Nonleptonic B Decays in SCET

(quasi 2-body \& 3-body)

Iain Stewart MIT

Three-Body Charmless B-decay Workshop
LPNHE, Feb. 2006

Outline

- Nonleptonic decays \& Soft-Collinear Effective Theory
i) Factorization Theorem (formal issues)
(SCET)
ii) Applying the result (phenomenological choices)
- Applications
i) $\quad B \rightarrow \pi \pi \quad B \rightarrow K \pi, K \bar{K} \quad$ isosinglets
ii) comments on $B \rightarrow V V, B \rightarrow V P$
iii) comments on 3-body decays

B decays - Motivation

- Probe the flavor sector of the SM

CP:

$B \rightarrow M_{1} M_{2}$ Factorization (with SCET)

Operators

$$
\mathrm{QCD} \quad H_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}^{(d)}\left(C_{1} O_{1}^{p}+C_{2} O_{2}^{p}+\sum_{i=3}^{10,8_{g}} C_{i} O_{i}\right)
$$

$\mathrm{SCET}_{\mathrm{I}} \quad$ Integrate out $\sim m_{b}$ fluctuations

$$
\begin{aligned}
H_{W} & =\frac{2 G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{6} \int d \omega_{j} c_{i}^{(f)}\left(\omega_{j}\right) Q_{i f}^{(0)}\left(\omega_{j}\right)+\sum_{i=1}^{8} \int d \omega_{j} b_{i}^{(f)}\left(\omega_{j}\right) Q_{i f}^{(1)}\left(\omega_{j}\right)+\mathcal{Q}_{c \bar{c}}+\ldots\right\} \\
Q_{1 d}^{(0)} & =\left[\bar{u}_{n, \omega_{1}} \not \hbar P_{L} b_{v}\right]\left[\bar{d}_{\bar{n}, \omega_{2}} \not \subset P_{L} u_{\bar{n}, \omega_{3}}\right], \ldots \\
Q_{1 d}^{(1)} & =\frac{-2}{m_{b}}\left[\bar{u}_{n, \omega_{1}} i g ß_{n, \omega_{4}}^{\perp} P_{L} b_{v}\right]\left[\bar{d}_{\bar{n}, \omega_{2}} \not h P_{L} u_{\bar{n}, \omega_{3}}\right], \ldots
\end{aligned}
$$

Factorization at m_{b}

Nonleptonic $\quad B \rightarrow M_{1} M_{2}$

$$
A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, 2) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}
$$

Form Factors $\quad B \rightarrow$ pseudoscalar: f_{+}, f_{0}, f_{T} $B \rightarrow$ vector: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$

$$
\begin{array}{rlrl}
f(E)=\int d z T(z, E)\left(\zeta_{J}^{B M}(z, E)\right. & \} & \begin{array}{l}
\text { "hard spectator", } \\
\text { "factorizable" }
\end{array} \longrightarrow \text { universality at } \\
& +C(E) \zeta^{B M}(E) & \} & \text { "soft form factor", } \\
\text { "non-factorizable" }
\end{array}
$$

