Dalitz Plot Analysis of 3-body charm decays.

Antimo Palano INFN and University of Bari

Bari, October 27, 2005.

- \Box Summary.
 - Introduction;
 - The BaBar Experiment;
 - Dalitz plot Analysis of $D^0 \to \bar{K}^0 K^+ K^-$;
 - Data selection;
 - Branching Fraction.
 - Partial Wave Analysis.
 - Dalitz Plot Analysis.
 - CP Asymmetries.
 - Conclusions.

Introduction.

 \Box In the last few years Dalitz plot analysis of charm decays has received new interest mostly because:

- a) Study of the properties of the scalar mesons;
- b) Mesurement of γ in $B \to D^0 K$ through Dalitz plot analysis;
- c) Search for CP violation in interferences and phases in charm decays.

 \Box Understanding the properties of the scalar mesons is an essential item for the study CP violation in penguin decays such as $B \to 3h$.

 \Box In BaBar some B and charm physics are moving in parallel. High statistics samples from charm decays are used to fix the model to be used in B decays.

The structure of the scalar mesons.

 \Box Too many scalar mesons below 2. GeV.

	I = 1/2	I = 1	I = 0
	k(800)		σ
		$a_0(980)$	$f_{0}(980)$
\Box Two nonets? 4-quark states? Gluonium?			$f_0(1370)$
\Box Where is the scalar glueball?	$K_{2}^{*}(1430)$	$a_{0}(1490)$	$f_0(1500)$
\Box Many proposals.	110(1100)	<i>w</i> ((1100)	$\int (1 - 0)$
Narrow: $f_0(1500), f_0(1700).$			$f_0(1700)$
Wide: σ .	$K_{0}^{*}(1950)$		

□ Information on some of these states, such as the existence of k(800) and σ can be extracted from existing data from charm decays. □ Unlikely to produce gluonium in charm decays.

 \Box The $\pi\pi$ amplitude and phase has been measured in:

$$\pi^- p \to \pi^+ \pi^- n$$

 \Box Watson theorem: phase shift is independent from the production mechanism up to the first inelastic threshold.

 \square Phase motions in B and charm decays should be the same as in hadronic interactions.

 \Box No reason for the amplitude to be the same.

Dalitz plot analysis.

□ Charmed mesons decay to light hadrons, therefore a fundamental laboratory for studying light meson spectroscopy, especially for spin 0 and spin 1 mesons.
□ The method assumes an isobar model: the dacay proceedes through a flat Non Resonant contribution + intermediate resonance production:

 \Box In some cases some of the decay channels can be switched off by physics.

$$D^0 \to K^0 K^- \pi^+$$
.

 \Box In some cases a rather simple structure. $D^0 \to K^0 K^- \pi^+$ (Cabibbo Suppressed) (BaBar):

 \square Resonances only along the $K^0\pi^+$ axis.

$$\boxed{D^0 \to \overline{K}^0 \pi^+ \pi^-}.$$

$$\square \text{ Very complex structure in } D^0 \to \overline{K}^0 \pi^+ \pi^- \text{: up to 13 resonances.(BaBar)}$$

$$= \begin{bmatrix} 2 \\ 1.8 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.5 \\ 2.2 \\ 2.5 \\ 3.5 \end{bmatrix}}$$

The evidence for $\sigma(500)$.

 \Box Experiment E791 at Fermilab has studied \approx 1200 events from:

 $D^+ \to \pi^- \pi^+ \pi^+$

The evidence for $\sigma(500)$.

 \Box In order to obtain a good fit of the Dalitz plot they need to introduce a new wide scalar resonance:

 $m = 478 \pm 24 \pm 17 \quad MeV$

 $\Gamma = 324 \pm 41 \pm 21 \quad MeV$

The evidence for $\kappa(800)$.

 \Box The $K\pi$ S-wave amplitude and phase has been studied by LASS experiment in the reaction:

$$K^- p \to K^- \pi^+ n$$

 \square No need to introduce k(800).

The evidence for $\kappa(800)$ from E791.

 \Box Experiment E791 at Fermilab has studied \approx 15000 events from:

$$D^+ \to K^- \pi^+ \pi^+$$

 \Box Mass spectrum and Dalitz plot.

The evidence for $\kappa(800)$ from E791.

□ In order to fit the Dalitz plot a large Non Resonant contribution is needed. □ Or, better, a new low mass scalar resonance.

 $m = 797 \pm 19 \pm 42$ MeV, $\Gamma = 410 \pm 43 \pm 85$ MeV

A new approach: Amplitude analysis.

