Dalitz Plot Analysis of 3-body charm decays.

Antimo Palano

INFN and University of Bari

Bari, October 27, 2005.

\square Summary.

- Introduction;
- The BaBar Experiment;
- Dalitz plot Analysis of $D^0 \to \bar{K}^0 K^+ K^-$;
 - Data selection;
 - Branching Fraction.
 - Partial Wave Analysis.
 - Dalitz Plot Analysis.
 - CP Asymmetries.
- Conclusions.

Introduction.

- □ In the last few years Dalitz plot analysis of charm decays has received new interest mostly because:
 - a) Study of the properties of the scalar mesons;
 - b) Mesurement of γ in $B \to D^0 K$ through Dalitz plot analysis;
 - c) Search for CP violation in interferences and phases in charm decays.
- \Box Understanding the properties of the scalar mesons is an essential item for the study CP violation in penguin decays such as $B \to 3h$.
- □ In BaBar some B and charm physics are moving in parallel. High statistics samples from charm decays are used to fix the model to be used in B decays.

The structure of the scalar mesons.

Too many scalar mesons below 2. GeV.

	I = 1/2	I = 1	I = 0
	k(800)		σ
		$a_0(980)$	$f_0(980)$
□ Two nonets? 4-quark states? Gluonium?			$f_0(1370)$
□ Where is the scalar glueball?	$K_0^*(1430)$	$a_0(1490)$	$f_0(1500)$
□ Many proposals.	0 (/		$f_0(1700)$
Narrow: $f_0(1500)$, $f_0(1700)$.			$J_0(1700)$
Wide: σ .	$K_0^*(1950)$		

- \square Information on some of these states, such as the existence of k(800) and σ can be extracted from existing data from charm decays.
- □ Unlikely to produce gluonium in charm decays.

$\pi\pi$ amplitude and phase.

 \Box The $\pi\pi$ amplitude and phase has been measured in:

$$\pi^- p \to \pi^+ \pi^- n$$

- □ Watson theorem: phase shift is independent from the production mechanism up to the first inelastic threshold.
- \square Phase motions in B and charm decays should be the same as in hadronic interactions.
- \square No reason for the amplitude to be the same.

Dalitz plot analysis.

- □ Charmed mesons decay to light hadrons, therefore a fundamental laboratory for studying light meson spectroscopy, especially for spin 0 and spin 1 mesons.
- ☐ The method assumes an isobar model: the dacay proceedes through a flat Non Resonant contribution + intermediate resonance production:

□ In some cases some of the decay channels can be switched off by physics.

$$D^0 \to K^0 K^- \pi^+$$
.

 \square In some cases a rather simple structure. $D^0 \to K^0 K^- \pi^+$ (Cabibbo Suppressed) (BaBar):

 \square Resonances only along the $K^0\pi^+$ axis.

$$D^0 \to \bar{K}^0 \pi^+ \pi^-$$
.

 \square Very complex structure in $D^0 \to \bar{K}^0 \pi^+ \pi^-$: up to 13 resonances.(BaBar)

The evidence for $\sigma(500)$.

 \square Experiment E791 at Fermilab has studied ≈ 1200 events from:

$$D^+ \to \pi^- \pi^+ \pi^+$$

The evidence for $\sigma(500)$.

□ In order to obtain a good fit of the Dalitz plot they need to introduce a new wide scalar resonance:

$$m = 478 \pm 24 \pm 17$$
 MeV

$$\Gamma = 324 \pm 41 \pm 21$$
 MeV

The evidence for $\kappa(800)$.

 \Box The $K\pi$ S-wave amplitude and phase has been studied by LASS experiment in the reaction:

$$K^-p \to K^-\pi^+ n$$

 \square No need to introduce k(800).

The evidence for $\kappa(800)$ from E791.

 \square Experiment E791 at Fermilab has studied ≈ 15000 events from:

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

□ Mass spectrum and Dalitz plot.

The evidence for $\kappa(800)$ from E791.

- □ In order to fit the Dalitz plot a large Non Resonant contribution is needed.
- □ Or, better, a new low mass scalar resonance.

$$m = 797 \pm 19 \pm 42$$
 MeV , $\Gamma = 410 \pm 43 \pm 85$ MeV

A new approach: Amplitude analysis.

 \square A new method has been developed by E791 in the study of:

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

- \square In this case only one channel is open $(K^-\pi^+)$ but combinatorial problem.
- □ The scalar contribution is left free in the Dalitz plot analysis in terms of a complex number:

$$c_{m(K\pi)}e^{i\phi_{m(K\pi)}}$$

 \Box The fit measures amplitude and phase as a function of the $K\pi$ mass.

