<u>A Dalitz Analysis of D⁺ I K⁻ $\pi^+\pi^+$ Decays</u>

Milind V. Purohit Univ. of South Carolina [For the E791 collaboration and in lieu of Brian Meadows.]

Introduction

- The story begins ca. 1987 when Mark III published an analysis of D⁺ ! K⁻π⁺π⁺ decays.
- In 1993, E691 confirmed the main features: a strong non-resonant amplitude and a poor fit.
- Also, around 1987, LASS published K⁻π⁺ scattering results.
- Around 1996, Bill Dunwoodie suggested that E791 should do a detailed study of D⁺ ! K⁻π⁺π⁺ decays to obtain the scattering amplitude in a modelindependent way and compare to LASS results.

Introduction, contd.

 In the meanwhile, E791 found evidence for a σ in D⁺ ! π $\pi^+\pi^+$ decays and a κ in D⁺ ! K⁻ $\pi^+\pi^+$ decays. Brian Meadows has now successfully completed an E791 analysis initiated by Bill Dunwoodie's suggestion. The paper has been accepted for publication by Phys. Rev. D.

E791 D⁺ I π⁻π⁺π⁺

non resonant	$38.6 \pm 1.4\%$	$150\pm12^{\circ}$
$ ho(770)\pi^+$	$20.8 {\pm} 2.3 \%$	0° (fixed)
$f_{\circ}(980)\pi^+$	$7.4 {\pm} 4.3\%$	$152 \pm 16^{\circ}$
$f_2(1270)\pi^+$	$6.3 \pm 3.3\%$	$103 \pm 16^{\circ}$
$f_\circ(1370)\pi^+$	$10.7\!\pm7.7\%$	$143 \pm 10^{\circ}$
$ ho(1450)\pi^+$	$22.6 {\pm} \mathbf{2.1\%}$	$46\pm15^{\circ}$

- Non resonant decay is dominant.
- $\rho(1450)$ and $\rho(770)$ next and equally strong.
- Bad fit quality in low mass $\pi^+\pi^-$ region.

E791 D⁺ I π⁻π⁺π⁺

 $7.8 \pm 6.0 \pm 2.7\%$ $57 \pm 20 \pm 6^{\circ}$ non resonant $ho(770)\pi^+$ $33.6 \pm 3.2 \pm 2.2\%$ 0° (fixed) $f_{a}(980)\pi^{+}$ $6.2 \pm 1.3 \pm 0.4\%$ $165 \pm 11 \pm 3^{\circ}$ $f_2(1270)\pi^+$ $19.4 \pm 2.5 \pm 0.4\%$ $57 \pm 8 \pm 3^{\circ}$ $f_{c}(1370)\pi^{+}$ $2.3 \pm 1.5 \pm 0.8\%$ $105 \pm 18 \pm 1^{\circ}$ $\rho(1450)\pi^+$ $0.7 \pm 0.7 \pm 0.3\%$ $319 \pm 39 \pm 11^{\circ}$ $46.3 \pm 9.0 \pm 2.1\%$ $206 \pm 8 \pm 5^{\circ}$ $\sigma \pi^+$

- Model with $\sigma\pi$ has good fit quality.
- $\sigma\pi$ mode dominates the decay but NR is small.
- $\rho(1450)\pi$ amplitude becomes negligible.

$$m_{\sigma} = (478^{+24}_{-23} \pm 17) \,\, {
m MeV/c^2}$$
 $\Gamma_{\sigma} = (324^{+42}_{-40} \pm 21) \,\, {
m MeV/c^2}$

E791 D+ I K⁻π⁺π⁺

Outline

- The E791 D⁺ ! $K^-\pi^+\pi^+$ Dalitz Analysis:
 - Model-Independent Partial Wave Analysis¹
 - Comparison with $K^-\pi^+$ scattering results
 - Some comments on related issues
 - Summary

¹See ArXiv:hep-ex/0507099 – E791 collaboration & W.M. Dunwoodie - accepted by Phys. Rev. D.

"Traditional" Dalitz Plot Analyses

 The "isobar model", with Breit-Wigner resonant terms, has been widely used in studying 3-body decays of heavy quark mesons.

