
MATLAB C/C++

The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide



Version 1

Graphics Library

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB C/C++ Graphics Library User’s Guide
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 1999 New for Version 1.0, Release 11 (Online only)
January 2000 Revised for Version 1.0.2, Release 11 (Online only)

Contents
1
Introduction

The MATLAB C/C++ Graphics Library 1-2
Components of the MATLAB C/C++ Graphics Library 1-2
Restrictions . 1-3
Sources of Additional Information . 1-6

Installing the MATLAB C/C++ Graphics Library 1-7
Before You Install . 1-7
System Requirements . 1-7
Downloading and Installing on PCs . 1-8
Downloading and Installing on UNIX Systems 1-10

Configuring the MATLAB C/C++ Graphics Library 1-14
Configuring the Graphics Library on PCs 1-14
Configuring the Graphics Library on UNIX Systems 1-16

2
Creating Stand-Alone Graphics Applications

Introduction . 2-2

Overview . 2-3

Building a Stand-Alone Graphics Application 2-5
Building Graphics Applications on a PC 2-5
Building Graphics Applications on a UNIX System 2-7
Running the MATLAB Compiler Outside MATLAB 2-9
Changes in Run-time Behavior and Appearance 2-10

Packaging a Graphics Application for Redistribution . . . 2-13
Packaging Graphics Applications on a PC 2-13
Packaging Graphics Applications on a UNIX System 2-14
i

ii Contents
Compiling and Linking Translated M-Files 2-15
Compiling Translated M-Files . 2-15
Linking with MATLAB Libraries . 2-15

3
Troubleshooting

Introduction . 3-2
Using Unsupported MATLAB 5.3 Features 3-2
Compiling Application Written as Scripts 3-3
Fixing Callback Problems: Illegal Syntax 3-4
Fixing Callback Problems: Missing Functions 3-7
Depending on Graphics Settings in Start-Up Files 3-9
Print Option Does Not Appear on File Menu 3-9

4
Reference

MATLAB C/C++ Graphics Library . 4-2
MATLAB 5.3 Built-In Graphics Functions 4-2
MATLAB 5.3 M-File Graphics Functions 4-3

Components of the MATLAB C/C++ Graphics Library . . . 1-2
Restrictions . 1-3
Sources of Additional Information 1-6

Installing the MATLAB C/C++ Graphics Library 1-7
Before You Install 1-7
System Requirements 1-7
Downloading and Installing on PCs 1-8
Downloading and Installing on UNIX Systems 1-10

Configuring the MATLAB C/C++ Graphics Library . . 1-13
Configuring the Graphics Library on PCs 1-13
Configuring the Graphics Library on UNIX Systems 1-15
1

Introduction

The MATLAB C/C++ Graphics Library 1-2

1 Introduction

1-2
The MATLAB C/C++ Graphics Library
The MATLAB ® C/C++ Graphics Library is a collection of MATLAB graphics
routines distributed as a single library. The graphics library makes the
visualization and GUI-building routines of MATLAB available to stand-alone
C and C++ applications. A stand-alone C or C++ application is an executable
program that can run independently of the MATLAB interpreted environment.
Stand-alone applications are a convenient way to package and distribute a
customized MATLAB application.

Using this library, in conjunction with the MATLAB Compiler and the
MATLAB C/C++ Math Library, you can create stand-alone applications from
M-files that use lines, text, meshes, and polygons as well as interactive
graphical user interface components such as menus, push buttons, and dialog
boxes.

Note You must use the MATLAB Compiler to create C or C++ stand-alone
graphics applications. Calling MATLAB C/C++ Graphics Library routines
directly from a C or C++ source module is not supported.

The following sections provide information about:

• “Components of the MATLAB C/C++ Graphics Library” on page 1-2

• “Restrictions” on page 1-3

• “Sources of Additional Information” on page 1-6

After reading these sections, continue with “Installing the MATLAB C/C++
Graphics Library” on page 1-7 and then read “Configuring the MATLAB C/C++
Graphics Library” on page 1-14.

Components of the MATLAB C/C++ Graphics Library
The MATLAB C/C++ Graphics Library contains more than 100 routines,
including:

• MATLAB 5.3 built-in graphics functions, such as surf, plot, get, and set

• Some commonly used MATLAB 5.3 M-file graphics functions, such as
newplot, gcf, gca, gco, and gcbf

The MATLAB C/C++ Graphics Library
For a complete list of the routines included in the graphics library, see Chapter
4, “Reference.”

Note While only a subset of MATLAB M-file graphics functions are included
in the MATLAB C/C++ Graphics Library, the MATLAB Compiler can compile
many others graphics M-files, if they are included in a graphics application.

Restrictions
The MATLAB C/C++ Graphics Library supports most MATLAB 5.3 features,
including multidimensional arrays, cell arrays, and structures. However, there
are some MATLAB features the graphics library does not support, including:

• MATLAB integer types (int8, int16, int32, uint8, uint16, and uint32)

• MATLAB objects

• OpenGL

• plotedit command

In addition to these restrictions, the graphics library provides limited support
for printing and certain callback coding practices.

Note The graphics library is subject to the same limitations as the MATLAB
Compiler and the MATLAB C/C++ Math Library. For example, MATLAB
functions that require the MATLAB interpreter, most notably eval() and
input(), are not supported. See the MATLAB Compiler and MATLAB C/C++
Math Library documentation for information about their restrictions.

Graphics Library Printing Support
The graphics library supports printing in stand-alone graphics applications,
with some restrictions.

Default Printing. If your application uses default print command settings, it
should require no modification. When a user of your stand-alone graphics
application selects the Print option on the figure window File menu, the print
command executed by default sends the current figure to whatever printer the
1-3

1 Introduction

1-4
user has set up as the default printer on their system. In addition, the graphics
library honors any figure or axes properties your application sets to customize
the printed output.

Custom Printing. If your application uses print command switches to specify
device drivers and other options, be aware that the graphics library supports
only a subset of these switches. For example, the graphics library supports
most of the MATLAB built-in drivers, such as the PostScript drivers. However,
the graphics library does not support any of the Ghostscript drivers.

Table 1-1 lists the device drivers supported by the graphics library. For more
information about specifying device drivers, see “Printing MATLAB Graphics”
in Using MATLAB Graphics.

Table 1-1: Device Drivers Supported by the Graphics Library

Device Description

–dbitmap Windows Bitmap (BMP) format (Windows only)

–deps Level 1 black and white Encapsulated PostScript (EPS)

–depsc Level 1 color Encapsulated PostScript (EPS)

–deps2 Level 2 black and white Encapsulated PostScript (EPS)

–depsc2 Level 2 color Encapsulated PostScript (EPS)

–dhpgl HPGL compatible with HP 7475A plotter

–dill Adobe Illustrator 88 compatible illustration file

–dps Level 1 black and white PostScript

–dpsc Level 1 color PostScript

–dps2 Level 2 black and white PostScript

–dpsc2 Level 2 color PostScript

–dwin Windows black and white printing services. (Windows only)

–dwinc Windows color printing services. (Windows only)

The MATLAB C/C++ Graphics Library
In addition to device drivers, the MATLAB print command supports several
command-line options that control various aspects of the print job, such as the
renderer used. The graphics library supports the subset of these options that
are listed in Table 1-2. For a complete list of print command options, see
“Printing MATLAB Graphics” in Using MATLAB Graphics.

Unsupported Application Coding Practices
Certain coding practices, used mainly in callback strings in graphics M-files,
that are supported in the MATLAB interpreted environment are not supported
in stand-alone graphics applications. For example, MATLAB allows you to
specify math expressions in a callback property string. This is not supported in
stand-alone graphics applications. See Chapter 3, “Troubleshooting” for more
information about unsupported coding practices and how to work around them.