Results.

□ Comparison with LASS experiment: direct proof of the Watson theorem.

Resonances parametrization.

□ Key point: two relatively broad overlapping resonances:

□ The simple addition of two Breit Wigners violates unitarity.

The K-matrix formalism.

☐ Transition Matrix written as:

$$T = (I - iK\rho)^{-1}K$$

$$K_{ij} = \sum_{\alpha} \frac{\gamma_{i\alpha} \gamma_{j\alpha} m_{\alpha} \Gamma_{\alpha}}{m_{\alpha}^2 - m^2} + c_{ij} m^2$$

where the index ij extends to the different decay channels and the sum is over all the K matrix poles.

- □ Problem: not possible to separate the different resonant contributions.
- □ Poles and couplings taken from past experiments in a global fit.
- \square Some of the measurements (such as for $f_0(980)$) not very accurate.

K-matrix fits to charm decays.

 \square FOCUS: Analysis of $D^+ \to \pi^+ \pi^+ \pi^-$.

 \square No need for a σ .

K-matrix fit of $D^0 \to \bar{K}^0 \pi^+ \pi^-$

- \square With standard Breit-Wigners: need to include new scalar mesons (including σ) and large Double Cabibbo Suppressed contributions.
- □ Dalitz analysis using a K-matrix description of the S-wave: (BaBar, 82 K events)

 \square Good fit.

Charm physics at B-factories.

- □ The power of B-factories in charm physics is based on:
 - Relatively small combinatorial in e^+e^- interactions.
 - Good tracking and vertexing.
 - Good Particle Identification.
 - Detection of all possible final states, with charged tracks and γ 's.
 - Very high statistics.

The BaBar Experiment.

- □ Start data taking: end 1999.
- \square Present luminosity: 300 fb^{-1}

 \Box The experiment will continue taking data up to the end of 2008 collecting 1000 fb^{-1} .

Separation from continuum.

 \square At B-factories, the $\Upsilon(4S)$ resonance sits on a consistent continuum background.

Charm decays.

 \square Cross sections for different processes, at the $\Upsilon(4S)$:

□ Inclusive Charm Physics is performed on		
events selected from continuum $e^+e^- \to \bar{c}c$		
□ Very high statistics samples of		
charmed mesons actually available.		

$e^+e^- \rightarrow$	σ (nb)
$b\overline{b}$	1.05
$c \overline{c}$	1.30
$sar{s}$	0.35
u ar u	1.39
$dar{d}$	0.35
$\tau^+ \tau^-$	0.94
$\mu^+\mu^-$	1.16
e^+e^-	≈ 40

Study of D_s^+ in BaBar.

 \square Example from BaBar: mass distribution and p^* momentum spectrum for $D_s^+ \to \phi \pi^+$.

Filled/open points: normalized on/off peak data.

- \square By using inclusive continuum events combinatorial background is strongly reduced.
- \square Kinematical selection: the center of mass momentum $(p^*) > 2.5 \text{ GeV/c}$.

Comparison with other experiments.

- □ Huge amount of charm produced.
- □ Much more that any other dedicated (and expensive) charm experiments.
- \square Example of tagged $D^0 \to K^-\pi^+$ decays:

 $E791:35K, \qquad FOCUS:120K, \qquad BaBar:500K$

 \square Information on scalar mesons can be extracted from selected D or D_s decay

channels where physics can be particularly simple.

 \square D mesons are coupled to $u\bar{u} + d\bar{d}$, D_s mesons are coupled to $\bar{s}s$.

Dalitz plot Analysis of $D^0 \to \bar{K}^0 K^+ K^-$.

Antimo Palano

Summary:

- \square Physics Motivations.
- \square Data sample.
- $\square D^0 \to \bar{K}^0 \pi^+ \pi^-$ and $D^0 \to \bar{K}^0 K^+ K^-$ selection.
- □ Branching Fraction.
- □ Partial Wave Analysis.
- □ Dalitz Plot Analysis.
- \square CP Asymmetries.
- \square Conclusions.

Phys. Rev. D 72 (2005) 052008, 29 September 2005.

Physics Motivations.

- □ The Dalitz Plot analysis is the most powerful method for understanding three body decays of resonances.
- □ Previuos branching fractions of charmed mesons have been evaluated with poor statistics.
- \square In this work we measure the ratio of branching fractions:

$$BF = \frac{D^0 \to \bar{K}^0 K^+ K^-}{D^0 \to \bar{K}^0 \pi^+ \pi^-}$$

□ New information can be extracted on the properties of light mesons.