 \Box A new method has been developed by E791 in the study of:

$$D^+ \to K^- \pi^+ \pi^+$$

□ In this case only one channel is open $(K^-\pi^+)$ but combinatorial problem. □ The scalar contribution is left free in the Dalitz plot analysis in terms of a complex number:

$$c_{m(K\pi)}e^{i\phi_{m(K\pi)}}$$

 \Box The fit measures amplitude and phase as a function of the $K\pi$ mass.

Results. Comparison with LASS experiment: direct proof of the Watson theorem. 200 (a) $\phi_0(s)$ (deg.) 100 _17171 0 Magnitude -100 Phase (b) 150 ¹⁵⁰ 100 (geg.) 50 150 (a) (b) 100 50 0 S 200 ¢_s(deg.) C0(ska) 0 150 (c) ϕ_2 (s) (deg.) -50 100 -100 2 50 -150 0 0 -50 -200 0.8 1.2 1.4 1.6 0.6 1 1.5 1.25 0.75 1.25 1.5 0.75 1 Kπ Mass (GeV/c²) Kπ Mass (GeV/c²) Kπ Mass (GeV/c²)

Resonances parametrization.

 \Box Key point: two relatively broad overlapping resonances:

 \Box The simple addition of two Breit Wigners violates unitarity.

The K-matrix formalism.

 \Box Transition Matrix written as:

$$T = (I - iK\rho)^{-1}K$$

$$K_{ij} = \sum_{\alpha} \frac{\gamma_{i\alpha} \gamma_{j\alpha} m_{\alpha} \Gamma_{\alpha}}{m_{\alpha}^2 - m^2} + c_{ij} m^2$$

where the index ij extends to the different decay channels and the sum is over all the K matrix poles.

 \Box Problem: not possible to separate the different resonant contributions.

- \Box Poles and couplings taken from past experiments in a global fit.
- \Box Some of the measurements (such as for $f_0(980)$) not very accurate.

K-matrix fits to charm decays.

\square FOCUS: Analysis of $D^+ \to \pi^+ \pi^+ \pi^-$.

 $[\]Box$ No need for a σ .

K-matrix fit of $D^0 \to \bar{K}^0 \pi^+ \pi^-$

 \Box With standard Breit-Wigners: need to include new scalar mesons (including σ) and large Double Cabibbo Suppressed contributions.

 \Box Dalitz analysis using a K-matrix description of the S-wave: (BaBar, 82 K events)

Charm physics at B-factories.

 \Box The power of B-factories in charm physics is based on:

- Relatively small combinatorial in e^+e^- interactions.
- Good tracking and vertexing.
- Good Particle Identification.
- Detection of all possible final states, with charged tracks and γ 's.
- Very high statistics.

The BaBar Experiment.

□ Start data taking: end 1999. □ Present luminosity: $300 \ fb^{-1}$

 \Box The experiment will continue taking data up to the end of 2008 collecting 1000 fb^{-1} .

Separation from continuum.

□ At B-factories, the $\Upsilon(4S)$ resonance sits on a consistent continuum background. r = #(multihadron candidates) / #(Bhabha candidates)

Charm decays. \square Cross sections for different processes, at the $\Upsilon(4S)$: $e^+e^- \rightarrow$ σ (nb) $b\overline{b}$ 1.051.30 $c\overline{c}$ $S\overline{S}$ 0.351.39 $u\bar{u}$ \Box Inclusive Charm Physics is performed on $d\bar{d}$ 0.35 events selected from continuum $e^+e^- \rightarrow \bar{c}c$ $\tau^+\tau^-$ 0.94 \Box Very high statistics samples of $\mu^+\mu^-$ 1.16charmed mesons actually available. $e^+e^ \approx 40$

Study of D_s^+ in BaBar.

 \Box Example from BaBar: mass distribution and p^* momentum spectrum for $D_s^+ \to \phi \pi^+.$

Filled/open points: normalized on/off peak data.

 \Box By using inclusive continuum events combinatorial background is strongly reduced.

 \Box Kinematical selection: the center of mass momentum $(p^*) > 2.5 \text{ GeV/c}$.

Comparison with other experiments.

 \Box Huge amount of charm produced.

 \Box Much more that any other dedicated (and expensive) charm experiments. \Box Example of tagged $D^0 \to K^- \pi^+$ decays:

E791:35K, FOCUS:120K, BaBar:500K

 \Box Information on scalar mesons can be extracted from selected D or D_s decay

channels where physics can be particularly simple.

 \Box D mesons are coupled to $u\bar{u} + dd$, D_s mesons are coupled to $\bar{s}s$.

Dalitz plot Analysis of $D^0 \to \overline{K}{}^0 K^+ K^-$.