Table 1-2: print Command Line Options Supported by the Graphics Library

Option Description

–adobecset Use PostScript default character set encoding

–append Append to existing PostScript file without overwriting

–cmyk Use CMYK colors in PostScript instead of RGB

–noui Suppress printing of user interface controls

–rnumber Specify resolution in dots per inch

–painters Render using Painter’s algorithm

–zbuffer Render using Z-buffer
1-5

1 Introduction

1-6
Sources of Additional Information
This manual describes the MATLAB C/C++ Graphics Library but it does not
describe how to use MATLAB graphics or specific MATLAB graphics functions.
This table lists sources of additional information about these topics and other
topics related to using the MATLAB C/C++ Graphics Library. The online
reference documentation is available through the MATLAB Help Desk.

Topic Document

Using MATLAB graphics
functions

Using MATLAB Graphics

Building graphical user
interfaces

Building GUIs with MATLAB

Individual MATLAB
graphical functions

Online MATLAB Function Reference

Using the MATLAB
Compiler

MATLAB Compiler User’s Guide

Using the MATLAB
C/C++ Math Library

MATLAB C Math Library User’s Guide
MATLAB C++ Math Library User’s Guide

Individual MATLAB C and
C++ math functions

Online MATLAB C Math Library Function
Reference
Online MATLAB C++ Math Library
Function Reference

Installing the MATLAB C/C++ Graphics Library
Installing the MATLAB C/C++ Graphics Library
The MATLAB C/C++ Graphics Library is available as a downloadable product
from the MathWorks Web site. This section describes:

• Installation prerequisites in “Before You Install” on page 1-7

• “System Requirements” on page 1-7

• “Downloading and Installing on PCs” on page 1-8

• “Downloading and Installing on UNIX Systems” on page 1-10

After reading this section, continue with “Configuring the MATLAB C/C++
Graphics Library” on page 1-14.

Before You Install
Before you can install and use the MATLAB C/C++ Graphics Library, you must
have a valid license for this product. When you purchase a MATLAB product,
The MathWorks sends you your license in an e-mail message. If you have not
received your license, contact The MathWorks immediately via:

• The Web at www.mathworks.com/mla. Log in to MATLAB Access using your
last name and Access number. MATLAB Access membership is free of charge
and available to all customers. The primary contact on each license is
automatically enrolled in MATLAB Access and receives an Access number
via e-mail from The MathWorks.

• E-mail at service@mathworks.com

• Telephone at 508-647-7000, ask for Customer Service

• Fax at 508-647-7001

System Requirements

Software. To use the MATLAB C/C++ Graphics Library to create a stand-alone
C or C++ application requires several other MATLAB products:

• MATLAB Version 5.3.1

• MATLAB Compiler Version 2.0.1

• MATLAB C/C++ Math Library Version 2.0.1

You must also have installed on your system an ANSI C or C++ compiler.
1-7

1 Introduction

1-8
Hardware. The MATLAB C/C++ Graphics Library is available for PCs running
Microsoft Windows or Linux and for Sun, HP, SGI, and Alpha UNIX platforms.
The MATLAB C/C++ Graphics Library is not supported on IBM RS/6000
systems.

For the most up-to-date information about the systems supported by MATLAB,
Release 11, see the System Requirements page in the Products area at the
MathWorks Web site, www.mathworks.com.

Downloading and Installing on PCs
To download and install the graphics library on a PC, follow these instructions.

1 Go to The MathWorks Web site, www.mathworks.com, and click on the
Downloads selection listed under Quick Links.

2 If you have your Personal License Password, click on the Download
Products link. If you do not have your PLP, follow the appropriate link to
obtain it.

3 Enter your name and MATLAB Access number.

4 Select the type of system on which you want to run the graphics library from
the list of supported systems, and then click the Continue button. You can
select multiple systems.

5 Select the MATLAB C/C++ Graphics Library from the list of products you
are licensed to install, and then click the Continue button.

6 Download the required product archives, and any optional product archives,
by right-clicking on their links and selecting the save option provided by
your browser. You can specify the folder into which you want to download
the product archive and the name you want assigned to the archive.

7 When the download is complete, view the contents of your download folder
and double-click on the graphics library archive. This starts the MATLAB
installation program. Follow the instructions included in each dialog box
displayed by the installation program. You will need your license
information to complete the installation.

Installing the MATLAB C/C++ Graphics Library
Note Make sure there is space available in your system’s temporary
directory before starting the installation program. The name of the temporary
directory is defined by the environment variable %TEMP%.

For more information about the installation process, read the Installation
Guide for PC, available in PDF format on the Support page at The MathWorks
Web site. Click on the Documentation link and go to the Online Manuals page
to find the documentation in PDF format.

Files Installed on PCs
This table lists the shared libraries (DLLs), include files, and other files
installed on a PC as part of a MATLAB C/C++ Graphics Library installation.
In the table, <matlab> stands for your top-level MATLAB installation
directory.

Note On PCs, the MATLAB C/C++ Graphics Library installation includes
new versions of several standard MATLAB dynamic link libraries (DLLs).

Table 1-3: List of Files Installed on PCs

Files Location Description

sgl.dll
hg_sgl.dll
uiw_sgl.dll
hardcopy_sgl.dll
gui_sgl.dll
mpath.dll

<matlab>\bin Shared libraries containing
stand-alone versions of MATLAB
built-in and M-file graphics
functions.

All DLLs are in WIN32 format.

sgl
sglcpp

<matlab>\bin MATLAB Compiler bundle files,
containing all the compiler options
required to build a stand-alone
graphics application.
1-9

1 Introduction

1-1
Verifying Your Installation
To verify that the MATLAB C/C++ Graphics Library has been installed
correctly, create a stand-alone application from the example M-file distributed
with the library. Chapter 2, “Creating Stand-Alone Graphics Applications”
describes how to build a stand-alone application. You can find the graphics
library example program in the <matlab>\extern\examples\sgl directory.

Downloading and Installing on UNIX Systems
To download and install the MATLAB C/C++ Graphics Library on a UNIX
system, follow these instructions:

1 Go to The MathWorks Web site, www.mathworks.com, and click on the
Downloads selection listed under Quick Links.

2 If you have your License File, click on the Download Products link. If you
do not have your License File, follow the appropriate link to obtain it.

3 Enter your name and MATLAB Access number.

4 Select the type of system on which you want to run the graphics library from
the list of supported systems, and then click the Continue button. You can
select multiple systems.

5 Select the MATLAB C/C++ Graphics Library from the list of products you
are licensed to install, and then click the Continue button.

libsgl.h
libsglm.h
sgl.def

<matlab>\extern\include Graphics library header files (.h)
and module definition file (.def).

FigureMenuBar.fig
FigureToolBar.fig

<matlab>\extern\include Alternate menu bar and toolbar files
used with the MATLAB figure
window in stand-alone applications.

flames.m
flames.mat

<matlab>\extern\examples\sgl The M-file and MAT file for the
graphics library example program.

Table 1-3: List of Files Installed on PCs (Continued)
0

Installing the MATLAB C/C++ Graphics Library
6 Create a MATLAB installation directory, if it doesn’t already exist, in your
root directory (for example, /root/matlab).

7 Download the required product archives, and any optional product archives,
into the MATLAB installation directory by right-clicking their links and
selecting the save option provided by your browser. Do not change the names
of the archives.

8 In the installation directory, extract files from the boot.ftp archive using
the UNIX tar command

tar -xvf boot.ftp

This archive contains an installer program that extracts files from the other
archives you downloaded.