Charge conjugation is implied through all this work.

The Data sample.

 \square We are studying the following final state:

$$D^0 \to K_s^0 h^+ h^- + c.c.$$

 \square Tagged with D^* . For example:

$$D^{*+} \rightarrow D^0 \pi^+$$

 $\rightarrow \bar{K}^0 \pi^+ \pi^-$

$$D^{*-} \rightarrow \bar{D}^0 \pi^-$$

 $\rightarrow K^0 \pi^+ \pi^-$

- \square The charge of the slow pion gives the flavor of the K^0 .
- \square Events having more than one D^* candidate are removed.
- \Box Data: $(92.5 \ fb^{-1})$.

Data Selection.

- Fit all pairs of neutral charged tracks combinations to a K_s^0 with mass constraint;
- Combine the fitted K_s^0 with all pairs of neutral pairs of charged tracks combinations requiring a common vertex.
- The fitted D^0 candidate is refitted to a common vertex with all charged tracks with momentum < 600 MeV/c with beam spot contraint.
- The center of mass momentum p^* of the $K_s^0 h^+ h^-$ system is required to be:

$$p^* > 2.2$$
 GeV/c

- No Particle Identification for $\bar{K}^0\pi^+\pi^-$.
- One of the two kaon candidates loosely identified for $\bar{K}^0K^+K^-$;

Slow pion refit.

- □ Refitting of the slow pion. The momentum of the slow pion is usually below 500 MeV/c: badly measured.
- \square Cartoon of one event:

□ Using the event vertex in the fit of the slow pion momentum improves the resolution.

Δm selection:

\square Plot of Δm :

$$\Delta m = m(K_s^0 h^+ h^- \pi^+) - m(K_s^0 h^+ h^-)$$

for:

$$\bar{K}^0\pi^+\pi^-$$
 and $\bar{K}^0K^+K^-$

$$ar{K}^0K^+K^-$$

 \square Selecting events within 2σ in Δm ($\sigma=300~{\rm KeV}/c^2$) we obtain the following $K_s^0 h^+ h^-$ mass spectra:

\square Results. Integrating within 6σ :

D^0 decay mode	$mass (MeV/c^2)$	$\sigma~({\rm MeV}/c^2)$	events
$\bar{K}^0\pi^+\pi^-$	1863.7 ± 0.06	6.10 ± 0.02	92935 ± 305
$ar{K}^0K^+K^-$	1864.7 ± 0.4	3.37 ± 0.09	13536 ± 116

Efficiency.

□ The branching fraction has been evaluated as:

$$BR = \frac{\sum_{x,y} \frac{N_1(x,y)}{\epsilon_1(x,y)}}{\sum_{x,y} \frac{N_0(x,y)}{\epsilon_0(x,y)}},$$

where $N_i(x, y)$ represents the number of events measured for channel i, and $\epsilon_i(x, y)$ is the corresponding efficiency in a given Dalitz plot cell (x, y).

- \square The efficiency has been evaluated on the Dalitz plot of the $K^0h^+h^-$ system.
- $\square\approx 125\times 10^3$ Phase Space Signal Monte Carlo events for each channel have been generated and reconstructed.
- \Box The Dalitz plot efficiency has been smoothed fitting a 3^{rd} order polynomial.

$$\eta(x,y) = a_0(1 + a_1x + a_2y + a_3x^2 + a_4y^2 + a_5xy + a_6x^3 + a_7y^3 + a_8xy^2 + a_9x^2y)$$

Fitted polynomials.

\square Efficiency:

D^0 decay mode	Weighted Efficiency $\%$
$\bar{K}^0\pi^+\pi^-$	17.94 ± 0.25
$\overline{ar{K}^0K^+K^-}$	16.56 ± 0.38

Systematic errors.

□ Summary of systematic errors:

Effect	Systematic error $(\times 10^{-2})$
Yields	0.13
Δm cut	0.12
Efficiency correction	0.42
PID	0.13
K_s^0 momentum	0.09
Total	0.48

 $[\]square$ Branching fractions have also been computed in different p^* regions and separately for D^0 and \bar{D}^0 .

Example. Systematic error due to PID

- □ Evaluation of the Branching fraction without and with the use of PID.
- \square Shaded: $D^0 \to \bar{K}^0 K^+ K^-$ events removed by the PID request (one of the two charged tracks loosely identified as a kaon).

Branching Fraction.