Hard Coefficients: $\quad T_{i \zeta}(u), T_{i J}(u)$

$M_{1} M_{2}$	$T_{1 \zeta}(u)$	$T_{2 \zeta}(u)$	$M_{1} M_{2}$	$T_{1 \zeta}(u)$	$T_{2 \zeta}(u)$				
$\pi^{-} \pi^{+}, \rho^{-} \pi^{+}, \pi^{-} \rho^{+}, \rho_{\\|}^{-} \rho_{\\|}^{+}$	$c_{1}^{(d)}+c_{4}^{(d)}$	0	$\pi^{+} K^{(*)-}, \rho^{+} K^{-}, \rho_{\\|}^{+} K_{\\|}^{*-}$	0	$c_{1}^{(s)}+c_{4}^{(s)}$				
$\pi^{-} \pi^{0}, \rho^{-} \pi^{0}$	$\frac{1}{\sqrt{2}}\left(c_{1}^{(d)}+c_{4}^{(d)}\right)$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\pi^{0} K^{(*)-}$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(s)}-c_{3}^{(s)}\right)$	$\frac{1}{\sqrt{2}}\left(c_{1}^{(s)}+c_{4}^{(s)}\right)$				
$\pi^{-} \rho^{0}, \rho_{\\|}^{-} \rho_{\\|}^{0}$	$\frac{1}{\sqrt{2}}\left(c_{1}^{(d)}+c_{4}^{(d)}\right)$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\rho^{0} K^{-}, \rho_{\\|}^{0} K_{\\|}^{*-}$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(s)}+c_{3}^{(s)}\right)$	$\frac{1}{\sqrt{2}}\left(c_{1}^{(s)}+c_{4}^{(s)}\right)$				
$\pi^{0} \pi^{0}$	$\frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\pi^{-} \bar{K}^{(*) 0}, \rho^{-} \bar{K}^{0}, \rho_{\\|}^{-} \bar{K}_{\\|}^{* 0}$	0	$-c_{4}^{(s)}$				
$\rho^{0} \pi^{0}$	$\frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\frac{1}{2}\left(c_{2}^{(d)}-c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\pi^{0} \bar{K}^{(*) 0}$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(s)}-c_{3}^{(s)}\right)$	$-\frac{1}{\sqrt{2}} c_{4}^{(s)}$				
$\rho_{\\|}^{0} \rho_{\\|}^{0}$	$\frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\frac{1}{2}\left(c_{2}^{(d)}+c_{3}^{(d)}-c_{4}^{(d)}\right)$	$\rho^{0} \bar{K}^{0}, \rho_{\\|}^{0} \bar{K}_{\\|}^{* 0}$	$\frac{1}{\sqrt{2}}\left(c_{2}^{(s)}+c_{3}^{(s)}\right)$	$-\frac{1}{\sqrt{2}} c_{4}^{(s)}$				
$K^{(*) 0} K^{(*)-}, K^{(*) 0} \bar{K}^{(*) 0}$	$-c_{4}^{(d)}$	0	$K^{(*)-} K^{(*)+}$	0	0				

similar for T_{J} 's in terms of $b_{i}^{(f)}$'s
Note: have not

Matching

used isospin yet

$$
\begin{aligned}
& c_{1}^{(f)}=\lambda_{u}^{(f)}\left(C_{1}+\frac{C_{2}}{N_{c}}\right)-\lambda_{t}^{(f)} \frac{3}{2}\left(C_{10}+\frac{C_{9}}{N_{c}}\right)+\Delta c_{1}^{(f)}, \\
& b_{1}^{(f)}=\lambda_{u}^{(f)}\left[C_{1}+\left(1-\frac{m_{b}}{\omega_{3}}\right) \frac{C_{2}}{N_{c}}\right]-\lambda_{t}^{(f)}\left[\frac{3}{2} C_{10}+\left(1-\frac{m_{b}}{\omega_{3}}\right) \frac{3 C_{9}}{2 N_{c}}\right]+\Delta b_{1}^{(f)},
\end{aligned}
$$

$\Delta c_{i}^{(f)}$ known at one-loop
$\Delta b_{i}^{(f)}$ known at one-loop for Or,2 Beneke \& Jager

Running

$c_{i}^{(f) \quad \text { Bauer, Pirjol, Fleming, I.S.; Brodsky \& Lepage }}$
$b_{i}^{(f)} \quad$ Becher, Hill, Neubert; Brodsky \& Lepage

$A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\}$

Factorization at $\sqrt{E \Lambda}$

expansion in $\alpha_{s}(\sqrt{E \Lambda})$

$$
\begin{array}{rlrl}
\zeta_{J}^{B M}(z) & =f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right) & \text {Beneke, Feldmann } \\
\zeta^{B M} & =? & \text { (left as a form factor) } & \text { Becher, Hill, Lange, Neubert }
\end{array}
$$

$B \rightarrow M_{1} M_{2}$

Formalism Comments

- $\Lambda^{2} \ll E \Lambda \ll E^{2}, m_{b}^{2} \quad$ corrections $\sim 20 \%$
not great precision, but sufficient for large
eg. Large Annihilation $C_{1} \frac{\Lambda}{E}$
- with pert. theory at $\sqrt{E \Lambda}$ agrees with Factorization proposed by