9 Place a copy of your License File in the MATLAB installation directory and
call it license.dat.

10 Run the MATLAB installation program and follow the instructions
presented on each dialog box.

install_matlab -X

For more information about the installation process, read the Installation
Guide for UNIX, available in PDF format on the Support page at The
MathWorks Web site. Click on the Documentation link and go to the Online
Manuals page to find the documentation in PDF format.

Files Installed on UNIX Systems
This table lists the shared libraries, include files, and other files installed on a
UNIX system as part of a MATLAB C/C++ Graphics Library installation. In
the table, <matlab> stands for your top-level MATLAB installation directory.
1-11

1 Introduction

1-1
Table 1-4: List of Files Installed on UNIX Systems

File Location Description

libmwsgl.ext,

where .ext is .so on
Solaris systems and
.sl on HP 700
systems

<matlab>/extern/lib/$ARCH

where <matlab> is the name of your
MATLAB root directory and $ARCH
identifies the system architecture
(i.e., alpha, lnx86, sgi, sgi64, sol2)

The graphics library binary file.

The libraries are shared
libraries for all platforms.

sgl
sglcpp

<matlab>/bin MATLAB Compiler bundle files,
containing all the compiler
command line options required
to build a stand-alone graphics
application.

libsgl.h
libsglm.h

<matlab>/extern/include The graphics library header file
that contains prototypes for both
the built-in and M-file graphics
functions.

FigureMenuBar.fig
FigureToolBar.fig

<matlab>/extern/include Alternate menu bar and toolbar
files used with the MATLAB
figure window in stand-alone
applications.

flames.m
flames.mat

<matlab>/extern/examples/sgl The M-file and MAT file for the
graphics library example
program.
2

Installing the MATLAB C/C++ Graphics Library
Verifying Your Installation
To verify that the MATLAB C/C++ Graphics Library has been installed
correctly, create a stand-alone application from the example M-file distributed
with the library. Chapter 2, “Creating Stand-Alone Graphics Applications”
describes how to build a stand-alone application. You can find the example
program in the <matlab>/extern/examples/sgl directory.
1-13

1 Introduction

1-1
Configuring the MATLAB C/C++ Graphics Library
After installing the MATLAB C/C++ Graphics Library, you should configure it
using the mbuild -setup command. When you run mbuild, you specify:

• The ANSI C or C++ compiler you intend to use to compile the code generated
by the MATLAB Compiler

• The libraries you want to link your application with; specifically, the
MATLAB C/C++ Math Library alone, or the math library and the MATLAB
C/C++ Graphics Library together.

This section includes information about:

• “Configuring the Graphics Library on PCs” on page 1-14

• “Configuring the Graphics Library on UNIX Systems” on page 1-16

For more information about the mbuild utility, see the MATLAB Compiler
User’s Guide. To learn how to build a stand-alone graphics application, see
Chapter 2, “Creating Stand-Alone Graphics Applications”.

Configuring the Graphics Library on PCs
To configure the graphics library on a PC running Microsoft Windows, run the
mbuild -setup command. You can run mbuild at the MATLAB prompt or in a
DOS Command Prompt window.

mbuild uses options files to specify all the compile and link command line
options necessary to create a stand-alone graphics application using a
particular compiler. When you configure the graphics library, you determine
which options file mbuild uses to create stand-alone applications.

When you run mbuild, you specify the name and version of the compiler you
intend to use. mbuild locates the options file specific to that compiler, and
creates a copy of it in your system’s user profiles directory. From then on,
whenever the MATLAB Compiler calls mbuild to invoke your C or C++
compiler, it uses this local copy of the options file.

The following example illustrates running mbuild -setup on a PC. The
example shows how to specify a compiler. If you have only one C or C++
compiler installed on your system, mbuild can determine its name and location
automatically. To link with the graphics library, answer yes (y) at the mbuild
prompt.
4

Configuring the MATLAB C/C++ Graphics Library
mbuild -setup

Please choose your compiler for building stand-alone MATLAB
applications.

Would you like mbuild to locate installed compilers [y]/n? n

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0, 5.2, or 5.3)
[2] Microsoft Visual C/C++ (version 4.2, 5.2, or 6.0)
[3] Watcom C/C++ (version 10.6 or 11)

[0] None

Compiler: 2

Choose the version of your C/C++ compiler:
[1] Microsoft Visual C/C++ 4.2
[2] Microsoft Visual C/C++ 5.0
[3] Microsoft Visual C/C++ 6.0

version: 3

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Program Files\DevStudio6.
Do you want to use this compiler [y]/n? y

Do you want to link against the C/C++ Graphics Library [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: D:\Program Files\DevStudio6
Linking against the C/C++ Graphics Library

Are these correct?([y]/n): y
1-15

1 Introduction

1-1
Configuring the Graphics Library on UNIX Systems
To configure the graphics library on a UNIX system, run the mbuild -setup
command. You can run mbuild at the MATLAB prompt or at the system
prompt.

mbuild uses options files to specify all the compile and link command line
options necessary to create a stand-alone graphics application. When you
configure the graphics library, you specify the name of the options file you want
to use.

On UNIX systems, mbuild presents a choice of two options files:
mbuildopts.sh and mbuildsglopts.sh. To create a stand-alone graphics
application, choose the mbuildsglopts.sh file (selection 2). When you select an
options file, mbuild creates a local copy of the options file in your ~/matlab
directory.

Note Even though you select the mbuildsglopts.sh options file, when
mbuild creates the local copy in ~/matlab, it renames the file to
mbuildopts.sh.

The following example illustrates running mbuild on a UNIX system. To link
with the graphics library, select option 2. If you have run mbuild before, a local
copy of the options file exists in your ~/matlab directory. When mbuild asks if
you want to overwrite this existing version of mbuildopt.sh, answer yes (y).
6

Configuring the MATLAB C/C++ Graphics Library
mbuild -setup

Using the ’mbuild -setup’ command selects an options file that is
placed in ~/matlab and used by default for ’mbuild’. An options
file in the current working directory or specified on the command
line overrides the default options file in ~/matlab.

Options files control which compiler to use, the compiler and link
command options, and the run-time libraries to link against.

To override the default options file, use the ’mbuild -f’ command
(see ’mbuild -help’ for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbuildopts.sh :

Build and link with MATLAB C/C++ Math Library
2: /matlab/bin/mbuildsglopts.sh :

Build and link with MATLAB C/C++ Math and Graphics
Libraries

Enter the number of the options file to use as your default options
file: 2
1-17

1 Introduction

1-1
8

Overview . 2-3

Building a Stand-Alone Graphics Application 2-5
Building Graphics Applications on a PC 2-5
Building Graphics Applications on a UNIX System 2-7
Running the MATLAB Compiler Outside MATLAB 2-9
Changes in Run-time Behavior and Appearance 2-10

Packaging a Graphics Application for Redistribution . 2-13
Packaging Graphics Applications on a PC 2-13
Packaging Graphics Applications on a UNIX System 2-14

Compiling and Linking Translated M-Files 2-15
Compiling Translated M-Files 2-15
Linking with MATLAB Libraries 2-15
2

Creating Stand-Alone
Graphics Applications

Introduction . 2-2

2 Creating Stand-Alone Graphics Applications

2-2
Introduction
After installing and configuring the MATLAB C/C++ Graphics Library,
described in Chapter 1, “Introduction”, you can use it to create stand-alone
graphics applications. This chapter includes the following topics:

• “Overview” on page 2-3

• “Building a Stand-Alone Graphics Application” on page 2-5

• “Packaging a Graphics Application for Redistribution” on page 2-13

• “Compiling and Linking Translated M-Files” on page 2-15

Overview
Overview
To create a stand-alone C or C++ graphics application, use the MATLAB
Compiler (mcc). The MATLAB Compiler:

• Translates the specified M-file into a C or C++ source code module

• Generates additional C or C++ source code modules, called wrapper files,
required by stand-alone applications

• Compiles and links the source modules into a stand-alone application, by
invoking your ANSI C or C++ compiler and linker.

