The Experimental Status of Three-Body Charmless B-Decays

Mathew Graham SLAC

Paris 3-Body Workshop
February 1, 2006

Introduction

- Goal: provide a snapshot of our experimental knowledge of charmless 3-body decays
- 4 different levels of measurement:
- "unmeasured" \rightarrow self-explanatory
- "inclusive" \rightarrow all resonance structure is disregarded; just measure the total rate to the 3-body final state
- "Q2B" \rightarrow 3-body final state is measured in a 2-body way...e.g. $\mathrm{B}^{0} \rightarrow{ }^{\prime} \rho^{+} \pi^{-"} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- interference effects are ignored to first order
- "Dalitz" \rightarrow full amplitude fit has been performed
- Color code numbers...Inclusive vs. Q2B vs. Dalitz
- I'll show both final and preliminary results...I'll try to keep with preliminary numbers in bold-italics

$\mathrm{B} \rightarrow \pi \pi \pi$ Decays

 -related to CKM angle αColor Allowed

Color Suppressed
 -involve either $\mathrm{ab} \rightarrow \mathrm{u}$ or $\mathrm{b} \rightarrow \mathrm{d}$ transition

3 diagrams dominate...

-color allowed tree
-color suppressed tree
-b \rightarrow d penguin

February 1, 2006

$B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$Dalitz Analysis QBABAR

The 3π Dalitz plot isn't very busy... mainly just the ρ

- Red \rightarrow qqbar
- Green \rightarrow bbbar
-Blue \rightarrow Signal Model
-Points \rightarrow Data

$\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$Results

Mode	BaBar $\mathrm{BR}\left(10^{-6}\right)$ A_{CP}	Belle$B R\left(10^{-6}\right)$ $A_{C P}$
Inclusive	$\begin{gathered} 16.2 \pm 1.2 \pm 0.9 \\ -0.01 \pm 0.08 \pm 0.03 \end{gathered}$	----
$\rho^{0}(770) \pi^{+}$	$\begin{aligned} 8.8 & \pm 1.0 \pm 0.8 \\ -0.07 & \pm 0.12 \pm 0.05 \end{aligned}$	$8.0 \pm 2.2 \pm 0.7$
$\rho^{0}(1450) \pi^{+}$	<2.3	----
$\mathrm{f}_{0}(980) \mathrm{\pi}^{+}$	<3.0	-----------
$\mathrm{f}_{2}(1270) \mathrm{\pi}^{+}$	<3.5	--
$\mathrm{f}_{0}(1370) \mathrm{\pi}^{+}$	<3.0	------------
NR*	<4.6	------------

BaBar: $210 \mathrm{fb}^{-1}$ Belle : $29.4 \mathrm{fb}^{-1}$

BaBar: PRD 72, 052002, 2005.
Belle : PLB 542, 183, 2002.

$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (Q2B) Results

$$
\begin{aligned}
& f_{\text {Quag }}^{\rho^{+\pi \pi^{-}}}(\Delta t)=\left(1+A_{C P}\right) \frac{e^{-\mid \Delta \Delta t / \tau}}{4 \tau}\left[1+Q_{\text {ug }}(S+\Delta S) \sin (\Delta m \Delta t)-Q_{\text {lug }}(C+\Delta C) \cos (\Delta m \Delta t)\right] \\
& f_{\text {Quag }}^{\rho^{-\pi \pi^{+}}}(\Delta t)=\left(1+A_{C P}\right) \frac{e^{-\Delta \Delta t / \tau}}{4 \tau}\left[1+Q_{\text {ug }}(S-\Delta S) \sin (\Delta m \Delta t)-Q_{\text {aug }}(C-\Delta C) \cos (\Delta m \Delta t)\right]
\end{aligned}
$$

-Dominated by B $\rightarrow \rho \pi$, not a CP state
-3 additional parameters
-Babar results from a TD Dalitz analysis

- more info later

BaBar: $193 \mathrm{fb}^{-1}$ (except BRs..90fb-1)
Belle : $140 \mathrm{fb}^{-1}$ (except BRs.. 78 or $350 \mathrm{fb}^{-1}$)