E791 D⁺ I K⁻π⁺π⁺

non resonant	$90.0 \pm 2.6\%$ 0	(fixed)
$K^*(890)\pi^+$	$13.8\!\pm\!0.5\%$	$54\pm2^{\circ}$
$K^*_{\circ}(1430)\pi^+$	$30.6 \pm 1.6\%$	$109\pm2^{\circ}$
$K_{2}^{*}(1430)\pi^{+}$	$0.4 \pm 0.1\%$	33±8 °
$K_1^*(1680)\pi^+$	$3.2 \pm 0.3\%$	66±3°
Total	~138 %	

Flat "NR" term does not give good description of data.

M. V. Purohit, Univ. of S. Carolina

 D_s^+

к Model for S-wave

Some Comments

- Should the S-wave phase be constrained to that observed in K⁻π⁺ scattering (Watson theorem)?
- Are models of hadron scattering other than a sum of Breit-Wigner terms a better way to treat the S-wave¹
- We decided to measure the S-wave phase (and magnitude) rather than use any model for it.

¹S. Gardner, U. Meissner, Phys. Rev. D65, 094004 (2002), J. Oller, Phys. Rev. D71, 054030 (2005)

Less Model-Dependent Parameterization of Dalitz Plot

Prominent feature:

– K^{*}(892) bands dominate

Asymmetry in K^{*}(892) bands
Interference with large s-wave component

Also:

0

- Structure at » 1430 MeV/c² mostly K_0^* (1430)
- Some $K_2^*(1420)$? or $K_1^*(1410)$??
- Perhaps some K₁*(1680)?

So

At least the K^{*}(892) can act as interferometer for S–wave Other resonances can fill in gaps too.

Model-Independent Partial-Wave Analysis

 \mathbf{a}

 Make partial-wave expansion of decay amplitude in angular momentum L of produced K⁻π⁺ system

$$\mathcal{A}_{ij} = \sum_{L=0}^{2} C_L(s_{K\pi}) \times F_L^D(q, r_D) \times (-2pq)^L P_L(\cos \theta)$$

$$D \text{ form } \text{ spin factor } factor } factor$$

C_L(s_{Kπ}) describes scattering of produced K⁻π⁺.
 – Related to amplitudes T_L(s_{Kπ}) measured by LASS

Model-Independent Partial-Wave Analysis

• Define S-wave amplitude at discrete points $s_{K\pi} = s_i$. Interpolate elsewhere.

$$S(s_j) \;\; \equiv \;\; C_0(s_j) = c_j e^{i \gamma_j}$$

 \rightarrow model-independent - two parameters (c_i, γ_i) per point

P- and D-waves are defined by known K^{*} resonances

 $P(s_{K\pi}) \equiv C_1(s_{K\pi})$ = $F_1^R(p, r_R) \left[BW_{890}(s_{K\pi}) + d_{1680}e^{i\delta_{1680}} BW_{1680}(s_{K\pi}) \right]$ $D(s_{K\pi}) \equiv C_2(s_{K\pi})$ = $d_{1430}e^{i\delta_{1430}}F_2^R(p, r_R) BW_{1430}(s_{K\pi})$ and act as analyzers for the S-wave.

Model-Independent Partial-Wave Analysis

- Phases are relative to K*(890) resonance.
- Un-binned maximum likelihood fit:
 - Use 40 (c_i , γ_i) points for S
 - Float complex coefficients of K^{*}(1680) and K₂^{*}(1430) resonances
 - 4 parameters (d₁₆₈₀, δ_{1680}) and (d₁₄₃₀, δ_{1430})
 - $! 40 \times 2 + 4 = 84$ free parameters.

Does this Work? Fit the E791 data:

- P and D fixed from isobar model fit with κ
 – Find S(s_j)
- S and D fixed from isobar model fit with κ
 Find P(s_i)

 S and P fixed from isobar model fit with κ
 – Find D(s_i)

 \rightarrow The method works.

M. V. Purohit, Univ. of S. Carolina

S

Fit E791 Data for S-wave

- Find S. Allow P and D parameters to float
 - General appearance of all three waves very similar to isobar model fit.
 - Contribution of P-wave in region between K*(892) and K*(1680) differs slightly – balanced by shift in low mass S-wave.