Figure 2-1 shows how the Compiler works in conjunction with other tools and
libraries to create a stand-alone graphics application. In the figure, each tool is
represented by a shadowed box. For more detailed information about using the
MATLAB Compiler and the mbuild utility, see the MATLAB Compiler User’s
Guide.

Note Do not confuse the MATLAB Compiler with an ANSI C or C++
compiler. The MATLAB Compiler translates M-code into C or C++ source code,
which can then be compiled into object modules using an ANSI C or C++
compiler. This documentation distinguishes references to the MATLAB
Compiler by using the word “Compiler” with a capital C. References to
“compiler” with a lower case c refer to your ANSI C or C++ compiler.

Note that a stand-alone graphics application must be linked with several
MATLAB libraries as well as an ANSI C/C++ math library. The MATLAB API
and MAT-file libraries come with MATLAB. The MATLAB Math Built-In
Library and the MATLAB M-File Math Library are components of the
MATLAB C/C++ Math Library.
2-3

2 Creating Stand-Alone Graphics Applications

2-4
Figure 2-1: Creating a Stand-Alone C or C++ Graphics Applications

M-file that includes
graphics functions

MATLAB Compiler

C or C++ source file
version of M-file

C or C++ compiler

Object files

Linker

Stand-alone C or C++
graphics application

MATLAB M-File Math Library

MATLAB Math Built-In Library

MATLAB API Library

MATLAB MAT-File Library

ANSI C or C++ Library

MATLAB C/C++ Graphics Library

Building a Stand-Alone Graphics Application
Building a Stand-Alone Graphics Application
The best way to learn how to build a stand-alone graphics application is to see
an example. This section shows how to create a stand-alone graphics
application by converting one of the demo programs included with MATLAB,
lorenz.m. This demo plots the orbit of a point around the Lorenz chaotic
attractor. (For more information about the Lorenz application, type help
lorenz at the MATLAB prompt.) This demo is a useful example because it uses
graphics functions and includes several user-interface objects, such as push
buttons.

This section includes:

• “Building Graphics Applications on a PC” on page 2-5

• “Building Graphics Applications on a UNIX System” on page 2-7

• “Changes in Run-time Behavior and Appearance” on page 2-10

Building Graphics Applications on a PC
The following code example converts the Lorenz application into a stand-alone
application on a PC. To try this example, start MATLAB and perform these
steps at the MATLAB prompt. You can also create a stand-alone graphics
application with running MATLAB. For information, see “Running the
MATLAB Compiler Outside MATLAB” on page 2-9.

mbuild -setup

!copy <matlab>\toolbox\matlab\demos\lorenz.m *.*

mcc -B sgl lorenz.m

!lorenz

Note the following:

• The example uses mbuild -setup to set up the environment to create
stand-alone applications. This step is only required the first time you create
a stand-alone graphics application. For detailed information about running
mbuild, see “Configuring the MATLAB C/C++ Graphics Library” on page
1-14.
2-5

2 Creating Stand-Alone Graphics Applications

2-6
• The example uses the DOS copy command to copy the Lorenz application
M-file into the current MATLAB directory. <matlab> represents your
toplevel MATLAB directory. (This step is suggested because you may not
have permission to create a new file in the MATLAB demos directory.) You
can also use Microsoft Windows Explorer to copy the file.

• The example invokes the MATLAB Compiler, using the -B flag to specify the
graphics library bundle file. Bundle files are ASCII text files that contain
Compiler command line options and arguments. The sgl bundle file,
specified in the example, creates a C stand-alone application. To create a C++
application, use the sglcpp bundle file. The bundle files reside in the
<matlab>\bin directory.

Note Do not use the Compiler -V1.2 flag when creating a stand-alone
graphics library.

Results of Compilation
When it translates an M-file application, the MATLAB Compiler generates
multiple C or C++ source code modules in your current working directory.
These include wrapper files that contain necessary components of a
stand-alone application, such as a main() entry point.

In addition, the first time you run the MATLAB Compiler to create a
stand-alone graphics application, it creates a subdirectory, named \bin, in
your current working directory. The Compiler puts in this directory versions of
the MATLAB menu bar and toolbar figure files that are used by stand-alone
graphics applications at run-time. (For more information, see “Changes in
Run-time Behavior and Appearance” on page 2-10.) When you run the
Compiler subsequently, it checks for the existence of these files and does not
overwrite them if they exist.

Running a Stand-Alone Graphics Application
The Compiler creates the stand-alone graphics application as an executable
program in your current working directory, giving it the same name as your
M-file but with the .exe filename extension. You can run the application at the
MATLAB command prompt if you precede the name with a ! symbol, as shown
in the example. You can also run stand-alone graphics applications outside the

Building a Stand-Alone Graphics Application
MATLAB environment. However, make sure that the directory containing the
shared libraries to which your application has been linked (<matlab>\bin) is
on your directory search path.

Editing the Search Path on Windows 95. On Window95 systems, you must edit your
autoexec.bat file to add your shared library directory to the PATH variable.

Editing the Search Path on Windows NT. On Windows NT systems, go the Settings
option on the Start menu and choose Control Panel. Double-click on the
System icon to view the System Properties dialog box. Use the Environment
panel to edit the PATH variable.

Building Graphics Applications on a UNIX System
The following code example converts the Lorenz application into a stand-alone
application on a UNIX system. To try this example, start MATLAB and
perform these steps at the MATLAB prompt. You can also create a stand-alone
graphics application with running MATLAB. For information, see “Running
the MATLAB Compiler Outside MATLAB” on page 2-9.

mbuild -setup

!cp <matlab>/toolbox/matlab/demos/lorenz.m ./

mcc -B sgl lorenz.m

!lorenz

Note the following:

• The example uses mbuild -setup to set up the environment to create
stand-alone applications. This step is only required the first time you create
a stand-alone graphics application. For detailed information about running
mbuild, see “Configuring the MATLAB C/C++ Graphics Library” on page
1-14.

• The example uses the UNIX cp command to copy the Lorenz application
M-file into the current MATLAB directory. Use the ! symbol to execute an
operating system command inside the MATLAB environment. (This step is
suggested because you may not have permission to create a new file in the
MATLAB demos directory.) <matlab> represents your toplevel MATLAB
directory.
2-7

2 Creating Stand-Alone Graphics Applications

2-8
• The example invokes the MATLAB Compiler, using the -B flag to specify the
graphics library bundle file. Bundle files are ASCII text files that contain
Compiler command line options and arguments. The sgl bundle file,
specified in the example, creates a C stand-alone application. To create a C++
application, use the sglcpp bundle file. The bundle files reside in the
<matlab>/bin directory.

Note Do not use the -V1.2 flag when using the MATLAB Compiler to create
a stand-alone graphics library.

Results of Compilation
When it translates an M-file application, the MATLAB Compiler generates
multiple C or C++ source code modules in your current working directory.
These include wrapper files that contain necessary components of a
stand-alone application, such as a main() entry point.

In addition, the first time you run the MATLAB Compiler to create a
stand-alone graphics application, it creates a subdirectory, named /bin, in
your current working directory. The Compiler puts in this directory versions of
the MATLAB menu bar and toolbar figure files that are used by stand-alone
graphics applications at run-time. (For more information, see “Changes in
Run-time Behavior and Appearance” on page 2-10.) When you run the
Compiler subsequently, it checks for the existence of these files and does not
overwrite them if they exist.