Observ.	BaBar	Belle
$\mathrm{BR}\left(\rho^{+} \pi^{-}\right)$	$22.6 \pm 1.8 \pm 2.2$	$29.1 \pm 5.0 \pm \mathbf{4 . 0}$
$\mathrm{S}\left(\rho^{+} \pi^{-}\right)$	$\mathbf{- 0 . 1 0} \pm \mathbf{0 . 1 4} \pm \mathbf{0 . 0 4}$	$-0.28 \pm 0.23 \pm 0.09$
$\Delta \mathrm{~S}\left(\rho^{+} \pi^{-}\right)$	$\mathbf{0 . 2 2} \pm \mathbf{0 . 1 5} \pm \mathbf{0 . 0 3}$	$-0.30 \pm 0.24 \pm 0.09$
$\mathrm{C}\left(\rho^{+} \pi^{-}\right)$	$\mathbf{0 . 3 4} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 0 5}$	$0.25 \pm 0.17 \pm 0.04$
$\Delta \mathrm{C}\left(\rho^{+} \pi^{-}\right)$	$\mathbf{0 . 1 5} \pm \mathbf{0 . 1 1} \pm \mathbf{0 . 0 3}$	$0.38 \pm 0.18 \pm 0.03$
$\mathrm{~A}\left(\rho^{+} \pi^{-}\right)$	$\mathbf{- 0 . 0 9} \pm \mathbf{0 . 0 5} \pm \mathbf{0 . 0 1}$	$-0.16 \pm 0.10 \pm 0.02$
$\mathrm{BR}\left(\rho^{0} \pi^{0}\right)$	<2.9	$3.1 \pm \mathbf{0 . 9 \pm 0 . 7}$

BaBar: PRL 91, 201802, 2003, hep-ex/0409099, PRL 93, 051802, 2004. Belle : hep-ex/0307077, PRL 94, 121802, 2005, hep-ex/0508077.

Direct CPV in $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$?

Preliminary

Combined BaBar and Belle

Some indication of direct CP! In more intuitive parameters:

$$
\begin{aligned}
A_{\rho \pi}^{+-} & \equiv \frac{A_{\rho \pi}+C+A_{\rho \pi} \Delta C}{1+\Delta C+A_{\rho \pi} C} \\
& =-0.15 \pm 0.09 \\
A_{\rho \pi}^{-+} & \equiv \frac{A_{\rho \pi}-C-A_{\rho \pi} \Delta C}{1-C-A_{\rho \pi} \Delta C} \\
& =-0.47_{-0.15}^{+0.13}
\end{aligned}
$$

Other $B \rightarrow \pi \pi \pi$ Results

-Adding more π^{0} s is hard...

- $\rho^{+}(770) \pi^{0}$ was measured in a Q2B way
- no $\pi^{0} \pi^{0} \pi^{0}$ modes (nor inclusive) have been measured
-could include $\mathrm{f}_{0} \pi^{0}$, " σ " π^{0}, etc... -is a "Gershon-Hazumi" mode...definite CP eigenstate -Very diffcult to measure experimentally

Mode	BaBar$\mathrm{BR}\left(10^{-6}\right)$ $A_{C P}$	Belle$\mathrm{BR}\left(10^{-6}\right)$ $A_{C P}$	
$\rho^{+}(770) \pi^{0}$	$10.0 \pm 1.4 \pm 0.9$ $-0.01 \pm 0.13 \pm 0.01$	$13.2 \pm 2.3 \pm 1.7$ $0.06 \pm 0.19 \pm 0.05$	
$\pi^{0} \pi^{0} \pi^{0}$	Unmeasured		
BaBar: hep-ex/0506069			
Belle : PRL 94, 031801, 2004.			