Beneke, Buchalla, Neubert, Sachrajda

- sizeable charm loops
 Colangelo et al

$$
\begin{aligned}
& \text { long } \\
& \text { distance } A^{c \bar{c}} \sim A^{L O}\left\{v \alpha_{s}\left(2 m_{c}\right)\right\} \quad \text { short } \quad \text { distance } \sim A^{L O}\left\{\alpha_{s}\left(m_{b}\right)\right\}
\end{aligned}
$$

- $1 / x^{2}$ singularity prevents further factorization of $\zeta^{B M}$
use k_{\perp} Factorization? pQCD

Keum, Li, Sanda, Lu et al.
(a good model for soft physics?)

Phenomenology

I) BBNS expand in $\alpha_{s}(Q) \& \alpha_{s}(\sqrt{E \Lambda})$ from elsewhere input $\phi_{M}(x), \phi_{B}\left(k^{+}\right), \zeta^{B M}$
(eg. light-cone sum rules) $\zeta_{J}^{B M} \sim \alpha_{s} \zeta^{B M}$
include perturbative charm \& certain power corrections
II) "Charming penguins"

RGI amplitudes
fit penguin containing charm
can use factorization like I) for other terms
III) BPRS, "SCET"
expand in $\alpha_{s}(Q)$, but keep all orders in
fit $\zeta^{B M}, \zeta_{J}^{B M}$

$$
\zeta^{B \pi} \sim \zeta_{J}^{B \pi}
$$

fit penguins containing charm loop using only isospin neglect power corrections to non-penguin amplitudes
($\alpha_{s}(Q)$ corrections will require input)

Worth remembering:

$$
\begin{aligned}
& \text { more theory input } \\
& =\text { less fit parameters } \\
& \text { = more ways to test for new physics }
\end{aligned}
$$

The more results from QCD we decide are trustworthy the better the chances to find new physics

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11			
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

a / b remove small $O_{8,9}$

$$
\begin{aligned}
\pi \pi: & \left\{\zeta^{B \pi}+\zeta_{J}^{B \pi}, \beta_{\pi} \zeta_{J}^{B \pi}, P_{\pi \pi}\right\}, \\
K \pi: & \left\{\zeta^{B \pi}+\zeta_{J}^{B \pi}, \beta_{\bar{K}} \zeta_{J}^{B \pi}, \zeta^{B \bar{K}}+\zeta_{J}^{B \bar{K}}, \beta_{\pi} \zeta_{J}^{B \bar{K}}, P_{K \pi}\right\} \\
& \beta_{M}=\int_{0}^{1} d x \frac{\phi_{M}(x)}{3 x}
\end{aligned}
$$

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7(5)$	$15 / 13$	(4)	4
$B \rightarrow K \pi$	15	11			
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

use isospin to reduce errors !

	$\operatorname{Br} \times 10^{6}$	$A_{\mathrm{CP}}=-C$	S
$\pi^{+} \pi^{-}$	5.0 ± 0.4	0.37 ± 0.10	-0.50 ± 0.12
$\pi^{0} \pi^{0}$	1.45 ± 0.29	$0.28 \pm 0.4 \theta$	
$\pi^{+} \pi^{0}$	5.5 ± 0.6	0.01 ± 0.06	-

Isospin + bare minimum from Λ / m_{b} expansion

 small strong phase between two "tree" amplitudes$$
\operatorname{Im}\left(\frac{C}{T}\right) \sim \mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E_{\pi}}\right)
$$

$$
\gamma^{\pi \pi}=83.0_{-8.8^{\circ}}^{\circ} \pm 2^{\circ}
$$

compare

$$
\begin{aligned}
\gamma_{\text {global }}^{\text {CKMfitter }} & =58.6_{-5.9^{\circ}}^{+6.8^{\circ}} \\
\gamma_{\text {global }}^{\text {UTfit }} & =57.9^{\circ} \pm 7.4^{\circ}
\end{aligned}
$$