Magnitude

Phase

Comparison with Data – Mass Distributions

 χ^2 /NDF = 272/277 (48%)

Main Systematic Uncertainty

 Even with 15K events, fluctuations in P- and Dwave contributions reflect into S-wave solution.

> Many 15K samples simulated using the isobar model fit from E. Aitala, et al, PRL 89, 12801 (2002) *(first few shown here)*

 Solutions similar to those observed in data are common.

S-wave Amplitudes: Phase Magnitude

Another Solution?

- Qualitatively good agreement with data
- BUT does not give acceptable χ².
- This solution also violates the Wigner causality condition.

E. P. Wigner, Phys. Rev. 98, 145 (1955)

Magnitude

Comparison with K⁻π⁺ Scattering (LASS)

system

• S ($s_{K\pi}$) is related to $K^-\pi^+$ scattering amplitude T ($s_{K\pi}$) : Production factor for $K\pi$ Measured by

$$S(s_{K\pi})F_D^0 = \frac{\sqrt{s_{K\pi}}}{p} \times \Theta_0(s_{K\pi}) \times T(s_{K\pi})$$

 $T(s_{K\pi}) = e^{i[\gamma(s_{K\pi}) - \gamma_0]} \sin[\gamma(s_{K\pi}) - \gamma_0]$

 In elastic scattering K⁻π⁺ ! K⁻π⁺ the amplitude is unitary K.M. Watson, Phys. Rev. 88, 1163 (1952)

Watson Theorem - a direct test

- Phases for S-, P- and D-waves are compared with measurements from LASS.
 - S-wave phase ϕ_s for E791 is shifted by –75° wrt LASS.
 - $\Box \phi_s$ energy dependence differs below 1100 MeV/c².
 - P-wave phase does not match well above K^{*}(892)
 - Lower arrow is at Kππ threshold
 - Upper arrow at effective limit of elastic scattering observed by LASS.

Watson Theorem Enforced for S-wave 200 (a)

S

Ρ

- A good fit can also be made by constraining the shape of the Swave phase to agree with that from $K^-\pi^+$ scattering.
- However:
 - S-wave phase ϕ_s for E791 still shifted by –75° wrt LASS.
 - $-\phi_{\rm P}$ match is even worse above K*(892)
 - $-\phi_{\rm D}$ phase also shifts.

$\pi^+\pi^+$ (I=2) vs. $K\pi^+$ S-wave?

- Add *I=2* amplitude, *A₂* to best isobar model fit. An enhancement is known at high mass. (Fit includes a κ isobar):
 - Interpolate phases, δ₂(s), from Hoogland, *et al.*, Nucl. Phys. B126:109,1977
 - Assume amplitude is elastic [$A_2 = a_2 e^{i\alpha_2} \sin \delta_2(s) e^{i\delta_2(s)}$]
 - Fit for complex coefficient $a_2 e^{i\alpha_2} \rightarrow$ Excellent fit

Channel	Fraction	Amplitude	Phase
	%		(degrees
NR	27.4 ± 8.6	1.58 ± 0.3	-1.1 ± 7.5
$\kappa \pi^+$	32.2 ± 12.7	1.53 ± 0.3	174.6 ± 11.8
$K_0^*(1430)\pi^+$	13.7 ± 1.7	0.58 ± 0.1	50.2 ± 6.4
$K^*(890)\pi^+$	12.2 ± 1.3	1.00 (fixed)	0.0 (fixed)
$K_1^*(1688)\pi^+$	2.7 ± 0.6	2.36 ± 0.4	26.8 ± 8.3
$K_2^{*}(1420)\pi^+$	0.5 ± 0.2	5.79 ± 0.8	-47.4 ± 9.8
I = 2:		$a_2 =$	$\alpha_2 =$
	0.7 ± 0.7	2.14 ± 0.61	120.2 ± 27.7

- S-wave K⁻π⁺ dominates over I=2
- K⁻π⁺ amplitudes and "isobar"
 parameters virtually unchanged
- M. V. Purohit, Univ. of S. Carolina

<u>Summary</u>

- A new technique for analyzing the amplitude describing a Dalitz plot distribution is used in D⁺ decays to $K^-\pi^+\pi^+$.
- Could provide model-independent measurements of the complex amplitude of the K⁻π⁺ S-wave system, provided a good model for the P- and D-waves is used.
- New measurements for invariant masses below 825 MeV/c², down to threshold, are presented.
- No new information on $\kappa(800)$ from sample this size
- The Watson theorem does not work well with D⁺! K⁻ $\pi^+\pi^+$ decays (or there is an I=3/2 admixture).
- I=2 component not needed by fit.
- Better parameterization of P-wave is needed: perhaps the Bfactories can do a model-independent measurement of S, P and D waves using their high-statistics data.

