THREE-BODY CHARMLESS B DECAYS WORKSHOP – LPNHE - PARIS 1-3 February 2005

Three-Body Charmless B Decays at LHC(b)

A. Robert & O. Deschamps LPC Clermont-Ferrand & LHCb collaboration

Flavour physics is an important topic of the LHC program.

B physics will be studied by three experiments, among them LHCb, which is dedicated to this topic with the most complete program.

Concerning the 3-body charmless B decays, several studies are aiming at the CKM metrology:

 $B^{\pm} \rightarrow \pi^{+} \pi^{-} \pi^{\pm}, B^{0} \rightarrow K \pi \pi \longrightarrow \gamma$ extraction

 $B^0 \rightarrow \pi^+ \pi^- \pi^0 \longrightarrow \alpha$ extraction

Talk mainly dedicated to the α extraction from the $B_d \rightarrow \pi^+\pi^-\pi^0$ decay channel in the LHCb experiment framework

3 experiments with a B physics program

⇔ Large Hadron Collider at CERN

Starting planed in mid-2007

L(2007) ~10³² cm⁻²s⁻¹ \rightarrow L(2010) ~10³⁴ cm⁻²s⁻¹ (ATLAS –CMS)

	pp→bbX (√s = 14 TeV, Δt _{bunch} =25 ns) LHC (LHCb–ATLAS/CMS)	
Production σ_{bb}	~500 µb	
Typical bb rate	100–1000 kHz	
bb purity	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue	8
Pileup	0.5–5	
b-hadron types	B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)	
Production vertex	Reconstructed from many tracks	
Neutral B mixing	Incoherent B^0 and B_s mixing (<i>extra flavour-tagging dilution</i>)	
Event structure	Many particles not associated with the two b hadrons	

 \rightarrow Dedicated detector to reconstruct a large variety of (rare)

B decay modes.

→ The challenge lies in reconstructing and extracting the B decay of interest within a high multiplicity tracks environment

L^{nom} ~2.10³² cm²s⁻¹

One $\mathbf{B}_{\mathbf{d}} \rightarrow \pi^+ \pi^- \pi^0$ decay every 2 seconds

Working hypothesis: $B_d^0 \rightarrow \rho \pi \rightarrow \pi \pi \pi$ is dominant

spin-1 + *pseudo-scalar meson*

In the corners of the Dalitz plot one the 3 pions remains at rest in the B rest frame

⇔ LHCb acceptance versus kinematics will have an impact on the signal original profile $\Leftrightarrow \rho$ channel interferences

$$A_{3\pi}(B^{0} \to 3\pi) = f^{+}A^{+-} + f^{-}A^{-+} + f^{0}A^{00}$$

$$\overline{A}_{3\pi}(\overline{B}^{0} \to 3\pi) = f^{+}\overline{A}^{+-} + f^{-}\overline{A}^{-+} + f^{0}\overline{A}^{00}$$

Form factors $f^{\dagger}=F^{i}.Y^{j0}(\cos(\theta^{*}))$

Explicit dependence of amplitudes in proper time through the B-B mixing:

$$M(s^{+},s^{-},t) = e^{-\frac{\pi}{2}} \left\{ \cos(\frac{\Delta m}{2}t) A_{3\pi}(s^{+},s^{-}) + i\frac{q}{p} \sin(\frac{\Delta m}{2}t) A_{3\pi}(s^{+},s^{-}) \right\}$$

B⁰ at t=0

Considering $|M|^2$ or $|M|^2 \Leftrightarrow$ sensitivity both to $sin(2\alpha)$ and $cos(2\alpha)$

Remove ambiguities between 0 and π

11 observables \Leftrightarrow 13 parameters but ...

 $A^{ij} = e^{-i\alpha}T^{ij} + P^{ij}$ $\left(\frac{q}{p}\right)\overline{A}^{ij} = e^{i\alpha}T^{ji} + P^{ji}$

- Flavor structure of local operators: $\Delta I=1/2, \Delta I=3/2$
- Assume $SU(2)_F$ symetry.
- Neglect E-W penguins in this study.

