B → ππ decays. Simply fitting
the full set of SU(2) amplitudes can parameterize away a
source of new physics. For example, Ref. [13] has argued
that it is impossible to see new physics in the (ππ)I=0

amplitudes in an isospin based fit. Thus, it is important
to consider the additional information provided by SU(3)
or factorization, since this allows us to make additional
tests of the standard model. The expansion parameters
here are larger, and so for these analyses it becomes much
more important to properly assess the theoretical uncer-
tainties in order to interpret the data.

The analysis of B → Kπ decays has a rich history
in the standard model, provoked by the CLEO measure-
ments [14] that indicated that these decays are domi-
nated by penguin amplitudes that were larger than ex-
pected. The dominance by loop effects makes these de-
cays an ideal place to look for new physics effects. Some
recent new physics analyses can be found in Refs. [15].
This literature is divided on whether or not there are
hints for new physics in these decays. The main obsta-
cle is the assessment of the uncertainty of the standard
model predictions from hadronic interactions.

Several standard model analyses based on the limit
ms/Λ " 1 (ie SU(3) symmetry) have been reported re-
cently [16, 17, 18, 19, 20, 21] (see also [22, 23, 24] for
earlier work). In the ∆S = 1 decays the electroweak
penguin amplitudes can not be neglected, since they are
enhanced by CKM factors. Unfortunately the number
of precise measurements makes it necessary to introduce
additional “dynamical assumptions” to reduce the num-
ber of hadronic parameters beyond those in SU(3). In
some cases efforts are made to estimate a subset of the
SU(3) violating effects to further reduce the uncertainty.
The dynamical assumptions rely on additional knowledge
of the strong matrix elements and in the past were mo-
tivated by naive factorization or the large Nc limit of
QCD. Our current understanding of the true nature of
factorization in QCD allows some of these assumptions
to be justified by the Λ/EM expansion. However, it
should be noted that a priori there is no reason to prefer
these factorization predictions to others that follow from
the Λ/mb expansion (such as the prediction that certain
strong phases are small).

In Ref. [16] a χ2-fit was performed with γ as a fit
parameter, including decays to η and η′. The result
γ = 61◦ ± 11◦ agrees well with global CKM fits. Here
evidence for deviations from the standard model would
show up as large contributions to the χ2. The most recent
analysis [19] has Br(K+π−), Br(K0π0), and ACP(K0π0)
contributing ∆χ2 = 2.7, 5.9, and 2.9 respectively, giv-
ing some hints for possible deviations from the stan-
dard model. Ref. [17] extracted hadronic paramters from
B → ππ decays, and used these results together with
SU(3) and the neglect of exchange, penguin annihilation,
and all electroweak penguin topologies except for the tree
to make predictions for B → Kπ and B → KK̄ decays.
They find large annihilation amplitudes, a large phase
and magnitude for an amplitude ratio C̃/T̃ which is in-
terpretted as large Put penguin amplitudes. The devi-
ation of Br(K+π−)/Br(K̄0π0) from standard model ex-
pectations was interpreted as evidence for new physics in
electroweak penguins.

There has been tremendous progress over the last few
years in understanding charmless two-body, non-leptonic
B decays in the heavy quark limit of QCD [25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. In
this limit one can prove factorization theorems of the
matrix elements describing the strong dynamics in the
decay into simpler structures such as light cone distribu-
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FIG. 3: Comparison of theory and experiment for all available
data in B → ππ and B → Kπ decays, with γ = 83◦. The 8
pieces of data in red (below the dashed line) have been used
to determine the SCET hadronic parameters ζBπ , ζBπ

J , Pππ,
PKπ and |PKK|, with ζBK and ζBK

J fixed as described in
the text. The data above the line are predictions. The CP
asymmetry in B− → K0π− is expected to be small, but its
numerical value is not predicted reliably.

V. CONCLUSIONS

Decays of B mesons to two pseudoscalar mesons pro-
vide a rich environment to test our understanding of the
standard model and to look for physics beyond the stan-
dard model. The underlying electroweak physics mediat-
ing these decays are contained in the Wilson coefficients
of the electroweak Hamiltonian as well as CKM matrix
elements. In order to test cleanly the standard model
predictions for these short distance parameters, one re-
quires a good understanding of the QCD matrix elements
of the effective operators, which can not be calculated
perturbatively.

