

Charmless B-decays & the scalar sector of QCD Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Supported by DFG, SFB/TR-16 "Subnuclear Structure of Matter"

and by EU, I3HP-N5 "Structure and Dynamics of Hadrons"

Study of Strongly Interacting Matter

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle \diamond \bullet$

CONTENTS

- Short introduction
- Scalar sector of QCD & scalar form factors
- Applications

Summary and outlook

Collaborator: Timo Lähde (HISKP Bonn)

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

INTRODUCTORY REMARKS

- $B o \sigma \pi$ is an important "hadronic pollution" for the extraction of lpha from $B o
 ho \pi$
 - A. Deandrea and A. D. Polosa, Phys. Rev. Lett. 86 (2001) 216 [arXiv:hep-ph/0008084]
 - S. Gardner and UGM, Phys. Rev. D 65 (2002) 094004 [arXiv:hep-ph/0112281]
 - J. Tandean and S. Gardner, Phys. Rev. D 66 (2002) 034019 [arXiv:hep-ph/0204147]

• Long distance effects in $B \rightarrow 3P$ are linked to the scalar sector of QCD

A. Furman, R. Kaminski, L. Lesniak and B. Loiseau, Phys. Lett. B 622 (2005) 207 [arXiv:hep-ph/0504116]

H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73 (2006) 014017 [arXiv:hep-ph/0508104]

• $B^0(ar{B}{}^0) o f_0(980) K_S$ enters the determination of $\sin 2eta$ from $b o ssar{s}$

- Y. Grossman, Z. Ligeti, Y. Nir and H. Quinn, Phys. Rev. D 68 (2003) 015004 [arXiv:hep-ph/0303171]
- M. Beneke, Phys. Lett. B 620 (2005) 143 [arXiv:hep-ph/0505075]
- S. Gardner and R. Dutta, in preparation.

What is our present knowledge of these issues and how can it be improved ?

Charmless B-decays and the scalar sector of QCD – Ulf-G. Meißner – Three-Body Charmless B Decays, Paris, Feb. 2006

SCALAR SECTOR of QCD

- Highly interesting: quark mass terms, σ -terms, vacuum quantum numbers, OZI
- Very strong Final State Interactions (for isospin zero)
 - \star rapidly rising phase shift $\delta_0^0(s) \rightarrow$ scalar mesons as PP composites

 \star scalar pion radius $\langle r_S^2
angle_\pi \simeq 0.6 \, {
m fm}^2 \gg$ vector radius $\langle r_V^2
angle_\pi \simeq 0.4 \, {
m fm}^2$ * . . .

Theoretical investigations using different tools (scalar ffs)

- Chiral Perturbation Theory (CHPT)
- Chiral Unitary Approach resummation scheme consistent with CHPT, unitarity, analyticity, ...
- Dispersion relations (w/ or w/o low-energy constraints)

Au, Morgan, Pennington, Donoghue, Gasser, Leutwyler, Moussallam

- Unitary Coupled Channel Model
 - \Rightarrow Light scalar mesons dynamically generated

 \Rightarrow Consistent picture of the scalar (pion and kaon) form factors ?

Charmless B-decays and the scalar sector of QCD – Ulf-G. Meißner – Three-Body Charmless B Decays, Paris, Feb. 2006

Oller, Oset, UGM, . . .

Kaminski, Lesniak, Loiseau

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

Gasser, Leutwyler, UGM, Bijnens, Descotes, . . .

SCALAR FORM FACTORS

Definitions

with

d

$$\begin{array}{ll} \langle 0|n\bar{n}|\pi\pi\rangle = \sqrt{2}B_0\,\Gamma_1^n(s) & \langle 0|n\bar{n}|\bar{K}K\rangle = \sqrt{2}B_0\,\Gamma_2^n(s) \\ \langle 0|s\bar{s}|\pi\pi\rangle = \sqrt{2}B_0\,\Gamma_1^s(s) & \langle 0|s\bar{s}|\bar{K}K\rangle = \sqrt{2}B_0\,\Gamma_2^s(s) \\ \star B_0 = -\langle 0|\bar{q}q|0\rangle/F_{\pi}^2 & \star \text{ index 1, 2 = pions, kaons} \\ \star \bar{n}n = (\bar{u}u + \bar{d}d)/\sqrt{2} & \star \sqrt{s} = \text{cms energy} \end{array}$$

• Scalar form factors in the chiral unitary approach (suppress flavor index)

Charmless B-decays and the scalar sector of QCD - Ulf-G. Meißner - Three-Body Charmless B Decays, Paris, Feb. 2006

SCALAR FORM FACTORS: RESULTS I

UGM and J. A. Oller, Nucl. Phys. A 679 (2001) 671 [arXiv:hep-ph/0005253]

- cusp at the two-pion threshold in $\Gamma_{1,2}^n$
- Broad structure reminiscent of the σ in $\Gamma_1^n \to$ archetype of a dynamically generated resonance