 $P^{ij} \Leftrightarrow \Delta I=1/2$

²(s)

$$P^{00} = -1/2(P^{+-} + P^{-+})$$

 $\vec{\alpha} = (\alpha, T^{-+}, \phi^{-+}, T^{00}, \phi^{00}, P^{-+}, \delta^{-+}, P^{+-}, \delta^{+-})$

Fit of 9 dynamical parameters

$$A_{3\pi} = \sum_{i,i+j=0} f^{i} A^{ij}$$

ρ lineshape model: Introduce a Kuhn Santamaria form

$$f^{i} \alpha (f^{i}_{\rho(770)} + C_{I} f^{i}_{\rho(1450)} + C_{II} f^{i}_{\rho(1700)}$$

P/T assumed to be invariant w-r-t radial excitations

⇔« toys » Monte-Carlo simulation of 10³ experiments, built from expected signal yield, simulating experimental originated models of dilutions (resolutions, acceptances, wrong tag...) and background contaminations (r)

Maximum likelihood fit ⇔

$$\frac{\partial \mathcal{L}}{\partial(\vec{\alpha},\vec{r})} = 0 \qquad \vec{\alpha} \oplus \vec{r} = N_{dyn} + N_{bkg} \text{ parameters}$$

The experimental inputs are estimated from fully simulated MC data

The data are not (yet) here

⇔ Use of Monte Carlo samples of fully simulated events (electronic noise ..., pattern recognition ...) to estimate analysis performances whitin a framework as realistic as possible

MC statistics used for this study:

•Signal ($B_d \rightarrow \pi^+\pi^-\pi^0$) events, $N_{3\pi} = 1.10^6$ events ~ 1 day of data taking.

•bb inclusive sample, $N_{bb} = 40.10^6$ events ~ 12 mn of data taking.

- •Specific background model samples. Charmless « cocktails » of B⁺ and B⁰, B \rightarrow K $\pi\pi$ decays.
- •100.10⁶ Minimum bias events pp \rightarrow X~ 5 seconds of data taking. (Trigger performance studies)

EXPERIMENTAL CHALLENGE NEUTRAL PIONS RECONSTRUCTION

 $p_{\rm T} (\pi^0) ~({\rm GeV}/c)$

•Selection efficiency

^E (det+rec)	ɛ _(sel)	ε _(trig)	ε _(tot)
0.04	0.035	0.43	6.10-4

•Expected annual yield

 $N_{3\pi} \sim 12.10^3$ events/2 fb⁻¹

•Signal distorsions – acceptance functions

•<u>Signal distorsions - resolutions</u> (dominated by Ecal energy resolution)

Flavour tagging and background within an hadronic framework

Tagging efficiencyWrong tag fraction

 $\varepsilon = 40 \pm 2\%$ $\omega = 31 \pm 2\%$

$$\blacktriangleright \varepsilon_{eff} = \varepsilon (1 - 2\omega)^2 = 6 \pm 2\%$$

⇔<u>Assumption: most dangerous</u> source of background originates from b decays

•B/S <u>estimation</u> \Leftrightarrow from pure bb inclusive sample B/S < 1.3 @ 90% CL

Most contaminating specific bkgsCombinatorial fragments from charmed B decays $B/S \sim 0.3$ $B_d \Rightarrow \rho^+ \rho^ B/S \sim 0.15$ $B_d \Rightarrow K^* \pi, K^* \gamma$ $B/S \sim 0.1$

Considering B/S = O(1) in the following studies is probably a not too wrong 'guesstimate'

Without real data background is hard to model

⇔ Introduce 3 generic classes of background:

Assumptions of the sensitivity study:

- Assume specific mixtures of the 3 classes of bkg $\{(res) (flat) (K\pi\pi)\}$
- Assume same proper time distribution than for $\mathbf{B}_{\mathbf{d}} \rightarrow \pi^+ \pi^- \pi^0$ events.
- Assume same acceptance functions, resolutions and tagging dilution than for $\mathbf{B}_{d} \nleftrightarrow \pi^{+}\pi^{-}\pi^{0}$ events.