At the present time, there are 5 well measured (with
< 100% uncertainty) observables in B → ππ, 5 in
B → Kπ and 2 in B → KK. Using only isospin symme-
try (with corrections suppressed by mu,d/Λ), the number
of hadronic parameters required to describe these decays
is 7, 11 and 11, respectively. The number of hadronic
parameters can be reduced by two in the ππ system,
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FIG. 4: Same as Fig.3, but with γ = 59◦.

if one drops the two operators O7 and O8, which have
small Wilson coefficients in the standard model. If one
is willing to take SU(3) (an expansion in ms/Λ) as a
good symmetry of QCD, the combined B → ππ/Kπ sys-
tem is described by 15 parameters, while the B → KK
system adds another 4 parameters. Neglecting O7 and
O8 with SU(3) reduces the number of parameters in the
ππ/Kπ/KK̄ system to 15. Thus, at the present time
there are more hadronic parameters than there are well
measured observables.

In this paper we have studied these decays in a model
independent way using SCET. This analysis exploits that
the hadronic scale Λ in QCD is much smaller than both
in the large mass of the heavy quark and the large energy
of the two light mesons. It follows that at leading order
in the power expansion in ΛQCD/Q, where Q ∼ mb, E,
and using SU(2), there are four hadronic parameters de-
scribing B → ππ, five additional parameters describing
B → Kπ and three additional parameters describing
B → KK. In the limit of exact SU(3) the four param-
eters describing B → ππ are enough to describe all of
these B → PP decays in SCET.

In SCET the electroweak penguin operators O7,8 can
be included without adding additional hadronic param-
eters. One can use the 5 pieces of well measured ππ
data to determine the four hadronic parameters and the
weak angle γ [45], and with the current data one finds
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FIG. 3: Comparison of theory and experiment for all available
data in B → ππ and B → Kπ decays, with γ = 83◦. The 8
pieces of data in red (below the dashed line) have been used
to determine the SCET hadronic parameters ζBπ , ζBπ

J , Pππ,
PKπ and |PKK|, with ζBK and ζBK

J fixed as described in
the text. The data above the line are predictions. The CP
asymmetry in B− → K0π− is expected to be small, but its
numerical value is not predicted reliably.

V. CONCLUSIONS

Decays of B mesons to two pseudoscalar mesons pro-
vide a rich environment to test our understanding of the
standard model and to look for physics beyond the stan-
dard model. The underlying electroweak physics mediat-
ing these decays are contained in the Wilson coefficients
of the electroweak Hamiltonian as well as CKM matrix
elements. In order to test cleanly the standard model
predictions for these short distance parameters, one re-
quires a good understanding of the QCD matrix elements
of the effective operators, which can not be calculated
perturbatively.

At the present time, there are 5 well measured (with
< 100% uncertainty) observables in B → ππ, 5 in
B → Kπ and 2 in B → KK. Using only isospin symme-
try (with corrections suppressed by mu,d/Λ), the number
of hadronic parameters required to describe these decays
is 7, 11 and 11, respectively. The number of hadronic
parameters can be reduced by two in the ππ system,
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if one drops the two operators O7 and O8, which have
small Wilson coefficients in the standard model. If one
is willing to take SU(3) (an expansion in ms/Λ) as a
good symmetry of QCD, the combined B → ππ/Kπ sys-
tem is described by 15 parameters, while the B → KK
system adds another 4 parameters. Neglecting O7 and
O8 with SU(3) reduces the number of parameters in the
ππ/Kπ/KK̄ system to 15. Thus, at the present time
there are more hadronic parameters than there are well
measured observables.

In this paper we have studied these decays in a model
independent way using SCET. This analysis exploits that
the hadronic scale Λ in QCD is much smaller than both
in the large mass of the heavy quark and the large energy
of the two light mesons. It follows that at leading order
in the power expansion in ΛQCD/Q, where Q ∼ mb, E,
and using SU(2), there are four hadronic parameters de-
scribing B → ππ, five additional parameters describing
B → Kπ and three additional parameters describing
B → KK. In the limit of exact SU(3) the four param-
eters describing B → ππ are enough to describe all of
these B → PP decays in SCET.