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11			
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

$$
\text { Expand in } \epsilon=\underbrace{\left|\frac{V_{u s}^{*} V_{u b}}{V_{c s}^{*} V_{c b}}\right| \frac{T}{P},\left|\frac{V_{u s}^{*} V_{u b}}{V_{s s}^{*} V_{c b}}\right| \frac{C}{P}, \frac{P_{e w}^{(t, c)}}{P}}_{0.02}
$$

Sum Rules

- Br sum rule:
$R\left(\pi^{0} K^{-}\right)-\frac{1}{2} R\left(\pi^{-} K^{+}\right)+R\left(\pi^{0} K^{0}\right)=\mathcal{O}\left(\epsilon^{2}\right)$
Lipkin, many authors
$0.094 \pm 0.073 \Rightarrow \mathcal{O}\left(\epsilon^{2}\right)=0.03 \pm 0.02$

$$
R(f)=\frac{\Gamma(B \rightarrow f)}{\Gamma\left(\bar{B}^{0} \rightarrow \pi^{-} \bar{K}^{0}\right)}
$$

estimate from
factorization in SCET

- Direct- -CP sum rule:

$$
\Delta\left(\bar{K}^{0} \pi^{0}\right)-\frac{1}{2} \Delta\left(K^{+} \pi^{-}\right)+\Delta\left(K^{+} \pi^{0}\right)-\frac{1}{2} \Delta\left(\bar{K}^{0} \pi^{-}\right)=\mathcal{O}\left(\epsilon^{2}\right)
$$

$0.07 \pm 0.08 \Rightarrow \mathcal{O}\left(\epsilon^{2}\right)=0 \pm 0.007$ estimate from

$$
\Delta(f)=\frac{A_{C P}(f) \Gamma_{\mathrm{avg}}^{\mathrm{CP}}(f)}{\Gamma_{\mathrm{avg}}^{\mathrm{CP}}\left(\pi^{-} \bar{K}^{0}\right)}
$$

no puzzle here yet
factorization in SCET

$$
\propto \epsilon^{2} \sin \left(\delta-\delta^{e w}\right)
$$

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	(4)	4
	$+5(6)$				
$B \rightarrow K \pi$	15	11		$+5(4)$	+0

Fix: $\quad\left(V_{u b}=4.2510^{-3}\right)$ and $\left\langle u^{-1}\right\rangle_{\pi} \equiv 3 \beta_{\pi}=3.2$ Include theory errors in fit

For $\gamma=83^{\circ}$ we find For $\gamma=59^{\circ}$ we find

$$
\begin{aligned}
\zeta^{B \pi} & =0.088 \pm 0.049 \\
\zeta_{J}^{B \pi} & =0.085 \pm 0.036 \\
10^{3} P_{\pi \pi} & =(5.5 \pm 1.5) e^{i(151 \pm 10)}
\end{aligned}
$$

$$
\begin{gathered}
\zeta^{8 \pi}=0.094 \pm 0.042 \\
\zeta_{J^{8 \pi}}=0.100 \pm 0.027 \\
10^{3} P_{\pi \pi}=(2.6 \pm 1.1) e^{(1.103 \pm 25)}
\end{gathered}
$$

Then Predict:
Find: $\quad \zeta^{B \pi} \sim \zeta_{J}^{B \pi}$

$$
\begin{gathered}
\operatorname{Br}\left(\pi^{0} \pi^{0}\right)=(1.4 \pm .6) 10^{-6} \quad \operatorname{Br}\left(\pi^{0} \pi^{0}\right)=(1.3 \pm .5) 10^{-6} \\
\operatorname{Br}\left(\pi^{0} \pi^{0}\right)^{\text {expt }}=1.45 \pm 0.29 \\
C\left(\pi^{0} \pi^{0}\right)=0.49 \pm 0.26 \quad C\left(\pi^{0} \pi^{0}\right)=0.61 \pm 0.27 \\
C\left(\pi^{0} \pi^{0}\right)^{\text {expt }}=-0.28 \pm 0.40
\end{gathered}
$$