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$Dalitz Analysis

BABAR
BaBar: $210 \mathrm{fb}^{-1}$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$Dalitz Analysis

Preliminary

f_{x} looks like a broad scalar at $\sim 1450 \mathrm{MeV}$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$Comparisons

- Difficult to do direct comparison between Belle and BaBar because they use different signal models
- Main differences are in K(1430) and non-resonance models
- BaBar: LASS for the 1430, flat NR
- Belle : Relativistic BW for the 1430 , sum of exponentials for NR

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$Results

Mode	$\begin{array}{lc} \hline \text { BaBar } & \mathrm{BR}\left(10^{-6}\right) \\ \mathrm{A}_{\mathrm{CP}} \end{array}$	$\begin{array}{cc} & \mathrm{BR}\left(10^{-6}\right) \\ \mathrm{A}_{\mathrm{CP}} \end{array}$	
Inclusive	$\begin{gathered} 64.1 \pm 2.4 \pm 4.0 \\ -0.01 \pm 0.04 \pm 0.01 \end{gathered}$	$\begin{gathered} 48.8 \pm 1.1 \pm 3.6 \\ 0.05 \pm 0.03 \pm 0.03 \end{gathered}$	BaBar: $210 \mathrm{fb}^{-1}$
$K^{*}(890)^{0} \pi^{+}$	$\begin{gathered} 9.0 \pm 0.8 \pm 0.6 \\ 0.07 \pm 0.08 \pm 0.07 \end{gathered}$	$\begin{aligned} 6.5 & \pm 0.4 \pm 0.6 \\ -0.14 & \pm 0.06 \pm 0.03 \end{aligned}$	Belle : 357 fb
$\mathrm{K}^{*}(1430)^{0} \mathrm{~J}^{+}$	$\begin{gathered} 34.0 \pm 1.7 \pm 2.1 \\ -0.06 \pm 0.03 \pm 0.03 \end{gathered}$	$\begin{gathered} 32.6 \pm 1.0 \pm 2.8 \\ 0.08 \pm 0.04 \pm 0.04 \\ \hline \end{gathered}$	BaBar: PRD 72, 072003, 2005. Belle : hep-ex/0509001.
$\rho(770)^{0} \mathrm{~K}^{+}$	$\begin{gathered} 5.1 \pm 0.8 \pm 0.7 \\ 0.32 \pm 0.13 \pm 0.09 \end{gathered}$	$\begin{gathered} 3.9 \pm 0.5 \pm 0.4 \\ * * * 0.30 \pm \\ 0.11^{+0.11}{ }_{-0.04} \end{gathered}$	$\begin{gathered} \text { All BRs are } \\ \mathrm{BR}\left(\mathrm{~B} \rightarrow \mathrm{Rh} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{+}\right) \end{gathered}$
$\mathrm{f}_{0}(980) \mathrm{K}^{+}$	$\begin{gathered} 9.5 \pm 1.0 \pm 0.8 \\ 0.09 \pm 0.1 \pm 0.07 \end{gathered}$	$\begin{gathered} 8.8 \pm 0.8 \pm 1.2 \\ -0.08 \pm 0.07 \pm 0.05 \end{gathered}$	*** 3.9σ significance for direct CPV in $\mathrm{\rho K}^{+}$
$\mathrm{f}_{2}(1270) \mathrm{K}^{+}$	<8.9	$\begin{gathered} 0.8 \pm 0.2 \pm 0.2 \\ -0.59 \pm 0.22 \pm 0.04 \end{gathered}$	
NR*	$2.85 \pm 0.6 \pm 0.7$	$16.9 \pm 1.3 \pm 1.6$	13

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{-} \pi^{+}$Dalitz Analysis

$\mathrm{f}_{\text {??? }}$-not the $\mathrm{f}_{2}(1270)$?
Fits better to $f_{0}(1370)$ but still not perfect. Same as what's in $\mathrm{K}^{+} \pi^{-} \pi^{+}$?

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{-} \pi^{+}$Results

BaBar: hep-ex/0408095, hep-ex/0408079, hep-ex/0508013 (accepted by PRD-RC) Belle : hep-ex/0507057, hep-ex/0509047.