In SCET the electroweak penguin operators O7,8 can
be included without adding additional hadronic param-
eters. One can use the 5 pieces of well measured ππ
data to determine the four hadronic parameters and the
weak angle γ [45], and with the current data one finds
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters

Williamson & ZupanExtension to isosinglets
+4πη, ηη, Kη′, . . .

10

FIG. 6: The gluonic charming penguin contributions with
intermediate on-shell charm quarks annihilating into two
collinear quarks going in the opposite directions, with n
collinear quark annihilating with spectator quark and pro-
ducing two n collinear gluons (compare also with diagrams b)
and d) of Fig. 4).

Similar relations for Acc will be given below.
Using SU(3) symmetry further relations are possible.

In the exact SU(3) limit only two ζ functions are needed
for the decays without isosinglet mesons

ζ(J) ≡ ζBπ
(J) = ζBK

(J) = ζBsK
(J) . (45)

Furthermore, to describe all the decays into isosinglet
mesons only the two new functions ζ(J)g defined in (43),
are needed. Namely, in exact SU(3) one has (cf. Eq.
(33))

ζ
Bsηq

(J) = 2ζ(J)g, ζBsηs

(J) = ζ(J) + ζ(J)g, (46)

in addition to the relations (43), (44).
Let us now discuss the nonperturbative charming pen-

guin contributions AM1M2
cc (37) in the isospin limit assum-

ing FKS mixing along with relation (42). The charming
penguins in B̄0, B− decays into πηq, πηs and ππ final
states are parameterized in terms of four complex pa-
rameters

Aππ
cc ≡ Aπ+π−

cc = Aπ0π0

cc ,

Aπηs
cc,g ≡ Aπ−ηs

cc = −
√

2Aπ0ηs
cc =

√
2Aηqηs

cc , (47)

and Aπη
cc , A

πηq
cc,g in terms of which

Aπ−ηq
cc =

√
2
(

Aπη
cc + Aπηq

cc,g

)

,

Aπ0ηq
cc = −Aπη

cc − Aπηq
cc,g,

Aηqηq
cc = Aππ

cc + 2Aπηq
cc,g, (48)

and Aπ−π0

cc = 0. Here A
πηq,s
cc,g describes the charming pen-

guin contributions, where the n collinear quark coming
from the annihilation of charm quarks annihilates the
spectator quark and produces two n collinear gluons, Fig.
6. At LO in 1/mb there is one additional relation

Aππ
cc = Aπη

cc . (49)

The amplitude Aππ
cc receives contributions from SCET

operators of higher order in 1/mb, where the spectator
quark directly attaches to the weak vertex. These higher
order corrections correspond to penguin annihilation in
the diagrammatic language and do not contribute to Aπη

cc .
At LO in 1/mb one further parameter is introduced for

∆S = 0 decays into two kaons

AKK
cc ≡ AK0K−

cc = AK0K̄0

cc , (50)

while higher order penguin annihilation contributions to
AK0K̄0

cc distinguish between the two amplitudes.
Three additional complex parameters describe charm-

ing penguins in ∆S = 1 decays of B̄0, B−

AKπ
cc ≡ AK−π+

cc = AK̄0π−

cc = −
√

2AK̄0π0

cc =
√

2AK−π0

cc ,
√

2AKηq
cc,g +

1√
2
AKπ

cc ≡ AK̄0ηq
cc = AK−ηq

cc ,

AKηs
cc,g + AKηs

cc ≡ AK−ηs
cc = AK̄0ηs

cc , (51)

where the gluonic component AKηs
cc,g has been pulled out

for later convenience. An additional six complex param-
eters describe charming penguin contributions in B̄0

s de-
cays

AπK
cc (s) ≡ A

B̄0
s→π−K+

cc = −
√

2A
B̄0

s→π0K0

cc

AKK
cc (s) ≡ A

B̄0
s→K−K+

cc = A
B̄0

s→K0K̄0

cc ,
√

2Aηsηq
ccg (s) ≡ A

B̄0
s→ηsηq

cc ,

2Aηsηs
cc (s) + 2Aηsηs

ccg (s) ≡ A
B̄0

s→ηsηs
cc ,

1√
2
AπK

cc (s) +
√

2AKηq
ccg (s) ≡ A

B̄0
s→K0ηq

cc ,

AKηs
cc (s) + AKηs

ccg (s) ≡ A
B̄0

s→K0ηs
cc , (52)

where the subscript g again denotes gluonic contributions
as before. Note that the above relations are valid to all
orders in the αS(mb) and 1/mb expansions, under the
assumptions leading to FKS mixing along with relation
(42).