Antimo Palano

Summary:

- \Box Physics Motivations.
- \Box Data sample.
- $\square D^0 \to \overline{K}{}^0 \pi^+ \pi^-$ and $D^0 \to \overline{K}{}^0 K^+ K^-$ selection.
- \Box Branching Fraction.
- \Box Partial Wave Analysis.
- \Box Dalitz Plot Analysis.
- \Box CP Asymmetries.
- \Box Conclusions.

Phys. Rev. D 72 (2005) 052008, 29 September 2005.

Physics Motivations.

 \Box The Dalitz Plot analysis is the most powerful method for understanding three body decays of resonances.

 \Box Previuos branching fractions of charmed mesons have been evaluated with poor statistics.

 \Box In this work we measure the ratio of branching fractions:

$$BF = \frac{D^0 \to \bar{K}^0 K^+ K^-}{D^0 \to \bar{K}^0 \pi^+ \pi^-}$$

 \Box New information can be extracted on the properties of light mesons.

Charge conjugation is implied through all this work.

The Data sample.

 \Box We are studying the following final state:

$$D^0 \to K^0_s h^+ h^- \qquad + c.c.$$

 \Box Tagged with D^* . For example:

$$D^{*+} \rightarrow D^0 \pi^+$$

 $\rightarrow \bar{K}^0 \pi^+ \pi^-$

$$D^{*-} \rightarrow \bar{D}^0 \pi^-$$

 $\rightarrow K^0 \pi^+ \pi^-$

□ The charge of the slow pion gives the flavor of the K⁰.
□ Events having more than one D* candidate are removed.
□ Data: (92.5 fb⁻¹).

Data Selection.

- Fit all pairs of neutral charged tracks combinations to a K_s^0 with mass constraint;
- Combine the fitted K_s^0 with all pairs of neutral pairs of charged tracks combinations requiring a common vertex.
- The fitted D^0 candidate is refitted to a common vertex with all charged tracks with momentum < 600 MeV/c with beam spot contraint.
- The center of mass momentum p^* of the $K_s^0 h^+ h^-$ system is required to be:

$$p^* > 2.2 \quad GeV/c$$

- No Particle Identification for $\bar{K}^0 \pi^+ \pi^-$.
- One of the two kaon candidates loosely identified for $\bar{K}^0 K^+ K^-$;

Slow pion refit.

 \square Refitting of the slow pion. The momentum of the slow pion is usually below 500 MeV/c: badly measured.

 \Box Cartoon of one event:

 \Box Using the event vertex in the fit of the slow pion momentum improves the resolution.

Δm selection:

 \Box Plot of Δm :

for:

 \Box Selecting events within 2σ in Δm ($\sigma = 300 \text{ KeV}/c^2$) we obtain the following $K_s^0 h^+ h^-$ mass spectra:

\Box Results. Integrating within 6σ :

D^0 decay mode	mass $({\rm MeV}/c^2)$	$\sigma~({\rm MeV}/c^2)$	events
$ar{K}^0\pi^+\pi^-$	1863.7 ± 0.06	6.10 ± 0.02	92935 ± 305
$ar{K}^0 K^+ K^-$	1864.7 ± 0.4	3.37 ± 0.09	13536 ± 116

Efficiency.

 \Box The branching fraction has been evaluated as:

$$BR = \frac{\sum_{x,y} \frac{N_1(x,y)}{\epsilon_1(x,y)}}{\sum_{x,y} \frac{N_0(x,y)}{\epsilon_0(x,y)}},$$

where $N_i(x, y)$ represents the number of events measured for channel *i*, and $\epsilon_i(x, y)$ is the corresponding efficiency in a given Dalitz plot cell (x, y). \Box The efficiency has been evaluated on the Dalitz plot of the $K^0h^+h^-$ system. $\Box \approx 125 \times 10^3$ Phase Space Signal Monte Carlo events for each channel have been generated and reconstructed.

 \Box The Dalitz plot efficiency has been smoothed fitting a 3^{rd} order polynomial.

$$\eta(x,y) = a_0(1 + a_1x + a_2y + a_3x^2 + a_4y^2 + a_5xy + a_6x^3 + a_7y^3 + a_8xy^2 + a_9x^2y)$$

Systematic errors.

\Box Summary of systematic errors:

Effect	Systematic error $(\times 10^{-2})$
Yields	0.13
$\Delta m { m cut}$	0.12
Efficiency correction	0.42
PID	0.13
K_s^0 momentum	0.09
Total	0.48

 \Box Branching fractions have also been computed in different p^* regions and separately for D^0 and \overline{D}^0 .