Extra Slides

More on the Watson theorem

- Naïve hypothesis is that our Kπ amplitude is the same as that in Kπ scattering. This is supposed to work in the elastic scattering regime.
- However, we are limited by
 - Quantum number conservation (I/O)
 - Production mechanism of $K\pi$ could play a role
 - Environments are different:
 - D decays have an extra meson
 - Scattering has a nucleon

- Watson states in his paper that the theorem only applies for low mass

Also, we don't want a spectator, but there is a symmetrization requirement! How do we factorize the amplitude:

$$A(p_K, p_{\pi_1}, p_{\pi_2}) = \frac{\overline{A}(p_K, p_{\pi_1}, p_{\pi_2}) + \overline{A}(p_K, p_{\pi_2}, p_{\pi_1})}{\sqrt{2}}$$

The K-matrix approach

- Most recently championed by FOCUS
- Gives as good result as isobar fit with κ (CL = 7.7% vs. 7.5% for isobar fit. Without a κ, CL = 10⁻⁶. See Edera's talk, Daphne '04).
- Respects unitarity in Kπ scattering, but is this also true in D decays?
- Further, the K-matrix also requires an ad-hoc parameterization of the non-resonant amplitude.
- Does this mean that the conclusion from the Kmatrix work (no broad new scalars are required) is correct?

Kπ Scattering

 Most information on K⁻π⁺ scattering comes from the LASS experiment (*SLAC*, E135)
 No data from E135 below 825 MeV/c²

Kπ Scattering

NP B41, 1-34 (1972)

 Relatively poor data is available below 825 MeV/c².

P. Estabrooks, et al., NP B133, 490 (1978)

<u>Kπ Scattering in Heavy Quark Decays</u>

- Precise knowledge of the S-wave Kπ system, particularly in the low mass region, is of vital interest to an understanding of the spectroscopy of scalar mesons.
- It may be possible to learn more from the large amounts of data on D and B decays now becoming available.
- The applicability of the Watson theorem can also be tested.
- E791 is first to use, in this report, a Model-Independent Partial Wave Analysis of the S-wave in these decays to investigate these issues.

Asymmetry in K*(892)

 Helicity angle θ in K⁻π⁺ system

$$\begin{array}{c} \mathbf{q} \longrightarrow \\ \mathbf{p} & \mathbf{\eta} \longrightarrow \\ \mathbf{q} \longrightarrow \\ \mathbf{\eta}^{+} & \mathbf{r}^{+} \\ \pi^{+} & \mathbf{r}^{+} \\ \mathbf{r}^{+} \mathbf{r}^{$$

Asymmetry:

$$\alpha = \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$
$$= 0 \quad \text{when } \phi_P - \phi_S = 90^{\circ}$$

LASS finds $\alpha=0$ when ϕ_{BW} » 135[±] ! $\phi_P - \phi_s$ is -75⁰ relative to elastic scattering

Mean values of Y⁰_L(cos θ)
Exclude K* (890) in K⁻π²₂+

Production of $K^-\pi^+$ Systems

• Production factor Θ_0 ($s_{K\pi}$) is $|\Theta_0(s_{K\pi})| = \frac{p}{\sqrt{s_{K\pi}}} \frac{|S(s_{K\pi})F_D^0|}{\sin[\gamma(s_{K\pi}) - \gamma_0]}$

• Value for γ_0 found by minimizing

$$\chi^2 \hspace{0.2cm} = \hspace{0.2cm} \sum_{j=1}^{N_{elastic}} \left(rac{|\Theta_0(s_j)|-Q}{\sigma(\Theta_0)}
ight)^2$$

Production of $K^-\pi^+$ Systems

Plot quantities $\Theta(s_j)$, evaluated at each s_j value, using measured γ_j there.

• Roughly constant up to about 1.250 GeV/c²

Constant = 0.74§ 0.01 (GeV/c²)².

