Dalitz Analysis of Heavy Flavor decays.

Antimo Palano INFN and University of Bari

Three-Body Charmless B Decays Workshop, Paris February 1-3,2006

 \Box Summary.

- Dalitz plot analysis;
- Results from B decays;
- Scalar mesons from charm and charmonium decays;
- Conclusions;

Dalitz plot analysis.

The Dalitz plot analysis is the most complete method for extracting amplitudes and phases in charm and B three-body decays. D. Asner, hep-ex/0410014
 It assumes an Isobar model, which means that the decay is always mediated by a two-body resonance.

□ Analyses are usually performed by unbinned maximum likelihood fits.□ The likelihood is parametrized as:

$$L = x \mid A_1 + c_2 A_2 e^{i\phi_2} + c_3 A_3 e^{i\phi_3} + \dots \mid^2 + (1 - x)B$$

where A_i and ϕ_i are amplitudes and phases for each contributions, all measured with respect to a reference amplitude.

 \Box x is the signal fraction and B is the background.

Dalitz plot analysis: Amplitudes.

 \Box Amplitudes written as:

$$A_i = BW_i \times \Omega_i$$

where BW_i are Relativistic Breit-Wigner and Ω_i describe the angular distributions.

 \square Standard procedure is to use the helicity formalism.

 \Box Zemach tensors can also be used.

 \square All amplitudes normalized on the Dalitz plot.

 \Box Spin of intermediate resonances clearly recognized.

 \Box Because of interferences the sum of the fractions does not add up to 1.

Dalitz plot analysis: Background.

□ In some charm decays the background is consistent with being flat.□ A Non Resonant contribution is often included:

 $c_{NR}e^{i\phi_{NR}}$

□ In charm decays this contribution is small or consistent with zero.□ Not possible in B decays.

 \square One problem from B decays is the presence of a sizeable background.

A background description is needed, possibly extrapolated from sidebands: difficult to distinguish from the true possible non resonant contribution.
Difficult to study interferences between signal and Non Resonant contribution.

Dalitz plot analysis: Background.

 \Box Example from BELLE: ΔE distribution from $B^0 \to K_S^0 \pi^+ \pi^-$.

 \Box Can be populated by background.

 \Box But also unknown resonances. Light mesons spectroscopy known only up to a mass of $\approx 2~{\rm GeV}.$

Background parametrization.

 \square Different phenomenological background paramerizations. Example:

$$A_{nr} = a_1^{nr} e^{-\alpha s_{13}} e^{i\delta_1^{nr}} + a_2^{nr} e^{-\alpha s_{23}} e^{i\delta_2^{nr}}$$

where s_{13} and s_{23} are the squared two-body effective masses. \Box This background accounts, for the $B^0 \to K_S^0 \pi^+ \pi^-$ case, to $41.9 \pm 5.2 \%$.

Dalitz plot analysis in B decays.

Many Dalitz analyses in B and charm decays are in progress.
Some projections from:

- $B^0 \to K^0_S \pi^+ \pi^-$
- $B^+ \rightarrow K^+ \pi^+ \pi^-$
- $B^0 \rightarrow K^0_S K^+ K^-$
- $B^+ \rightarrow \pi^+ \pi^+ \pi^-$

 \Box Cuts due to suppression of intermediate charm and charmonium decays.

□ Decays dominated by spin 0 and spin 1 resonances. □ Presence of $K^*(890)$ and $K_0^*(1430)$ resonances in $K\pi$. □ Presence of $\rho(770)$ and $f_0(980)$ and $f_0(1300)$ resonances in $\pi\pi$.

Dalitz plot analysis of $B^+ \to K^+ \pi^+ \pi^-$.

 \Box Data from BELLE (386 fb^{-1}) : $\pi^+\pi^-$ projection. Similar features, presence of $\rho(770)$ and $f_0(980)$ and $f_0(1300)$ resonances.

 \Box Need for an extra $K\pi$ S-wave. Using the $\kappa(800)$ the fit improves but not possible to extract its parameters.

 \square Evidence for direct CP violation at level of 3.9 σ in:

$$B^{\pm} \to \rho(770) K^{\pm}$$

Dalitz plot analysis of $B^+ \to K^+ \pi^+ \pi^-$.