- for $\zeta_{J}^{B \pi} \sim \zeta^{B \pi}$, a term $\frac{C_{1}}{N_{c}}\left\langle\bar{u}^{-1}\right\rangle_{\pi} \zeta_{J}^{B \pi}$ in the factorization theorem ruins color suppression and explains the rate
if $\zeta^{B \pi} \gg \zeta_{J}^{B \pi}$ this Br is sensitive to power corrections (small wilson coeffs. at LO could compete with larger ones at subleading order). ~ 0.3
- In the future: determine parameters using improved data on the $B \rightarrow \pi \ell \bar{\nu}$ form factor at low q^{2} to provide a check.

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11		$+5(6)$	4
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

no $\operatorname{SU}(3)$!

	$\operatorname{Br} \times 10^{6}$	$A_{\mathrm{CP}}=-C$	S
$\pi^{+} \pi^{-}$	5.0 ± 0.4	0.37 ± 0.10	-0.50 ± 0.12
$\pi^{0} \pi^{0}$	1.45 ± 0.29	0.28 ± 0.40	
$\pi^{+} \pi^{0}$	5.5 ± 0.6	0.01 ± 0.06	-
$\pi^{-} \bar{K}^{0}$	24.1 ± 1.3	-0.02 ± 0.04	-
$\pi^{0} K^{-}$	12.1 ± 0.8	0.04 ± 0.04	-
$\pi^{+} K^{-}$	18.9 ± 0.7	-0.115 ± 0.018	-
$\pi^{0} \bar{K}^{0}$	11.5 ± 1.0	-0.02 ± 0.13	0.31 ± 0.26
$K^{+} K^{-}$	0.06 ± 0.12		
$K^{0} \bar{K}^{0}$	0.96 ± 0.25		-
$\bar{K}^{0} K^{-}$	1.2 ± 0.3		

$\operatorname{SU}(3)$ preferred if $\gamma=83$
$10^{3} P_{\pi \pi}=(5.5 \pm 1.5) e^{i(151 \pm 10)}$
Include $\mathrm{Br}\left(\mathrm{K}^{+} \pi^{-}\right)$

penguin amplitude

The Branching ratios $\left(x 10^{-0}\right)$

The Branching ratios $\left(x 10^{-0}\right)$

The CP asymmetries

Counting parameters

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$		4	4
$B \rightarrow K \pi$	15	11		$+5(6)$	
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

Extension to isosinglets

$$
\pi \eta, \eta \eta, K \eta^{\prime}, \ldots
$$

Williamson \& Zupan

$$
+4
$$

(2 solutions)