Example. Systematic error due to PID

□ Evaluation of the Branching fraction without and with the use of PID. □ Shaded: $D^0 \to \overline{K}{}^0 K^+ K^-$ events removed by the PID request (one of the two charged tracks loosely identified as a kaon).

Branching Fraction.

 \Box Resulting Branching Fraction compared with results from other experiments.

$$BR = \frac{\Gamma(D^0 \to \overline{K}{}^0 K^+ K^-)}{\Gamma(D^0 \to \overline{K}{}^0 \pi^+ \pi^-)} = (15.8 \pm 0.1 \ (stat.) \pm 0.5 \ (syst.)) \times 10^{-2}$$

Dalitz plot analysis of $D^0 \to \overline{K}{}^0 K^+ K^-$.

\Box Likelihood function:

$$L = P \cdot G(m)\eta(m_1^2, m_2^2) \frac{\sum c_i c_j^* A_i A_j^*}{\sum c_i c_j^* \int A_i A_j^* \eta(m_1^2, m_2^2) dDP} + (1 - P)$$

 $\Box \eta(m_1^2, m_2^2)$ is the polynomial efficiency.

 \square P: Purity.

 \square G(m) is a Gaussian describing the D^0 lineshape.

 \Box A complex amplitudes, expressed as:

 $A = BW(m) \times W(\Omega)$

where BW(m) are relativistic Breit-Wigner and $W(\Omega)$ describe the angular distributions. The helicity formalism has been adopted. \Box The amplitude $\bar{K}^0 a_0 (980)^0$ has been taken as the reference wave so that $c_{a_0} = 1$ and $\phi_{a_0} = 0$.

$f_0(980)$ and $a_0(980)$ lineshapes.

 \Box The $f_0(980)$ resonance has been described by a coupled channel Breit-Wigner to $\pi^+\pi^-$ and $K\bar{K}$.

$$BW_{f_0}(m) = \frac{F_r}{m_0^2 - m^2 - im_0(\Gamma_{\pi} + \Gamma_K)}$$

where:

$$\Gamma_K = g_K / 2[(m^2/4 - m_{K^+}^2)^{1/2} + (m^2/4 - m_{K^0}^2)^{1/2}]$$

 $\Gamma_{\pi} = g_{\pi} (m^2/4 - m_{\pi}^2)^{1/2}$

□ Parameters varied within results from WA76, E791 and BES experiments. □ The $a_0(980)$ has been parametrized as a coupled channel Breit Wigner with coupling to the $\eta\pi$ and $\bar{K}K$ systems.

$$BW_{a_0}(m) = \frac{g_{K\bar{K}}}{m_0^2 - m^2 - i(\rho_{\eta\pi}g_{\eta\pi}^2 + \rho_{K\bar{K}}g_{K\bar{K}}^2)}$$

 \Box where $\rho(m) = 2q/m$.

 \Box The $a_0(980)$ parameters are somewhat uncertain due to complexity of a state close to the $K\bar{K}$ threshold.

$\phi(1020)$ lineshape.

 $\Box \ \phi(1020)$ parameters fitted to the Y_2^0 moment using a relativisic P-wave Breit Wigner.

Partial Wave Analysis of the K^+K^- system.

 \Box S, P waves and relative phase can be extracted using: $\sqrt{4\pi}Y_0^0 = S^2 + P^2$ 30000 Ne∕ $(a)P^2$ 1500 (c) $(b)S^2$ $\sqrt{4\pi}Y_1^0 = 2SPcos\phi$ 4000 weighted events/ 20000 1000 $\sqrt{4\pi}Y_2^0 = 0.894P^2$ 2000 Correcting for phase space, 500 10000 a symultaneous fit has 0 ∟ 0.9<u>5</u> 0 0.95 1.07 1.15 0.966 been performed using also $m(K^{+}K^{-})$ $m(\overline{K^0} K^+) (GeV/c^2)$ $m(K^{+}K^{-})$ the $\overline{K}^0 K^+$ projection: 0 (e) (d) 0.5

(radians) cosøsp 0 **a** −2 -0.5- 1 0.998 1.046 0.998 1.046 $m(K^{+}K^{-})$ $m(K^+ K^-) (GeV/c^2)$ 1.07

Partial Wave Analysis of the K^+K^- system.

 \Box The distributions have been fitted using the following model:

- The P-wave is entirely due to the $\phi(1020)$ meson.
- The scalar contribution in the K^+K^- mass projection is entirely due to the $a_0(980)^0$.
- The $\overline{K}{}^{0}K^{+}$ mass distribution is entirely due to $a_{0}(980)^{+}$.
- The angle ϕ_{SP} is obtained fitting the S, P waves and $\cos \phi_{SP}$ with:

 $c_{a_0}BW_{a_0} + c_{\phi}BW_{\phi}e^{i\alpha}$

Here BW_{a_0} and BW_{ϕ} are the Breit-Wigner describing the $a_0(980)$ and $\phi(1020)$ resonances.