In the limit of exact SU(3) and at LO in 1/mb the
above seventeen complex parameters in (47)-(52) are re-
lated to only two complex parameters

Acc = Aππ
cc = Aπη

cc = AKπ
cc = AKηs

cc = AKK
cc =

= AπK
cc (s) = AKK

cc (s) = Aηsηs
cc (s) = AKηs

cc (s),
(53)

and

Accg = Aπηq
cc,g = Aπηs

cc,g = AKηq
cc,g = AKηs

cc,g

= Aηsηq
ccg (s) = Aηsηs

ccg (s) = AKηq
ccg (s) = AKηs

ccg (s),
(54)

The same relations also apply to B decays into two vec-
tor mesons, with the replacements ηq → ω, ηs → φ,
π → ρ, K → K∗, but with additional simplification since

(2 solutions)
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TABLE VII: Predicted CP averaged branching ratios (×10−6, first row) and direct CP asymmetries (second row for each mode)
for ∆S = 0 and ∆S = 1 B decays (separated by horizontal line) to isosinglet pseudoscalar mesons. The Theory I and Theory II
columns give predictions corresponding to Solution I,II sets of SCET parameters. The errors on the predictions are estimates
of SU(3) breaking, 1/mb corrections and errors due to SCET parameters, respectively. No prediction on CP asymmetries is
given, if [−1, 1] range is allowed at 1σ.

Mode Exp. Theory I Theory II

B− → π−η 4.3 ± 0.5 (S = 1.3) 4.9 ± 1.7 ± 1.0 ± 0.5 5.0 ± 1.7 ± 1.2 ± 0.4

−0.11 ± 0.08 0.05 ± 0.19 ± 0.21 ± 0.05 0.37 ± 0.19 ± 0.21 ± 0.05

B− → π−η′ 2.53 ± 0.79 (S = 1.5) 2.4 ± 1.2 ± 0.2 ± 0.4 2.8 ± 1.2 ± 0.3 ± 0.3

0.14 ± 0.15 0.21 ± 0.12 ± 0.10 ± 0.14 0.02 ± 0.10 ± 0.04 ± 0.15

B̄0 → π0η − 0.88 ± 0.54 ± 0.06 ± 0.42 0.68 ± 0.46 ± 0.03 ± 0.41

− 0.03 ± 0.10 ± 0.12 ± 0.05 −0.07 ± 0.16 ± 0.04 ± 0.90

B̄0 → π0η′ − 2.3 ± 0.8 ± 0.3 ± 2.7 1.3 ± 0.5 ± 0.1 ± 0.3

− −0.24 ± 0.10 ± 0.19 ± 0.24 −
B̄0 → ηη − 0.69 ± 0.38 ± 0.13 ± 0.58 1.0 ± 0.4 ± 0.3 ± 1.4