UGM, Comments Nucl. Part. Phys. 20 (1991) 119

I. Caprini, G. Colangelo and H. Leutwyler, arXiv:hep-ph/0512364

- $f_0(980)$ clearly visible in all ffs \rightarrow dominates all scalar ffs except Γ_1^n
- can be matched to pQCD behaviour

$$\begin{split} &\operatorname{Re}\,\Gamma_1^n(s)\to a/s, \ s\to\infty\\ &\operatorname{Im}\,\Gamma_1^n(s)\to b/s^2, \ s\to\infty \end{split}$$

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

• pion non-strange ff $\Gamma_1^n(s)$

• pion strange ff $\Gamma_1^s(s)$

\rightarrow similar, but diff. strength

 \rightarrow MO very diff. from the others

NB: Normalization enforced to all ffs at $s \simeq 0 \rightarrow \text{CHPT}$

- M & Oller
- Moussallam
- Kaminski, Lesniak & Loiseau

B. Moussallam, Eur. Phys. J. C 14 (2000) 111 [arXiv:hep-ph/9909292]

R. Kaminski et al., Phys. Lett. B 413 (1997) 130 [arXiv:hep-ph/9707377]

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

SCALAR FORM FACTORS: RESULTS III

• kaon non-strange ff $\Gamma_2^n(s)$

• kaon strange ff $\Gamma^s_2(s)$

 \rightarrow very diff. esp. around f_0

 \rightarrow MO ff most pronounced

NB: Normalization enforced to all ffs at $s \simeq 0 \rightarrow \text{CHPT}$

- M & Oller
- Moussallam
- Kaminski, Lesniak & Loiseau

B. Moussallam, Eur. Phys. J. C 14 (2000) 111 [arXiv:hep-ph/9909292]

R. Kaminski et al., Phys. Lett. B 413 (1997) 130 [arXiv:hep-ph/9707377]

 $\cdot \circ \triangleleft \langle \land \nabla \rangle \rangle \diamond \bullet$

Charmless B-decays and the scalar sector of QCD - Ulf-G. Meißner - Three-Body Charmless B Decays, Paris, Feb. 2006

8

A FIRST TEST: $J/\psi \rightarrow \phi \pi \pi/\bar{K}K$

D. Morgan and M.R. Pennington, Phys. Rev. D 3 (1993) 1185; UGM and J. A. Oller, Nucl. Phys. A 679 (2001) 671 [arXiv:hep-ph/0005253]

- OZI and doubly OZI suppressed

 → very sensitive to the scalar sector of QCD
- data from DM2, MARK-III and BES-II \rightarrow exp. facts: ϕ is a spectator, S-wave dominant
- effective Lagrangian and T-matrix:

$$egin{aligned} \mathcal{L} &= g \, ar{\psi}_\mu \, \phi^\mu \, S \ S &= ar{s}s + oldsymbol{\lambda_\phi} \, ar{n}n \ T &= arepsilon(\psi,
ho)_\mu arepsilon(\phi,
ho')^\mu \, \underbrace{\langle 0|ar{s}s + oldsymbol{\lambda_\phi} \, ar{n}n|ar{P}P
angle}_{ ext{scalar ffs}} \end{aligned}$$

ullet good description of $J/\psi
ightarrow V\pi\pi/ar{K}K$ with

 $\lambda_{\phi} = 0.17 \pm 0.06$ & $L_4^r = 0.44 \cdot 10^{-3}, L_6^r = -0.38 \cdot 10^{-3}$ ($\mu = 1.1 \,\text{GeV}$)

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle$

MORE on $J/\psi
ightarrow \phi \pi \pi/\bar{K}K$

• How do these results depend on the choice of scalar ffs?

 \Rightarrow M and KLL ffs require larger coupling to the strangeness channel \Rightarrow M and KLL ffs exhibit too few strength on the left wing of the f_0

Charmless B-decays and the scalar sector of QCD - Ulf-G. Meißner - Three-Body Charmless B Decays, Paris, Feb. 2006

 $\cdot \circ \triangleleft < \land \lor >$

 \triangleright

MORE on $J/\psi
ightarrow \phi \pi \pi/\bar{K}K$

• Consider now $J/\psi ightarrow \phi K ar{K}$

 \Rightarrow M and KLL ffs require larger coupling to the strangeness channel \Rightarrow M ffs show strong destructive interference on the right wing of the f_0

Charmless B-decays and the scalar sector of QCD - Ulf-G. Meißner - Three-Body Charmless B Decays, Paris, Feb. 2006

REMARKS on $B ightarrow \sigma \pi$

• $B
ightarrow \sigma \pi$ is sensitive to $\Gamma_1^n(s)$

 \rightarrow can not be approximated by a BW form !