Mode	Exp.	Theory I	Theory II
$B^{-} \rightarrow \pi^{-} \eta$	$4.3 \pm 0.5(S=1.3)$	$4.9 \pm 1.7 \pm 1.0 \pm 0.5$	$5.0 \pm 1.7 \pm 1.2 \pm 0.4$
	-0.11 ± 0.08	$0.05 \pm 0.19 \pm 0.21 \pm 0.05$	$0.37 \pm 0.19 \pm 0.21 \pm 0.05$
$B^{-} \rightarrow \pi^{-} \eta^{\prime}$	$2.53 \pm 0.79(S=1.5)$	$2.4 \pm 1.2 \pm 0.2 \pm 0.4$	$2.8 \pm 1.2 \pm 0.3 \pm 0.3$
	0.14 ± 0.15	$0.21 \pm 0.12 \pm 0.10 \pm 0.14$	$0.02 \pm 0.10 \pm 0.04 \pm 0.15$
$\bar{B}^{0} \rightarrow \pi^{0} \eta$	-	$0.88 \pm 0.54 \pm 0.06 \pm 0.42$	$0.68 \pm 0.46 \pm 0.03 \pm 0.41$
$\bar{B}^{0} \rightarrow \pi^{0} \eta^{\prime}$	-	$0.03 \pm 0.10 \pm 0.12 \pm 0.05$	$-0.07 \pm 0.16 \pm 0.04 \pm 0.90$
	-	$2.3 \pm 0.8 \pm 0.3 \pm 2.7$	$1.3 \pm 0.5 \pm 0.1 \pm 0.3$
$\bar{B}^{0} \rightarrow \eta \eta$	-	$-0.24 \pm 0.10 \pm 0.19 \pm 0.24$	-
	-	$0.69 \pm 0.38 \pm 0.13 \pm 0.58$	$1.0 \pm 0.4 \pm 0.3 \pm 1.4$
$\bar{B}^{0} \rightarrow \eta \eta^{\prime}$	-	$-0.09 \pm 0.24 \pm 0.21 \pm 0.04$	$0.48 \pm 0.22 \pm 0.20 \pm 0.13$
$\bar{B}^{0} \rightarrow \eta^{\prime} \eta^{\prime}$	-	$1.0 \pm 0.5 \pm 0.1 \pm 1.5$	$2.2 \pm 0.7 \pm 0.6 \pm 5.4$
	-	$0.70 \pm 0.13 \pm 0.20 \pm 0.04$	
$\bar{B}^{0} \rightarrow \bar{K}^{0} \eta^{\prime}$	-	$0.57 \pm 0.23 \pm 0.03 \pm 0.69$	$1.2 \pm 0.4 \pm 0.3 \pm 3.7$
$\bar{B}^{0} \rightarrow \bar{K}^{0} \eta$	-	-	$0.60 \pm 0.11 \pm 0.22 \pm 0.29$
	$03.2 \pm 4.9(S=1.5)$	$63.2 \pm 24.7 \pm 4.2 \pm 8.1$	$62.2 \pm 23.7 \pm 5.5 \pm 7.2$
$B^{-} \rightarrow K^{-} \eta^{\prime}$	-1.9	$0.011 \pm 0.006 \pm 0.012 \pm 0.002$	$-0.027 \pm 0.007 \pm 0.008 \pm 0.005$
	-	$2.4 \pm 4.4 \pm 0.2 \pm 0.3$	$2.3 \pm 4.4 \pm 0.2 \pm 0.5$
$B^{-} \rightarrow K^{-} \eta$	09.4 ± 2.7	$0.21 \pm 0.20 \pm 0.04 \pm 0.03$	$-0.18 \pm 0.22 \pm 0.06 \pm 0.04$
	0.031 ± 0.021	$69.5 \pm 27.0 \pm 4.3 \pm 7.7$	$69.3 \pm 26.0 \pm 7.1 \pm 6.3$

errors: su3, $1 / \mathrm{mb}$, fit

Counting parameters VP, VV modes

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
	$+5(6)$				
$B \rightarrow K \pi$	15	11		$+5(4)$	+0

SCET+SU(2) counting for:
$B \rightarrow \rho_{\|} \rho_{\|}$
$B \rightarrow K^{*} \pi \quad+5$ (6)
$B \rightarrow K \rho \quad+2$ (6)
$B \rightarrow K_{\|}^{*} \rho_{\|} \quad+2$ (6)
$B \rightarrow \rho \pi \quad+4$ (8)

Rough Analysis

$$
\text { Fix: } \quad\left(V_{u b}=4.2510^{-3}\right)
$$

For $\gamma=83^{\circ} I$ find

$$
\begin{gathered}
\zeta^{B P}+\zeta_{J^{B P}}=0.27 \pm 0.02 \\
\beta_{\rho} \zeta^{8 P}=0.09 \\
\left.10^{3} P_{\rho \rho}=(7.6) e^{i(-39}\right)
\end{gathered}
$$

For $\gamma=59^{\circ} \mathrm{I}$ find

$$
\zeta^{B \rho}+\zeta_{J}^{B \rho}=0.29 \pm 0.02
$$

$$
\beta_{\rho} \zeta_{J^{B P}}^{B P}=0.07
$$

$$
10^{3} p_{\rho \rho}=(2.9) e^{i\left(8^{0}\right)}
$$

Then Predict: $\quad \zeta^{B \rho} \gg \zeta_{J}^{B \rho}$? closer to BBNS counting