− −0.09 ± 0.24 ± 0.21 ± 0.04 0.48 ± 0.22 ± 0.20 ± 0.13

B̄0 → ηη′ − 1.0 ± 0.5 ± 0.1 ± 1.5 2.2 ± 0.7 ± 0.6 ± 5.4

− − 0.70 ± 0.13 ± 0.20 ± 0.04

B̄0 → η′η′ − 0.57 ± 0.23 ± 0.03 ± 0.69 1.2 ± 0.4 ± 0.3 ± 3.7

− − 0.60 ± 0.11 ± 0.22 ± 0.29

B̄0 → K̄0η′ 63.2 ± 4.9 (S = 1.5) 63.2 ± 24.7 ± 4.2 ± 8.1 62.2 ± 23.7 ± 5.5 ± 7.2

0.07 ± 0.10 (S = 1.5) 0.011 ± 0.006 ± 0.012 ± 0.002 −0.027 ± 0.007 ± 0.008 ± 0.005

B̄0 → K̄0η < 1.9 2.4 ± 4.4 ± 0.2 ± 0.3 2.3 ± 4.4 ± 0.2 ± 0.5

− 0.21 ± 0.20 ± 0.04 ± 0.03 −0.18 ± 0.22 ± 0.06 ± 0.04

B− → K−η′ 69.4 ± 2.7 69.5 ± 27.0 ± 4.3 ± 7.7 69.3 ± 26.0 ± 7.1 ± 6.3

0.031 ± 0.021 −0.010 ± 0.006 ± 0.007 ± 0.005 0.007 ± 0.005 ± 0.002 ± 0.009

B− → K−η 2.5 ± 0.3 2.7 ± 4.8 ± 0.4 ± 0.3 2.3 ± 4.5 ± 0.4 ± 0.3

−0.33 ± 0.17 (S = 1.4) 0.33 ± 0.30 ± 0.07 ± 0.03 −0.33 ± 0.39 ± 0.10 ± 0.04

has χ2/d.o.f. = 40.8/(10−4) or χ2/d.o.f. = 5.4/(10−4),
if theoretical errors are added in the definition of χ2. The
largest discrepancies with experimental data in this case
is in ACP

ηπ− while the prediction for ACP
ηK− agrees well with

data in contrast to Solution I.
The strong phases of the gluonic charming penguin

in the two solutions lie in opposite quadrants, while the
values of |Acc,g| and ζ±g agree between the two solutions.

The gluonic contribution to the B → η(′) form factors,
ζg + ζJg, is similar in size to ζ and ζJ in (83) as expected
from SCET counting, Using Eq. (60) we find in the SU(3)
limit and at LO in 1/mb and αS(mb)

f
Bηq

+ (0) =

{

(−2.3 ± 4.8)× 10−2,

(4.5 ± 8.6) × 10−2,
(111)

fBηs

+ (0) =

{

(−9.9 ± 2.4)× 10−2,

(−6.6 ± 4.3)× 10−2,
(112)

to be compared with fBπ
+ (0) = 0.176± 0.007, that is ob-

tained using the results of ππ, πK fit (83). The upper
(lower) rows in (111), (112) correspond to values in Solu-
tion I (Solution II), where only experimental errors due
to the extracted SCET parameters are shown. Because of

the large experimental uncertainties, the gluonic contri-
butions to the form factors are still consistent with zero
at a little above the 1σ level in Solution II. The gluonic
charming penguin Accg on the other hand is shown to be
nonzero in both sets of solutions and is of similar size to
Acc in (84) in agreement with SCET counting. The pre-
dicted branching ratios and direct CP asymmetries using
the above values are compiled in Table VII. The errors
due to SU(3) breaking and 1/mb or αS(mb) corrections
are estimated in the same way as in previous subsection.
An error of 20% and a variation on charming penguin
strong phase of 20◦ is assigned to relations (43)-(46) and
(53), (54) giving the first error estimate in the Table VII.
The remaining 1/mb and αS(mb) errors, listed as second
error estimates in Table VII, are obtained by varying the
size and strong phase of leading order amplitudes pro-

portional to λ(f)
u or λ(f)

t by 20% and 20◦ respectively.

A prominent feature of B → Kη(′) decays is the large
disparity between the branching ratios for B → Kη′ and
B → Kη decays. In the SCET framework this is quite
naturally explained through a constructive and destruc-
tive interference of different terms in the amplitudes as
has been first suggested in [94, 95]. Specifically, the am-
plitudes AB→Kη(′) are related to AB→Kηq and AB→Kηs

Branching Fraction 
Direct CP Asymmetry

errors:  su3,  1/mb, fit

Predictions
(4 param. fit)
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expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters   VP,  VV  modes 

SCET+SU(2)  
counting for: B → K

∗
π

B → Kρ

B → ρ‖ρ‖ 4
+5 (6)
+2 (6)

B → K∗
‖ρ‖ +2 (6)

B → ρπ +4 (8)
·
·
·

·
·
·



For γ = 83ᵒ I find

ζBρ+ζJBρ= 0.27±0.02
βρζJBρ= 0.09

103Pρρ=(7.6)ei(-3 )

For γ = 59ᵒ I find

ζBρ+ζJBρ= 0.29±0.02
βρζJBρ= 0.07

103Pρρ=(2.9)ei(8 )

(Vub = 4.25 10-3)

Then Predict:

Fix:

Br(ρ0ρ0) = (2.8) 10-6      Br(ρ0ρ0) = (1.9) 10-6

for <u-1>ρ/3≡ βρ   0.8 βπ

ζBρ
! ζBρ

J ?    closer to BBNS counting

Rough Analysis 

ᵒᵒ

at isospin bound
Br(ρ0ρ0)expt < (1.1) × 10−6

ratio ζBρ
J

ζBπ
J

agrees with ~- αs(
√

EΛ)
perturbation theory
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no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters   VP,  VV  modes 

SCET+SU(2)  
counting for: B → K

∗
π

B → Kρ

B → ρ‖ρ‖ 4
+5 (6)
+2 (6)

B → K∗
‖ρ‖ +2 (6)

B → ρπ +4 (8)
·
·
·

·
·
·

}# observables
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Kπ

can make 
predictions to 

test factorization
or determine γ 



5

no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.
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Idea: Extract and the strong phases
using the interference between B0 + 0 amplitudes
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FIG. 3: Dalitz plots for K0
Sπ+π− candidates in the (a) ∆E − Mbc sidebands and (b) B signal

region.

be a useful statistic for comparing the relative goodness of fits for different models. A more
detailed description of the technique is given in Ref. [1].

Fitting the Background Shape

Before fitting the Dalitz plot for events in the signal region, we need to determine the
distribution of background events. The background density function is determined from
an unbinned likelihood fit to the events in the Mbc − ∆E sidebands defined in Fig. 1(c).
Figure 3(a) shows Dalitz distribution for 8159 sideband events. This is about seven times
the estimated number of background events in the B signal region.

We use the following empirical parametrization to describe the distribution of background
events over the Dalitz plot in the K0

Sπ+π− final state

B(s13, s23) = α1(e
−β1s12 + e−β1s13) + α2e

−β2s23

+ α3(e
−β3s12−β4s23 + e−β3s13−β4s23) + α4e

−β5(s12+s13)

+ γ1(|BW (K∗(892)−)|2 + |BW (K∗(892)+)|2) + γ2|BW (ρ(770)0)|2, (2)

where s12 ≡ M2(K0
Sπ−), s13 ≡ M2(K0

Sπ+), s23 ≡ M2(π+π−) and αi (α1 ≡ 1.0), βi and γi

are fit parameters; BW is a Breit-Wigner function. The first three terms in Eq. (2) are
introduced to describe the background enhancement in the two-particle low invariant mass
regions. This enhancement originates mainly from e+e− → qq̄ continuum events. Due to the
jet-like structure of this background, all three particles in a three-body combination have
almost collinear momenta. Hence, the invariant mass of at least one pair of particles is in
the low mass region. In addition, it is often the case that two high momentum particles
are combined with a low momentum particle to form a B candidate. In this case there are
two pairs with low invariant masses and one pair with high invariant mass resulting in even
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FIG. 3: Dalitz plots for K0
Sπ+π− candidates in the (a) ∆E − Mbc sidebands and (b) B signal

region.

be a useful statistic for comparing the relative goodness of fits for different models. A more
detailed description of the technique is given in Ref. [1].

Fitting the Background Shape

Before fitting the Dalitz plot for events in the signal region, we need to determine the
distribution of background events. The background density function is determined from
an unbinned likelihood fit to the events in the Mbc − ∆E sidebands defined in Fig. 1(c).
Figure 3(a) shows Dalitz distribution for 8159 sideband events. This is about seven times
the estimated number of background events in the B signal region.

We use the following empirical parametrization to describe the distribution of background
events over the Dalitz plot in the K0

Sπ+π− final state

B(s13, s23) = α1(e
−β1s12 + e−β1s13) + α2e

−β2s23

+ α3(e
−β3s12−β4s23 + e−β3s13−β4s23) + α4e

−β5(s12+s13)

+ γ1(|BW (K∗(892)−)|2 + |BW (K∗(892)+)|2) + γ2|BW (ρ(770)0)|2, (2)

where s12 ≡ M2(K0
Sπ−), s13 ≡ M2(K0

Sπ+), s23 ≡ M2(π+π−) and αi (α1 ≡ 1.0), βi and γi

are fit parameters; BW is a Breit-Wigner function. The first three terms in Eq. (2) are
introduced to describe the background enhancement in the two-particle low invariant mass
regions. This enhancement originates mainly from e+e− → qq̄ continuum events. Due to the
jet-like structure of this background, all three particles in a three-body combination have
almost collinear momenta. Hence, the invariant mass of at least one pair of particles is in
the low mass region. In addition, it is often the case that two high momentum particles
are combined with a low momentum particle to form a B candidate. In this case there are
two pairs with low invariant masses and one pair with high invariant mass resulting in even
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FIG. 3: Dalitz plots for K0
Sπ+π− candidates in the (a) ∆E − Mbc sidebands and (b) B signal

region.

be a useful statistic for comparing the relative goodness of fits for different models. A more
detailed description of the technique is given in Ref. [1].