 \Box Data from BABAR (205 fb^{-1}): $\pi^+\pi^-$ projection. Similar features, presence of $\rho(770)$ and $f_0(980)$.

 \Box Not clear $f_0(1300)$.

 \Box $K\pi$ S-wave parametrized according to the LASS fit to the S-wave $K\pi$ data.

 \Box CP asymmetry at level of 2.4 σ .

Dalitz plot analysis of $B^+ \to K^+ K^+ K^-$.

 \Box Data from BELLE (140 fb^{-1}): K^+K^- projection.

□ Presence of $f_0(1500)$? Analysis prefers a scalar resonance. □ If $f_0(1500)$, something wrong in its branching fractions. Dalitz plot analysis of $B^0 \to K^0_S K^+ K^-$.

 \Box Data from BABAR (215 fb^{-1}): K^+K^- projection.

 \square Presence of $f_0(1500)$? Analysis prefers a scalar resonance.

Dalitz plot analysis of $B^+ \to \pi^+ \pi^+ \pi^-$.

\Box Data from BABAR (210 $fb^{-1}):$ $\pi^+\pi^-$ projection.

 \Box Decay dominated by $\rho^0(770)$.

Unresolved Issues.

- \Box Many other Dalitz analyses in progress.
- \Box Uncertainties dominated by the poor knowledge of many aspects of light meson spectroscopy.
- \square Small scalar contribution below the ϕ in $B^0 \to K^0_S K^+ K^-$? Issue related to
- the $f_0(980)$ parameters. Strong $f_0(980)$ signal observed in $B^0 \to K_S^0 \pi^+ \pi^-$
- \Box What is the state $f_X(1500)$?
- \Box What about the $\pi^+\pi^-$ S-wave? Does the $\sigma(500)$ exists?
- \Box What about the $K\pi$ S-wave? Does the $\kappa(800)$ exists?
- \square Not possible to resolve these issues within B decays.
- \Box Need information from other sources such as charm or charmonium decays.

Charm decays.

Charmed mesons are produced with high statistics in B-factories.
 Some three-body charm decays can be very simple and produce useful information on scalar and vector mesons.

□ In some cases decay channels can be switched off by physics.□ Examples:

$$D^+ \to K^- \pi^+ \pi^+, \qquad D^+ \to \pi^+ \pi^+ \pi^-, \qquad D^+_s \to \pi^+ \pi^+ \pi^-$$

can give useful information on the structure of the S-wave in the $K\pi$ and $\pi\pi$ final states.

 \Box D meson decay to resonances coupled to $u\bar{u} + d\bar{d}$, D_s mesons to $s\bar{s}$.

Charmonium decays.

 $\Box \ J/\psi$ radiative and hadronic decays are also a reach source of information on scalar mesons.

 \Box Radiative J/ψ decays could be a source of gluonium, hadronic $J/\psi \rightarrow \omega h^+ h^-$ and $J/\psi \rightarrow \phi h^+ h^-$ can give information on states coupled to $u\bar{u} + d\bar{d}$ and $s\bar{s}$ states.

Status of scalar mesons.

 \square Too many scalar mesons below 2. GeV.

	I = 1/2	I = 1	$\mathbf{I}=0$
	k(800)		σ
		$a_0(980)$	$f_0(980)$
\Box Two nonets? 4-quark states? Gluonium?			$f_0(1370)$
\Box Where is the scalar glueball?	$K_0^*(1430)$	$a_{0}(1/190)$	$f_{0}(1500)$
\square Many proposals.		<i>a</i> ŋ(1450)	$\int (1000)$
Narrow: $f_0(1500), f_0(1700).$			$f_0(1700)$
Wide: σ .	$K_0^*(1950)$		

□ Information on some of these states, such as the existence of k(800) and σ can be extracted from existing data from charm or charmonium decays. □ Unlikely to produce gluonium in charm decays. The evidence for $\sigma(500)$.

 \Box The $\pi\pi$ amplitude and phase has been measured in:

$$\pi^- p \to \pi \pi n$$

The evidence for $\sigma(500)$.

 \Box The existence of the $\sigma(500)$ has been triggered again by the Dalitz Plot analysis of $D^+ \to \pi^+ \pi^+ \pi^-$ (E791).