□ Resulting Branching Fraction compared with results from other experiments.

$$BR = \frac{\Gamma(D^0 \to \overline{K}{}^0 K^+ K^-)}{\Gamma(D^0 \to \overline{K}{}^0 \pi^+ \pi^-)} = (15.8 \pm 0.1 \ (stat.) \pm 0.5 \ (syst.)) \times 10^{-2}$$

Dalitz plot of $D^0 \to \bar{K}^0 K^+ K^-$.

 \Box Cutting at 2σ in the $\bar{K}^0K^+K^-$ mass we obtain 12541 events with a purity P=97.3~%

- \square Presence of $\phi(1020)$ interfering with a threshold scalar $f_0/a_0(980)^0$.
- \square Presence of $a_0(980)^+$.

Dalitz plot analysis of $D^0 \to \bar{K}^0 K^+ K^-$.

□ Likelihood function:

$$L = P \cdot G(m)\eta(m_1^2, m_2^2) \frac{\sum c_i c_j^* A_i A_j^*}{\sum c_i c_j^* \int A_i A_j^* \eta(m_1^2, m_2^2) dDP} + (1 - P)$$

- \square $\eta(m_1^2, m_2^2)$ is the polynomial efficiency.
- \square P: Purity.
- \square G(m) is a Gaussian describing the D^0 lineshape.
- \square A complex amplitudes, expressed as:

$$A = BW(m) \times W(\Omega)$$

where BW(m) are relativistic Breit-Wigner and $W(\Omega)$ describe the angular distributions. The helicity formalism has been adopted.

 \Box The amplitude $\bar{K}^0 a_0(980)^0$ has been taken as the reference wave so that $c_{a_0} = 1$ and $\phi_{a_0} = 0$.

$f_0(980)$ and $a_0(980)$ lineshapes.

 \square The $f_0(980)$ resonance has been described by a coupled channel Breit-Wigner to $\pi^+\pi^-$ and $K\bar{K}$.

$$BW_{f_0}(m) = \frac{F_r}{m_0^2 - m^2 - im_0(\Gamma_{\pi} + \Gamma_K)}$$

where:

$$\Gamma_{\pi} = g_{\pi} (m^2/4 - m_{\pi}^2)^{1/2}$$

$$\Gamma_K = g_K/2[(m^2/4 - m_{K^+}^2)^{1/2} + (m^2/4 - m_{K^0}^2)^{1/2}]$$

- □ Parameters varied within results from WA76, E791 and BES experiments.
- \Box The $a_0(980)$ has been parametrized as a coupled channel Breit Wigner with coupling to the $\eta\pi$ and $\bar{K}K$ systems.

$$BW_{a_0}(m) = \frac{g_{K\bar{K}}}{m_0^2 - m^2 - i(\rho_{\eta\pi}g_{\eta\pi}^2 + \rho_{K\bar{K}}g_{K\bar{K}}^2)}$$

- \square where $\rho(m) = 2q/m$.
- \Box The $a_0(980)$ parameters are somewhat uncertain due to complexity of a state close to the $K\bar{K}$ threshold.

Partial Wave Analysis of the K^+K^- system.

 \square Assume, in the K^+K^- threshold region, a diagram:

 \square Efficiency corrected unnormalized Y_l^m moments:

 $\phi(1020)$ lineshape.

 $\square \phi(1020)$ parameters fitted to the Y_2^0 moment using a relativisic P-wave Breit Wigner.

Fitted parameters:

$$m = 1019.63 \pm 0.07$$

$$m = 1019.63 \pm 0.07$$
 $\Gamma = 4.28 \pm 0.13$ MeV/c^2

Partial Wave Analysis of the K^+K^- system.

\square S, P waves and relative phase can be extracted using:

$$\sqrt{4\pi}Y_0^0 = S^2 + P^2
\sqrt{4\pi}Y_1^0 = 2SP\cos\phi
\sqrt{4\pi}Y_2^0 = 0.894P^2$$

 \Box Correcting for phase space, a symultaneous fit has been performed using also the \bar{K}^0K^+ projection:

Partial Wave Analysis of the K^+K^- system.

- □ The distributions have been fitted using the following model:
 - The P-wave is entirely due to the $\phi(1020)$ meson.
 - The scalar contribution in the K^+K^- mass projection is entirely due to the $a_0(980)^0$.
 - The $\overline{K}{}^0K^+$ mass distribution is entirely due to $a_0(980)^+$.
 - The angle ϕ_{SP} is obtained fitting the S, P waves and $\cos \phi_{SP}$ with:

$$c_{a_0}BW_{a_0} + c_{\phi}BW_{\phi}e^{i\alpha}$$

Here BW_{a_0} and BW_{ϕ} are the Breit-Wigner describing the $a_0(980)$ and $\phi(1020)$ resonances.