Fitting the Background Shape

Before fitting the Dalitz plot for events in the signal region, we need to determine the
distribution of background events. The background density function is determined from
an unbinned likelihood fit to the events in the Mbc − ∆E sidebands defined in Fig. 1(c).
Figure 3(a) shows Dalitz distribution for 8159 sideband events. This is about seven times
the estimated number of background events in the B signal region.

We use the following empirical parametrization to describe the distribution of background
events over the Dalitz plot in the K0

Sπ+π− final state

B(s13, s23) = α1(e
−β1s12 + e−β1s13) + α2e

−β2s23

+ α3(e
−β3s12−β4s23 + e−β3s13−β4s23) + α4e

−β5(s12+s13)

+ γ1(|BW (K∗(892)−)|2 + |BW (K∗(892)+)|2) + γ2|BW (ρ(770)0)|2, (2)

where s12 ≡ M2(K0
Sπ−), s13 ≡ M2(K0

Sπ+), s23 ≡ M2(π+π−) and αi (α1 ≡ 1.0), βi and γi

are fit parameters; BW is a Breit-Wigner function. The first three terms in Eq. (2) are
introduced to describe the background enhancement in the two-particle low invariant mass
regions. This enhancement originates mainly from e+e− → qq̄ continuum events. Due to the
jet-like structure of this background, all three particles in a three-body combination have
almost collinear momenta. Hence, the invariant mass of at least one pair of particles is in
the low mass region. In addition, it is often the case that two high momentum particles
are combined with a low momentum particle to form a B candidate. In this case there are
two pairs with low invariant masses and one pair with high invariant mass resulting in even
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FIG. 3: Dalitz plots for K0
Sπ+π− candidates in the (a) ∆E − Mbc sidebands and (b) B signal

region.

be a useful statistic for comparing the relative goodness of fits for different models. A more
detailed description of the technique is given in Ref. [1].

Fitting the Background Shape

Before fitting the Dalitz plot for events in the signal region, we need to determine the
distribution of background events. The background density function is determined from
an unbinned likelihood fit to the events in the Mbc − ∆E sidebands defined in Fig. 1(c).
Figure 3(a) shows Dalitz distribution for 8159 sideband events. This is about seven times
the estimated number of background events in the B signal region.

We use the following empirical parametrization to describe the distribution of background
events over the Dalitz plot in the K0

Sπ+π− final state

B(s13, s23) = α1(e
−β1s12 + e−β1s13) + α2e

−β2s23

+ α3(e
−β3s12−β4s23 + e−β3s13−β4s23) + α4e

−β5(s12+s13)

+ γ1(|BW (K∗(892)−)|2 + |BW (K∗(892)+)|2) + γ2|BW (ρ(770)0)|2, (2)

where s12 ≡ M2(K0
Sπ−), s13 ≡ M2(K0

Sπ+), s23 ≡ M2(π+π−) and αi (α1 ≡ 1.0), βi and γi

are fit parameters; BW is a Breit-Wigner function. The first three terms in Eq. (2) are
introduced to describe the background enhancement in the two-particle low invariant mass
regions. This enhancement originates mainly from e+e− → qq̄ continuum events. Due to the
jet-like structure of this background, all three particles in a three-body combination have
almost collinear momenta. Hence, the invariant mass of at least one pair of particles is in
the low mass region. In addition, it is often the case that two high momentum particles
are combined with a low momentum particle to form a B candidate. In this case there are
two pairs with low invariant masses and one pair with high invariant mass resulting in even
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can use γ∗γ → M1M2 for φM1M2

factorization will provide additional strong phase information

•
•

•

can use B → DM1M2 for φM1M2

• enhanced SU(3) predictions, 
eg. can use SU(3) on  φM1M2

From theory point of view:
simpler to predict amplitudes with cuts

can use B → M1M2eν̄ for ζBM1M2•
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