Running a Stand-Alone Graphics Application
The Compiler creates the stand-alone graphics application as an executable
program in your current working directory, giving it the same name as your
M-file. You can run your stand-alone graphics application at the MATLAB
prompt if you precede the executable name with a !, as shown in the example.
You can also run a stand-alone application outside of the MATLAB
environment. However, you must add to your path the location of the shared

Building a Stand-Alone Graphics Application
libraries to which your application is linked. To set your path, use the
command from this table that is specific for your system.

To avoid having to reissue this command at the start of each login session,
include it in a startup script such as ~/.cshrc or ~/.login. Use the ~/.login
option, if your system supports it, because it only gets executed once.

Running the MATLAB Compiler Outside MATLAB
You can run the MATLAB Compiler without also running MATLAB. However,
if you do, you must specify the locations of the M-files that your application
depends on, using the -I option on the Compiler command line. When you run
the Compiler from within MATLAB, it can locate these files by referencing the
MATLAB path.

For example, the Lorenz application uses functions in the graph2d, graphics,
demos, and graph3d subdirectories of the <matlab>/toolbox/matlab/ directory.

A convenient way to provide the Compiler with this path information is to start
MATLAB and run the mccsavepath command. This command creates a file in
your current working directory, named mccpath, that contains this path
information. When you run the Compiler outside the MATLAB environment, it
automatically looks for this path information file in your local directory.

Architecture Command

HP700 setenv SHLIB_PATH <matlab>/extern/lib/hp700:<matlab>/bin/
hp700:$SHLIB_PATH

All others setenv LD_LIBRARY_PATH <matlab>/extern/lib/<arch>:<matlab>/bin/
<arch>:$LD_LIBRARY_PATH

where:
<matlab> is the MATLAB root directory.
<arch> is your architecture (i.e., alpha, lnx86, sgi, sgi64, sol2).
2-9

2 Creating Stand-Alone Graphics Applications

2-1
Changes in Run-time Behavior and Appearance
Stand-alone versions of graphics applications typically look and operate the
same as their M-file counterparts. Note, however, that because stand-alone
applications run outside the MATLAB environment, some standard MATLAB
menu bar options are not supported. For example, stand-alone applications
cannot support plot editing or provide access to MATLAB Help files.

To illustrate these differences, compare Figure 2-2, which shows the Lorenz
application running as an M-file on a PC, with Figure 2-3, which shows the
Lorenz application running as a stand-alone application. These differences are
discussed in the following sections:

• “Changes to Figure Window Menu Options” on page 2-11

• “Changes to Default Print Handling” on page 2-11

• “Including Help in a Stand-Alone Graphics Application” on page 2-12

• “Ctrl-C Handling” on page 2-12

Figure 2-2: M-File Version of the Lorenz Application
0

Building a Stand-Alone Graphics Application
Figure 2-3: Stand-Alone Version of the Lorenz Application

Changes to Figure Window Menu Options
In stand-alone graphics applications, the Figure window menu bar contains
only the File menu option. Stand-alone graphics applications run without
MATLAB and cannot support many of the options available through the Edit,
Tools, and Help menus, such as plot editing. When you create a stand-alone
application, the graphics library excludes these items from the menu bar.

The graphics library also excludes options from the File menu, such as the
Property Editor and Page Setup options, that are not supported by
stand-alone applications.

Changes to Default Print Handling
Because stand-alone graphics applications support printing, the Figure
window File menu includes the Print option. This option executes the print
command setup when the application was created in MATLAB. For
information about the various print options supported by the graphics library,
see “Graphics Library Printing Support” on page 1-3.
2-11

2 Creating Stand-Alone Graphics Applications

2-1
Note, however, that the Print option in stand-alone graphics applications does
not display the Print dialog box, as it does for M-file applications.

Including Help in a Stand-Alone Graphics Application
When you press the Info button in the M-file version of the Lorenz application,
it displays a separate help window containing the M-file help for the Lorenz
function. If you click on the Info button in the stand-alone version of the Lorenz
application, you get the error message:

An error occurred in the callback : lorenz(’info’)
The error message caught was : Function "helpwin" is not

supported in standalone applications

Stand-alone applications do not have access to MATLAB help.

Ctrl-C Handling
When you run a graphics application within MATLAB, you can press Ctrl-C to
break infinite loops. For example, you can press Ctrl-C to stop an animation.
When you run a C or C++ stand-alone application, Ctrl-C handling is not
supported.
2

Packaging a Graphics Application for Redistribution
Packaging a Graphics Application for Redistribution
To distribute a stand-alone graphics application, you must create a package
that includes the application’s executable as well as the shared libraries
against which the application was linked. This section describes:

• “Packaging Graphics Applications on a PC” on page 2-13

• “Packaging Graphics Applications on a UNIX System” on page 2-14

Packaging Graphics Applications on a PC
When packaging an application for redistribution on a PC, you must include
these libraries along with your application executable:

• <matlab>\bin\sgl.dll
• <matlab>\bin\hg_sgl.dll
• <matlab>\bin\uiw_sgl.dll
• <matlab>\bin\gui_sgl.dll
• <matlab>\bin\hardcopy_sgl.dll
• <matlab>\bin\mpath.dll
• <matlab>\bin\libmmfile.dll
• <matlab>\bin\libmat.dll
• <matlab>\bin\libmcc.dll
• <matlab>\bin\libmatlb.dll
• <matlab>\bin\libmx.dll
• <matlab>\bin\libut.dll

When packaging a stand-alone application, also remember to include:

• The ANSI C or C++ libraries you linked with your application

• The \bin directory associated with your stand-alone application. See
“Results of Compilation” on page 2-6 for more information about this
directory.

• All dynamic link libraries (DLLs) associated with your application must be
on the system path. You must either install them in a directory that is
already on the path or modify the %PATH% variable, as part of your application
installation procedure, to include the new directory.
2-13

2 Creating Stand-Alone Graphics Applications

2-1
Packaging Graphics Applications on a UNIX System
When packaging an application for redistribution on a UNIX system, you must
include these libraries with your application executable. In the filenames in
this list, the .ext is .so on Solaris, Alpha, Linux, and SGI; and .sl on HP 700.

• <matlab>/extern/lib/<arch>/libmwsgl.ext
• <matlab>/extern/lib/<arch>/libmat.ext
• <matlab>/extern/lib/<arch>/libmi.ext
• <matlab>/extern/lib/<arch>/libmmfile.ext
• <matlab>/extern/lib/<arch>/libmcc.ext
• <matlab>/extern/lib/<arch>/libmatlb.ext
• <matlab>/extern/lib/<arch>/libmx.ext
• <matlab>/extern/lib/<arch>/libut.ext
• <matlab>/bin/<arch>/libmwhg.ext
• <matlab>/bin/<arch>/libmwuix.ext
• <matlab>/bin/<arch>/libmwgui.ext
• <matlab>/bin/<arch>/libmwhardcopy.ext
• <matlab>/bin/<arch>/libmwmpath.ext

When packaging a stand-alone application, also remember to include:

• The ANSI C or C++ library you linked with your application

• The contents of the /bin directory associated with your stand-alone
application. See “Results of Compilation” on page 2-8 for more information
about this directory.
4

Compiling and Linking Translated M-Files
Compiling and Linking Translated M-Files
It is possible to build a stand-alone application without using mbuild. You must
still use the MATLAB Compiler to generate C or C++ source code modules.
However, after that, you can compile and link these modules as you would any
application.

Compiling Translated M-Files
Compile the generated C or C++ source files with an ANSI C or C++ compiler.
You must make sure the include file search path includes the directory in
which the file matlab.h resides. ANSI C or C++ compilers typically use the -I
switch to add directories to the include file search path.