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ Dalitz Analysis

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ Results

Mode	BaBar $\quad$$\mathrm{BR}\left(10^{-6}\right)$ A_{CP}	$\begin{array}{cc} \text { Belle } & \mathrm{BR}\left(10^{-6}\right) \\ A_{C P} \end{array}$	$\begin{aligned} & \text { BaBar: } 210 \mathrm{fb}^{-1} \\ & \text { Belle: } 78 \mathrm{fb}^{-1} \end{aligned}$
Inclusive	$34.9 \pm 1.0 \pm 1.0$	$36.6 \pm 4.2 \pm 3.0$	
$\mathrm{K}^{*}(890)^{+} \pi^{-}$	$\begin{gathered} 10.9 \pm 2.3 \pm 1.5 \\ -0.25 \pm 0.17 \pm 0.03 \end{gathered}$	$14.8 \pm 4.5 \pm 2.3$	
$K^{*}(1430)^{+} \pi^{-}$	$\begin{gathered} 11.2 \pm 1.5 \pm 3.5 \\ -0.07 \pm 0.12 \pm 0.08 \end{gathered}$	---------	BaBar: hep-ex/0408073 Belle : PLB 599, 148, 2004.
$\mathrm{K}^{*}(890)^{0} \pi^{0}$	$\begin{gathered} 3.0 \pm 0.9 \pm 0.5 \\ -0.01 \pm 0.23 \pm 0.13 \end{gathered}$	<3.5	
$K^{*}(1430)^{0} \pi^{0}$	$\begin{gathered} 7.9 \pm 1.5 \pm 2.7 \\ -0.34 \pm 0.15 \pm 0.11 \end{gathered}$	---------	All BRs are have been corrected for secondary BFs
$\rho(770)-\mathrm{K}^{+}$	$\begin{gathered} 8.6 \pm 1.4 \pm 1.0 \\ -0.13 \pm 0.15 \pm 0.14 \end{gathered}$	$15.1 \pm 3.4 \pm 2.5$	
NR*	<4.6	<9.4	
February 1, 2006		Mathew Graham	17

Other $\mathrm{B} \rightarrow \mathrm{K} \pi \pi$ Results

The "other" Клл modes are either highly suppressed (wrong sign) or are are more difficult experimentally

Mode	BaBar	$\begin{gathered} \mathrm{BR}\left(10^{-6}\right) \\ \mathrm{A}_{\mathrm{CP}} \\ \hline \end{gathered}$	Belle	$\begin{gathered} \mathrm{BR}\left(10^{-6}\right) \\ \mathrm{A}_{\mathrm{CP}} \\ \hline \end{gathered}$
$\mathrm{K}_{\mathrm{s}} \pi^{0} \pi^{0}$	$\begin{aligned} & S=-0.8 \\ & C=0.2 \end{aligned}$	$\begin{aligned} & \pm 0.71 \pm 0.08 \\ & \pm 0.52 \pm 0.13 \end{aligned}$		--------
$\mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$	<66 (CLEO)			
$\mathrm{K}_{\mathrm{L}} \pi \pi$	No Measurements			
K- $\pi^{+} \pi^{+}$		<1.8		<4.5
$\mathrm{K}-\pi^{+} \pi^{+}$	Unmeasured (and highly suppressed)			
$\mathrm{K}-\pi^{0} \pi^{0}$				

Babar: hep-ex/050817

$B \rightarrow K K \pi$ Results

Modes with two Kaons (even number of s-quarks) are suppressed. No 3-body modes have been observed yet.

Mode	BaBar$\mathrm{BR}\left(10^{-6}\right)$ A_{CP}	$\begin{array}{cc} \hline \text { Belle } & \begin{array}{c} \mathrm{BR}\left(10^{-6}\right) \\ \mathrm{A}_{\mathrm{CP}} \end{array} \\ \hline \end{array}$
K $\mathrm{K}^{-} \mathrm{J}^{+}$	<6.3	<13
$\phi \pi^{+}$	<0.41	-----------
$\mathrm{K}^{*} \mathrm{~K}^{+}$	<5.3 (CLEO)	
$\mathrm{K}+\mathrm{K}^{0} \pi^{-}$	--------	<18
$\mathrm{K}+\mathrm{K}-\pi^{0}$	<19 (CLEO)	
$\phi \pi^{0}$	<1.0	----------
$\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \pi^{+}$	----------	<3.2
$\mathrm{K}+\mathrm{K}^{0} \pi^{0}$	<24 (CLEO)	
$\mathrm{K}+\mathrm{K}^{+} \pi^{-}$	<1.3	<2.4