ullet $B
ightarrow \sigma \pi$ has a large influence on

 $\mathcal{R} = \frac{\text{Br}(\bar{B}^0 \to \rho^{\mp} \pi^{\pm})}{\text{Br}(B^- \to \rho^0 \pi^-)} = 2.8 \pm 0.9$

prediction by Gardner & M: $\mathcal{R} = 2.0 \dots 2.6$

& influences the Dalitz-plot of $B ightarrow ho \pi$

- \rightarrow most pronounced in $B^- \rightarrow \rho^0 \pi^- / \sigma \pi^-$
- ightarrow cut for $\cos(\theta) \leq -0.8$

Gardner and UGM, Phys. Rev. D 65 (2002) 094004

- \bullet dependence on the form of $\Gamma_1^n(s)$:
 - \star MO and M form factor lead to similar result
 - \star KLL form factor has too few strength [ff zero close to $s=M_{\rho}^2$]
 - \Rightarrow FSI in this channel under control

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle \diamond \bullet$

$B \rightarrow K\pi\pi$: FORMALISM

• Employ the slightly modified formalism of Furman et al. (FKLL): QCD factorization + long-distance effects (scalar ffs) [+ charming penguins]

A. Furman, R. Kaminski, L. Lesniak and B. Loiseau, Phys. Lett. B 622 (2005) 207 [arXiv:hep-ph/0504116]

(see also recent work by Dutta and Gardner)

$$egin{aligned} &\langle (\pi^+\pi^-)_S K^0_S | \mathcal{H}_{ ext{eff}} | B^0
angle &= rac{G_F}{\sqrt{2}} \sqrt{rac{2}{3}} \, \chi \left\{ \left[P(M_{\pi\pi}) U + C(M_{\pi\pi})
ight] \Gamma_1^{n*}(M_{\pi\pi}) \ &+ \left[Q(M_{f_0}) V + C(M_K)
ight] \Gamma_1^{s*}(M_{\pi\pi})
ight\} \end{aligned}$$

with
$$Q = \frac{2fM_{f_0}}{m_b - m_s} (M_B^2 - M_K^2) F_0^{B \to K} (M_{f_0}^2)$$

since $\underbrace{B_0}_{\text{FKLL}} \to \underbrace{\chi \langle f_0 | \bar{s}s | 0 \rangle = \chi \tilde{f} M_{f_0}}_{\text{LM}}$ w/ $\tilde{f} = 0.33 \,\text{GeV}$

★ U, V, P, C as in FKLL — U, V contain the short-distance coeffs & V_{CKM} N. de Groot, W.N. Cottingham and I.B. Whittigham, Phys. Rev. D 68 (2003) 113005

- * charming penguins C subject to discussion
- \star overall normalization χ coupling of the scalar source process–dependent (see G. & M.)

Charmless B-decays and the scalar sector of QCD – Ulf-G. Meißner – Three-Body Charmless B Decays, Paris, Feb. 2006

RESULTS for $B^0 o K^0_S \pi^+ \pi^-$

• Compare to the BELLE data

- * w/o charming penguins
- MO ffs generate strength on the left wing from pronounced Γ_1^s
- KLL and M ffs lead to similar results less strength on the left wing
- * w/ charming penguins: trouble
- MO ffs show too much strength on the left wing: too much Γ_1^s contr.
- KLL and M ffs lead to similar results

Note: Normalization adjusted!

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

RESULTS for $B^0 o K^0_S \pi^+ \pi^-$

Compare to the BaBar data

- * w/o charming penguins
- $-f_0$ peak described by all ffs
- FKLL ffs look best

- ★ w/ charming penguins: trouble
- MO ffs: too much strength from Γ_1^s below the f_0 peak
- FKLL/M ffs good/fine, but . . .

Note 1: Background subtracted Note 2: Normalization adjusted!

B. Aubert et al. (BaBar Coll.), Phys. Rev. Lett. 94 (2005) 041802

 $\cdot \circ \triangleleft \langle \wedge \nabla \rangle \rangle$

SUMMARY & OUTLOOK

- Scalar sector of QCD leaves its imprints in heavy quark physics, e.g. charmless B-decays
- Scalar form factors play a crucial role many reactions must be considered
- Specific examples

 $-J/\psi
ightarrow \phi\left(\omega
ight)\pi\pi/ar{K}K$ decays and OZI violation

- Hadronic "pollution" from $B
 ightarrow \sigma \pi$ to $B
 ightarrow
 ho \pi$ is under control
- $B
 ightarrow K \pi \pi$ sensitive to the precise form of scalar ffs
- B ightarrow $K\pi\pi$ sensitive to charming penguins ightarrow at odds with scalar ffs à la MO
- To be done:
- better determination of $\Gamma_1^s(s)$?
- scalar ffs beyond the $f_0(980)$ peak
- parameter scans in $B \rightarrow K\pi\pi$, $B \rightarrow K\bar{K}K$, etc.

Charmless B-decays and the scalar sector of QCD - Ulf-G. Meißner - Three-Body Charmless B Decays, Paris, Feb. 2006

 $\cdot \circ \triangleleft \langle \land \nabla \rangle \rangle \diamond \bullet$