 \Box The $a_0(980)$ parameters have been fitted to Crystal Barrel results (from $\bar{p}p$), except $g_{\bar{K}K}$ which is a free parameter: $g_{\bar{K}K} = 464 \pm 29$ MeV

Little $f_0(980)$ contribution.

 \Box Since $f_0(980)$ has I=0, it cannot decay to $\bar{K}^0 K^+$.

 \Box Therefore the $\bar{K}^0 K^+$ projection contains only $a_0(980)^+$.

 \Box Superposition of the two normalized projections, phase space corrected:

 \square Cosistent with little $f_0(980)$ contribution.

Amplitudes normalization.

The Amplitudes have been normalized using a phase space Monte Carlo weighted by the polynomial efficiency and generated according to the experimental D^0 lineshape.

Fractions:

 $D^0 \to K^+ a_0(980)^-$.

$$f_i = rac{|c_i|^2 \int |A_i|^2 dm_x^2 dm_y^2}{\sum_{j,k} c_j c_k^* \int A_j A_k^* dm_x^2 dm_y^2}$$

Dalitz plot fit.

□ Need to include a small contribution from $f_0(1400)$. □ Superposition of the fit on the data:

 $\Box \chi^2$ computed on the Dalitz plot: $\chi^2/N_{cells} = 983/774$

Results from the fit.

Final state	Phase (radians)	Fraction $(\%)$
$\overline{K}{}^0a_0(980)^0$	0.	$66.4 \pm 1.6 \pm 7.0$
$\overline{K}{}^{0}\phi(1020)$	$1.91 \pm 0.02 \pm 0.10$	$45.9 \pm 0.7 \pm 0.7$
$K^{-}a_{0}(980)^{+}$	$3.59 \pm 0.05 \pm 0.20$	$13.4 \pm 1.1 \pm 3.7$
$\overline{K}{}^0f_0(1400)$	$-2.63 \pm 0.10 \pm 0.71$	$3.8 \pm 0.7 \pm 2.3$
$\overline{K}{}^0f_0(980)$		$0.4 \pm 0.2 \pm 0.8$
$K^+a_0(980)^-$		$0.8 \pm 0.3 \pm 0.8$
Sum		$130.7 \pm 2.2 \pm 8.4$

Systematic errors come from maximum spread of fitted results.
 Errors on the fractions obtained by Monte Carlo propagation of errors using the full fit covariance matrix.

The $f_0(980)$ from $\pi^+\pi^-$.

 \Box The small $f_0(980)$ ($\approx 5.5\%$) signal observed in $D^0 \to \bar{K}^0 \pi^+ \pi^-$ is consistent with the absence of $f_0(980) \to K^+ K^-$ in the $D^0 \to \bar{K}^0 K^+ K^-$ final state.

Fractions and phases for D^0 and \overline{D}^0 .

 \Box No evidence for CP violation.

Conclusions

 \Box We have measured with high precision the Branching Fraction:

$$BR = \frac{\Gamma(D^0 \to \overline{K}{}^0 K^+ K^-)}{\Gamma(D^0 \to \overline{K}{}^0 \pi^+ \pi^-)} =$$

$$(15.8 \pm 0.1 \ (stat.) \pm 0.5 \ (syst)) \times 10^{-2}$$

 \square We have performed the first Dalitz plot analysis of $D^0 \to \overline{K}{}^0 K^+ K^$ measuring amplitudes and phases.

□ We have performed a Partial Wave Analysis of the K^+K^- system isolating, for the first time, a pure S-wave contribution close to threshold. □ The Dalitz plot analysis, separated for D^0 and \overline{D}^0 , does not show any CP

violation effect in the amplitudes and phases.

In progress (Bari).

- \Box Amplitude analysis of $D^+ \to K^- \pi^+ \pi^+$, 430 000 events.
- □ Dalitz plot and amplitude analysis of $D_s^+ \to K^+ K^- \pi^+$, 80 000 events. □ Dalitz plot and amplitude analysis of $D_s^+ \to \pi^+ \pi^- \pi^+$, 10 000 events. □ Dalitz plot and amplitude analysis of $D^+ \to \pi^+ \pi^- \pi^+$, 10 000 events. □ Dalitz plot analysis of $D^0 \to K^0 K^- \pi^+$ and $D^0 \to \bar{K}^0 K^+ \pi^-$.