$B \rightarrow K K K$ Decays

These decays include $\phi K_{s}, K^{+} K^{-}-\mathrm{K}_{\mathrm{s}}$, and $\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \ldots$ (almost) exclusively $b \rightarrow s$ penguin decays!
$\ldots \mathrm{K}^{+} \mathrm{K}^{-}-\mathrm{K}_{\mathrm{s}}$ does have this tree conribution

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}^{+}$Dalitz Analysis

The fx state looks like a scalar...
M~1500MeV, $\Gamma \sim 140 \mathrm{MeV}$

February 1, 2006
Mathew Graham

$B+\rightarrow K+K-K+$ BAGMGB

Mode	BaBar$\mathrm{BR}\left(10^{-6}\right)$ A_{CP}	Belle$\mathrm{BR}\left(10^{-6}\right)$ A_{CP}
Inclusive	$29.6 \pm 2.1 \pm 1.6$ $0.02 \pm 0.07 \pm 0.03$	$30.6 \pm 1.2 \pm 2.3$
$\phi \mathrm{~K}^{+}$	$10.0 \pm 0.9 \pm 0.5$ $0.05 \pm 0.06 \pm 0.01$	$9.6 \pm 0.9 \pm 0.9$ $0.01 \pm 0.12 \pm 0.05$
NR^{*}	-----------	$24 \pm 1.5 \pm 3.5$

BaBar: 82, and $210 \mathrm{fb}^{-1}$ Belle : $140 \mathrm{fb}^{-1}$

BaBar: PRL 91, 051801, 2003. hep-ex/0408072.
Belle : PRL 91, 201801, 2003. PRD 71, 092003, 2005.

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{s}}$ Dalitz Analysis

In the model: $\phi, \mathrm{f}_{\mathrm{x}}(1500)^{* * *}, \chi_{0}, \mathrm{f}_{0}(980)$

Two solutions...switch of NR-f f_{x} Non-Resonant--exp($\beta \mathrm{M}_{\mathrm{K}+\mathrm{K}_{-}}$)

No P-wave (other than ϕ)

phase. Large difference in f_{x} amplitude depending on solution
${ }^{* * *} \mathrm{M}\left(\mathrm{f}_{\mathrm{x}}\right) \sim 1500 \mathrm{MeV}$; $\Gamma\left(\mathrm{f}_{\mathrm{x}}\right) \sim 100 \mathrm{MeV}$; it's a scalar
Probably the same as what is seen in $\mathrm{K}^{+} \mathrm{K}-\mathrm{K}^{+}$

$B \rightarrow K K K^{0}$ Branching Fraction Results

Mode	BaBar	Belle
ϕK^{0}	$8.4 \pm 1.4 \pm 0.5$	$9.0 \pm 2.0 \pm 0.7$
$\mathrm{~K}^{+} \mathrm{K}^{-}-\mathrm{K}^{0}$	$23.8 \pm 2.0 \pm 1.6$	$28.3 \pm 3.3 \pm 4.0$
$\mathrm{~K}^{+} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	$10.7 \pm 1.2 \pm 1.0$	$13.4 \pm 1.9 \pm 1.5$
$\mathrm{~K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	$6.9 \pm 0.9 \pm 0.6$	$4.2 \pm 1.6 \pm 0.8$
$\mathrm{~K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{L}}$	Unmeasured	
$\mathrm{K}^{+} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{L}}$	Unmeasured	

BaBar: PRD 93, 181805, 2004. PRD 69, 011102, 2004. PRL 93, 181805, 2004. PRL 95, 011801, 2005.
Belle : PRD 69, 012001, 2004. PRL 91, 201801, 2003. PRD 69, 012001, 2004.