•2 background classes: {0.5(res), 0.5(flat)}

PROSPECTIVE STUDY (2)

T00

0.14

-+

Assumed scenario: ∫*Ldt=2 fb*-1 B/S=1 Penguin strong phases $\sigma(\delta^{-+}) \sim (\frac{+20}{50})^{\circ}$ $\sigma(\delta^{+-}) \sim ({}^{+4}_{-25})^{\circ}$ Tree strong phases $\sigma(\Phi^{-+}) \sim \left(\begin{array}{c} +6 \\ -10 \end{array} \right)^{\circ}$ $\sigma(\Phi^{00}) \sim \left(\begin{array}{c} +26\\ -17 \end{array}\right)^{\circ}$ **R**^{ij}=|**P**^{ij}/**T**^{ij}| ratios $\sigma_{R^{-+}}/R^{-+} \sim (\frac{+50}{-30})\%$ $\sigma_{D^{+-}}/R^{+-} \sim (\frac{+70}{-10})\%$

Highly asymmetric distributions
With 2 fb⁻¹, poor sensitivity to R

Difficult to see sizeable NP effects through R determination after 1 year

T-+

0.47

Ф-+

0.00

Imaginary part

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0.5

-0.4

Real part

Preliminary study of the impact of an imperfect knowledge of experimental or phenomelogical ingredients in likelihood function definition

Include γ 5° uncertainties in K $\pi\pi$ model	$\Delta \alpha \sim 4^{\circ}$
Non-uniform wrong-tag - averaged in fit	$\Delta \alpha \sim 1^{\circ}$
L not accounting for proper time acceptance in fit	$\Delta \alpha \sim 0^{\circ}$
L not accounting for Dalitz acceptance in fit	$\Delta \alpha \sim 5^{\circ}$
L not accounting for ρ/ω mixing in signal	$\Delta \alpha \sim 0^{\circ}$
L not accounting for ρ' and ρ'' contribution in signal	$\Delta lpha \sim 7^{\circ}$
L not accounting for ρ^3 contribution in signal (κ =0.2)	$\Delta \alpha \sim 12^{\circ}$

A poor description of ρ lineshape and/or the phase space acceptance leads to large bias on the α measurement

⇔ Strategy to obtain an accurate knowledge is under development

CONCLUSION

- The $B_d \rightarrow \pi^+\pi^-\pi^0$ time dependent Dalitz plot analysis is ambitious.
- With 2 fb⁻¹ LHCb may achieve σ^{stat}≤ 10°, assuming an accurate control of the ρ lineshapes and the experimental distorsions. *This expected value is competitive with the current results of the B factories*.
- •Such a control is not trivial and strategies have to be developped to extract the relevant parameters in real data.

WAITING FOR DATA TAKING IN 2007 ...

Will be ready at day 1 !

SPARE SLIDE(S)

Two kind of topologies can contribute at the $\rho\pi$ level :

i^jmes

3.5

3 2.5 2

1.5

0.5

0

3

Whithin SM framework $q/p=e^{-2i\beta}$ (BB mixing)cancel exactly the $b \rightarrow d$ penguin contribution

 $\frac{1-\sqrt{1-a_i^2} \cdot \cos(2\alpha_{eff}^i - 2\alpha)}{-\sqrt{1-a_i^2} \cdot \cos(2\alpha_{eff}^i - 2\theta_{NP})}$

9

8

10

3σ

$$A^{ij} = e^{-i\alpha}T^{ij} + P^{ij}$$

NP can modify this picture (loops...):

5

6

7

4

$$A^{ij} = e^{-i\alpha}T^{ij} + e^{-i\theta_{NP}}P^{ij}$$

London and Page Phys. Rev. D (2004) 017501

Fit versus observables:

$$\underline{a_{i}} = \frac{\left|A^{ij}\right|^{2} - \left|\overline{A}^{ij}\right|^{2}}{\left|A^{ij}\right|^{2} + \left|\overline{A}^{ij}\right|^{2}}$$
$$\underline{2\alpha}_{eff}^{i} = Arg(\overline{A}^{ij}A^{ij*})$$

 $\Leftrightarrow \text{Assume } \mathbb{R}^{ij \text{ theo}}_{MS} \sim 10 \% \pm 10\%$ Check compatibility with $\theta_{NP} \neq 0$ $\Leftrightarrow \text{ with 5 years of data taking } \mathbb{R}^{ij}_{mes} \sim 55\% \text{ signs NP at } 3\sigma$ *Nominal years*