 \Box In order to obtain a good fit of the Dalitz plot they need to introduce a new wide scalar resonance:

 $m = 478 \pm 24 \pm 17 \quad MeV$

The evidence for $\sigma(500)$.

 \square BES: study of $J/\psi \to \omega \pi^+ \pi^-$. Large threshold scalar enhancement. If fitted using a Breit-Wigner:

 $m = 526 \pm 15, \qquad \Gamma = 535 \pm 50 \quad MeV$

 \Box However, no phase motion measured.

The $f_0(980)$ resonance.

 \Box The $f_0(980)$ resonance has been discovered many years ago but has still uncertain parameters and interpretations because is just sitting at the $K\bar{K}$ threshold and strongly coupled to the $\pi\pi$ and $K\bar{K}$ final states.

 \Box Many good data exist on its $\pi\pi$ projection.

 \Box A few good data on its the $K\bar{K}$ projection, complicated by the presence of the $a_0(980)$ resonance.

Extracting the $f_0(980)$ parameters.

 \Box The $f_0(980)$ lineshape is determined by:

- Its coupling to the $K\bar{K}$ final state;
- The interference with other wide scalar resonances;
- Resolution effects related to both the relatively narrow width and the presence of thresholds;

J/ψ decays.

□ First analyses performed by MarkIII and DM2. Recent analysis from BES.□ Study of:

$$J/\psi \to \phi \pi^+ \pi^-$$
 and $J/\psi \to \phi K^+ K^-$

 \Box Here the $f_0(980)$ amplitude has been fitted to the Flatté form:

$$f = \frac{1}{M^2 - s - im_0(g_1\rho_{\pi\pi} + g_2\rho_{K\bar{K}})}.$$
 (1)

 $\Box \rho$ is Lorentz invariant phase space, $2k/\sqrt{s}$, where k refers to the π or K momentum in the rest frame of the resonance.

 \Box The result is:

 $g_2/g_1 = 4.21 \pm 0.25 \text{ (stat)} \pm 0.21 \text{ (syst)}.$

 \Box Values are:

 $M = 965 \pm 8 \pm 6 \text{ MeV/c}^2, g_1 = 165 \pm 10 \pm 15 \text{ MeV/c}^2.$

What the $f_X(1500)$ can be?

 \square No signal in the S-wave from $\pi^- p \to K^0_S K^0_S n$.

 \square Some $f_0(1400)$ signal.

What the $f_X(1500)$ can be?

The
$$f_0(1500)$$
.

 $\Box f_0(1500) (M=1509\pm10, \Gamma = \overline{116}\pm 17 \text{ MeV})$ was discovered by Crystal Barrel in $\bar{p}p$ annihilations at rest.

$$\bar{p}p \to \pi^0 \pi^0 \pi^0, \bar{p}p \to \eta \eta \pi^0, \bar{p}p \to \eta' \eta \pi^0, \bar{p}p \to K_L^0 K_L^0 \pi^0$$

 \Box Rates:

 $\pi\pi: K\bar{K}: \eta\eta: \eta\eta' = (5.1 \pm 2.0): (0.71 \pm 0.21): (1.0): (1.3 \pm 0.5)$

Search for gluonium in B decays.

 \Box The possibility of searching for gluonium in B decays has been suggested by the experimental measurement of a large decay rate for:

$$B \to \eta' X, \qquad B \to \eta' K$$

 \Box The diagram giving rise to these processes is:

 $b \rightarrow sg$

 \Box There are arguments in favour of a gluonic content of the η' , therefore gluonium states may be produced in B decays.

 \Box The total rate $b \to sg$ has been calculated perturbatively:

$$B(b \to sg) = (2-5) \times 10^{-3}$$

 \Box One should look for:

$$B \to K^{(*)} \pi \pi, KK, \eta \eta, \eta \eta'$$

in searching for scalar or tensor states.

H. Fritzsch, Phys. Lett. B415 (1997) 83

P. Minkowski and W. Ochs hep-ph/0404194

Conclusions.

 \Box The study of charmless B decays is a new window where it is possible to search for New Physics but also to have new inputs to solve old puzzles related to light meson spectroscopy.

 \Box Useful information for studying B decays can be extracted from the high statistics study of charm and charmonium states.