Linking with MATLAB Libraries
Link the resulting object files against these libraries:

• MATLAB C/C++ Graphics Library (libmwsgl)

• MATLAB M-File Math Library (libmmfile)

• MATLAB Math Built-In Library (libmatlb)

• MATLAB MAT-File Library (libmat)

• MATLAB API Library (libmx)

• ANSI C or C++ math library (libm)

On PCs. For a complete list of the libraries required for graphics applications,
and the order in which they should be specified, start MATLAB and run the
mbuild -setup command. When mbuild determines the C or C++ compiler you
intend to use, it creates an options file for that compiler, called compopts.bat,
that lists all the libraries, in the correct order. You can find the compopts.bat
file in a subdirectory of the user profiles directory.
2-15

2 Creating Stand-Alone Graphics Applications

2-1
Note If you are using the Microsoft Visual C compiler, you must manually
build import libraries from the .def files using the lib command. If you are
using the Borland C compiler, you can link directly against the .def files
using the implib command. If you are using the Watcom C compiler, you must
build the import libraries from the DLLs using the wlib command. See your
compiler documentation for information about these commands.

On UNIX Systems. To see a complete list of the libraries required for graphics
applications, view the mbuildsglopts.sh file in <matlab>/bin. Search for the
section of this file specific to your system architecture. The command lists the
required libraries, specified in the correct order.
6

Using Unsupported MATLAB 5.3 Features 3-2
Compiling Application Written as Scripts 3-3
Fixing Callback Problems: Illegal Syntax 3-4
Fixing Callback Problems: Missing Functions 3-7
Depending on Graphics Settings in Start-Up Files 3-9
Print Option Does Not Appear on File Menu 3-9
3

Troubleshooting

Introduction . 3-2

3 Troubleshooting

3-2
Introduction
The MATLAB Compiler can compile most M-files that use graphics into
stand-alone applications. Some M-files, however, may include coding practices
that are not supported by the Compiler or by the graphics library. In some
cases, the MATLAB Compiler may not be able to translate the M-file into C or
C++ code. In other cases, the M-file may compile successfully but fail when run
as stand-alone application.

This chapter describes how to diagnose and correct these problems, including:

• “Using Unsupported MATLAB 5.3 Features” on page 3-2

• “Compiling Application Written as Scripts” on page 3-3

• “Fixing Callback Problems: Illegal Syntax” on page 3-4

• “Fixing Callback Problems: Missing Functions” on page 3-7

• “Depending on Graphics Settings in Start-Up Files” on page 3-9

• “Print Option Does Not Appear on File Menu” on page 3-9

Using Unsupported MATLAB 5.3 Features
The MATLAB Compiler supports most of the MATLAB 5.3 language features,
including multidimensional arrays, cell arrays, and structures. However, the
Compiler does not support:

• The MATLAB eval or input command

• MATLAB objects

• MATLAB integer types (int8, int16, int32, uint8, uint16, and uint32)

See the MATLAB Compiler User’s Guide for more information about these
limitations.

Symptom
The Compiler outputs error messages that identify which unsupported feature
prevented compilation.

Workaround
If your application uses unsupported features, the only workaround is to
remove these unsupported features by recoding your application.

Introduction
Compiling Applications Written as Scripts
The Compiler cannot compile applications written as scripts because scripts
interact with the MATLAB base workspace and stand-alone applications do
not have access to the MATLAB base workspace.

Symptom
If you attempt to compile a script, the Compiler outputs the error message

??? Error: File “filename” is a Script M-file and cannot be
compiled with the current Compiler.

where filename is the name of your script M-file.

Workaround
To compile an application written as a script, turn it into a MATLAB function.
To do this, include the MATLAB function prototype at the top of the file. You
must also find where the script depends on variables in the base workspace and
declare these variables as global variables.

For example, in the following script, the variable f, set by the call to the figure
function, exists in the base workspace. This variable is then passed as a
parameter to the function, my_func, specified in the callback property string.
Passing a workspace variable in a callback string is supported in MATLAB but
it is not supported by the MATLAB Compiler.

f = figure;

p_btn = uicontrol(gcf,...
'style', ‘pushbutton',...
'Position',[10 10 133 25],...
'String', 'Press Here',...
'CallBack','my_func(f);');

The following example shows this script transformed into a function.

function was_a_script()
% new function

global f;

f = figure;
3-3

3 Troubleshooting

3-4
p_btn = uicontrol(gcf,...
'style', ‘pushbutton',...
'Position',[10 10 133 25],...
'String', 'Press Here',...
'CallBack','my_callback’);

In this code example, note the following:

• The example changes the script into a function by including a MATLAB
function prototype line at the top of the file.

• The example declares the variable f, formerly referenced in the base
workspace, as a global variable. This makes it accessible to the callback
routine.

• The example replaces the reference to my_func in the callback string with the
name of a new function, my_callback. This new function performs the
processing formerly done in the callback string.

Here is the new callback function. Note how the function also declares f as
a global variable.

function my_callback()
% revised callback

global f;

my_func(f);

Fixing Callback Problems: Illegal Syntax
When a user clicks on an interactive element in a user interface, such as a push
button, MATLAB parses the text string associated with the callback property
of the element and executes the commands contained in this string. The
callback parser that comes with the MATLAB C/C++ Graphics Library
supports a subset of M syntax supported by the MATLAB interpreter.

For example, both the MATLAB callback parser and the graphics library
callback parser support these constructs in callback strings:

• Nesting function calls

• Passing scalar arguments

Introduction
• Passing string arguments

• Passing non-nested array arguments

• Specifying ranges

This sample callback string illustrates a nested function call, gca; a string
constant, ’color’; a vector constant [0 0 1]; and a simple range, 0:.2:1.

’set(gca, ’’color’’, [0 0 1], ’’xtick’’, 0:.2:1)’

These constructs, which are supported in MATLAB, are not supported by the
graphics library callback parser:

• Passing multidimensional arrays as function arguments

• Referencing workspace variables

• Making assignments to workspace variables

• Performing math operations, such as addition or subtraction

Symptom
Your M-file application compiles successfully, creating a stand-alone
executable. However, when you run it, interactive user interface elements,
such as a push button, are not responsive. When you exit the application, the
graphics library issues an error message such as:

An error occurred in the callback : colormap([1 1 1; 0 0 0]);
The error message caught was : Colormap must have 3 columns:

[R,G,B].

Workaround
To fix an application that includes any of these constructs in a callback string:

• Search the application M-file for the callback string associated with the
callback property of the unresponsive user interface element. For
information about finding callback strings, see “Finding Callback Strings in
an M-File” on page 3-7.

• Remove the callback string from the M-file, if it uses unsupported
programming constructs, and put it into a new M-file, using it as the basis
for a new function.

• Specify the name of this new function as the value of the callback string
associated with the user interface element.
3-5

3 Troubleshooting

3-6
For example, this graphics application displays the output of the peaks
function and includes a push button that changes the colormap to black and
white.

function my_test()
% Graphics library callback test application

peaks;

p_btn = uicontrol(gcf,...
'style', ‘pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','colormap([1 1 1; 0 0 0]);');

This M-file compiles successfully, creating a stand-alone application. However,
when you run it, the push button doesn’t change the color map. When you close
the application, the graphics library issues the error message:

An error occurred in the callback : colormap([1 1 1; 0 0 0]);
The error message caught was : Colormap must have 3 columns:

[R,G,B].

This error is generated because the array argument passed to the colormap
function, [1 1 1; 0 0 0], contains more than one row. To fix this application,
create a new function that contains the call to colormap:

function change_colormap()
% New function made from callback property string

colormap([1 1 1; 0 0 0]);

Then, in the application M-file, replace the callback string associated with the
push button with the name of the new function, change_colormap:

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...

Introduction
'style', ‘pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

This modified M-file successfully compiles and, when executed as a stand-alone
application, the push button operates as expected.