$$
\begin{array}{r}
\operatorname{Br}\left(\rho^{0} \rho^{0}\right)=(2.8) 10^{-6} \quad \operatorname{Br}\left(\rho^{0} \rho^{0}\right)=(1.9) 10^{-6} \\
\text { at isospin bound } \\
\operatorname{Br}\left(\rho^{0} \rho^{0}\right)^{\operatorname{expt}<(1.1) \times 10^{-6}}
\end{array}
$$

for $\left\langle u^{-1}\right\rangle_{\rho} / 3 \equiv \beta_{\rho} \simeq 0.8 \beta_{\pi} \quad$ ratio $\frac{\zeta_{J}^{B \rho}}{\zeta_{J}^{B \pi}}$ agrees with $\alpha_{s}(\sqrt{E \Lambda})$

Counting parameters VP, VV modes

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
	$+5(6)$				
$B \rightarrow K \pi$	15	11		$+5(4)$	+0

SCET+SU(2) counting for:
$B \rightarrow \rho_{\|} \rho_{\|}$
$B \rightarrow K^{*} \pi \quad+5$ (6)
$B \rightarrow K \rho \quad+2$ (6)
$B \rightarrow K_{\|}^{*} \rho_{\|}$
$B \rightarrow \rho \pi$

4
:
\# observables similar to
$K \pi$
can make predictions to test factorization or determine Y

Counting parameters VP, VV modes

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
	$+5(6)$				
$B \rightarrow K \pi$	15	11		$+5(4)$	+0

SCET+SU(2) counting for:
$B \rightarrow \rho_{\|} \rho_{\|} \quad 4$
$B \rightarrow K^{*} \pi \quad+5$ (6)
$B \rightarrow K \rho \quad+2$ (6)
$B \rightarrow K_{\|}^{*} \rho_{\|} \quad+2$ (6)
$B \rightarrow \rho \pi \quad+4$ (8)
can make
predictions to test factorization or determine γ

Three -body Decays with Factorization

(Results derived back of the envelope, while at this meeting)

Assume $\quad Q=m_{b} / 3 \gg \Lambda_{\mathrm{QCD}}$

$$
B \rightarrow M_{n}^{1} M_{n}^{2} M_{\bar{n}}^{3} \quad B \rightarrow M_{n}^{1} M_{\bar{n}}^{2} M_{s}^{3} \quad B \rightarrow M_{n}^{1} M_{\bar{n}}^{2} M_{n^{\prime}}^{3}
$$

$$
B \rightarrow M_{n}^{1} M_{n}^{2} M_{\bar{n}}^{3}
$$

- same operators as

$$
B \rightarrow M_{n}^{1} M_{\bar{n}}^{2}
$$

- different state

two-meson distn. function

Factorization:

$$
A=\zeta^{B M_{1} M_{2}} T \otimes \phi^{M_{3}}+\zeta^{B M_{3}} T \otimes \phi^{M_{1} M_{2}}+\left(\zeta_{J} \text { terms }\right)
$$

$B \rightarrow M_{n}^{1} M_{\bar{n}}^{2} M_{s}^{3}$

- same operators as

$$
B \rightarrow M_{n}^{1} M_{\bar{n}}^{2}
$$

- different state
strange quark must be collinear at LO!

Factorization:

$$
A=\zeta^{B M_{1} M_{3}} T \otimes \phi^{M_{2}}+\zeta^{B M_{2} M_{3}} T \otimes \phi^{M_{1}}+\left(\zeta_{J} \text { terms }\right)
$$

Thoughts

- factorization will provide additional strong phase information
- can use $\gamma^{*} \gamma \rightarrow M_{1} M_{2}$ for $\phi^{M_{1} M_{2}}$
- can use $B \rightarrow D M_{1} M_{2}$ for $\phi^{M_{1} M_{2}}$
- can use $B \rightarrow M_{1} M_{2} e \bar{\nu}$ for $\zeta^{B M_{1} M_{2}}$
- enhanced $\mathrm{SU}(3)$ predictions, eg. can use $\operatorname{SU}(3)$ on $\phi^{M_{1} M_{2}}$
- From theory point of view: simpler to predict amplitudes with cuts

The END