$\mathrm{B}^{0} \rightarrow \mathrm{KKK}^{0}$ TD-CPV Results

Mode	$\begin{array}{lc} \hline \text { BaBar } & \sin 2 \beta_{\text {eff }} \\ C \end{array}$	Belle in $2 \beta_{\text {eff }}$ C	BaBar: $210 \mathrm{fb}{ }^{-1}$
ϕK^{0}	$\begin{aligned} & 0.50 \pm 0.25 \pm 0.06 \\ & 0.00 \pm 0.23 \pm 0.05 \end{aligned}$	$\begin{gathered} 0.44 \pm 0.27 \pm 0.05 \\ -0.14 \pm 0.17 \pm 0.07 \end{gathered}$	Belle : 357 fb-1
K+K-K ${ }^{0}$	$\begin{gathered} 0.41 \pm 0.18 \pm 0.13^{ *} \\ 0.23 \pm 0.13^{* *} \end{gathered}$	$\begin{aligned} & 0.60 \pm 0.53 \pm 0.14 \\ & 0.06 \pm 0.11 \pm 0.07 \end{aligned}$	ϕ region is vetoed
$\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$	$\begin{gathered} 0.63 \pm 0.30 \pm 0.04 \\ -0.10 \pm 0.25 \pm 0.05 \end{gathered}$	$\begin{gathered} 0.58 \pm 0.36 \pm 0.86 \\ -0.50 \pm 0.23 \pm 0.06 \end{gathered}$	**Includes K+K-K

BaBar: PRD 71, 091102, 2005. hep-ex/0507052.
Belle : hep-ex/0507037

Baryonic B-decays

Study of charmless baryonic decays has lagged behind the meson decays...they are quite a bit more complicated theoretically.
A few things we know:

- preference to many body final states... $\bar{p}<p \bar{p} \pi<? p \bar{p} \pi \pi$ -enhancement at low $p \bar{p}$ mass is observed in all modes -similarly seen in $\mathrm{p} \bar{\Lambda}$

Baryonic Results

Mode	BaBar	Belle
$\mathrm{pp} \pi^{+}$	-------------	$3.1 \pm 0.7 \pm 0.4$
$\mathrm{pp} \pi^{0}$	--------------	------
ppK ${ }^{+}$	$6.7 \pm 0.5 \pm 0.4$	$5.3 \pm 0.4 \pm 0.6$
ppK ${ }^{0}$	-----------	$1.2 \pm 0.3 \pm 0.1$
ppK**	--	$10.3 \pm 3.0 \pm 1.5$
ppK*0	------------	<7.6
pA ${ }^{-}$	-----------	$3.3 \pm 0.6 \pm 0.4$
pAK ${ }^{-}$	-------	<0.82
$\mathrm{p} \Sigma^{0} \pi^{-}$	-----------	<3.8
$\Lambda \Delta \pi^{+}$	----------	<2.8
$\Lambda \Delta \mathrm{K}^{+}$	----------	$2.9 \pm 0.8 \pm 0.4$

Babar: $210 \mathrm{fb}^{-1}$ Belle: varies

These BFs are roughly 5-10 times smaller than the mesonic decays

BaBar has some work to do...

Babar: PRD 72, 051101, 2005.
Belle: PRL 64, 131801, 2004. PLB 617, 141, 2005. PRL 90 201812, 2003.
February 1, 2006
Mathew Graham

The pp Enhancement: a Resonance?

 pay no attention to the closed circles ;)

BES has associated a resonance decaying to $\pi \pi \eta$ ' with this enhancement... $\mathrm{M}=1834 \mathrm{MeV}$ $\Gamma=69 \mathrm{MeV}$

The pp spectrum from ppK^{+}and pp form factor look quite similar...not great agreement with the resonance though

Lots of numbers... most make sense

Status of sin2 $\beta_{\text {eff }}$

The 3-body groups supply most of these very important measurements

...still a hint of deviation from the SM?

Summary

- There's a lot of variety of physics involved with 3body charmless decays
- CKM angles... α (and γ)
- New Physics search through s-penguins
- Spectroscopy
- Come a long way, but still work to do
- We'd like to do away with the Q2B analysis
- A Dalitz analysis is the right tool and it should be used...we have the technology, even for TD-CP!
- With more data:
- Dalitz analysis will become feasible for more modes
- some of the current measurements can become "precision" measurements
- we should start to see some of the very rare decays
- the baryonic decays may start to become more interesting