This example also includes a call to the %#function pragma. This pragma lists
functions that you want the Compiler to compile. This is required if a function
is specified only in a callback string and not anywhere else in an M-file. When
processing an M-file, the Compiler determines which functions an M-file
depends on and compiles them all. The Compiler does not check the callback
strings for functions. For more information about this pragma, see “Fixing
Callback Problems: Missing Functions” on page 3-7.

Finding Callback Strings in an M-File
To find callback strings in an M-file, search your M-file for the character
strings Callback or Fcn. This will find all the Callback properties defined by
Handle Graphics ® objects, such as uicontrol and uimenu. In addition, this will
find the properties of figures and axes that end in Fcn, such as
CloseRequestFcn, that also support callbacks.

Fixing Callback Problems: Missing Functions
When the Compiler creates a stand-alone application, it compiles the M-file
you specify on the command line and, in addition, it compiles any other M-files
that your M-file calls. If your application includes a call to a function in a
callback string or in a string passed as an argument to the feval function or
an ODE solver, and this is the only place in your M-file this function is called,
the Compiler will not compile the function. The Compiler does not look in these
text strings for functions to compile.

Symptom
Your application runs but an interactive user interface element, such as a push
button, is unresponsive. When you close the application, the graphics library
issues this error message:

An error occurred in the callback : change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.
3-7

3 Troubleshooting

3-8
Workaround
To eliminate this error, create a list all of the functions that are specified only
in callback strings and pass this list to the %#function pragma. (See “Finding
Missing Functions in an M-File” on page 3-8 for hints about finding functions
in callback strings.) The Compiler processes any function listed in a
%#function pragma.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure the Compiler
processes the change_colormap M-file, list the function name in the
%#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
’style’, ’pushbutton’,...
’Position’,[10 10 133 25],...
’String’, ’Make Black & White’,...
’CallBack’,’change_colormap’);

Note Instead of using the %#function pragma, you can specify the name of
the missing M-file on the Compiler command line. For more information about
this mechanisms, see the MATLAB Compiler User’s Guide.

Finding Missing Functions in an M-File
To find functions that may need to be listed in a %#function pragma, check the
text strings specified as callback strings or as arguments to feval, ODE
solvers, fmin, fmins, funm, and fzeros.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your M-file. This will find all the Callback properties
defined by Handle Graphics ® objects, such as uicontrol and uimenu. In

Introduction
addition, this will find the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Depending on Graphics Settings in Start-Up Files
When you start MATLAB, it executes startup.m, if it exists. Your application
may depend on Handle Graphics defaults that are set within a startup.m file.

Workaround
If your application depends on graphics settings in a startup.m file, include the
startup.m, or the portion of it your application depends on, in the group of
M-files that you compile with the MATLAB Compiler.

Print Option Does Not Appear on File Menu
If you create a stand-alone application and the Print option does not appear on
the File menu, it may indicate that the menu bar and toolbar figure files in
your application’s \bin directory (/bin on UNIX systems) are not correct. The
first time you create a graphics application, the Compiler creates this directory
and populates it with two figure files, FigureMenuBar.fig and
FigureToolBar.fig. After that, whenever you create graphics applications,
the Compiler checks for the existence of these files and, if they exist, it does not
replace them. Your application’s bin directory may contain figure files from a
previous release of the graphics library.

Workaround
Replace the menu bar and toolbar figure files in your application bin directory
with the versions of these figure files in the MATLAB installation directory
(<matlab>\extern\include on PCs or <matlab>/extern/include on UNIX
systems). When you restart your stand-alone graphics application, it will use
the new figure files.

Another way to replace your existing figure files with new figure files is to
delete your application bin directory and run the Compiler. If this directory
does not exist, the Compiler creates it and populates it with copies of the figure
files stored in the MATLAB installation directory. There is no need to
recompile your graphics M-file application, especially if this is a
time-consuming task. Compiling a trivial M-file graphics application is enough
to cause the creation of a new application bin directory.
3-9

3 Troubleshooting

3-1
0

MATLAB 5.3 Built-In Graphics Functions 4-2
MATLAB 5.3 M-File Graphics Functions 4-3
4

Reference

MATLAB C/C++ Graphics Library 4-2

4 Reference

4-2
MATLAB C/C++ Graphics Library
The MATLAB C/C++ Graphics Library is distributed as a single library
composed of two groups of functions:

• MATLAB 5.3 built-in graphics functions

• MATLAB 5.3 M-file graphics functions

MATLAB 5.3 Built-In Graphics Functions
This table lists the built-in functions contained in the MATLAB C/C++
Graphics Library. The stand-alone versions behave as the functions do for
MATLAB 5.3 except for the restrictions placed by the MATLAB Compiler 2.0.1
and MATLAB C and C++ Math Library 2.0.1.

Table 4-1: MATLAB 5.3 Built-In Functions in the Graphics Library

axes contourc copyobj

delete dragrect drawnow

figure fill fill3

findobj frame2im get

getframe handle2struct image

im2frame ishandle light

line loglog movie

patch plot plot3

rbbox rectangle reset

rmappdata selectmoveresize semilogx

semilogy set setappdata

struct2handle surface text

uicontrol uigetfile uimenu

uiputfile uisetcolor uisetfont

waitfor waitforbuttonpress

MATLAB 5.3 M-File Graphics Functions
This table lists the MATLAB M-file functions contained in the MATLAB C/C++
Graphics Library. The stand-alone versions of these functions behave as the
functions do in MATLAB 5.3.

Table 4-2: MATLAB 5.3 M-File Graphics Functions in the Graphics Library

align allchild axis

brighten camzoom close

closereq clruprop colordef

colormap colstyle dialog

errordlg filemenufcn findall

gca gcbf gcbo

gcf gco getappdata

getuprop ginput hgload

hgsave histc hold

hsv hsv2rgb isappdata

ishold jet legend

makemenu menubar menulabel

moveaxis msgbox newplot

polar print questdlg

rotate3d setptr setuprop

textwrap uiclearmode uicontextmenu

uirestore uiresume uiwait

view warndlg watchoff

watchon whitebg zoom
4-3

4 Reference

4-4

Index
Symbols
%#function pragma 3-8
.cshrc 2-9
.login 2-9
/bin directory (UNIX)

creating 2-8
packaging applications 2-14
removing 3-9

\bin directory (PCs)
creating 2-6
packaging applications 2-13
removing 3-9

A
Adobe Illustrator

device driver 1-4
axes objects 3-7, 3-9

B
-B flag

specifying bundle files 2-6, 2-8
building graphics applications 2-5

on PCs 2-5
on UNIX systems 2-7
other methods 2-15

bundle files
using 2-6, 2-8

C
C application

creating 2-6, 2-8
C++ applications

creating 2-6, 2-8
callback strings
assigning values to workspace variables 3-5
finding in M-code 3-7
illegal syntax 3-4, 3-5
multi-dimensional arrays as arguments 3-5
nested function calls 3-4
passing workspace variables in 3-4
scalar arguments 3-4
searching M-files for 3-8
string arguments 3-5
supported syntax 3-5
turning into functions 3-5
unsupported coding practices 3-5

callbacks
unsupported coding practices 3-4

color printing
support 1-4

Compiler. See MATLAB Compiler 1-7
compopts.bat 2-15
configuration 1-14

on PCs 1-14
on UNIX systems 1-16

Ctrl-C handling
stand-alone graphics applications 2-12

D
device drivers

support 1-4
distributing graphics applications

on Microsoft Windows 2-13
on UNIX systems 2-14

drivers
support 1-4

Dynamic Link Libraries (DLLs)
installed with graphics library 1-9
I-1

Index

I-2
required for distribution of graphics applica-
tions 2-13

E
encapsulated PostScript

support 1-4
eval

restrictions 1-3
unsupported feature 3-2

example application
flames.m 1-10, 1-12

F
feval 3-8
figure objects 3-7, 3-9
FigureMenuBar.fig 1-10, 1-12
FigureToolBar.fig 1-10, 1-12
file menu