 \Box The $a_0(980)$ parameters have been fitted to Crystal Barrel results (from $\bar{p}p$), except $g_{\bar{K}K}$ which is a free parameter: $g_{\bar{K}K} = 464 \pm 29$ MeV

Little $f_0(980)$ contribution.

- \square Since $f_0(980)$ has I=0, it cannot decay to \bar{K}^0K^+ .
- \square Therefore the \bar{K}^0K^+ projection contains only $a_0(980)^+$.
- □ Superposition of the two normalized projections, phase space corrected:

 \square Cosistent with little $f_0(980)$ contribution.

Amplitudes normalization.

- \Box The Amplitudes have been normalized using a phase space Monte Carlo weighted by the polynomial efficiency and generated according to the experimental D^0 lineshape.
- □ Fractions:

$$f_i = rac{|c_i|^2 \int |A_i|^2 dm_x^2 dm_y^2}{\sum_{j,k} c_j c_k^* \int A_j A_k^* dm_x^2 dm_y^2}$$

□ Considered also the Double Cabibbo Suppressed contribution

$$D^0 \to K^+ a_0(980)^-$$
.

Dalitz plot fit.

- \square Need to include a small contribution from $f_0(1400)$.
- □ Superposition of the fit on the data:

 $\square \chi^2$ computed on the Dalitz plot: $\chi^2/N_{cells} = 983/774$

Results from the fit.

Final state	Phase (radians)	Fraction (%)
$\overline{K}{}^{0}a_{0}(980)^{0}$	0.	$66.4 \pm 1.6 \pm 7.0$
$\overline{K}{}^0\phi(1020)$	$1.91 \pm 0.02 \pm 0.10$	$45.9 \pm 0.7 \pm 0.7$
$K^{-}a_{0}(980)^{+}$	$3.59 \pm 0.05 \pm 0.20$	$13.4 \pm 1.1 \pm 3.7$
$\overline{K^0} f_0(1400)$	$-2.63 \pm 0.10 \pm 0.71$	$3.8 \pm 0.7 \pm 2.3$
$\overline{K^0}f_0(980)$		$0.4 \pm 0.2 \pm 0.8$
$K^+a_0(980)^-$		$0.8 \pm 0.3 \pm 0.8$
Sum		$130.7 \pm 2.2 \pm 8.4$

- □ Systematic errors come from maximum spread of fitted results.
- □ Errors on the fractions obtained by Monte Carlo propagation of errors using the full fit covariance matrix.

The $f_0(980)$ from $\pi^+\pi^-$.

 \square The small $f_0(980)$ ($\approx 5.5\%$) signal observed in $D^0 \to \bar{K}^0 \pi^+ \pi^-$ is consistent with the absence of $f_0(980) \to K^+ K^-$ in the $D^0 \to \bar{K}^0 K^+ K^-$ final state.

Fractions and phases for D^0 and \bar{D}^0 .

 $\square D^0$: $\chi^2/N = 671/649$, \bar{D}^0 : $\chi^2/N = 643/646$.

 \square No evidence for CP violation.

Conclusions

□ We have measured with high precision the Branching Fraction:

$$BR = \frac{\Gamma(D^0 \to \overline{K}{}^0 K^+ K^-)}{\Gamma(D^0 \to \overline{K}{}^0 \pi^+ \pi^-)} =$$

$$(15.8 \pm 0.1 \; (stat.) \pm 0.5 \; (syst)) \times 10^{-2}$$

- \square We have performed the first Dalitz plot analysis of $D^0 \to \bar{K}^0 K^+ K^-$ measuring amplitudes and phases.
- \square We have performed a Partial Wave Analysis of the K^+K^- system isolating, for the first time, a pure S-wave contribution close to threshold.
- \Box The Dalitz plot analysis, separated for D^0 and \bar{D}^0 , does not show any CP violation effect in the amplitudes and phases.

In progress (Bari).

- \square Amplitude analysis of $D^+ \to K^- \pi^+ \pi^+$, 430 000 events.
- \square Dalitz plot and amplitude analysis of $D_s^+ \to K^+K^-\pi^+$, 80 000 events.
- \square Dalitz plot and amplitude analysis of $D_s^+ \to \pi^+\pi^-\pi^+$, 10 000 events.
- \square Dalitz plot and amplitude analysis of $D^+ \to \pi^+\pi^-\pi^+$, 10 000 events.
- \square Dalitz plot analysis of $D^0 \to K^0 K^- \pi^+$ and $D^0 \to \bar{K}^0 K^+ \pi^-$.