print option 3-9
flames.m 1-10, 1-12
fmin 3-8
fmins 3-8
funm 3-8
fzeros 3-8

G
Ghostscript drivers

support 1-4
global variables 3-3
graphics applications

build procedure 2-5
overview 2-3
run-time behavior 2-10

graphics library
configuration 1-14
graphics M-files

unsupported coding practices 1-5
gui_sgl.dll 1-9

H
Handle Graphics

Callback property 3-7, 3-8
defaults 3-9
objects 3-7, 3-8

hardcopy_sgl.dll 1-9
hardware requirements 1-8
header files

libsglm.h 1-10
sgl.h 1-12

Help
support in stand-alone graphics applications

2-12
hg_sgl.dll 1-9

I
Info button

stand-alone support 2-12
installation

files installed on PCs 1-9
files installed on UNIX systems 1-11
on UNIX systems 1-10
overview 1-7
procedure on PCs 1-8
verifying on PC 1-10
verifying on UNIX systems 1-13

integer data types
support for 1-3
unsupported feature 3-2

Index
L
libmwsgl.sl 1-12
libmwsgl.so 1-12
libraries

linking 2-15
required link libraries 2-3

library search path
specifying on PCs 2-7
specifying on UNIX systems 2-9

libsgl.h 1-10
license

obtaining 1-7
linking

required libraries 2-3, 2-15

M
math operations

in callback strings 3-5
MATLAB 5.3

built-in functions in graphics library 4-2
M-file graphics functions in graphics library

4-3
unsupported features 3-2

MATLAB C/C++ Graphics Library
built-in functions 4-2
components 1-2
MATLAB 4.2 functions 4-3
M-file functions 4-3
overview 1-2
relationship to the MATLAB Math Libraries

2-4
restrictions 1-3

MATLAB C/C++ Math Library
relationship to graphics library 2-4
restrictions 1-3
version required 1-7

MATLAB Compiler
bundle files 2-6, 2-8
creating stand-alone applications 2-2
defined 2-3
restrictions 1-3
running outside the MATLAB environment

2-9
version required 1-7

mbuild

configuring the graphics library 1-14
in build procedure on PCs 2-5
in build procedure on UNIX systems 2-7
options files 1-14

mbuild options file 2-15
mbuildopts.sh 1-16
mbuildsglopts.sh 1-16

mbuild

options files 2-16
mccsavepath 2-9
menu bar graphics file

location 1-10
M-files

creating stand-alone applications 2-2
finding callback strings 3-7
searching for callback strings 3-8
translating into C or C++ code 2-3
unsupported coding practices 1-5

module definition file
sgl.def 1-10

mpath.dll 1-9
multidimensional arrays

passed in callback strings 3-5, 3-6

N
nested function calls 3-4
I-3

Index

I-4
O
objects 1-3

unsupported feature 3-2
objects (Handle Graphics)

axes 3-7, 3-9
controls 3-7, 3-8
figures 3-7, 3-9
menus 3-7, 3-8

ODE solvers 3-8
OpenGL

restrictions 1-3
options files

mbuild 1-14, 2-16

P
painters renderer

support 1-5
path

setting on a PC 2-7
setting on UNIX systems 2-9

PCs
building stand-alone graphics applications

2-5
packaging graphics applications 2-13

plotedit command
restrictions 1-3

PostScript drivers
support 1-4

print command
options 1-5
support 1-3

printing
color support 1-4
support 1-3
troubleshooting 3-9

push buttons
unresponsive 3-5

R
ranges

specifying in a callback string 3-5
renderers

support 1-5
restrictions 1-3
runtime

behavior of stand-alone applications 2-10
run-time errors

in stand-alone graphics applications 3-5

S
scalar arguments 3-4
scripts

compiling 3-3
turning into functions 3-3

sgl 1-12
installation directory 1-9

sgl bundle file
using 2-6, 2-8

sgl.dll 1-9
sgl.h 1-12
sglcpp 1-12

installation directory 1-9
sglcpp bundle file

using 2-6, 2-8
shared libraries

installed with graphics library 1-9
required by stand-alone graphics applications

2-13
stand-alone graphics applications

build procedure 2-5
building on PCs 2-5

Index
distributing on Microsoft Windows 2-13
distributing on UNIX systems 2-14
overview 2-3
run-time behavior 2-10

startup options 2-9
startup.m

compiling 3-9
string arguments 3-5
system requirements 1-7

T
toolbar graphics file

location 1-10
troubleshooting

compiling scripts 3-3
dependence on startup.m 3-9
illegal callback syntax 3-4
missing functions 3-7
missing print option 3-9
unsupported MATLAB features 3-2

U
uicontrol objects 3-7, 3-8
uimenu objects 3-7, 3-8
uiw_sgl.dll 1-9
UNIX systems

building stand-alone graphics applications 2-7
packaging graphics applications 2-14

unsupported features
MATLAB 5.3 3-2

user interface elements
unresponsive 3-5

W
workspace variables

assigning values in callback strings 3-5
referenced in callback strings 3-5
turning into global variables 3-3

wrapper files
generated by Compiler 2-6, 2-8

Z
zbuffer renderer

support 1-5
I-5

	Introduction
	The MATLAB C/C++ Graphics Library
	Components of the MATLAB C/C++ Graphics Library
	Restrictions
	Graphics Library Printing Support
	Default Printing
	Custom Printing

	Unsupported Application Coding Practices

	Sources of Additional Information

	Installing the MATLAB C/C++ Graphics Library
	Before You Install
	System Requirements
	Software
	Hardware

	Downloading and Installing on PCs
	Files Installed on PCs
	Verifying Your Installation

	Downloading and Installing on UNIX Systems
	Files Installed on UNIX Systems
	Verifying Your Installation

	Configuring the MATLAB C/C++ Graphics Library
	Configuring the Graphics Library on PCs
	Configuring the Graphics Library on UNIX Systems

	Creating Stand-Alone Graphics Applications
	Introduction
	Overview
	Building a Stand-Alone Graphics Application
	Building Graphics Applications on a PC
	Results of Compilation
	Running a Stand-Alone Graphics Application
	Editing the Search Path on Windows 95
	Editing the Search Path on Windows NT

	Building Graphics Applications on a UNIX System
	Results of Compilation
	Running a Stand-Alone Graphics Application

	Running the MATLAB Compiler Outside MATLAB
	Changes in Run-time Behavior and Appearance
	Changes to Figure Window Menu Options
	Changes to Default Print Handling
	Including Help in a Stand-Alone Graphics Application
	Ctrl-C Handling

	Packaging a Graphics Application for Redistribution
	Packaging Graphics Applications on a PC
	Packaging Graphics Applications on a UNIX System

	Compiling and Linking Translated M-Files
	Compiling Translated M-Files
	Linking with MATLAB Libraries
	On PCs
	On UNIX Systems

	Troubleshooting
	Introduction
	Using Unsupported MATLAB 5.3 Features
	Symptom
	Workaround

	Compiling Applications Written as Scripts
	Symptom
	Workaround

	Fixing Callback Problems: Illegal Syntax
	Symptom
	Workaround
	Finding Callback Strings in an M-File

	Fixing Callback Problems: Missing Functions
	Symptom
	Workaround
	Finding Missing Functions in an M-File

	Depending on Graphics Settings in Start-Up Files
	Workaround

	Print Option Does Not Appear on File Menu
	Workaround

	Reference
	MATLAB C/C++ Graphics Library
	MATLAB 5.3 Built-In Graphics Functions
	MATLAB 5.3 M-File Graphics Functions

	Index

